1
|
Ma X, Zhu X, Lv S, Yang C, Wang Z, Liao M, Zhou B, Zhang Y, Sun S, Chen P, Liu Z, Chen H. 3D bioprinting of prefabricated artificial skin with multicomponent hydrogel for skin and hair follicle regeneration. Theranostics 2025; 15:2933-2950. [PMID: 40083946 PMCID: PMC11898285 DOI: 10.7150/thno.104854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/27/2025] [Indexed: 03/16/2025] Open
Abstract
Background: The timely management of large-scale wounds and the regeneration of skin appendages constitute major clinical issues. The production of high-precision and customizable artificial skin via 3D bioprinting offers a feasible means to surmount the predicament, within which the selection of bioactive materials and seed cells is critical. This study is aimed at employing skin stem cells and multicomponent hydrogels to prefabricate artificial skin through 3D bioprinting, which enables the regeneration of skin and its appendages. Methods and Results: We employed gelatin methacrylate (GelMA) and hyaluronic acid methacrylate (HAMA) as bioactive materials, in conjunction with epidermal stem cells (Epi-SCs) and skin-derived precursors (SKPs), to fabricate artificial skin utilizing 3D bioprinting. The photosensitive multicomponent hydrogel, comprising 5% GelMA and 0.5% HAMA, demonstrated excellent printability, suitable solubility and swelling rates, as well as stable mechanical properties. Moreover, this hydrogel exhibited exceptional biocompatibility, effectively facilitating the proliferation of SKPs while maintaining the cellular characteristics of both SKPs and Epi-SCs. The transplantation of this artificial skin into cutaneous wounds in nude mice led to complete wound healing and functional tissue regeneration. The regenerated tissue comprised epidermis, dermis, hair follicles, blood vessels, and sebaceous glands, closely resembling native skin. Remarkably, the artificial skin demonstrated sustained tissue regeneration capacity even after 12 h of in vitro culture, facilitating comprehensive functional skin regeneration. Conclusions: Our research presented a skin repair strategy for prefabricated cell-loaded artificial skin, thereby successfully facilitating the regeneration of the epidermis, dermis, hair follicles, blood vessels, and sebaceous glands within the wound.
Collapse
Affiliation(s)
- Xiaoxiao Ma
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- East China Institute of Digital Medical Engineering, Shangrao, 334000, People's Republic of China
| | - Xiaohui Zhu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- Peptide and Small Molecule Drug RD Platform, Furong laboratory, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Sheng Lv
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Chunyan Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Zihao Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Meilan Liao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Bohao Zhou
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Yiming Zhang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Shiyu Sun
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Ping Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, People's Republic of China
- East China Institute of Digital Medical Engineering, Shangrao, 334000, People's Republic of China
- Peptide and Small Molecule Drug RD Platform, Furong laboratory, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| |
Collapse
|
2
|
Zhang HL, Qiu XX, Liao XH. Dermal Papilla Cells: From Basic Research to Translational Applications. BIOLOGY 2024; 13:842. [PMID: 39452150 PMCID: PMC11504027 DOI: 10.3390/biology13100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
As an appendage of the skin, hair protects against ultraviolet radiation and mechanical damage and regulates body temperature. It also reflects an individual's health status and serves as an important method of expressing personality. Hair loss and graying are significant psychosocial burdens for many people. Hair is produced from hair follicles, which are exclusively controlled by the dermal papilla (DP) at their base. The dermal papilla cells (DPCs) comprise a cluster of specialized mesenchymal cells that induce the formation of hair follicles during early embryonic development through interaction with epithelial precursor cells. They continue to regulate the growth cycle, color, size, and type of hair after the hair follicle matures by secreting various factors. DPCs possess stem cell characteristics and can be cultured and expanded in vitro. DPCs express numerous stemness-related factors, enabling them to be reprogrammed into induced pluripotent stem cells (iPSCs) using only two, or even one, Yamanaka factor. DPCs are an important source of skin-derived precursors (SKPs). When combined with epithelial stem cells, they can reconstitute skin and hair follicles, participating in the regeneration of the dermis, including the DP and dermal sheath. When implanted between the epidermis and dermis, DPCs can induce the formation of new hair follicles on hairless skin. Subcutaneous injection of DPCs and their exosomes can promote hair growth. This review summarizes the in vivo functions of the DP; highlights the potential of DPCs in cell therapy, particularly for the treatment of hair loss; and discusses the challenges and recent advances in the field, from basic research to translational applications.
Collapse
Affiliation(s)
- He-Li Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xi-Xi Qiu
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai 200444, China;
| |
Collapse
|
3
|
Xue C, Zhu H, Wang H, Wang Y, Xu X, Zhou S, Liu D, Zhao Y, Qian T, Guo Q, He J, Zhang K, Gu Y, Gong L, Yang J, Yi S, Yu B, Wang Y, Liu Y, Yang Y, Ding F, Gu X. Skin derived precursors induced Schwann cells mediated tissue engineering-aided neuroregeneration across sciatic nerve defect. Bioact Mater 2024; 33:572-590. [PMID: 38111651 PMCID: PMC10726219 DOI: 10.1016/j.bioactmat.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023] Open
Abstract
A central question in neural tissue engineering is how the tissue-engineered nerve (TEN) translates detailed transcriptional signals associated with peripheral nerve regeneration into meaningful biological processes. Here, we report a skin-derived precursor-induced Schwann cell (SKP-SC)-mediated chitosan/silk fibroin-fabricated tissue-engineered nerve graft (SKP-SCs-TEN) that can promote sciatic nerve regeneration and functional restoration nearly to the levels achieved by autologous nerve grafts according to behavioral, histological, and electrophysiological evidence. For achieving better effect of neuroregeneration, this is the first time to jointly apply a dynamic perfusion bioreactor and the ascorbic acid to stimulate the SKP-SCs secretion of extracellular matrix (ECM). To overcome the limitation of traditional tissue-engineered nerve grafts, jointly utilizing SKP-SCs and their ECM components were motivated by the thought of prolongating the effect of support cells and their bioactive cues that promote peripheral nerve regeneration. To further explore the regulatory model of gene expression and the related molecular mechanisms involved in tissue engineering-aided peripheral nerve regeneration, we performed a cDNA microarray analysis of gene expression profiling, a comprehensive bioinformatics analysis and a validation study on the grafted segments and dorsal root ganglia tissues. A wealth of transcriptomic and bioinformatics data has revealed complex molecular networks and orchestrated functional regulation that may be responsible for the effects of SKP-SCs-TEN on promoting peripheral nerve regeneration. Our work provides new insights into transcriptomic features and patterns of molecular regulation in nerve functional recovery aided by SKP-SCs-TEN that sheds light on the broader possibilities for novel repair strategies of peripheral nerve injury.
Collapse
Affiliation(s)
- Chengbin Xue
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Hui Zhu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Hongkui Wang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yaxian Wang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Xi Xu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, JS, 226001, PR China
| | - Songlin Zhou
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Dong Liu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yahong Zhao
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Tianmei Qian
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Qi Guo
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
- Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, PR China
| | - Jin He
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Kairong Zhang
- Medical School of Nantong University, Nantong, JS, 226001, PR China
| | - Yun Gu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Leilei Gong
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Jian Yang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Sheng Yi
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Bin Yu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yongjun Wang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yan Liu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Yumin Yang
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Fei Ding
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| | - Xiaosong Gu
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS, 226001, PR China
| |
Collapse
|
4
|
Yalçın MB, Bora ES, Erbaş O. The Effect of Liraglutide on Axon Regeneration and Functional Recovery after Peripheral Nerve Lesion. Curr Issues Mol Biol 2024; 46:327-339. [PMID: 38248323 PMCID: PMC10814355 DOI: 10.3390/cimb46010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/21/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Peripheral nerve injuries inflict severe consequences, necessitating innovative therapeutic strategies. This study investigates the potential of liraglutide, a glucagon-like peptide-1 receptor agonist, in mitigating the consequences of peripheral nerve injury. The existing treatment methods for such injuries underscore the importance of ongoing translational research efforts. Thirty adult Wistar rats underwent sciatic nerve dissection and repair surgery. The nerves were surgically transected using micro scissors at a precise location located 1.5 cm proximal to the trifurcation site. The study included a control group and two experimental groups, one treated with saline (placebo group) and the other with liraglutide (experimental group) for 12 weeks. Motor function, electromyography (EMG), and biochemical and histopathological analyses were performed after 12 weeks of treatment. Electrophysiological assessments revealed that liraglutide improved the compound muscle action potential (CMAP) amplitude and motor function compared to the saline-treated group. Histological and immunohistochemical analyses demonstrated increased NGF expression, total axon number, and diameter and reduced fibrosis in the liraglutide group. Biochemical analyses illustrated liraglutide's antioxidative properties, evidenced by reduced malondialdehyde (MDA) levels. Galectin-3 levels were suppressed and GDF-11 levels were modulated by liraglutide, indicating anti-inflammatory and anti-apoptotic effects. Liraglutide is a promising therapeutic intervention for peripheral nerve injuries, promoting functional recovery and histopathological improvement. Its multifaceted positive impact, beyond glycemic control, suggests constructive effects on the acute and chronic inflammatory processes associated with peripheral neuropathy. These findings warrant further research to elucidate molecular mechanisms and facilitate clinical translation. The study contributes valuable insights to the growing understanding of GLP-1 receptor agonists' neuroprotective properties in the context of peripheral nerve injuries.
Collapse
Affiliation(s)
- Mehmet Burak Yalçın
- Department of Orthopedics and Traumatology, Bahcelievler Memorial Hospital, Istanbul 34180, Türkiye;
| | - Ejder Saylav Bora
- Department of Emergency Medicine, Izmir Atatürk Research and Training Hospital, Izmir 35360, Türkiye
| | - Oytun Erbaş
- Department of Physiology, Demiroğlu Bilim University, Istanbul 34180, Türkiye;
| |
Collapse
|
5
|
Shi M, An G, Chen N, Jia J, Cui X, Zhan T, Ji D. UVRAG Promotes Tumor Progression through Regulating SP1 in Colorectal Cancer. Cancers (Basel) 2023; 15:2502. [PMID: 37173968 PMCID: PMC10177159 DOI: 10.3390/cancers15092502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer. The ultraviolet radiation resistance-associated gene (UVRAG) plays a role in autophagy and has been implicated in tumor progression and prognosis. However, the role of UVRAG expression in CRC has remained elusive. In this study, the prognosis was analyzed via immunohistochemistry, and the genetic changes were compared between the high UVRAG expression group and the low UVRAG expression group using RNA sequencing (RNA-seq) and single-cell RNA-seq (scRNA-seq) data, and genetic changes were then identified by in vitro experiments. It was found that UVRAG could enhance tumor migration, drug resistance, and CC motif chemokine ligand 2 (CCL2) expression to recruit macrophages by upregulating SP1 expression, resulting in poor prognosis of CRC patients. In addition, UVRAG could upregulate the expression of programmed death-ligand 1 (PD-L1). In summary, the relationship between UVRAG expression and the prognosis of CRC patients as well as the potential mechanisms in CRC were explored, providing evidence for the treatment of CRC.
Collapse
Affiliation(s)
- Mengyuan Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Guo An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Laboratory Animal, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jinying Jia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xinxin Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Tiancheng Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Dengbo Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
6
|
Kumar P, Mangal M. A Novel Technique of Nerve Grafting without Flap Elevation in Post Electric Burn Wrist Defect. Indian J Plast Surg 2022; 55:313-314. [PMID: 36325080 PMCID: PMC9622325 DOI: 10.1055/s-0042-1756129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Parmod Kumar
- Department of Plastic Surgery, PGIMER, Chandigarh, India
| | - Mayank Mangal
- Department of Plastic Surgery, PGIMER, Chandigarh, India
| |
Collapse
|
7
|
Cellular Heterogeneity Facilitates the Functional Differences Between Hair Follicle Dermal Sheath Cells and Dermal Papilla Cells: A New Classification System for Mesenchymal Cells within the Hair Follicle Niche. Stem Cell Rev Rep 2022; 18:2016-2027. [PMID: 35849252 DOI: 10.1007/s12015-022-10411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are known for their self-renewal and multi-lineage differentiation potential, with these cells often being evaluated in the regulation and maintenance of specific cellular niches including those of the hair follicle. Most mesenchymal stem cells in the hair follicles are housed in the dermal papilla (DP) and dermal sheath (DS), with both niches characterized by a broad variety of cellular subsets. However, while most previous studies describing the hair follicle mesenchymal niche treated all DP and DS cells as Hair Follicle Mesenchymal Stem Cells (HF-MSCs), the high number of cellular subsets would suggest that these cells are actually too heterogenous for such a broad definition. Given this we designed this study to evaluate the differentiation processes in these cells and used this data to create a new set of classifications for DP and DS cells, dividing them into "hair follicle mesenchymal stem cells (HF-MSCs)", "hair follicle mesenchymal progenitor cells (HF-MPCs)", and "hair follicle mesenchymal functional cells (HF-MFCs)". In addition, those cells that possess self-renewal and differentiation were re-named hair follicle derived mesenchymal multipotent cells (HF-MMCs). This new classification may help to further our understanding of the heterogeneity of hair follicle dermal cells and provide new insights into their evaluation.
Collapse
|
8
|
Li X, Guan Y, Li C, Zhang T, Meng F, Zhang J, Li J, Chen S, Wang Q, Wang Y, Peng J, Tang J. Immunomodulatory effects of mesenchymal stem cells in peripheral nerve injury. Stem Cell Res Ther 2022; 13:18. [PMID: 35033187 PMCID: PMC8760713 DOI: 10.1186/s13287-021-02690-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Various immune cells and cytokines are present in the aftermath of peripheral nerve injuries (PNI), and coordination of the local inflammatory response is of great significance for the recovery of PNI. Mesenchymal stem cells (MSCs) exhibit immunosuppressive and anti-inflammatory abilities which can accelerate tissue regeneration and attenuate inflammation, but the role of MSCs in the regulation of the local inflammatory microenvironment after PNI has not been widely studied. Here, we summarize the known interactions between MSCs, immune cells, and inflammatory cytokines following PNI with a focus on the immunosuppressive role of MSCs. We also discuss the immunomodulatory potential of MSC-derived extracellular vesicles as a new cell-free treatment for PNI.
Collapse
Affiliation(s)
- Xiangling Li
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.,Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,The School of Medicine, Jinzhou Medical University, Jinzhou, 121099, People's Republic of China
| | - Yanjun Guan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Chaochao Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Tieyuan Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Fanqi Meng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,Department of Spine Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Jian Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Junyang Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.,The School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China
| | - Shengfeng Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China
| | - Qi Wang
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.,The School of Medicine, Jinzhou Medical University, Jinzhou, 121099, People's Republic of China
| | - Yi Wang
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People's Republic of China.
| | - Jinshu Tang
- The Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
| |
Collapse
|
9
|
Peripheral Nerve Regeneration Using Different Germ Layer-Derived Adult Stem Cells in the Past Decade. Behav Neurol 2021; 2021:5586523. [PMID: 34539934 PMCID: PMC8448597 DOI: 10.1155/2021/5586523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Peripheral nerve injuries (PNIs) are some of the most common types of traumatic lesions affecting the nervous system. Although the peripheral nervous system has a higher regenerative ability than the central nervous system, delayed treatment is associated with disturbances in both distal sensory and functional abilities. Over the past decades, adult stem cell-based therapies for peripheral nerve injuries have drawn attention from researchers. This is because various stem cells can promote regeneration after peripheral nerve injuries by differentiating into neural-line cells, secreting various neurotrophic factors, and regulating the activity of in situ Schwann cells (SCs). This article reviewed research from the past 10 years on the role of stem cells in the repair of PNIs. We concluded that adult stem cell-based therapies promote the regeneration of PNI in various ways.
Collapse
|
10
|
Chen Z, Li S, Mo J, Hawley E, Wang Y, He Y, Brosseau JP, Shipman T, Clapp DW, Carroll TJ, Le LQ. Schwannoma development is mediated by Hippo pathway dysregulation and modified by RAS/MAPK signaling. JCI Insight 2020; 5:141514. [PMID: 32960816 PMCID: PMC7605536 DOI: 10.1172/jci.insight.141514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/11/2020] [Indexed: 01/19/2023] Open
Abstract
Schwannomas are tumors of the Schwann cells that cause chronic pain, numbness, and potentially life-threatening impairment of vital organs. Despite the identification of causative genes, including NF2 (Merlin), INI1/SMARCB1, and LZTR1, the exact molecular mechanism of schwannoma development is still poorly understood. Several studies have identified Merlin as a key regulator of the Hippo, MAPK, and PI3K signaling pathways; however, definitive evidence demonstrating the importance of these pathways in schwannoma pathogenesis is absent. Here, we provide direct genetic evidence that dysregulation of the Hippo pathway in the Schwann cell lineage causes development of multiple schwannomas in mice. We found that canonical Hippo signaling through the effectors YAP/TAZ is required for schwannomagenesis and that MAPK signaling modifies schwannoma formation. Furthermore, cotargeting YAP/TAZ transcriptional activity and MAPK signaling demonstrated a synergistic therapeutic effect on schwannomas. Our new model provides a tractable platform to dissect the molecular mechanisms underpinning schwannoma formation and the role of combinatorial targeted therapy in schwannoma treatment. Canonical Hippo signaling through the effectors YAP/TAZ is required for the development of peripheral nervous system tumors of Schwann cells, and MAPK signaling modifies schwannoma formation.
Collapse
Affiliation(s)
| | - Stephen Li
- Department of Dermatology and.,Medical Scientist Training Program, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Juan Mo
- Department of Dermatology and
| | - Eric Hawley
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Yongzheng He
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | - D Wade Clapp
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thomas J Carroll
- Department of Molecular Biology.,Simmons Comprehensive Cancer Center, and
| | - Lu Q Le
- Department of Dermatology and.,Simmons Comprehensive Cancer Center, and.,Comprehensive Neurofibromatosis Clinic, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Jian C, Zhang L, Jinlong L, Bo T, Liu Z. Effects of brazilein on PSD-95 protein expression and neurological recovery in mice after sciatic nerve injury. Neurosci Lett 2020; 715:134547. [PMID: 31629776 DOI: 10.1016/j.neulet.2019.134547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/23/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE To evaluate the local nerve myelin recovery and the expression of PSD-95 protein and mRNA in the L4-L6 segment of the spinal cord after applying Brazilein to sciatic nerve injury BALB/c mice model and investigate the regulatory effects of Brazilein on myelin recovery after peripheral nerve injury. METHODS A total of 160 BALB/c mice were selected to establish the unilateral sciatic nerve injury model and randomly divided into four groups: saline blank control, Brazilein high-dose, medium-dose, and low-dose. Mice were assessed at different time points (1 w, 2 w, 4 w, 8 w) after sciatic nerve injury for the sciatic functional index (SFI) and sciatic nerve function recovery of the injured side by myelin Luxol Fast Blue (LFB) staining of the sciatic nerve. In addition, immunohistochemistry, real time-PCR, and Western blot were used to detect the PSD-95 expression in the spinal cord L4-L6 segments of the injured sciatic nerve at each time point. RESULTS The results of SFI and sciatic nerve function recovery, as well as, myelin LFB staining of the injured side indicated that all indexes of the Brazilein middle- and high-dose groups were significantly better than the low-dose and blank control groups at each time point. The PSD-95 expression in the L4-L6 segment of the spinal cord was statistically lower in the high- and medium-dose groups than in the low-dose and blank control groups at 1 w, 2 w, and 4 w, while the differences between the groups were not significant at 8 w. CONCLUSION Brazilein inhibits PSD-95 activation in the corresponding segment of sciatic nerve spinal cord in BALB/c mice after sciatic nerve injury, thereby inhibiting the excessive expression of free radicals and promoting myelin regeneration.
Collapse
Affiliation(s)
- Cao Jian
- Department of Orthopedic, Affiliated Hospital of Chifeng University, Chifeng 024000, China.
| | - Limin Zhang
- Department of Orthopedic, Affiliated Hospital of Chifeng University, Chifeng 024000, China.
| | - Li Jinlong
- Department of Ophthalmology, Affiliated Hospital of Chifeng University, Chifeng 024000, China.
| | - Tao Bo
- Department of Emergency, Affiliated Hospital of Chifeng University, Chifeng 024000, China.
| | - Zhongxing Liu
- Department of Orthopedic, Affiliated Hospital of Chifeng University, Chifeng 024000, China.
| |
Collapse
|
12
|
Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Front Bioeng Biotechnol 2019; 7:337. [PMID: 31824934 PMCID: PMC6882937 DOI: 10.3389/fbioe.2019.00337] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve repair and regeneration remains among the greatest challenges in tissue engineering and regenerative medicine. Even though peripheral nerve injuries (PNIs) are capable of some degree of regeneration, frail recovery is seen even when the best microsurgical technique is applied. PNIs are known to be very incapacitating for the patient, due to the deprivation of motor and sensory abilities. Since there is no optimal solution for tackling this problem up to this day, the evolution in the field is constant, with innovative designs of advanced nerve guidance conduits (NGCs) being reported every day. As a basic concept, a NGC should act as a physical barrier from the external environment, concomitantly acting as physical guidance for the regenerative axons across the gap lesion. NGCs should also be able to retain the naturally released nerve growth factors secreted by the damaged nerve stumps, as well as reducing the invasion of scar tissue-forming fibroblasts to the injury site. Based on the neurobiological knowledge related to the events that succeed after a nerve injury, neuronal subsistence is subjected to the existence of an ideal environment of growth factors, hormones, cytokines, and extracellular matrix (ECM) factors. Therefore, it is known that multifunctional NGCs fabricated through combinatorial approaches are needed to improve the functional and clinical outcomes after PNIs. The present work overviews the current reports dealing with the several features that can be used to improve peripheral nerve regeneration (PNR), ranging from the simple use of hollow NGCs to tissue engineered intraluminal fillers, or to even more advanced strategies, comprising the molecular and gene therapies as well as cell-based therapies.
Collapse
Affiliation(s)
- Cristiana R. Carvalho
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| |
Collapse
|
13
|
Brosseau JP, Pichard DC, Legius EH, Wolkenstein P, Lavker RM, Blakeley JO, Riccardi VM, Verma SK, Brownell I, Le LQ. The biology of cutaneous neurofibromas: Consensus recommendations for setting research priorities. Neurology 2019; 91:S14-S20. [PMID: 29987131 DOI: 10.1212/wnl.0000000000005788] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/09/2018] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE A group of experts in dermatology, genetics, neuroscience, and regenerative medicine collaborated to summarize current knowledge on the defined factors contributing to cutaneous neurofibroma (cNF) development and to provide consensus recommendations for future research priorities to gain an improved understanding of the biology of cNF. METHODS The group members reviewed published and unpublished data on cNF and related diseases via literature search, defined a set of key topic areas deemed critical in cNF pathogenesis, and developed recommendations in a series of consensus meetings. RESULTS Five specific topic areas were identified as being relevant to providing an enhanced understanding of the biology of cNF: (1) defining the human cells of origin; (2) understanding the role of the microenvironment, focusing on neurons, mast cells, and fibroblasts; (3) defining the genetic and molecular differences between the cNFs, focusing on size and number; (4) understanding if sex hormones are critical for cNF development or progression; and (5) identifying challenges in establishing in vitro and in vivo models representing human cNF. CONCLUSIONS The complexity of cNF biology stems from its heterogeneity at multiple levels including genetic, spatial involvement, temporal development, and cellular composition. We propose a unified working model for cNF that builds a framework to address the key questions about cNF that, when answered, will provide the necessary understanding of cNF biology to allow meaningful development of therapies.
Collapse
Affiliation(s)
- Jean-Philippe Brosseau
- From the Department of Dermatology (J.P.B., L.Q.L.), UT Southwestern Medical Center, Dallas, TX; Dermatology Branch (D.C.P., I.B.), Center for Cancer Research, National Cancer Institutes of Health, Bethesda, MD; Human Genetics Department (E.H.L.), University of Leuven, Belgium; Division Cancer Immunity Transplantation Infections (P.W.), Paris Est Créteil University, France; Department of Dermatology (R.M.L.), Northwestern University, Chicago, IL; Department of Neurology (J.O.B., S.K.V.), The Neurofibromatosis Therapeutic Acceleration Program, The Johns Hopkins University School of Medicine, Baltimore, MD; and The NF Institute (V.M.R.), La Crescenta, CA
| | - Dominique C Pichard
- From the Department of Dermatology (J.P.B., L.Q.L.), UT Southwestern Medical Center, Dallas, TX; Dermatology Branch (D.C.P., I.B.), Center for Cancer Research, National Cancer Institutes of Health, Bethesda, MD; Human Genetics Department (E.H.L.), University of Leuven, Belgium; Division Cancer Immunity Transplantation Infections (P.W.), Paris Est Créteil University, France; Department of Dermatology (R.M.L.), Northwestern University, Chicago, IL; Department of Neurology (J.O.B., S.K.V.), The Neurofibromatosis Therapeutic Acceleration Program, The Johns Hopkins University School of Medicine, Baltimore, MD; and The NF Institute (V.M.R.), La Crescenta, CA
| | - Eric H Legius
- From the Department of Dermatology (J.P.B., L.Q.L.), UT Southwestern Medical Center, Dallas, TX; Dermatology Branch (D.C.P., I.B.), Center for Cancer Research, National Cancer Institutes of Health, Bethesda, MD; Human Genetics Department (E.H.L.), University of Leuven, Belgium; Division Cancer Immunity Transplantation Infections (P.W.), Paris Est Créteil University, France; Department of Dermatology (R.M.L.), Northwestern University, Chicago, IL; Department of Neurology (J.O.B., S.K.V.), The Neurofibromatosis Therapeutic Acceleration Program, The Johns Hopkins University School of Medicine, Baltimore, MD; and The NF Institute (V.M.R.), La Crescenta, CA
| | - Pierre Wolkenstein
- From the Department of Dermatology (J.P.B., L.Q.L.), UT Southwestern Medical Center, Dallas, TX; Dermatology Branch (D.C.P., I.B.), Center for Cancer Research, National Cancer Institutes of Health, Bethesda, MD; Human Genetics Department (E.H.L.), University of Leuven, Belgium; Division Cancer Immunity Transplantation Infections (P.W.), Paris Est Créteil University, France; Department of Dermatology (R.M.L.), Northwestern University, Chicago, IL; Department of Neurology (J.O.B., S.K.V.), The Neurofibromatosis Therapeutic Acceleration Program, The Johns Hopkins University School of Medicine, Baltimore, MD; and The NF Institute (V.M.R.), La Crescenta, CA
| | - Robert M Lavker
- From the Department of Dermatology (J.P.B., L.Q.L.), UT Southwestern Medical Center, Dallas, TX; Dermatology Branch (D.C.P., I.B.), Center for Cancer Research, National Cancer Institutes of Health, Bethesda, MD; Human Genetics Department (E.H.L.), University of Leuven, Belgium; Division Cancer Immunity Transplantation Infections (P.W.), Paris Est Créteil University, France; Department of Dermatology (R.M.L.), Northwestern University, Chicago, IL; Department of Neurology (J.O.B., S.K.V.), The Neurofibromatosis Therapeutic Acceleration Program, The Johns Hopkins University School of Medicine, Baltimore, MD; and The NF Institute (V.M.R.), La Crescenta, CA
| | - Jaishri O Blakeley
- From the Department of Dermatology (J.P.B., L.Q.L.), UT Southwestern Medical Center, Dallas, TX; Dermatology Branch (D.C.P., I.B.), Center for Cancer Research, National Cancer Institutes of Health, Bethesda, MD; Human Genetics Department (E.H.L.), University of Leuven, Belgium; Division Cancer Immunity Transplantation Infections (P.W.), Paris Est Créteil University, France; Department of Dermatology (R.M.L.), Northwestern University, Chicago, IL; Department of Neurology (J.O.B., S.K.V.), The Neurofibromatosis Therapeutic Acceleration Program, The Johns Hopkins University School of Medicine, Baltimore, MD; and The NF Institute (V.M.R.), La Crescenta, CA
| | - Vincent M Riccardi
- From the Department of Dermatology (J.P.B., L.Q.L.), UT Southwestern Medical Center, Dallas, TX; Dermatology Branch (D.C.P., I.B.), Center for Cancer Research, National Cancer Institutes of Health, Bethesda, MD; Human Genetics Department (E.H.L.), University of Leuven, Belgium; Division Cancer Immunity Transplantation Infections (P.W.), Paris Est Créteil University, France; Department of Dermatology (R.M.L.), Northwestern University, Chicago, IL; Department of Neurology (J.O.B., S.K.V.), The Neurofibromatosis Therapeutic Acceleration Program, The Johns Hopkins University School of Medicine, Baltimore, MD; and The NF Institute (V.M.R.), La Crescenta, CA
| | - Sharad K Verma
- From the Department of Dermatology (J.P.B., L.Q.L.), UT Southwestern Medical Center, Dallas, TX; Dermatology Branch (D.C.P., I.B.), Center for Cancer Research, National Cancer Institutes of Health, Bethesda, MD; Human Genetics Department (E.H.L.), University of Leuven, Belgium; Division Cancer Immunity Transplantation Infections (P.W.), Paris Est Créteil University, France; Department of Dermatology (R.M.L.), Northwestern University, Chicago, IL; Department of Neurology (J.O.B., S.K.V.), The Neurofibromatosis Therapeutic Acceleration Program, The Johns Hopkins University School of Medicine, Baltimore, MD; and The NF Institute (V.M.R.), La Crescenta, CA
| | - Isaac Brownell
- From the Department of Dermatology (J.P.B., L.Q.L.), UT Southwestern Medical Center, Dallas, TX; Dermatology Branch (D.C.P., I.B.), Center for Cancer Research, National Cancer Institutes of Health, Bethesda, MD; Human Genetics Department (E.H.L.), University of Leuven, Belgium; Division Cancer Immunity Transplantation Infections (P.W.), Paris Est Créteil University, France; Department of Dermatology (R.M.L.), Northwestern University, Chicago, IL; Department of Neurology (J.O.B., S.K.V.), The Neurofibromatosis Therapeutic Acceleration Program, The Johns Hopkins University School of Medicine, Baltimore, MD; and The NF Institute (V.M.R.), La Crescenta, CA
| | - Lu Q Le
- From the Department of Dermatology (J.P.B., L.Q.L.), UT Southwestern Medical Center, Dallas, TX; Dermatology Branch (D.C.P., I.B.), Center for Cancer Research, National Cancer Institutes of Health, Bethesda, MD; Human Genetics Department (E.H.L.), University of Leuven, Belgium; Division Cancer Immunity Transplantation Infections (P.W.), Paris Est Créteil University, France; Department of Dermatology (R.M.L.), Northwestern University, Chicago, IL; Department of Neurology (J.O.B., S.K.V.), The Neurofibromatosis Therapeutic Acceleration Program, The Johns Hopkins University School of Medicine, Baltimore, MD; and The NF Institute (V.M.R.), La Crescenta, CA.
| |
Collapse
|
14
|
Stierli S, Napoli I, White IJ, Cattin AL, Monteza Cabrejos A, Garcia Calavia N, Malong L, Ribeiro S, Nihouarn J, Williams R, Young KM, Richardson WD, Lloyd AC. The regulation of the homeostasis and regeneration of peripheral nerve is distinct from the CNS and independent of a stem cell population. Development 2018; 145:dev170316. [PMID: 30413560 PMCID: PMC6307893 DOI: 10.1242/dev.170316] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/30/2018] [Indexed: 12/22/2022]
Abstract
Peripheral nerves are highly regenerative, in contrast to the poor regenerative capabilities of the central nervous system (CNS). Here, we show that adult peripheral nerve is a more quiescent tissue than the CNS, yet all cell types within a peripheral nerve proliferate efficiently following injury. Moreover, whereas oligodendrocytes are produced throughout life from a precursor pool, we find that the corresponding cell of the peripheral nervous system, the myelinating Schwann cell (mSC), does not turn over in the adult. However, following injury, all mSCs can dedifferentiate to the proliferating progenitor-like Schwann cells (SCs) that orchestrate the regenerative response. Lineage analysis shows that these newly migratory, progenitor-like cells redifferentiate to form new tissue at the injury site and maintain their lineage, but can switch to become a non-myelinating SC. In contrast, increased plasticity is observed during tumourigenesis. These findings show that peripheral nerves have a distinct mechanism for maintaining homeostasis and can regenerate without the need for an additional stem cell population.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Salome Stierli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ilaria Napoli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ian J White
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Anne-Laure Cattin
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Anthony Monteza Cabrejos
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Noelia Garcia Calavia
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Liza Malong
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sara Ribeiro
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Julie Nihouarn
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Richard Williams
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - William D Richardson
- Wolfson Institute for Biomedical Research, University College London (UCL), Gower Street, London WC1E 6BT, UK
| | - Alison C Lloyd
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
- UCL Cancer Institute, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
15
|
Chen Z, Mo J, Brosseau JP, Shipman T, Wang Y, Liao CP, Cooper JM, Allaway RJ, Gosline SJC, Guinney J, Carroll TJ, Le LQ. Spatiotemporal Loss of NF1 in Schwann Cell Lineage Leads to Different Types of Cutaneous Neurofibroma Susceptible to Modification by the Hippo Pathway. Cancer Discov 2018; 9:114-129. [PMID: 30348677 DOI: 10.1158/2159-8290.cd-18-0151] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/18/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a cancer predisposition disorder that results from inactivation of the tumor suppressor neurofibromin, a negative regulator of RAS signaling. Patients with NF1 present with a wide range of clinical manifestations, and the tumor with highest prevalence is cutaneous neurofibroma (cNF). Most patients harboring cNF suffer greatly from the burden of those tumors, which have no effective medical treatment. Ironically, none of the numerous NF1 mouse models developed so far recapitulate cNF. Here, we discovered that HOXB7 serves as a lineage marker to trace the developmental origin of cNF neoplastic cells. Ablating Nf1 in the HOXB7 lineage faithfully recapitulates both human cutaneous and plexiform neurofibroma. In addition, we discovered that modulation of the Hippo pathway acts as a "modifier" for neurofibroma tumorigenesis. This mouse model opens the doors for deciphering the evolution of cNF to identify effective therapies, where none exist today. SIGNIFICANCE: This study provides insights into the developmental origin of cNF, the most common tumor in NF1, and generates the first mouse model that faithfully recapitulates both human cutaneous and plexiform neurofibroma. The study also demonstrates that the Hippo pathway can modify neurofibromagenesis, suggesting that dampening the Hippo pathway could be an attractive therapeutic target.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Zhiguo Chen
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Juan Mo
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jean-Philippe Brosseau
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tracey Shipman
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yong Wang
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Chung-Ping Liao
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jonathan M Cooper
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | | | - Thomas J Carroll
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas.,Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lu Q Le
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, Texas. .,Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas.,Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas.,Neurofibromatosis Clinic, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
16
|
Toll-Like Receptor 4 (TLR4) Expression Affects Schwann Cell Behavior in vitro. Sci Rep 2018; 8:11179. [PMID: 30046125 PMCID: PMC6060163 DOI: 10.1038/s41598-018-28516-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 06/25/2018] [Indexed: 12/12/2022] Open
Abstract
Peripheral nerve injury can result in the decreased quality of life and bring us economic burden on society and individuals. Wallerian degeneration (WD) is critical for nerve degeneration and regeneration, but the mechanisms of WD are still elusive. Here, we report the effect of Toll-like receptor 4 (TLR4) on cultured Schwann cells (SCs) in vitro. The data showed that TLR4 expression was up-regulated after sciatic nerve injury of rat. TLR4 was expressed in cultured SCs. Enhanced or silenced expression of TLR4 affected SC proliferation, migration, apoptosis and relative gene expression. Furthermore, altered expression of TLR4 resulted in expression changes in c-Jun, ERK and catenin but not AKT and c-Fos pathways in SCs. These results suggested that TLR4 may be an important effective target in peripheral nerve degeneration and/or regeneration during WD in future investigations.
Collapse
|
17
|
Lebonvallet N, Laverdet B, Misery L, Desmoulière A, Girard D. New insights into the roles of myofibroblasts and innervation during skin healing and innovative therapies to improve scar innervation. Exp Dermatol 2018; 27:950-958. [DOI: 10.1111/exd.13681] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Nicolas Lebonvallet
- Department of Dermatology and EA4685 “Laboratory Interactions Neurons-Keratinocytes”; Faculty of Medicine and Health Sciences; University of Western Brittany; Brest France
| | - Betty Laverdet
- Department of Physiology and EA6309 “Myelin Maintenance and Peripheral Neuropathies”; Faculty of Pharmacy; University of Limoges; Limoges France
| | - Laurent Misery
- Department of Dermatology and EA4685 “Laboratory Interactions Neurons-Keratinocytes”; Faculty of Medicine and Health Sciences; University of Western Brittany; Brest France
| | - Alexis Desmoulière
- Department of Physiology and EA6309 “Myelin Maintenance and Peripheral Neuropathies”; Faculty of Pharmacy; University of Limoges; Limoges France
| | - Dorothée Girard
- Department of Physiology and EA6309 “Myelin Maintenance and Peripheral Neuropathies”; Faculty of Pharmacy; University of Limoges; Limoges France
| |
Collapse
|
18
|
Masgutov R, Masgutova G, Mukhametova L, Garanina E, Arkhipova SS, Zakirova E, Mukhamedshina YO, Margarita Z, Gilazieva Z, Syromiatnikova V, Mullakhmetova A, Kadyrova G, Nigmetzyanova M, Mikhail S, Igor P, Yagudin R, Rizvanov A. Allogenic Adipose Derived Stem Cells Transplantation Improved Sciatic Nerve Regeneration in Rats: Autologous Nerve Graft Model. Front Pharmacol 2018; 9:86. [PMID: 29559908 PMCID: PMC5845725 DOI: 10.3389/fphar.2018.00086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/25/2018] [Indexed: 01/19/2023] Open
Abstract
We examined the effect of transplantation of allogenic adipose-derived stem cells (ADSCs) with properties of mesenchymal stem cells (MSCs) on posttraumatic sciatic nerve regeneration in rats. We suggested an approach to rat sciatic nerve reconstruction using the nerve from the other leg as a graft. The comparison was that of a critical 10 mm nerve defect repaired by means of autologous nerve grafting versus an identical lesion on the contralateral side. In this experimental model, the same animal acts simultaneously as a test model, and control. Regeneration of the left nerve was enhanced by the use of ADSCs, whereas the right nerve healed under natural conditions. Thus the effects of individual differences were excluded and a result closer to clinical practice obtained. We observed significant destructive changes in the sciatic nerve tissue after surgery which resulted in the formation of combined contractures in knee and ankle joints of both limbs and neurotrophic ulcers only on the right limb. The stimulation of regeneration by ADSCs increased the survival of spinal L5 ganglia neurons by 26.4%, improved sciatic nerve vascularization by 35.68% and increased the number of myelin fibers in the distal nerve by 41.87%. Moreover, we have demonstrated that S100, PMP2, and PMP22 gene expression levels are suppressed in response to trauma as compared to intact animals. We have shown that ADSC-based therapy contributes to significant improvement in the regeneration.
Collapse
Affiliation(s)
- Ruslan Masgutov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Republican Clinical Hospital, Kazan, Russia
| | - Galina Masgutova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Liliya Mukhametova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina Garanina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana S Arkhipova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Elena Zakirova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yana O Mukhamedshina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Zhuravleva Margarita
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Zarema Gilazieva
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriia Syromiatnikova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Adelya Mullakhmetova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Gulnaz Kadyrova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Mariya Nigmetzyanova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Pankov Igor
- Department of Traumatology and Orthopedics, Kazan State Medical Academy, Kazan, Russia
| | | | - Albert Rizvanov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
19
|
Liao CP, Pradhan S, Chen Z, Patel AJ, Booker RC, Le LQ. The role of nerve microenvironment for neurofibroma development. Oncotarget 2018; 7:61500-61508. [PMID: 27517146 PMCID: PMC5308667 DOI: 10.18632/oncotarget.11133] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/28/2016] [Indexed: 01/07/2023] Open
Abstract
Deregulation of RAS signaling in Neurofibromatosis type 1 (NF1) results in the development of multiple neurofibromas, complex tumor of the peripheral nerves with no effective medical treatment. There is increasing evidences that neurofibroma initiates through loss of NF1 function in the Schwann cell lineage, followed by a cascade of interactions with other cell types in the surrounding tumor microenvironment. In NF1 patients, neurofibromas always develop along peripheral nerves and do not migrate to distant organs, including the central nervous system. In this study, we sought to identify the contributions of these peripheral nerves in neurofibroma formation. Using in vivo and in vitro three-dimensional (3D) culturing system, we show that peripheral nerves are absolutely required for neurofibroma tumorigenesis and report a novel 3D skin raft culture system for neurofibroma formation in vitro to decipher tumor pathogenesis. This interaction between neoplastic Schwann cells and their surrounding neural microenvironment has important implications for understanding early cellular events that dictate tumorigenesis. It also provides fertile ground for the elucidation of intrinsic and extrinsic factors within the nerve microenvironment that likely play essential roles in neurofibroma development and, therefore, viable therapeutic targets in neurofibroma therapy.
Collapse
Affiliation(s)
- Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sanjay Pradhan
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiguo Chen
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amish J Patel
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reid C Booker
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,UTSW Neurofibromatosis Clinic, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
20
|
Kim HS, Lee J, Lee DY, Kim YD, Kim JY, Lim HJ, Lim S, Cho YS. Schwann Cell Precursors from Human Pluripotent Stem Cells as a Potential Therapeutic Target for Myelin Repair. Stem Cell Reports 2017; 8:1714-1726. [PMID: 28506533 PMCID: PMC5469943 DOI: 10.1016/j.stemcr.2017.04.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 01/18/2023] Open
Abstract
Schwann cells play a crucial role in successful nerve repair and regeneration by supporting both axonal growth and myelination. However, the sources of human Schwann cells are limited both for studies of Schwann cell development and biology and for the development of treatments for Schwann cell-associated diseases. Here, we provide a rapid and scalable method to produce self-renewing Schwann cell precursors (SCPs) from human pluripotent stem cells (hPSCs), using combined sequential treatment with inhibitors of the TGF-β and GSK-3 signaling pathways, and with neuregulin-1 for 18 days under chemically defined conditions. Within 1 week, hPSC-derived SCPs could be differentiated into immature Schwann cells that were functionally confirmed by their secretion of neurotrophic factors and their myelination capacity in vitro and in vivo. We propose that hPSC-derived SCPs are a promising, unlimited source of functional Schwann cells for treating demyelination disorders and injuries to the peripheral nervous system. hPSC-SCPs are highly expandable under chemically defined medium condition hPSC-SCPs can rapidly and efficiently differentiate into functional Schwann cells SCP-SCs myelinate axon and secrete various neurotrophic factors SCP-SCs promote axonal regeneration in sciatic nerve-damaged mice
Collapse
Affiliation(s)
- Han-Seop Kim
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jungwoon Lee
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Da Yong Lee
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Young-Dae Kim
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jae Yun Kim
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Bioscience, KRIBB School, University of Science & Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Hyung Jin Lim
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Bioscience, KRIBB School, University of Science & Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Sungmin Lim
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Bioscience, KRIBB School, University of Science & Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Yee Sook Cho
- Stem Cell Research Laboratory, Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Department of Bioscience, KRIBB School, University of Science & Technology, 113 Gwahak-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.
| |
Collapse
|
21
|
Abstract
For decades, researchers have been fascinated by the strategy of using cell therapy for bone defects; some progress in the field has been made. Owing to its ample supply and easy access, skin, the largest organ in the body, has gained attention as a potential source of stem cells. Despite extensive applications in skin and nerve regeneration, an increasing number of reports indicate its potential use in bone tissue engineering and regeneration. Unfortunately, few review articles are available to outline current research efforts in skin-based osteogenesis. This review first summarizes the latest findings on stem cells or progenitors in skin and their niches and then discusses the strategies of skin cell-based osteogenesis. We hope this article elucidates this topic and generates new ideas for future studies.
Collapse
Affiliation(s)
- Tingliang Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA.,Division of Exercise Physiology, West Virginia University, Morgantown, WV, USA.,Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
22
|
Liu X, Sun Y, Li H, Li Y, Li M, Yuan Y, Cui S, Yao D. Effect of Spp1 on nerve degeneration and regeneration after rat sciatic nerve injury. BMC Neurosci 2017; 18:30. [PMID: 28270094 PMCID: PMC5341472 DOI: 10.1186/s12868-017-0348-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/24/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Wallerian degeneration (WD) in injured peripheral nerves is associated with a large number of up- or down-regulated genes, but the effects of these changes are poorly understood. In our previous studies, we reported some key factors that are differentially expressed to activate nerve degeneration and regeneration during WD. Here, we determined the effects of secreted phosphoprotein 1 (Spp1) on WD after rat sciatic nerve injury. RESULTS Spp1 was upregulated from 6 h to 14 days after sciatic nerve injury. Altered expression of Spp1 in Schwann cells (SC) resulted in altered mRNA and protein expression levels for cytokines, c-Fos, PKCα and phospho-ERK/ERK and affected SC apoptosis in vitro. Silencing of Spp1 expression in SCs using siRNA technology reduced proliferation and promoted migration of SCs in vitro. By contrast, overexpression of Spp1 promoted proliferation and reduced migration in SCs in vitro. Differential expression of Spp1 after sciatic nerve injury in vivo altered the expression of cytokines, c-Fos, PKCα, and the p-ERK/ERK pathway. CONCLUSIONS Spp1 is a key regulatory factor that affects nerve degeneration and regeneration through c-Fos, PKCα and p-ERK/ERK pathways after rat sciatic nerve injury. These results shed new light on the role of Spp1 in nerve degeneration and regeneration during WD.
Collapse
Affiliation(s)
- Xingyu Liu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun, 130033, Jilin, People's Republic of China
| | - Yuhua Sun
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nnatong, 226001, Jiangsu, People's Republic of China
| | - Huaiqin Li
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nnatong, 226001, Jiangsu, People's Republic of China
| | - Yuting Li
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nnatong, 226001, Jiangsu, People's Republic of China
| | - Meiyuan Li
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nnatong, 226001, Jiangsu, People's Republic of China
| | - Ying Yuan
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nnatong, 226001, Jiangsu, People's Republic of China.,Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Shusen Cui
- China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun, 130033, Jilin, People's Republic of China.
| | - Dengbing Yao
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nnatong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
23
|
Inagaki E, Hatou S, Higa K, Yoshida S, Shibata S, Okano H, Tsubota K, Shimmura S. Skin-Derived Precursors as a Source of Progenitors for Corneal Endothelial Regeneration. Stem Cells Transl Med 2017; 6:788-798. [PMID: 28186681 PMCID: PMC5442762 DOI: 10.1002/sctm.16-0162] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 09/16/2016] [Accepted: 09/30/2016] [Indexed: 12/13/2022] Open
Abstract
Corneal blindness is the fourth leading cause of blindness in the world. Current treatment is allogenic corneal transplantation, which is limited by shortage of donors and immunological rejection. Skin-derived precursors (SKPs) are postnatal stem cells, which are self-renewing, multipotent precursors that can be isolated and expanded from the dermis. Facial skin may therefore be an accessible autologous source of neural crest derived cells. SKPs were isolated from facial skin of Wnt1-Cre/Floxed EGFP mouse. After inducing differentiation with medium containing retinoic acid and GSK 3-β inhibitor, SKPs formed polygonal corneal endothelial-like cells (sTECE). Expression of major corneal endothelial markers were confirmed by Reverse transcription polymerase chain reaction (RT-PCR) and quantitative Real time polymerase chain reaction (qRT-PCR). Western blots confirmed the expression of Na, K-ATPase protein, the major functional marker of corneal endothelial cells. Immunohistochemistry revealed the expression of zonular occludens-1 and Na, K-ATPase in cell-cell junctions. In vitro functional analysis of Na, K-ATPase pump activity revealed that sTECE had significantly high pump function compared to SKPs or control 3T3 cells. Moreover, sTECE transplanted into a rabbit model of bullous keratopathy successfully maintained corneal thickness and transparency. Furthermore, we successfully induced corneal endothelial-like cells from human SKPs, and showed that transplanted corneas also maintained corneal transparency and thickness. Our findings suggest that SKPs may be used as a source of autologous cells for the treatment of corneal endothelial disease. Stem Cells Translational Medicine 2017;6:788-798.
Collapse
Affiliation(s)
- Emi Inagaki
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shin Hatou
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazunari Higa
- Department of Ophthalmology, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Japan
| | - Satoru Yoshida
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shigeto Shimmura
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
Abstract
BACKGROUND Impaired wound healing as one of the complications arising from diabetes mellitus is a serious clinical issue. Recently, various cell therapies have been reported for promotion of wound healing. Skin-derived precursor cells (SKPs) are multipotent adult stem cells with the tendency to differentiate into neurons. We investigated the potency of promoting diabetic wound healing by the application of SKPs. METHODS Skin-derived precursor cells isolated from diabetic murine skin were cultured in sphere formation medium. At passage 2, they were suspended in phosphate-buffered saline (PBS), and applied topically to full-thickness excisional cutaneous wounds in diabetic mice. Application of PBS served as controls (n = 21 for each group; n = 42 total). Time to closure and percentage closure were calculated by morphometry. Wounds were harvested at 10 and 28 days and then processed, sectioned, and stained (CD31, α-smooth muscle actin, and neurofilament heavy chain) to quantify vascularity and neurofilaments. RESULTS Wounds treated with SKPs demonstrated a significantly decreased time to closure (18.63 days) compared with PBS-control wounds (21.72 days, P < 0.01), and a significant improvement in percentage closure at 7, 10, 14, and 18 days compared with PBS-control wounds (P < 0.01). Histological analysis showed that the Capillary Score (the number of vessels/mm2) was significantly higher in SKP-treated wounds at day 10 but not at day 28. Nerve Density (the number of neurofilaments/mm2) had increased significantly in SKP-treated wounds at day 28 compared with control group. Some applied SKPs were stained by neurofilament heavy chain, which demonstrates that SKPs directly differentiated into neurons. CONCLUSIONS Skin-derived precursor cells promoted diabetic wound healings through vasculogenesis at the early stage of wound healing. Skin-derived precursor cells are a possible therapeutic tool for diabetic impaired wound healing.
Collapse
|
25
|
Vapniarsky N, Arzi B, Hu JC, Nolta JA, Athanasiou KA. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine. Stem Cells Transl Med 2015; 4:1187-98. [PMID: 26253713 DOI: 10.5966/sctm.2015-0084] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/08/2015] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED The exciting potential for regenerating organs from autologous stem cells is on the near horizon, and adult dermis stem cells (DSCs) are particularly appealing because of the ease and relative minimal invasiveness of skin collection. A substantial number of reports have described DSCs and their potential for regenerating tissues from mesenchymal, ectodermal, and endodermal lineages; however, the exact niches of these stem cells in various skin types and their antigenic surface makeup are not yet clearly defined. The multilineage potential of DSCs appears to be similar, despite great variability in isolation and in vitro propagation methods. Despite this great potential, only limited amounts of tissues and clinical applications for organ regeneration have been developed from DSCs. This review summarizes the literature on DSCs regarding their niches and the specific markers they express. The concept of the niches and the differentiation capacity of cells residing in them along particular lineages is discussed. Furthermore, the advantages and disadvantages of widely used methods to demonstrate lineage differentiation are considered. In addition, safety considerations and the most recent advancements in the field of tissue engineering and regeneration using DSCs are discussed. This review concludes with thoughts on how to prospectively approach engineering of tissues and organ regeneration using DSCs. Our expectation is that implementation of the major points highlighted in this review will lead to major advancements in the fields of regenerative medicine and tissue engineering. SIGNIFICANCE Autologous dermis-derived stem cells are generating great excitement and efforts in the field of regenerative medicine and tissue engineering. The substantial impact of this review lies in its critical coverage of the available literature and in providing insight regarding niches, characteristics, and isolation methods of stem cells derived from the human dermis. Furthermore, it provides analysis of the current state-of-the-art regenerative approaches using human-derived dermal stem cells, with consideration of current guidelines, to assist translation toward therapeutic use.
Collapse
Affiliation(s)
- Natalia Vapniarsky
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Boaz Arzi
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Jan A Nolta
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, Institute for Regenerative Cures and Department of Internal Medicine, School of Medicine, and Department of Orthopaedic Surgery, University of California, Davis, Davis, California, USA
| |
Collapse
|
26
|
Update in facial nerve paralysis: tissue engineering and new technologies. Curr Opin Otolaryngol Head Neck Surg 2015; 22:291-9. [PMID: 24979369 DOI: 10.1097/moo.0000000000000062] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW To present the recent advances in the treatment of facial paralysis, emphasizing the emerging technologies. This review will summarize the current state of the art in the management of facial paralysis and discuss the advances in nerve regeneration, facial reanimation, and use of novel biomaterials. This review includes surgical innovations in reinnervation and reanimation as well as progress with bioelectrical interfaces. RECENT FINDINGS The last decade has witnessed major advances in the understanding of nerve injury and approaches for management. Key innovations include strategies to accelerate nerve regeneration, provide tissue-engineered constructs that may replace nonfunctional nerves, approaches to influence axonal guidance, limiting of donor-site morbidity, and optimization of functional outcomes. Approaches to muscle transfer continue to evolve, and new technologies allow for electrical nerve stimulation and use of artificial tissues. SUMMARY The fields of biomedical engineering and facial reanimation increasingly intersect, with innovative surgical approaches complementing a growing array of tissue engineering tools. The goal of treatment remains the predictable restoration of natural facial movement, with acceptable morbidity and long-term stability. Advances in bioelectrical interfaces and nanotechnology hold promise for widening the window for successful treatment intervention and for restoring both lost neural inputs and muscle function.
Collapse
|
27
|
Shu B, Xie JL, Xu YB, Lai W, Huang Y, Mao RX, Liu XS, Qi SH. Effects of skin-derived precursors on wound healing of denervated skin in a nude mouse model. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:2660-2669. [PMID: 26045771 PMCID: PMC4440080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
Denervated skin could result in impaired healing of wounds, such as decubitus ulcers and diabetic foot ulcers. Other studies indicated that cutaneous fiber density is reduced after inner nerve transection and that neuropeptide level depletes after denervation, leading to reduced cell proliferation around the wound and thus wound healing problems. Recent studies have revealed that skin-derived precursors (SKPs), which form a neural crest-related stem cell population in the dermis of skin, participate in cutaneous nerve regeneration. We hypothesized that injecting SKPs into denervated wound promotes healing. A bilateral denervation wound model was established followed by SKP transplantation. The wound healing rate was determined at 7, 14, and 21 d after injury. Cell proliferation activity during wound healing was analyzed by proliferating cell nuclear antigen immunohistochemistry (IHC). Nerve fiber density was measured by S-100 IHC. The contents of nerve growth factor, substance P, and calcitonin gene-related peptide were examined by enzyme-linked immunosorbent assay. The rate of epithelization in the SKP-treated group was faster than that in the control group. Wound cell proliferation and nerve fiber density were obviously higher in the SKP-treated group than in the control group. In addition, the content of neuropeptides was higher in the SKP-treated group than in the control group during wound healing. In conclusion, SKPs can promote denervated wound healing through cell proliferation and nerve fiber regeneration, and can facilitate the release of neuropeptides.
Collapse
Affiliation(s)
- Bin Shu
- Department of Burns, First Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou, Guangdong, China
| | - Ju-Lin Xie
- Department of Burns, First Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou, Guangdong, China
| | - Ying-Bin Xu
- Department of Burns, First Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou, Guangdong, China
| | - Wen Lai
- Department of Burns, Guangdong General HospitalGuangzhou, Guangdong, China
| | - Yong Huang
- Department of Emergency, First Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou, Guangdong, China
| | - Ren-Xiang Mao
- Department of Dermatology, First Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou, Guangdong, China
| | - Xu-Sheng Liu
- Department of Burns, First Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou, Guangdong, China
| | - Shao-Hai Qi
- Department of Burns, First Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou, Guangdong, China
| |
Collapse
|
28
|
Chen Z, Liu C, Patel AJ, Liao CP, Wang Y, Le LQ. Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma. Cancer Cell 2014; 26:695-706. [PMID: 25446898 PMCID: PMC4254535 DOI: 10.1016/j.ccell.2014.09.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/18/2014] [Accepted: 09/19/2014] [Indexed: 12/16/2022]
Abstract
Neurofibromatosis type 1 is a tumor-predisposing genetic disorder. Plexiform neurofibromas are common NF1 tumors carrying a risk of malignant transformation, which is typically fatal. Little is known about mechanisms mediating initiation and identity of specific cell type that gives rise to neurofibromas. Using cell-lineage tracing, we identify a population of GAP43(+) PLP(+) precursors in embryonic nerve roots as the cells of origin for these tumors and report a non-germline neurofibroma model for preclinical drug screening to identify effective therapies. The identity of the tumor cell of origin and facility for isolation and expansion provides fertile ground for continued analysis to define factors critical for neurofibromagenesis. It also provides unique approaches to develop therapies to prevent neurofibroma formation in NF1 patients.
Collapse
Affiliation(s)
- Zhiguo Chen
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | - Chiachi Liu
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | - Amish J Patel
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA; Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | - Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | - Yong Wang
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA; Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA; UTSW Neurofibromatosis Clinic, University of Texas Southwestern Medical Center, Dallas, TX 75390-9133, USA.
| |
Collapse
|
29
|
TGF-β1 is critical for Wallerian degeneration after rat sciatic nerve injury. Neuroscience 2014; 284:759-767. [PMID: 25451291 DOI: 10.1016/j.neuroscience.2014.10.051] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 12/16/2022]
Abstract
Wallerian degeneration (WD) is a process of axonal degeneration distal to the injury site followed by a robust regenerative response. It involves degeneration and regeneration which can be directly induced by nerve injury and activated by transcription factors. Although WD has been studied extensively, the precise mechanisms of transcription factors regulating WD are still elusive. In this study, we reported the effect of transforming growth factor-β1 (TGF-β1) on WD after rat sciatic nerve injury. The data showed that TGF-β1 may express in injured rat sciatic nerve and cultured Schwann cells (SCs). Knock down of TGF-β1 expressions resulted in the reduction of SC proliferation and apoptosis, up regulation of cytokines and Smad2, 4. Enhanced expression of TGF-β1 could promote SC proliferation and apoptosis, down regulation of cytokines and Smad2, 4. Altered expressions of TGF-β1 may affect Smad and AKT but not c-Jun and extracellular regulated protein kinase (ERK) pathways. Our results revealed the role of TGF-β1 on WD and provided the basis for the molecular mechanisms of TGF-β1-regulated nerve degeneration and/or regeneration.
Collapse
|
30
|
Gu X, Ding F, Williams DF. Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 2014; 35:6143-56. [PMID: 24818883 DOI: 10.1016/j.biomaterials.2014.04.064] [Citation(s) in RCA: 411] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 04/16/2014] [Indexed: 12/19/2022]
Abstract
Tissue engineered nerve grafts (TENGs) have emerged as a potential alternative to autologous nerve grafts, the gold standard for peripheral nerve repair. Typically, TENGs are composed of a biomaterial-based template that incorporates biochemical cues. A number of TENGs have been used experimentally to bridge long peripheral nerve gaps in various animal models, where the desired outcome is nerve tissue regeneration and functional recovery. So far, the translation of TENGs to the clinic for use in humans has met with a certain degree of success. In order to optimize the TENG design and further approach the matching of TENGs with autologous nerve grafts, many new cues, beyond the traditional ones, will have to be integrated into TENGs. Furthermore, there is a strong requirement for monitoring the real-time dynamic information related to the construction of TENGs. The aim of this opinion paper is to specifically and critically describe the latest advances in the field of neural tissue engineering for peripheral nerve regeneration. Here we delineate new attempts in the design of template (or scaffold) materials, especially in the context of biocompatibility, the choice and handling of support cells, and growth factor release systems. We further discuss the significance of RNAi for peripheral nerve regeneration, anticipate the potential application of RNAi reagents for TENGs, and speculate on the possible contributions of additional elements, including angiogenesis, electrical stimulation, molecular inflammatory mediators, bioactive peptides, antioxidant reagents, and cultured biological constructs, to TENGs. Finally, we consider that a diverse array of physicochemical and biological cues must be orchestrated within a TENG to create a self-consistent coordinated system with a close proximity to the regenerative microenvironment of the peripheral nervous system.
Collapse
Affiliation(s)
- Xiaosong Gu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China.
| | - Fei Ding
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, JS 226001, China
| | - David F Williams
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
31
|
Shu B, Xie JL, Xu YB, Yu JX, Shi Y, Liu J, Wang P, Liu XS, Qi SH. Directed differentiation of skin-derived precursors into fibroblast-like cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:1478-1486. [PMID: 24817943 PMCID: PMC4014227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 02/25/2014] [Indexed: 06/03/2023]
Abstract
Skin-derived precursors (SKPs), which are located at skin's dermis, display multi-lineage potential and can produce both neural and mesodermal progeny in vitro. SKPs are considered to take part in dermal reconstruction and may be an important source of fibroblast during wound repairing. To explore the possibility of differentiation of SKPs into fibroblasts, the 3(rd) passage SKPs were treated with 0, 20, 40, 100, or 500 ng/ml human recombinant connective tissue growth factor (CTGF) for 48 h or treated with 100 ng/ml CTGF for 0, 24, 48, 72, or 96 h. Subsequently, a series of methods were to be used to observe cells immunocytochemistry changes under fluorescence microscope, to validate the mRNA expression change of collagen I, collagen III, fibroblast-specific protein 1 (FSP-1) and alpha smooth muscle actin (α-SMA) by quantitative real-time reverse transcriptase polymerase chain reaction (QRT-PCR), to analyze the expression of collagen I and collagen III protein by Enzyme-linked immunosorbent assay (ELISA), to semiquantitatively measure the expression of FSP-1 and α-SMA by western-blot. After differentiation, cells showed that positively staining for collagen I, collagen III, α-SMA, and FSP-1, which are markers for fibroblasts, but negative expression for neural precursors. The effects of CTGF on collagen I, collagen III, FSP-1 and α-SMA in SKPs were detected both on the transcriptional and posttranscriptional levels. These findings indicate that SKPs can be induced to differentiate into fibroblast-like cells with CTGF treatment that may be a key source of fibroblast in wound healing.
Collapse
Affiliation(s)
- Bin Shu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Ju-Lin Xie
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Ying-Bin Xu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Jian-Xing Yu
- Center of Laser Cosmetic, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Yan Shi
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Jian Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Peng Wang
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Xu-Sheng Liu
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Shao-Hai Qi
- Department of Burns, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| |
Collapse
|
32
|
Liu B, Liu Y, Yang G, Xu Z, Chen J. Ursolic acid induces neural regeneration after sciatic nerve injury. Neural Regen Res 2013; 8:2510-9. [PMID: 25206561 PMCID: PMC4145935 DOI: 10.3969/j.issn.1673-5374.2013.27.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
In this study, we aimed to explore the role of ursolic acid in the neural regeneration of the injured sciatic nerve. BALB/c mice were used to establish models of sciatic nerve injury through unilateral sciatic nerve complete transection and microscopic anastomosis at 0.5 cm below the ischial tube-rosity. The successfully generated model mice were treated with 10, 5, or 2.5 mg/kg ursolic acid via intraperitoneal injection. Enzyme-linked immunosorbent assay results showed that serum S100 protein expression level gradually increased at 1-4 weeks after sciatic nerve injury, and significantly decreased at 8 weeks. As such, ursolic acid has the capacity to significantly increase S100 protein expression levels. Real-time quantitative PCR showed that S100 mRNA expression in the L4-6 segments on the injury side was increased after ursolic acid treatment. In addition, the muscular mass index in the soleus muscle was also increased in mice treated with ursolic acid. Toluidine blue staining revealed that the quantity and average diameter of myelinated nerve fibers in the injured sciatic nerve were significantly increased after treatment with ursolic acid. 10 and 5 mg/kg of ursolic acid produced stronger effects than 2.5 mg/kg of ursolic acid. Our findings indicate that ursolic acid can dose-dependently increase S100 expression and promote neural regeneration in BALB/c mice following sciatic nerve injury.
Collapse
Affiliation(s)
- Biao Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Guang Yang
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Zemin Xu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| | - Jiajun Chen
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
33
|
Sun Y, Zhang X, Zhou Q, Wang Y, Jiang Y, Cao J. Propofol's effect on the sciatic nerve: Harmful or protective? Neural Regen Res 2013; 8:2520-30. [PMID: 25206562 PMCID: PMC4145931 DOI: 10.3969/j.issn.1673-5374.2013.27.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/03/2013] [Indexed: 11/15/2022] Open
Abstract
Propofol can inhibit the inflammatory response and reduce the secretion and harmful effects of astrocyte-derived proinflammatory cytokines. In this study, after propofol was injected into the injured sciatic nerve of mice, nuclear factor kappa B expression in the L4-6 segments of the spinal cord in the injured side was reduced, apoptosis was decreased, nerve myelin defects were alleviated, and the nerve conduction block was lessened. The experimental findings indicate that propofol inhibits the inflammatory and immune responses, decreases the expression of nuclear factor kappa B, and reduces apoptosis. These effects of propofol promote regeneration following sciatic nerve injury.
Collapse
Affiliation(s)
- Yi Sun
- Chifeng Municipal Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Xizhe Zhang
- Chifeng Municipal Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Qi Zhou
- Chifeng Municipal Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Yong’an Wang
- Chifeng Municipal Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Yiwen Jiang
- Chifeng Municipal Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China
| | - Jian Cao
- Chifeng Municipal Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China,
Corresponding author: Jian Cao, Associate chief physician, Chifeng Municipal Hospital, Chifeng 024000, Inner Mongolia Autonomous Region, China, . (N20120815001)
| |
Collapse
|
34
|
Suflita MT, Pfaltzgraff ER, Mundell NA, Pevny LH, Labosky PA. Ground-state transcriptional requirements for skin-derived precursors. Stem Cells Dev 2013; 22:1779-88. [PMID: 23316968 DOI: 10.1089/scd.2012.0501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Skin-derived precursors (SKPs) are an attractive stem cell model for cell-based therapies. SKPs can be readily generated from embryonic and adult mice and adult humans, exhibit a high degree of multipotency, and have the potential to serve as a patient autologous stem cell. The advancement of these cells toward therapeutic use depends on the ability to control precisely the self-renewal and differentiation of SKPs. Here we show that two well-known stem cell factors, Foxd3 and Sox2, are critical regulators of the stem cell properties of SKPs. Deletion of Foxd3 completely abolishes the sphere-forming potential of these cells. In the absence of Sox2, SKP spheres can be formed, but with reduced size and frequency. Our results provide entry points into the gene regulatory networks dictating SKP behavior, and pave the way for future studies on a therapeutically relevant stem cell.
Collapse
Affiliation(s)
- Michael T Suflita
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | |
Collapse
|