1
|
Yanagi T, Phen SF, Ayala J, Aydin DE, Jaramillo S, Truong DM. Termination sequence between an inducible promoter and ubiquitous chromatin opening element (UCOE) reduces gene expression leakage and silencing. J Biol Eng 2025; 19:29. [PMID: 40205378 PMCID: PMC11983960 DOI: 10.1186/s13036-025-00499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Inducible gene expression circuits enable precise control over target gene activation and are widely used in direct reprogramming. However, their usability is often compromised by DNA methylation-induced silencing, especially in iPSCs. This deactivates genetic circuits in engineered iPSCs preventing them from being used for long-term scalable expansion of desired cell types. A2-ubiquitous chromatin opening elements (A2UCOE) have been recognized for their anti-silencing properties, but they have not been used in human iPSCs with inducible systems for direct reprogramming. This study investigates the role of A2UCOE in inducible systems and identifies strategies to eliminate associated gene leakage enabling long-term use of engineered human iPSCs. RESULTS We developed a compact all-in-one gene circuit - containing a doxycycline-inducible Tet-On system, 863 bp of A2UCOE, and FOXN1, a transcription factor critical for thymic epithelial cell (TEC) differentiation - easily deployed to new genomic sites. However, we observed significant FOXN1 gene leakage even without doxycycline, which is a novel limitation of A2UCOE. This leakage resulted in premature differentiation of iPSCs into TECs, limiting its continued use. To further investigate the relationship between A2UCOE and gene leakage, we generated A2UCOE fragments of varying lengths (1337 bp, 749 bp, and 547 bp) and found that all fragments, regardless of length, caused significant gene leakage. To solve this issue, we tested different spacer sequences between A2UCOE and the inducible promoter and found that the SV40 poly-A terminator fully eliminated FOXN1 leakage, and we show this effect is not due to AT- or GC-content. Unexpectedly, this architecture further enhanced anti-silencing effects > 60% providing prolonged stability for at least 30 days. CONCLUSIONS This study reveals a novel limitation of A2UCOE in inducible systems, specifically its contribution to gene leakage, which compromise sensitive systems like direct reprogramming of iPSCs. The inclusion of an SV40 poly-A sequence provides a practical solution and genomic architecture to improve the functionality of A2UCOE-based circuits. It also suggests investigating how termination of transcription modulates gene silencing as a novel design parameter. These findings have significant implications for the design of robust gene circuits, particularly in applications involving iPSCs, regenerative medicine, and cell therapy.
Collapse
Affiliation(s)
- Tomoki Yanagi
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - Shean Fu Phen
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
- Department of Biology, New York University (NYU) Graduate School of Arts and Sciences, New York, NY, USA
| | - Jonah Ayala
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - Deniz Ece Aydin
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - Susanna Jaramillo
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA
| | - David M Truong
- Department of Biomedical Engineering, New York University (NYU) Tandon School of Engineering, Brooklyn, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Durens M, Baljinnyam E, Grisanti L, Hu R, Marro SG. An induced pluripotent stem cell line carrying a silencing-resistant calcium reporter allele. Stem Cell Res 2024; 79:103455. [PMID: 38896969 DOI: 10.1016/j.scr.2024.103455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Calcium indicators are sensitive tools to image neural activity. However, their use in human induced pluripotent stem cells (iPSC)-derived neurons is limited by silencing of the transgene. We generated the iPSC line MSE2336A carrying heterozygous insertion in the safe-harbor locus AAVS1 of the ultrasensitive protein calcium sensor (GCaMP6) under the control of CAG promoter and UCOE to maintain robust transgene expression in differentiated cells. The iPSC exhibited normal cell morphology, expression of pluripotency markers, genome integrity, and the ability to differentiate into the three primary germ layers. This line provides a powerful model to study activity in human neurons.
Collapse
Affiliation(s)
- Madel Durens
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erdene Baljinnyam
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Grisanti
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruiqi Hu
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuele G Marro
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Karbassi E, Padgett R, Bertero A, Reinecke H, Klaiman JM, Yang X, Hauschka SD, Murry CE. Targeted CRISPR activation is functional in engineered human pluripotent stem cells but undergoes silencing after differentiation into cardiomyocytes and endothelium. Cell Mol Life Sci 2024; 81:95. [PMID: 38372898 PMCID: PMC10876724 DOI: 10.1007/s00018-023-05101-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 02/20/2024]
Abstract
Human induced pluripotent stem cells (hiPSCs) offer opportunities to study human biology where primary cell types are limited. CRISPR technology allows forward genetic screens using engineered Cas9-expressing cells. Here, we sought to generate a CRISPR activation (CRISPRa) hiPSC line to activate endogenous genes during pluripotency and differentiation. We first targeted catalytically inactive Cas9 fused to VP64, p65 and Rta activators (dCas9-VPR) regulated by the constitutive CAG promoter to the AAVS1 safe harbor site. These CRISPRa hiPSC lines effectively activate target genes in pluripotency, however the dCas9-VPR transgene expression is silenced after differentiation into cardiomyocytes and endothelial cells. To understand this silencing, we systematically tested different safe harbor sites and different promoters. Targeting to safe harbor sites hROSA26 and CLYBL loci also yielded hiPSCs that expressed dCas9-VPR in pluripotency but silenced during differentiation. Muscle-specific regulatory cassettes, derived from cardiac troponin T or muscle creatine kinase promoters, were also silent after differentiation when dCas9-VPR was introduced. In contrast, in cell lines where the dCas9-VPR sequence was replaced with cDNAs encoding fluorescent proteins, expression persisted during differentiation in all loci and with all promoters. Promoter DNA was hypermethylated in CRISPRa-engineered lines, and demethylation with 5-azacytidine enhanced dCas9-VPR gene expression. In summary, the dCas9-VPR cDNA is readily expressed from multiple loci during pluripotency but induces silencing in a locus- and promoter-independent manner during differentiation to mesoderm derivatives. Researchers intending to use this CRISPRa strategy during stem cell differentiation should pilot their system to ensure it remains active in their population of interest.
Collapse
Affiliation(s)
- Elaheh Karbassi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Ruby Padgett
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alessandro Bertero
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy
| | - Hans Reinecke
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Jordan M Klaiman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Stephen D Hauschka
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
- Center for Translational Muscle Research, University of Washington, Seattle, WA, 98109, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98109, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA.
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, 98109, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA.
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, 98195, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
4
|
Gödecke N, Herrmann S, Weichelt V, Wirth D. A Ubiquitous Chromatin Opening Element and DNA Demethylation Facilitate Doxycycline-Controlled Expression during Differentiation and in Transgenic Mice. ACS Synth Biol 2023; 12:482-491. [PMID: 36755406 PMCID: PMC9942253 DOI: 10.1021/acssynbio.2c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Synthetic expression cassettes provide the ability to control transgene expression in experimental animal models through external triggers, enabling the study of gene function and the modulation of endogenous regulatory networks in vivo. The performance of synthetic expression cassettes in transgenic animals critically depends on the regulatory properties of the respective chromosomal integration sites, which are affected by the remodeling of the chromatin structure during development. The epigenetic status may affect the transcriptional activity of the synthetic cassettes and even lead to transcriptional silencing, depending on the chromosomal sites and the tissue. In this study, we investigated the influence of the ubiquitous chromosome opening element (UCOE) HNRPA2B1-CBX3 and its subfragments A2UCOE and CBX3 on doxycycline-controlled expression modules within the chromosomal Rosa26 locus. While HNRPA2B1-CBX3 and A2UCOE reduced the expression of the synthetic cassettes in mouse embryonic stem cells, CBX3 stabilized the expression and facilitated doxycycline-controlled expression after in vitro differentiation. In transgenic mice, the CBX3 element protected the cassettes from overt silencing although the expression was moderate and only partially controlled by doxycycline. We demonstrate that CBX3-flanked synthetic cassettes can be activated by decitabine-mediated blockade of DNA methylation or by specific recruitment of the catalytic demethylation domain of the ten-eleven translocation protein TET1 to the synthetic promoter. This suggests that CBX3 renders the synthetic cassettes permissive for subsequent epigenetic activation, thereby supporting doxycycline-controlled expression. Together, this study reveals a strategy for overcoming epigenetic constraints of synthetic expression cassettes, facilitating externally controlled transgene expression in mice.
Collapse
Affiliation(s)
- Natascha Gödecke
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sabrina Herrmann
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Viola Weichelt
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany,Institute
of Experimental Hematology, Medical University
Hannover (MHH), 30625 Hannover, Germany,
| |
Collapse
|
5
|
Cabrera A, Edelstein HI, Glykofrydis F, Love KS, Palacios S, Tycko J, Zhang M, Lensch S, Shields CE, Livingston M, Weiss R, Zhao H, Haynes KA, Morsut L, Chen YY, Khalil AS, Wong WW, Collins JJ, Rosser SJ, Polizzi K, Elowitz MB, Fussenegger M, Hilton IB, Leonard JN, Bintu L, Galloway KE, Deans TL. The sound of silence: Transgene silencing in mammalian cell engineering. Cell Syst 2022; 13:950-973. [PMID: 36549273 PMCID: PMC9880859 DOI: 10.1016/j.cels.2022.11.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/22/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
To elucidate principles operating in native biological systems and to develop novel biotechnologies, synthetic biology aims to build and integrate synthetic gene circuits within native transcriptional networks. The utility of synthetic gene circuits for cell engineering relies on the ability to control the expression of all constituent transgene components. Transgene silencing, defined as the loss of expression over time, persists as an obstacle for engineering primary cells and stem cells with transgenic cargos. In this review, we highlight the challenge that transgene silencing poses to the robust engineering of mammalian cells, outline potential molecular mechanisms of silencing, and present approaches for preventing transgene silencing. We conclude with a perspective identifying future research directions for improving the performance of synthetic gene circuits.
Collapse
Affiliation(s)
- Alan Cabrera
- Department of Bioengineering, Rice University, Houston, TX 77005, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hailey I Edelstein
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; The Eli and Edythe Broad CIRM Center, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Fokion Glykofrydis
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA
| | - Kasey S Love
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sebastian Palacios
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Josh Tycko
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Urbana, IL 61801, USA
| | - Sarah Lensch
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Cara E Shields
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Mark Livingston
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Champaign, Urbana, IL 61801, USA
| | - Karmella A Haynes
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| | - Leonardo Morsut
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA
| | - Yvonne Y Chen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, USA
| | - Ahmad S Khalil
- Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Wilson W Wong
- Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - James J Collins
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033-9080, USA; Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Karen Polizzi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland; Faculty of Science, University of Basel, Mattenstrasse 26, Basel 4058, Switzerland
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Joshua N Leonard
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA; The Eli and Edythe Broad CIRM Center, Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
6
|
Zhang F, Meier AB, Poch CM, Tian Q, Engelhardt S, Sinnecker D, Lipp P, Laugwitz KL, Moretti A, Dorn T. High-throughput optical action potential recordings in hiPSC-derived cardiomyocytes with a genetically encoded voltage indicator in the AAVS1 locus. Front Cell Dev Biol 2022; 10:1038867. [PMID: 36274846 PMCID: PMC9585323 DOI: 10.3389/fcell.2022.1038867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
Cardiomyocytes (CMs) derived from human induced pluripotent stem cells (hiPSCs) represent an excellent in vitro model in cardiovascular research. Changes in their action potential (AP) dynamics convey information that is essential for disease modeling, drug screening and toxicity evaluation. High-throughput optical AP recordings utilizing intramolecular Förster resonance energy transfer (FRET) of the voltage-sensitive fluorescent protein (VSFP) have emerged as a substitute or complement to the resource-intensive patch clamp technique. Here, we functionally validated our recently generated voltage indicator hiPSC lines stably expressing CAG-promoter-driven VSFP in the AAVS1 safe harbor locus. By combining subtype-specific cardiomyocyte differentiation protocols, we established optical AP recordings in ventricular, atrial, and nodal CMs in 2D monolayers using fluorescence microscopy. Moreover, we achieved high-throughput optical AP measurements in single hiPSC-derived CMs in a 3D context. Overall, this system greatly expands the spectrum of possibilities for high-throughput, non-invasive and long-term AP analyses in cardiovascular research and drug discovery.
Collapse
Affiliation(s)
- Fangfang Zhang
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Anna B. Meier
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Christine M. Poch
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Qinghai Tian
- Molecular Cell Biology, Centre for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Daniel Sinnecker
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Peter Lipp
- Molecular Cell Biology, Centre for Molecular Signaling (PZMS), Medical Faculty, Saarland University, Homburg, Germany
| | - Karl-Ludwig Laugwitz
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- *Correspondence: Alessandra Moretti, ; Tatjana Dorn,
| | - Tatjana Dorn
- First Department of Medicine, Cardiology, Klinikum rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
- *Correspondence: Alessandra Moretti, ; Tatjana Dorn,
| |
Collapse
|
7
|
Li Q, Yan RF, Yang YX, Mi CL, Jia YL, Wang TY. Stabilizing and Anti-Repressor Elements Effectively Increases Transgene Expression in Transfected CHO Cells. Front Bioeng Biotechnol 2022; 10:840600. [PMID: 35721852 PMCID: PMC9199445 DOI: 10.3389/fbioe.2022.840600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are currently the most widely used host cells for recombinant therapeutic protein (RTP) production. Currently, the RTP yields need to increase further to meet the market needs and reduce costs. In this study, three stabilizing and anti-repressor (SAR) elements from the human genome were selected, including human SAR7, SAR40, and SAR44 elements. SAR elements were cloned upstream of the promoter in the eukaryotic vector, followed by transfection into CHO cells, and were screened under G418 pressure. Flow cytometry was used to detect enhanced green fluorescent protein (eGFP) expression levels. The gene copy numbers and mRNA expression levels were determined through quantitative real-time PCR. Furthermore, the effect of the stronger SAR elements on adalimumab was investigated. The results showed that transgene expression levels in the SAR-containing vectors were higher than that of the control vector, and SAR7 and SAR40 significantly increased and maintained the long-term expression of the transgene in CHO cells. In addition, the transgene expression level increase was related with gene copy numbers and mRNA expression levels. Collectively, SAR elements can enhance the transgene expression and maintain the long-term expression of a transgene in transfected CHO cells, which may be used to increase recombinant protein production in CHO cells.
Collapse
Affiliation(s)
- Qin Li
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Rui-Fang Yan
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yong-Xiao Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Chun-Liu Mi
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yan-Long Jia
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
8
|
Malaguti M, Portero Migueles R, Annoh J, Sadurska D, Blin G, Lowell S. SyNPL: Synthetic Notch pluripotent cell lines to monitor and manipulate cell interactions in vitro and in vivo. Development 2022; 149:275525. [PMID: 35616331 PMCID: PMC9270970 DOI: 10.1242/dev.200226] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Cell-cell interactions govern differentiation and cell competition in pluripotent cells during early development, but the investigation of such processes is hindered by a lack of efficient analysis tools. Here, we introduce SyNPL: clonal pluripotent stem cell lines that employ optimised Synthetic Notch (SynNotch) technology to report cell-cell interactions between engineered ‘sender’ and ‘receiver’ cells in cultured pluripotent cells and chimaeric mouse embryos. A modular design makes it straightforward to adapt the system for programming differentiation decisions non-cell-autonomously in receiver cells in response to direct contact with sender cells. We demonstrate the utility of this system by enforcing neuronal differentiation at the boundary between two cell populations. In summary, we provide a new adaptation of SynNotch technology that could be used to identify cell interactions and to profile changes in gene or protein expression that result from direct cell-cell contact with defined cell populations in culture and in early embryos, and that can be customised to generate synthetic patterning of cell fate decisions. Summary: Optimised Synthetic Notch circuitry in mouse pluripotent stem cells provides a modular tool with which to monitor cell-cell interactions and program synthetic patterning of cell fates in culture and in embryos.
Collapse
Affiliation(s)
- Mattias Malaguti
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Rosa Portero Migueles
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jennifer Annoh
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Daina Sadurska
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Guillaume Blin
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Sally Lowell
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
9
|
Zhang JH, Shan LL, Liang F, Du CY, Li JJ. Strategies and Considerations for Improving Recombinant Antibody Production and Quality in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2022; 10:856049. [PMID: 35316944 PMCID: PMC8934426 DOI: 10.3389/fbioe.2022.856049] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
Recombinant antibodies are rapidly developing therapeutic agents; approximately 40 novel antibody molecules enter clinical trials each year, most of which are produced from Chinese hamster ovary (CHO) cells. However, one of the major bottlenecks restricting the development of antibody drugs is how to perform high-level expression and production of recombinant antibodies. The high-efficiency expression and quality of recombinant antibodies in CHO cells is determined by multiple factors. This review provides a comprehensive overview of several state-of-the-art approaches, such as optimization of gene sequence of antibody, construction and optimization of high-efficiency expression vector, using antibody expression system, transformation of host cell lines, and glycosylation modification. Finally, the authors discuss the potential of large-scale production of recombinant antibodies and development of culture processes for biopharmaceutical manufacturing in the future.
Collapse
Affiliation(s)
- Jun-He Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Jun-He Zhang,
| | - Lin-Lin Shan
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Fan Liang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Chen-Yang Du
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Jing-Jing Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
10
|
Roig-Merino A, Urban M, Bozza M, Peterson JD, Bullen L, Büchler-Schäff M, Stäble S, van der Hoeven F, Müller-Decker K, McKay TR, Milsom MD, Harbottle RP. An episomal DNA vector platform for the persistent genetic modification of pluripotent stem cells and their differentiated progeny. Stem Cell Reports 2021; 17:143-158. [PMID: 34942088 PMCID: PMC8758943 DOI: 10.1016/j.stemcr.2021.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/14/2022] Open
Abstract
The genetic modification of stem cells (SCs) is typically achieved using integrating vectors, whose potential integrative genotoxicity and propensity for epigenetic silencing during differentiation limit their application. The genetic modification of cells should provide sustainable levels of transgene expression, without compromising the viability of a cell or its progeny. We developed nonviral, nonintegrating, and autonomously replicating minimally sized DNA nanovectors to persistently genetically modify SCs and their differentiated progeny without causing any molecular or genetic damage. These DNA vectors are capable of efficiently modifying murine and human pluripotent SCs with minimal impact and without differentiation-mediated transgene silencing or vector loss. We demonstrate that these vectors remain episomal and provide robust and sustained transgene expression during self-renewal and targeted differentiation of SCs both in vitro and in vivo through embryogenesis and differentiation into adult tissues, without damaging their phenotypic characteristics. Nanovectors are used to engineer SCs efficiently, safely, and persistently Isogenic SC lines retain their capacity for self-renewal and pluripotency Nanovectors survive reprogramming and differentiation without loss or silencing Nanovectors are a universal genetic tool for the modification of any cell
Collapse
Affiliation(s)
- Alicia Roig-Merino
- DNA Vectors, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Manuela Urban
- DNA Vectors, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Matthias Bozza
- DNA Vectors, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Julia D Peterson
- DNA Vectors, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Louise Bullen
- Stem Cell Biology, Manchester Metropolitan University (MMU), Manchester M1 5GD, UK
| | - Marleen Büchler-Schäff
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (Hi-STEM), Heidelberg 69120, Germany; Division of Experimental Hematology, DKFZ, Heidelberg 69120, Germany
| | - Sina Stäble
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (Hi-STEM), Heidelberg 69120, Germany; Translational Cancer Epigenomics, Division of Translational Medical Oncology, DKFZ, Heidelberg 69120, Germany
| | | | | | - Tristan R McKay
- Stem Cell Biology, Manchester Metropolitan University (MMU), Manchester M1 5GD, UK
| | - Michael D Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (Hi-STEM), Heidelberg 69120, Germany; Division of Experimental Hematology, DKFZ, Heidelberg 69120, Germany
| | - Richard P Harbottle
- DNA Vectors, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany.
| |
Collapse
|
11
|
Tissue and cell-type-specific transduction using rAAV vectors in lung diseases. J Mol Med (Berl) 2021; 99:1057-1071. [PMID: 34021360 DOI: 10.1007/s00109-021-02086-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Gene therapy of genetically determined diseases, including some pathologies of the respiratory system, requires an efficient method for transgene delivery. Recombinant adeno-associated viral (rAAV) vectors are well studied and employed in gene therapy, as they are relatively simple and low immunogenic and able to efficiently transduce eukaryotic cells. To date, many natural and artificial (with modified capsids) AAV serotypes have been isolated, demonstrating preferential tropism toward different tissues and cells in accordance with the prevalent receptors on the cell surface. However, rAAV-mediated delivery is not strictly specific due to wide tropism of some viral serotypes. Thus, the development of the methods allowing modulating specificity of these vectors could be beneficial in some cases. This review describes various approaches for retargeting rAAV to respiratory cells, for example, using different types of capsid modifications and regulation of a transgene expression by tissue-specific promoters. Part of the review is devoted to the issues of transduction of stem and progenitor lung cells using AAV, which is a complicated task today.
Collapse
|
12
|
MacMullen C, Davis RL. High-Throughput Phenotypic Assay for Compounds That Influence Mitochondrial Health Using iPSC-Derived Human Neurons. SLAS DISCOVERY 2021; 26:811-822. [PMID: 33724077 DOI: 10.1177/24725552211000671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is a critical need to develop high-throughput assays to identify compounds that offer therapy for individuals suffering from neurodegenerative diseases. Most brain disorders, including neurodegenerative diseases, share the common neuropathology of mitochondria dysfunction, which can lead to apoptosis of neurons, overproduction of reactive oxygen species (ROS), and other cellular neuropathologies characteristic of these diseases. Human induced pluripotent stem cells (iPSCs) with a stable genomic insertion of the neurogenin-2 transcription factor under the control of the TetOn promoter can be differentiated into excitatory human neurons (i3Neurons) within 3 days of exposure to doxycycline. These neurons have been used to develop and validate a live-cell assay for parameters of mitochondrial dynamics and function using two compounds known to promote mitochondrial elongation in mouse neurons, 4-hydroxychalcone and 2,4-dihyrdroxychalcone. The assay involves plating the neurons in 384-well microtiter plates, treating them with known or unknown substances, and then capturing morphological information for the neuronal mitochondria using a lentivirus vector to express a mitochondrial-targeted fluorescence reporter. The i3Neuron cultures exposed to these two compounds for 24 h exhibit significantly decreased circularity and significantly increased length compared to controls, two morphological parameters correlated with increased mitochondrial health. The assay is rapid, with results obtained after a one-week-long i3Neuron culture or one month if neurons are co-cultured with astrocytes. This live-cell, mitochondrial phenotypic assay can be used for high-throughput screening or as an orthogonal assay for compounds obtained via other high-throughput screening campaigns.
Collapse
Affiliation(s)
- Courtney MacMullen
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Ronald L Davis
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
13
|
Gödecke N, Herrmann S, Hauser H, Mayer-Bartschmid A, Trautwein M, Wirth D. Rational Design of Single Copy Expression Cassettes in Defined Chromosomal Sites Overcomes Intraclonal Cell-to-Cell Expression Heterogeneity and Ensures Robust Antibody Production. ACS Synth Biol 2021; 10:145-157. [PMID: 33382574 DOI: 10.1021/acssynbio.0c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The expression of endogenous genes as well as transgenes depends on regulatory elements within and surrounding genes as well as their epigenetic modifications. Members of a cloned cell population often show pronounced cell-to-cell heterogeneity with respect to the expression of a certain gene. To investigate the heterogeneity of recombinant protein expression we targeted cassettes into two preselected chromosomal hot-spots in Chinese hamster ovary (CHO) cells. Depending on the gene of interest and the design of the expression cassette, we found strong expression variability that could be reduced by epigenetic modifiers, but not by site-specific recruitment of the modulator dCas9-VPR. In particular, the implementation of ubiquitous chromatin opening elements (UCOEs) reduced cell-to-cell heterogeneity and concomitantly increased expression. The application of this method to recombinant antibody expression confirmed that rational design of cell lines for production of transgenes with predictable and high titers is a promising approach.
Collapse
Affiliation(s)
- Natascha Gödecke
- RG Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Sabrina Herrmann
- RG Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Hansjörg Hauser
- Staff Unit Scientific Strategy, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | | | | | - Dagmar Wirth
- RG Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
- Institute of Experimental Hematology, Medical University Hannover, Hannover 30625, Germany
| |
Collapse
|
14
|
Humphreys PA, Woods S, Smith CA, Bates N, Cain SA, Lucas R, Kimber SJ. Optogenetic Control of the BMP Signaling Pathway. ACS Synth Biol 2020; 9:3067-3078. [PMID: 33084303 PMCID: PMC7927147 DOI: 10.1021/acssynbio.0c00315] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Bone morphogenetic proteins (BMPs) are members of the transforming growth factor β (TGFβ) superfamily and have crucial roles during development; including mesodermal patterning and specification of renal, hepatic, and skeletal tissues. In vitro developmental models currently rely upon costly and unreliable recombinant BMP proteins that do not enable dynamic or precise activation of the BMP signaling pathway. Here, we report the development of an optogenetic BMP signaling system (optoBMP) that enables rapid induction of the canonical BMP signaling pathway driven by illumination with blue light. We demonstrate the utility of the optoBMP system in multiple human cell lines to initiate signal transduction through phosphorylation and nuclear translocation of SMAD1/5, leading to upregulation of BMP target genes including Inhibitors of DNA binding ID2 and ID4. Furthermore, we demonstrate how the optoBMP system can be used to fine-tune activation of the BMP signaling pathway through variable light stimulation. Optogenetic control of BMP signaling will enable dynamic and high-throughput intervention across a variety of applications in cellular and developmental systems.
Collapse
Affiliation(s)
- Paul A. Humphreys
- Division
of Cell Matrix & Regenerative Medicine, Faculty of Biology, Medicine
and Health, The University of Manchester, Manchester, M13 9PL, U.K.
- Division
of Neuroscience & Experimental Psychology, Faculty of Biology,
Medicine and Health, The University of Manchester, Manchester, M13 9PL, U.K.
| | - Steven Woods
- Division
of Cell Matrix & Regenerative Medicine, Faculty of Biology, Medicine
and Health, The University of Manchester, Manchester, M13 9PL, U.K.
| | - Christopher A. Smith
- Division
of Cell Matrix & Regenerative Medicine, Faculty of Biology, Medicine
and Health, The University of Manchester, Manchester, M13 9PL, U.K.
| | - Nicola Bates
- Division
of Cell Matrix & Regenerative Medicine, Faculty of Biology, Medicine
and Health, The University of Manchester, Manchester, M13 9PL, U.K.
| | - Stuart A. Cain
- Division
of Cell Matrix & Regenerative Medicine, Faculty of Biology, Medicine
and Health, The University of Manchester, Manchester, M13 9PL, U.K.
| | - Robert Lucas
- Division
of Neuroscience & Experimental Psychology, Faculty of Biology,
Medicine and Health, The University of Manchester, Manchester, M13 9PL, U.K.
| | - Susan J. Kimber
- Division
of Cell Matrix & Regenerative Medicine, Faculty of Biology, Medicine
and Health, The University of Manchester, Manchester, M13 9PL, U.K.
| |
Collapse
|
15
|
Shendy NAM, Raghu D, Roy S, Perry CH, Safi A, Branco MR, Homayouni R, Abell AN. Coordinated regulation of Rel expression by MAP3K4, CBP, and HDAC6 controls phenotypic switching. Commun Biol 2020; 3:475. [PMID: 32859943 PMCID: PMC7455715 DOI: 10.1038/s42003-020-01200-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Coordinated gene expression is required for phenotypic switching between epithelial and mesenchymal phenotypes during normal development and in disease states. Trophoblast stem (TS) cells undergo epithelial-mesenchymal transition (EMT) during implantation and placentation. Mechanisms coordinating gene expression during these processes are poorly understood. We have previously demonstrated that MAP3K4-regulated chromatin modifiers CBP and HDAC6 each regulate thousands of genes during EMT in TS cells. Here we show that CBP and HDAC6 coordinate expression of only 183 genes predicted to be critical regulators of phenotypic switching. The highest-ranking co-regulated gene is the NF-κB family member Rel. Although NF-κB is primarily regulated post-transcriptionally, CBP and HDAC6 control Rel transcript levels by binding Rel regulatory regions and controlling histone acetylation. REL re-expression in mesenchymal-like TS cells induces a mesenchymal-epithelial transition. Importantly, REL forms a feedback loop, blocking HDAC6 expression and nuclear localization. Together, our work defines a developmental program coordinating phenotypic switching. Noha Shendy et al. study the role of CBP and HDAC6 in phenotypic switching using trophoblast stem cells. They identify Rel, an NF-kB family member, to be transcriptionally coregulated by CBP and HDAC6. Surprisingly, Rel induces mesenchymal-epithelial transition and itself regulated Hdac6 expression and nuclear localization.
Collapse
Affiliation(s)
- Noha Ahmed Mohammed Shendy
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA.,Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Deepthi Raghu
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA
| | - Sujoy Roy
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, 48309-4482, USA
| | | | - Adiba Safi
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA
| | - Miguel Ramos Branco
- Centre for Genomics and Child Health, Blizard Institute, Queen Mary University of London, London, E1 2AT, UK
| | - Ramin Homayouni
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, 48309-4482, USA
| | - Amy Noel Abell
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA.
| |
Collapse
|
16
|
Human Lentiviral Gene Therapy Restores the Cellular Phenotype of Autosomal Recessive Complete IFN-γR1 Deficiency. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:785-795. [PMID: 32355867 PMCID: PMC7184269 DOI: 10.1016/j.omtm.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/02/2020] [Indexed: 12/29/2022]
Abstract
Autosomal recessive (AR) complete interferon-γ receptor 1 (IFN-γR1) deficiency, also known as one genetic etiology of Mendelian susceptibility to mycobacterial disease (MSMD), is a life-threatening congenital disease leading to premature death. Affected patients present a pathognomonic predisposition to recurrent and severe infections with environmental mycobacteria or the Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine. Current therapeutic options are limited to antibiotic treatment and hematopoietic stem cell transplantation, however with poor outcome. Given the clinical success of gene therapy, we introduce the first lentiviral-based gene therapy approach to restore expression and function of the human IFN-γR-downstream signaling cascade. In our study, we developed lentiviral vectors constitutively expressing the human IFN-γR1 and demonstrate stable transgene expression without interference with cell viability and proliferation in transduced human hematopoietic cells. Using an IFN-γR1-deficient HeLa cell model, we show stable receptor reconstitution and restored IFN-γR1 signaling without adverse effect on cell functionality. Transduction of both SV40-immortalized and primary fibroblasts derived from IFN-γR1-deficient MSMD patients was able to recover IFN-γR1 expression and restore type II IFN signaling upon stimulation with IFN-γ. In summary, we highlight lentiviral vectors to correct the IFN-γ mediated immunity and present the first gene therapy approach for patients suffering from AR complete IFN-γR1 deficiency.
Collapse
|
17
|
CellTagging: combinatorial indexing to simultaneously map lineage and identity at single-cell resolution. Nat Protoc 2020; 15:750-772. [PMID: 32051617 DOI: 10.1038/s41596-019-0247-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/20/2019] [Indexed: 01/16/2023]
Abstract
Single-cell technologies are offering unparalleled insight into complex biology, revealing the behavior of rare cell populations that are masked in bulk population analyses. One current limitation of single-cell approaches is that lineage relationships are typically lost as a result of cell processing. We recently established a method, CellTagging, permitting the parallel capture of lineage information and cell identity via a combinatorial cell indexing approach. CellTagging integrates with high-throughput single-cell RNA sequencing, where sequential rounds of cell labeling enable the construction of multi-level lineage trees. Here, we provide a detailed protocol to (i) generate complex plasmid and lentivirus CellTag libraries for labeling of cells; (ii) sequentially CellTag cells over the course of a biological process; (iii) profile single-cell transcriptomes via high-throughput droplet-based platforms; and (iv) generate a CellTag expression matrix, followed by clone calling and lineage reconstruction. This lentiviral-labeling approach can be deployed in any organism or in vitro culture system that is amenable to viral transduction to simultaneously profile lineage and identity at single-cell resolution.
Collapse
|
18
|
Zhang JH, Zhang JH, Wang XY, Xu DH, Wang TY. Distance effect characteristic of the matrix attachment region increases recombinant protein expression in Chinese hamster ovary cells. Biotechnol Lett 2019; 42:187-196. [PMID: 31776751 DOI: 10.1007/s10529-019-02775-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/24/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Previously, we have found that the matrix attachment region (MAR) may confer a 'distance effect' on transgene expression. This work aims to systematically explore the increased transgene expression in transfected Chinese hamster ovary (CHO) cells due to the characteristics of MAR and its mechanism. RESULTS Compared with the control vector, 500 and 1000 bp DNA distances between MAR and the cytomegalovirus promoter can increase transgene expression by 1.77- and 1.56-fold, respectively. Meanwhile, transgene expression was not affected when 2000 and 2500 bp spacer DNAs were inserted, but a declining trend was observed when a 1500 bp spacer DNA was inserted. The vector containing a 500 bp DNA distance significantly increased the expression of the enhanced green fluorescent protein, and this increase was not related to transgene copy numbers. CONCLUSIONS A short DNA distance-containing MAR confers high transgene expression level in transfected CHO cells, but a distance threshold does not exist in the vector system.
Collapse
Affiliation(s)
- Jun-He Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Ji-Hong Zhang
- Department of Histology and Embryology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dan-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003, Henan, China. .,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
19
|
Efficiency of different fragment lengths of the ubiquitous chromatin opening element HNRPA2B1-CBX3 in driving human CD18 gene expression within self-inactivating lentiviral vectors for gene therapy applications. Gene 2019; 710:265-272. [DOI: 10.1016/j.gene.2019.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 01/26/2023]
|
20
|
The role of telomere-binding modulators in pluripotent stem cells. Protein Cell 2019; 11:60-70. [PMID: 31350723 PMCID: PMC6949317 DOI: 10.1007/s13238-019-0651-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/07/2019] [Indexed: 01/24/2023] Open
Abstract
Pluripotent stem cells (PSCs) such as embryonic stem cells (ESCs), ESCs derived by somatic cell nuclear transfer (ntESCs), and induced pluripotent stem cells (iPSCs) have unlimited capacity for self-renewal and pluripotency and can give rise to all types of somatic cells. In order to maintain their self-renewal and pluripotency, PSCs need to preserve their telomere length and homeostasis. In recent years, increasing studies have shown that telomere reprogramming is essential for stem cell pluripotency maintenance and its induced pluripotency process. Telomere-associated proteins are not only required for telomere maintenance in both stem cells, their extra-telomeric functions have also been found to be critical as well. Here, we will discuss how telomeres and telomere-associated factors participate and regulate the maintenance of stem cell pluripotency.
Collapse
|
21
|
Alhaji SY, Ngai SC, Abdullah S. Silencing of transgene expression in mammalian cells by DNA methylation and histone modifications in gene therapy perspective. Biotechnol Genet Eng Rev 2018; 35:1-25. [PMID: 30514178 DOI: 10.1080/02648725.2018.1551594] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA methylation and histone modifications are vital in maintaining genomic stability and modulating cellular functions in mammalian cells. These two epigenetic modifications are the most common gene regulatory systems known to spatially control gene expression. Transgene silencing by these two mechanisms is a major challenge to achieving effective gene therapy for many genetic conditions. The implications of transgene silencing caused by epigenetic modifications have been extensively studied and reported in numerous gene delivery studies. This review highlights instances of transgene silencing by DNA methylation and histone modification with specific focus on the role of these two epigenetic effects on the repression of transgene expression in mammalian cells from integrative and non-integrative based gene delivery systems in the context of gene therapy. It also discusses the prospects of achieving an effective and sustained transgene expression for future gene therapy applications.
Collapse
Affiliation(s)
- Suleiman Yusuf Alhaji
- a Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Universiti Putra Malaysia, UPM , Serdang , Malaysia.,b Department of Human Anatomy , College of Medical Sciences, Abubakar Tafawa Balewa University Bauchi, ATBU , Bauchi , Nigeria
| | - Siew Ching Ngai
- c School of Biosciences, Faculty of Science , University of Nottingham Malaysia , Semenyih , Malaysia
| | - Syahril Abdullah
- a Medical Genetics Laboratory, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences , Universiti Putra Malaysia, UPM , Serdang , Malaysia.,d UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience , Universiti Putra Malaysia, UPM , Serdang , Malaysia
| |
Collapse
|
22
|
Cullmann K, Blokland KEC, Sebe A, Schenk F, Ivics Z, Heinz N, Modlich U. Sustained and regulated gene expression by Tet-inducible "all-in-one" retroviral vectors containing the HNRPA2B1-CBX3 UCOE ®. Biomaterials 2018; 192:486-499. [PMID: 30508767 DOI: 10.1016/j.biomaterials.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
Genetic modification of induced pluripotent stem (iPS) cells may be necessary for the generation of effector cells for cellular therapies. Hereby, it can be important to induce transgene expression at restricted and defined time windows, especially if it interferes with pluripotency or differentiation. To achieve this, inducible expression systems can be used such as the tetracycline-inducible retroviral vector system, however, retroviral expression can be subjected to epigenetic silencing or to position-effect variegation. One strategy to overcome this is the incorporation of ubiquitous chromatin opening elements (UCOE®'s) into retroviral vectors to maintain a transcriptionally permissive chromatin state at the integration site. In this study, we developed Tet-inducible all-in-one gammaretroviral vectors carrying different sized UCOE®'s derived from the A2UCOE. The ability to prevent vector silencing by preserving the Tet-regulatory potential was investigated in different cell lines, and in murine and human iPS cells. A 670-bp fragment spanning the CBX3 promoter region of A2UCOE (U670) was the most potent element in preventing silencing, and conferred the strongest expression from the vector in the induced state. While longer fragments of A2UCOEs also sustained expression, vector titers and induction efficiencies were impaired. Finally, we demonstrate that U670 can be used for constitutive expression of the transactivator in the all-in-one vector for faithful regulation of transgenes by doxycycline, including the thrombopoietin receptor Mpl conferring cytokine-dependent cell growth.
Collapse
Affiliation(s)
- Katharina Cullmann
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Kaj E C Blokland
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Attila Sebe
- Div. of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Franziska Schenk
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Zoltán Ivics
- Div. of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Niels Heinz
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany; BioNTech Innovative Manufacturing Services GmbH, Idar-Oberstein, Germany
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany.
| |
Collapse
|
23
|
Moonmuang S, Saoin S, Chupradit K, Sakkhachornphop S, Israsena N, Rungsiwiwut R, Tayapiwatana C. Modulated expression of the HIV-1 2LTR zinc finger efficiently interferes with the HIV integration process. Biosci Rep 2018; 38:BSR20181109. [PMID: 30068696 PMCID: PMC6127673 DOI: 10.1042/bsr20181109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 11/30/2022] Open
Abstract
Lentiviral vectors have emerged as the most efficient system to stably transfer and insert genes into cells. By adding a tetracycline (Tet)-inducible promoter, transgene expression delivered by a lentiviral vector can be expressed whenever needed and halted when necessary. Here we have constructed a doxycycline (Dox)-inducible lentiviral vector which efficiently introduces a designed zinc finger protein, 2-long terminal repeat zinc-finger protein (2LTRZFP), into hematopoietic cell lines and evaluated its expression in pluripotent stem cells. As a result this lentiviral inducible system can regulate 2LTRZFP expression in the SupT1 T-cell line and in pluripotent stem cells. Using this vector, no basal expression was detected in the T-cell line and its induction was achieved with low Dox concentrations. Remarkably, the intracellular regulatory expression of 2LTRZFP significantly inhibited HIV-1 integration and replication in HIV-inoculated SupT1 cells. This approach could provide a potential tool for gene therapy applications, which efficiently control and reduce the side effect of therapeutic genes expression.
Collapse
Affiliation(s)
- Sutpirat Moonmuang
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Somphot Saoin
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Koollawat Chupradit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Nipan Israsena
- Stem Cell and Cell Therapy Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ruttachuk Rungsiwiwut
- Department of Anatomy, Faculty of Medicine, Srinakharinwirot University, Bangkok 10900, Thailand
| | - Chatchai Tayapiwatana
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
24
|
Bhere D, Khajuria RK, Hendriks WT, Bandyopadhyay A, Bagci-Onder T, Shah K. Stem Cells Engineered During Different Stages of Reprogramming Reveal Varying Therapeutic Efficacies. Stem Cells 2018; 36:932-942. [PMID: 29451340 PMCID: PMC5992036 DOI: 10.1002/stem.2805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022]
Abstract
Stem cells are emerging as promising treatment strategies for several brain disorders and pathologies. In this study, we explored the potential of creating induced pluripotent stem cell-derived neural stem cells (ipNSC) by using either unmodified or gene-modified somatic cells and tested their fate and therapeutic efficacies in vitro and in vivo. We show that cells engineered in somatic state lose transgene-expression during the neural induction process, which is partially restored by histone deacetylase inhibitor treatment whereas cells engineered at the ipNSC state have sustained expression of transgenes. In vivo, bimodal mouse and human ipNSCs engineered to express tumor specific death-receptor ligand and suicide-inducing therapeutic proteins have profound anti-tumor efficacy when encapsulated in synthetic extracellular matrix and transplanted in mouse models of resected-glioblastoma. This study provides insights into using somatic cells for treating CNS disorders and presents a receptor-targeted cancer therapeutic approach for brain tumors. Stem Cells 2018;36:932-942.
Collapse
Affiliation(s)
- Deepak Bhere
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Boston, MA 02114 USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114 USA
| | - Rajiv Kumar Khajuria
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Boston, MA 02114 USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114 USA
| | - William T. Hendriks
- The Collaborative Center for X-Linked Dystonia-Parkinsonism, Harvard Medical School, Boston, MA 02114 USA
- Harvard Brain Science Initiative, Harvard Medical School, Boston MA 02114 USA
| | - Antara Bandyopadhyay
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Boston, MA 02114 USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114 USA
| | - Tugba Bagci-Onder
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Boston, MA 02114 USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114 USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Harvard Medical School, Boston, MA 02114 USA
- Department of Radiology, Harvard Medical School, Boston, MA 02114 USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| |
Collapse
|
25
|
Human rhinovirus internal ribosome entry site element enhances transgene expression in transfected CHO-S cells. Sci Rep 2018; 8:6661. [PMID: 29703950 PMCID: PMC5923211 DOI: 10.1038/s41598-018-25049-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/13/2018] [Indexed: 01/27/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are mainly used for recombinant protein production. However, the unstable transgene expression and lower transgene copy numbers are the major issues need to be resolved. Here, eleven internal ribosome entry site (IRES) elements from viral and cellular IRES were evaluated for foreign gene expression in CHO-S cells. We constructed eleven fusing plasmids containing different IRES sequences downstream of the enhanced green fluorescent protein (EGFP) gene. EGFP expression was detected by flow cytometry and the transgene copy number was evaluated by quantitative PCR. The erythropoietin (EPO) protein was also used to assess the stronger IRES. The results showed that IRES from human rhinovirus (HRV) exhibited the highest EGFP expression level under transient and stable transfections. The EGFP expression level of vector with IRES from HRV was related to the gene copy number in stably transfected CHO-S cells. Moreover, IRES from HRV induced higher expression level of EPO compared with one mutant IRES from EMCV in transfected cells. In conclusion, IRES from HRV can function as a strong IRES element for stable expression in CHO-S cells, which could potentially guide more effective foreign gene expression in CHO-S cells.
Collapse
|
26
|
Kuhn A, Ackermann M, Mussolino C, Cathomen T, Lachmann N, Moritz T. TALEN-mediated functional correction of human iPSC-derived macrophages in context of hereditary pulmonary alveolar proteinosis. Sci Rep 2017; 7:15195. [PMID: 29123113 PMCID: PMC5680188 DOI: 10.1038/s41598-017-14566-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/10/2017] [Indexed: 01/09/2023] Open
Abstract
Hereditary pulmonary alveolar proteinosis (herPAP) constitutes a rare, life threatening lung disease characterized by the inability of alveolar macrophages to clear the alveolar airspaces from surfactant phospholipids. On a molecular level, the disorder is defined by a defect in the CSF2RA gene coding for the GM-CSF receptor alpha-chain (CD116). As therapeutic options are limited, we currently pursue a cell and gene therapy approach aiming for the intrapulmonary transplantation of gene-corrected macrophages derived from herPAP-specific induced pluripotent stem cells (herPAP-iPSC) employing transcriptional activator-like effector nucleases (TALENs). Targeted insertion of a codon-optimized CSF2RA-cDNA driven by the hybrid cytomegalovirus (CMV) early enhancer/chicken beta actin (CAG) promoter into the AAVS1 locus resulted in robust expression of the CSF2RA gene in gene-edited herPAP-iPSCs as well as thereof derived macrophages. These macrophages displayed typical morphology, surface phenotype, phagocytic and secretory activity, as well as functional CSF2RA expression verified by STAT5 phosphorylation and GM-CSF uptake studies. Thus, our study provides a proof-of-concept, that TALEN-mediated integration of the CSF2RA gene into the AAVS1 safe harbor locus in patient-specific iPSCs represents an efficient strategy to generate functionally corrected monocytes/macrophages, which in the future may serve as a source for an autologous cell-based gene therapy for the treatment of herPAP.
Collapse
Affiliation(s)
- Alexandra Kuhn
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover, Germany
| | - Mania Ackermann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,JRG Translational Hematology of Congenital Diseases, REBIRTH Cluster of Excellence, Hannover, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany. .,RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover, Germany.
| |
Collapse
|
27
|
Neville JJ, Orlando J, Mann K, McCloskey B, Antoniou MN. Ubiquitous Chromatin-opening Elements (UCOEs): Applications in biomanufacturing and gene therapy. Biotechnol Adv 2017; 35:557-564. [DOI: 10.1016/j.biotechadv.2017.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
|
28
|
The CpG-sites of the CBX3 ubiquitous chromatin opening element are critical structural determinants for the anti-silencing function. Sci Rep 2017; 7:7919. [PMID: 28801671 PMCID: PMC5554207 DOI: 10.1038/s41598-017-04212-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
Suppression of therapeutic transgene expression from retroviral gene therapy vectors by epigenetic defence mechanisms represents a problem that is particularly encountered in pluripotent stem cells (PSCs) and their differentiated progeny. Transgene expression in these cells, however, can be stabilised by CpG-rich ubiquitous chromatin opening elements (UCOEs). In this context we recently demonstrated profound anti-silencing properties for the small (679 bp) CBX3-UCO element and we now confirmed this observation in the context of the defined murine chromosomal loci ROSA26 and TIGRE. Moreover, since the structural basis for the anti-silencing activity of UCOEs has remained poorly defined, we interrogated various CBX3 subfragments in the context of lentiviral vectors and murine PSCs. We demonstrated marked though distinct anti-silencing activity in the pluripotent state and during PSC-differentiation for several of the CBX3 subfragments. This activity was significantly correlated with CpG content as well as endogenous transcriptional activity. Interestingly, also a scrambled CBX3 version with preserved CpG-sites retained the anti-silencing activity despite the lack of endogenous promoter activity. Our data therefore highlight the importance of CpG-sites and transcriptional activity for UCOE functionality and suggest contributions from different mechanisms to the overall anti-silencing function of the CBX3 element.
Collapse
|
29
|
Ackermann M, Kuhn A, Kunkiel J, Merkert S, Martin U, Moritz T, Lachmann N. Ex vivo Generation of Genetically Modified Macrophages from Human Induced Pluripotent Stem Cells. Transfus Med Hemother 2017. [PMID: 28626364 DOI: 10.1159/000477129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Pluripotent stem cells, including induced pluripotent stem cells (iPSCs), have the capacity to differentiate towards all three germ layers and have been highlighted as an attractive cell source for the field of regenerative medicine. Thus, stable expression of therapeutic transgenes in iPSCs, as well as thereof derived progeny of hematopoietic lineage, may lay the foundation for innovative cell replacement therapies. METHODS We have utilized human iPSC lines genetically modified by lentiviral vector technology or targeted integration of reporter genes to evaluate transgene expression during hematopoietic specification and differentiation towards macrophages. RESULTS Use of lentiviral vectors equipped with an ubiquitous chromatin opening element (CBX3-UCOE) as well as zinc finger nuclease-mediated targeting of an expression cassette into the human adeno-associated virus integration site 1 (AAVS1) safe harbor resulted in stable transgene expression in iPSCs. When iPSCs were differentiated along the myeloid pathway into macrophages, both strategies yielded sustained transgene expression during the hematopoietic specification process including mature CD14+ and CD11b+ macrophages. CONCLUSION Combination of human iPSC technology with either lentiviral vector technology or designer nuclease-based genome editing allows for the generation of transgenic iPSC-derived macrophages with stable transgene expression which may be useful for novel cell and gene replacement therapies.
Collapse
Affiliation(s)
- Mania Ackermann
- JRG Translational Hematology, REBIRTH Cluster of Excellence, Hanover Medical School, Hanover, Germany.,Institute of Experimental Hematology, Hanover Medical School, Hanover, Germany
| | - Alexandra Kuhn
- Institute of Experimental Hematology, Hanover Medical School, Hanover, Germany.,RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hanover Medical School, Hanover, Germany
| | - Jessica Kunkiel
- Institute of Experimental Hematology, Hanover Medical School, Hanover, Germany.,RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hanover Medical School, Hanover, Germany
| | - Sylvia Merkert
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Cluster of Excellence, Hanover Medical School, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), REBIRTH-Cluster of Excellence, Hanover Medical School, Hanover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hanover, Germany
| | - Thomas Moritz
- Institute of Experimental Hematology, Hanover Medical School, Hanover, Germany.,RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hanover Medical School, Hanover, Germany
| | - Nico Lachmann
- JRG Translational Hematology, REBIRTH Cluster of Excellence, Hanover Medical School, Hanover, Germany.,Institute of Experimental Hematology, Hanover Medical School, Hanover, Germany
| |
Collapse
|
30
|
Detailed comparison of retroviral vectors and promoter configurations for stable and high transgene expression in human induced pluripotent stem cells. Gene Ther 2017; 24:298-307. [PMID: 28346436 DOI: 10.1038/gt.2017.20] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/27/2017] [Accepted: 03/06/2017] [Indexed: 12/19/2022]
Abstract
Correction of patient-specific induced pluripotent stem cells (iPSC) upon gene delivery through retroviral vectors offers new treatment perspectives for monogenetic diseases. Gene-modified iPSC clones can be screened for safe integration sites and differentiated into transplantable cells of interest. However, the current bottleneck is epigenetic vector silencing. In order to identify the most suitable retroviral expression system in iPSC, we systematically compared vectors from different retroviral genera, different promoters and their combination with ubiquitous chromatin opening elements (UCOE), and several envelope pseudotypes. Lentiviral vectors (LV) pseudotyped with vesicular stomatitis virus glycoprotein were superior to gammaretroviral and alpharetroviral vectors and other envelopes tested. The elongation factor 1α short (EFS) promoter mediated the most robust expression, whereas expression levels were lower from the potent but more silencing-prone spleen focus forming virus (SFFV) promoter. Both full-length (A2UCOE) and minimal (CBX3) UCOE juxtaposed to two physiological and one viral promoter reduced transgene silencing with equal efficiency. However, a promoter-specific decline in expression levels was not entirely prevented. Upon differentiation of transgene-positive iPSC into endothelial cells, A2UCOE.EFS and CBX3.EFS vectors maintained highest transgene expression in a larger fraction of cells as compared with all other constructs tested here. The function of UCOE diminished, but did not fully counteract, vector silencing and possibilities for improvements remain. Nevertheless, the CBX3.EFS in a LV background exhibited the most promising promoter and vector configuration for both high titer production and long-term genetic modification of human iPSC and their progeny.
Collapse
|
31
|
Fail-Safe System against Potential Tumorigenicity after Transplantation of iPSC Derivatives. Stem Cell Reports 2017; 8:673-684. [PMID: 28262544 PMCID: PMC5355810 DOI: 10.1016/j.stemcr.2017.02.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/02/2017] [Accepted: 02/02/2017] [Indexed: 01/10/2023] Open
Abstract
Human induced pluripotent stem cells (iPSCs) are promising in regenerative medicine. However, the risks of teratoma formation and the overgrowth of the transplanted cells continue to be major hurdles that must be overcome. Here, we examined the efficacy of the inducible caspase-9 (iCaspase9) gene as a fail-safe against undesired tumorigenic transformation of iPSC-derived somatic cells. We used a lentiviral vector to transduce iCaspase9 into two iPSC lines and assessed its efficacy in vitro and in vivo. In vitro, the iCaspase9 system induced apoptosis in approximately 95% of both iPSCs and iPSC-derived neural stem/progenitor cells (iPSC-NS/PCs). To determine in vivo function, we transplanted iPSC-NS/PCs into the injured spinal cord of NOD/SCID mice. All transplanted cells whose mass effect was hindering motor function recovery were ablated upon transduction of iCaspase9. Our results suggest that the iCaspase9 system may serve as an important countermeasure against post-transplantation adverse events in stem cell transplant therapies.
Collapse
|
32
|
Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells. Sci Rep 2016; 6:37289. [PMID: 27853296 PMCID: PMC5112523 DOI: 10.1038/srep37289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 10/28/2016] [Indexed: 12/25/2022] Open
Abstract
Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny.
Collapse
|
33
|
Galat V, Galat Y, Perepitchka M, Jennings LJ, Iannaccone PM, Hendrix MJC. Transgene Reactivation in Induced Pluripotent Stem Cell Derivatives and Reversion to Pluripotency of Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells. Stem Cells Dev 2016; 25:1060-72. [PMID: 27193052 PMCID: PMC4939377 DOI: 10.1089/scd.2015.0366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have enormous potential in regenerative medicine and disease modeling. It is now felt that clinical trials should be performed with iPSCs derived with nonintegrative constructs. Numerous studies, however, including those describing disease models, are still being published using cells derived from iPSCs generated with integrative constructs. Our experimental work presents the first evidence of spontaneous transgene reactivation in vitro in several cellular types. Our results show that the transgenes were predominantly silent in parent iPSCs, but in mesenchymal and endothelial iPSC derivatives, the transgenes experienced random upregulation of Nanog and c-Myc. Additionally, we provide evidence of spontaneous secondary reprogramming and reversion to pluripotency in mesenchymal stem cells derived from iPSCs. These findings strongly suggest that the studies, which use cellular products derived from iPSCs generated with retro- or lentiviruses, should be evaluated with consideration of the possibility of transgene reactivation. The in vitro model described here provides insight into the earliest events of culture transformation and suggests the hypothesis that reversion to pluripotency may be responsible for the development of tumors in cell replacement experiments. The main goal of this work, however, is to communicate the possibility of transgene reactivation in retro- or lenti-iPSC derivatives and the associated loss of cellular fidelity in vitro, which may impact the outcomes of disease modeling and related experimentation.
Collapse
Affiliation(s)
- Vasiliy Galat
- 1 Department of Pathology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Yekaterina Galat
- 2 Developmental Biology Program, Department of Pediatrics, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Mariana Perepitchka
- 2 Developmental Biology Program, Department of Pediatrics, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Lawrence J Jennings
- 1 Department of Pathology, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Philip M Iannaccone
- 2 Developmental Biology Program, Department of Pediatrics, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| | - Mary J C Hendrix
- 3 Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| |
Collapse
|
34
|
Leon-Rico D, Aldea M, Sanchez-Baltasar R, Mesa-Nuñez C, Record J, Burns SO, Santilli G, Thrasher AJ, Bueren JA, Almarza E. Lentiviral Vector-Mediated Correction of a Mouse Model of Leukocyte Adhesion Deficiency Type I. Hum Gene Ther 2016; 27:668-78. [PMID: 27056660 PMCID: PMC5035374 DOI: 10.1089/hum.2016.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Leukocyte adhesion deficiency type I (LAD-I) is a primary immunodeficiency caused by mutations in the ITGB2 gene and is characterized by recurrent and life-threatening bacterial infections. These mutations lead to defective or absent expression of β2 integrins on the leukocyte surface, compromising adhesion and extravasation at sites of infection. Three different lentiviral vectors (LVs) conferring ubiquitous or preferential expression of CD18 in myeloid cells were constructed and tested in human and mouse LAD-I cells. All three hCD18-LVs restored CD18 and CD11a membrane expression in LAD-I patient-derived lymphoblastoid cells. Corrected cells recovered the ability to aggregate and bind to sICAM-1 after stimulation. All vectors induced stable hCD18 expression in hematopoietic cells from mice with a hypomorphic Itgb2 mutation (CD18HYP), both in vitro and in vivo after transplantation of corrected cells into primary and secondary CD18HYP recipients. hCD18+ hematopoietic cells from transplanted CD18HYP mice also showed restoration of mCD11a surface co-expression. The analysis of in vivo neutrophil migration in CD18HYP mice subjected to two different inflammation models demonstrated that the LV-mediated gene therapy completely restored neutrophil extravasation in response to inflammatory stimuli. Finally, these vectors were able to correct the phenotype of human myeloid cells derived from CD34+ progenitors defective in ITGB2 expression. These results support for the first time the use of hCD18-LVs for the treatment of LAD-I patients in clinical trials.
Collapse
Affiliation(s)
- Diego Leon-Rico
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain .,2 Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) , Madrid, Spain
| | - Montserrat Aldea
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain .,2 Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) , Madrid, Spain
| | - Raquel Sanchez-Baltasar
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain .,2 Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) , Madrid, Spain
| | - Cristina Mesa-Nuñez
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain .,2 Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) , Madrid, Spain
| | - Julien Record
- 3 Section of Molecular and Cellular Immunology, University College London Institute of Child Health , London, United Kingdom
| | - Siobhan O Burns
- 4 Department of Immunology, Royal Free London NHS Foundation Trust , London, United Kingdom .,5 University College London Institute of Immunity and Transplantation , London, United Kingdom
| | - Giorgia Santilli
- 3 Section of Molecular and Cellular Immunology, University College London Institute of Child Health , London, United Kingdom
| | - Adrian J Thrasher
- 3 Section of Molecular and Cellular Immunology, University College London Institute of Child Health , London, United Kingdom .,6 Great Ormond Street Hospital Foundation Trust NHS Trust , London, United Kingdom
| | - Juan A Bueren
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain .,2 Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) , Madrid, Spain
| | - Elena Almarza
- 1 Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) , and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain .,2 Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM) , Madrid, Spain
| |
Collapse
|
35
|
Multiple mechanisms determine the sensitivity of human-induced pluripotent stem cells to the inducible caspase-9 safety switch. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16003. [PMID: 27626039 PMCID: PMC5008202 DOI: 10.1038/mtm.2016.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 12/17/2022]
Abstract
Expression of the inducible caspase-9 (iC9) suicide gene is one of the most appealing safety strategies for cell therapy and has been applied for human-induced pluripotent stem cells (hiPSC) to control the cell fate of hiPSC. iC9 can induce cell death of over 99% of iC9-transduced hiPSC (iC9-hiPSC) in less than 24 hours after exposure to chemical inducer of dimerization (CID). There is, however, a small number of resistant cells that subsequently outgrows. To ensure greater uniformity of the hiPSC response to iC9 activation, we purified a resistant population by culturing iC9-hiPSC with CID and analyzing the mechanisms by which the cells evade killing. We found that iC9-resistant hiPSC have significant heterogeneity in terms of their escape mechanisms from caspase-dependent apoptosis including reduced expression of iC9 by promoter silencing and overexpression of BCL2. As a consequence, modifying a single element alone will be insufficient to ensure sustained susceptibility of iC9 in all cells and prevent the eventual outgrowth of a resistant population. To solve this issue, we propose to isolate an iC9-sensitive population and show that this hiPSC line has sustained a uniform responsiveness to iC9-mediated growth control.
Collapse
|
36
|
Hoepfner J, Kleinsorge M, Papp O, Ackermann M, Alfken S, Rinas U, Solodenko W, Kirschning A, Sgodda M, Cantz T. Biphasic modulation of Wnt signaling supports efficient foregut endoderm formation from human pluripotent stem cells. Cell Biol Int 2016; 40:534-48. [DOI: 10.1002/cbin.10590] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/07/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Jeannine Hoepfner
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Mandy Kleinsorge
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Oliver Papp
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Mania Ackermann
- iPSC Based Gene Therapy; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
| | - Susanne Alfken
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Ursula Rinas
- Institute of Technical Chemistry; Leibniz University Hannover; Hannover Germany
| | - Wladimir Solodenko
- Institute of Organic Chemistry; Leibniz University Hannover; Hannover Germany
| | - Andreas Kirschning
- Institute of Organic Chemistry; Leibniz University Hannover; Hannover Germany
| | - Malte Sgodda
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
| | - Tobias Cantz
- Translational Hepatology and Stem Cell Biology; REBIRTH Cluster of Excellence, Hannover Medical School; Hannover Germany
- Department of Gastroenterology, Hepatology, and Endocrinology; Hannover Medical School; Hannover Germany
- Cell and Developmental Biology; Max Planck Institute for Molecular Biomedicine; Münster Germany
| |
Collapse
|
37
|
An assessment of the effects of ectopic gp91phox expression in XCGD iPSC-derived neutrophils. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2015; 2:15046. [PMID: 26682238 PMCID: PMC4674005 DOI: 10.1038/mtm.2015.46] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
Abstract
For the treatment of monogenetic hematological disorders, restoration of transgene expression in affected cell populations is generally considered to have beneficial effects. However, X-linked chronic granulomatous disease (XCGD) is unique since the appearance of functional neutrophils in the peripheral blood following hematopoietic stem cell gene therapy is transient only. One contributing factor could be the occurrence of detrimental effects secondary to ectopic gp91phox expression in neutrophils, which has not been formally demonstrated previously. This study uses iPSCs to model XCGD, which allows the process of differentiation to be studied intensely in vitro. Alpharetroviral vectors carrying a ubiquitous promoter were used to drive the “ectopic” expression of codon optimized gp91phox cDNA. In the mature fraction of neutrophils differentiated from transduced XCGD-iPSCs, cellular recovery in terms of gp91phox expression and reactive oxygen species production was abruptly lost before cells had fully differentiated. Most critically, ectopic gp91phox expression could be identified clearly in the developing fraction of the transduced groups, which appeared to correspond with reduced cell viability. It is possible that this impedes further differentiation of developing neutrophils. Therefore, affording cellular protection from the detrimental effects of ectopic gp91phox expression may improve XCGD clinical outcomes.
Collapse
|
38
|
Vaxelaire E, Gamand L, Aebischer-Gumy C, Moretti P, Bertschinger M. Use of a new genetic element to improve expression level of cell lines for recombinant protein production. BMC Proc 2015. [PMCID: PMC4685335 DOI: 10.1186/1753-6561-9-s9-p4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
39
|
Collet G, Szade K, Nowak W, Klimkiewicz K, El Hafny-Rahbi B, Szczepanek K, Sugiyama D, Weglarczyk K, Foucault-Collet A, Guichard A, Mazan A, Nadim M, Fasani F, Lamerant-Fayel N, Grillon C, Petoud S, Beloeil JC, Jozkowicz A, Dulak J, Kieda C. Endothelial precursor cell-based therapy to target the pathologic angiogenesis and compensate tumor hypoxia. Cancer Lett 2015; 370:345-57. [PMID: 26577811 DOI: 10.1016/j.canlet.2015.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023]
Abstract
Hypoxia-inducing pathologies as cancer develop pathologic and inefficient angiogenesis which rules tumor facilitating microenvironment, a key target for therapy. As such, the putative ability of endothelial precursor cells (EPCs) to specifically home to hypoxic sites of neovascularization prompted to design optimized, site-specific, cell-mediated, drug-/gene-targeting approach. Thus, EPC lines were established from aorta-gonad-mesonephros (AGM) of murine 10.5 dpc and 11.5 dpc embryo when endothelial repertoire is completed. Lines representing early endothelial differentiation steps were selected: MAgEC10.5 and MagEC11.5. Distinct in maturation, they differently express VEGF receptors, VE-cadherin and chemokine/receptors. MAgEC11.5, more differentiated than MAgEC 10.5, displayed faster angiogenesis in vitro, different response to hypoxia and chemokines. Both MAgEC lines cooperated to tube-like formation with mature endothelial cells and invaded tumor spheroids through a vasculogenesis-like process. In vivo, both MAgEC-formed vessels established blood flow. Intravenously injected, both MAgECs invaded Matrigel(TM)-plugs and targeted tumors. Here we show that EPCs (MAgEC11.5) target tumor angiogenesis and allow local overexpression of hypoxia-driven soluble VEGF-receptor2 enabling drastic tumor growth reduction. We propose that such EPCs, able to target tumor angiogenesis, could act as therapeutic gene vehicles to inhibit tumor growth by vessel normalization resulting from tumor hypoxia alleviation.
Collapse
Affiliation(s)
- Guillaume Collet
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Krzysztof Szade
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Witold Nowak
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Krzysztof Klimkiewicz
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Bouchra El Hafny-Rahbi
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Karol Szczepanek
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Daisuke Sugiyama
- Division of Hematopoietic Stem Cells, Kyushu University Faculty of Medical Sciences, Maidashi, Higashi-Ku, Fukuoka 812-8582, Japan
| | - Kazimierz Weglarczyk
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alexandra Foucault-Collet
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alan Guichard
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Andrzej Mazan
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland
| | - Mahdi Nadim
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Fabienne Fasani
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Nathalie Lamerant-Fayel
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Catherine Grillon
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Stéphane Petoud
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Jean-Claude Beloeil
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France
| | - Alicja Jozkowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland
| | - Jozef Dulak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, Kraków 30387, Poland; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland.
| | - Claudine Kieda
- Centre for Molecular Biophysics, Cell Recognition and Glycobiology, UPR4301-CNRS, rue Charles Sadron, Orléans 45071, France; Malopolska Biotechnology Centre, Jagiellonian University, Gronostajowa 7A, Kraków 30387, Poland.
| |
Collapse
|
40
|
Silent IL2RG Gene Editing in Human Pluripotent Stem Cells. Mol Ther 2015; 24:582-91. [PMID: 26444081 DOI: 10.1038/mt.2015.190] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/30/2015] [Indexed: 12/19/2022] Open
Abstract
Many applications of pluripotent stem cells (PSCs) require efficient editing of silent chromosomal genes. Here, we show that a major limitation in isolating edited clones is silencing of the selectable marker cassette after homologous recombination and that this can be overcome by using a ubiquitous chromatin opening element (UCOE) promoter-driven transgene. We use this strategy to edit the silent IL2RG locus in human PSCs with a recombinant adeno-associated virus (rAAV)-targeting vector in the absence of potentially genotoxic, site-specific nucleases and show that IL2RG is required for natural killer and T-cell differentiation of human PSCs. Insertion of an active UCOE promoter into a silent locus altered the histone modification and cytosine methylation pattern of surrounding chromatin, but these changes resolved when the UCOE promoter was removed. This same approach could be used to correct IL2RG mutations in X-linked severe combined immunodeficiency patient-derived induced PSCs (iPSCs), to prevent graft versus host disease in regenerative medicine applications, or to edit other silent genes.
Collapse
|
41
|
Retrovirus-based vectors for transient and permanent cell modification. Curr Opin Pharmacol 2015; 24:135-46. [PMID: 26433198 DOI: 10.1016/j.coph.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/04/2015] [Indexed: 01/19/2023]
Abstract
Retroviral vectors are commonly employed for long-term transgene expression via integrating vector technology. However, three alternative retrovirus-based platforms are currently available that allow transient cell modification. Gene expression can be mediated from either episomal DNA or RNA templates, or selected proteins can be directly transferred through retroviral nanoparticles. The different technologies are functionally graded with respect to safety, expression magnitude and expression duration. Improvement of the initial technologies, including modification of vector designs, targeted increase in expression strength and duration as well as improved safety characteristics, has allowed maturation of retroviral systems into efficient and promising tools that meet the technological demands of a wide variety of potential application areas.
Collapse
|
42
|
Krinner S, Heitzer A, Asbach B, Wagner R. Interplay of Promoter Usage and Intragenic CpG Content: Impact on GFP Reporter Gene Expression. Hum Gene Ther 2015; 26:826-40. [PMID: 26414116 DOI: 10.1089/hum.2015.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Successful therapeutic protein production in vitro and in vivo requires efficient and long-term transgene expression supported by optimized vector and transgene cis-regulatory sequence elements. This study provides a comparative analysis of CpG-rich, highly expressed, versus CpG-depleted, poorly expressed green fluorescent protein (GFP) reporter transgenes, transcribed by various promoters in two different cell systems. Long-term GFP expression from a defined locus in stable Chinese hamster ovary cells was clearly influenced by the combination of transgene CpG content and promoter usage, as shown by differential silencing effects on selection pressure removal among the cytomegalovirus (CMV) promoter and elongation factor (EF)-1α promoter. Whereas a high intragenic CpG content promoted local DNA methylation, CpG depletion rather accelerated transgene loss and increased the local chromatin density. On lentiviral transfer of various expression modules into epigenetically sensitive P19 embryonic pluripotent carcinoma cells, CMV promoter usage led to rapid gene silencing irrespective of the intragenic CpG content. In contrast, EF-1α promoter-controlled constructs showed delayed silencing activity and high-level transgene expression, in particular when the CpG-rich GFP reporter was used. Notably, GFP silencing in P19 cells could be prevented completely by the bidirectional, dual divergently transcribed A2UCOE (ubiquitously acting chromatin-opening element derived from the human HNRPA2B1-CBX3 locus) promoter. Because the level of GFP expression by the A2UCOE promoter was entirely unaffected by the intragenic CpG level, we suggest that A2UCOE can overcome chromatin compaction resulting from intragenic CpG depletion due to its ascribed chromatin-opening abilities. Our analyses provide insights into the interplay of the intragenic CpG content with promoter sequences and regulatory sequence elements, thus contributing toward the design of therapeutic transgene expression cassettes for future gene therapy applications.
Collapse
Affiliation(s)
- Simone Krinner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology and Gene Therapy Unit, University of Regensburg , Regensburg, Germany
| | - Asli Heitzer
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology and Gene Therapy Unit, University of Regensburg , Regensburg, Germany
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology and Gene Therapy Unit, University of Regensburg , Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology and Gene Therapy Unit, University of Regensburg , Regensburg, Germany
| |
Collapse
|
43
|
Zhang M, Chakraborty SK, Sampath P, Rojas JJ, Hou W, Saurabh S, Thorne SH, Bruchez MP, Waggoner AS. Fluoromodule-based reporter/probes designed for in vivo fluorescence imaging. J Clin Invest 2015; 125:3915-27. [PMID: 26348895 DOI: 10.1172/jci81086] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 07/30/2015] [Indexed: 12/26/2022] Open
Abstract
Optical imaging of whole, living animals has proven to be a powerful tool in multiple areas of preclinical research and has allowed noninvasive monitoring of immune responses, tumor and pathogen growth, and treatment responses in longitudinal studies. However, fluorescence-based studies in animals are challenging because tissue absorbs and autofluoresces strongly in the visible light spectrum. These optical properties drive development and use of fluorescent labels that absorb and emit at longer wavelengths. Here, we present a far-red absorbing fluoromodule-based reporter/probe system and show that this system can be used for imaging in living mice. The probe we developed is a fluorogenic dye called SC1 that is dark in solution but highly fluorescent when bound to its cognate reporter, Mars1. The reporter/probe complex, or fluoromodule, produced peak emission near 730 nm. Mars1 was able to bind a variety of structurally similar probes that differ in color and membrane permeability. We demonstrated that a tool kit of multiple probes can be used to label extracellular and intracellular reporter-tagged receptor pools with 2 colors. Imaging studies may benefit from this far-red excited reporter/probe system, which features tight coupling between probe fluorescence and reporter binding and offers the option of using an expandable family of fluorogenic probes with a single reporter gene.
Collapse
|
44
|
Kitajima K, Kawaguchi M, Miyashita K, Nakajima M, Kanokoda M, Hara T. Efficient production of T cells from mouse pluripotent stem cells by controlled expression of Lhx2. Genes Cells 2015; 20:720-38. [PMID: 26153538 DOI: 10.1111/gtc.12266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 06/03/2015] [Indexed: 01/01/2023]
Abstract
LIM-homeobox transcription factor Lhx2 induces ex vivo amplification of adult hematopoietic stem cells (HSCs) in mice. We previously showed that engraftable HSC-like cells are generated from mouse embryonic stem cells (ESCs) and induced pluripotent stem cells by enforced expression of Lhx2. However, when these HSC-like cells were transplanted into irradiated congenic mice, donor-derived T cells were barely detectable, whereas other lineages of hematopoietic cells were continuously produced. Here we investigated T-cell differentiation potential of the Lhx2-induced HSC-like cells using ESCs carrying doxycycline (dox)-inducible Lhx2 expression cassette. Dox-mediated over-expression of Lhx2 conferred a self-renewing activity to ESC-derived c-Kit(+) CD41(+) embryonic hematopoietic progenitor cells (HPCs), thereby converting them to HSC-like cells. When these HSC-like cells were transplanted into irradiated immunodeficient mice and they were supplied with a dox-containing water, CD4/8 double negative T cells were detected in their thymi. Once the Lhx2 expression was terminated, differentiation of CD4/8 double positive and single positive T cells was initiated in the thymi of transplanted mice and mature T cells were released in the peripheral blood. These results showed that engraftable HSC-like cells with full hematopoietic potential can be obtained from ESCs by the conditional expression of Lhx2.
Collapse
Affiliation(s)
- Kenji Kitajima
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Manami Kawaguchi
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kazuya Miyashita
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Marino Nakajima
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Mai Kanokoda
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
45
|
Betts Z, Dickson AJ. Assessment of UCOE on Recombinant EPO Production and Expression Stability in Amplified Chinese Hamster Ovary Cells. Mol Biotechnol 2015; 57:846-58. [DOI: 10.1007/s12033-015-9877-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
An Inducible Caspase-9 Suicide Gene to Improve the Safety of Therapy Using Human Induced Pluripotent Stem Cells. Mol Ther 2015; 23:1475-85. [PMID: 26022733 DOI: 10.1038/mt.2015.100] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/25/2015] [Indexed: 12/22/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSC) hold promise for regenerative therapies, though there are several safety concerns including the risk of oncogenic transformation or unwanted adverse effects associated with hiPSC or their differentiated progeny. Introduction of the inducible caspase-9 (iC9) suicide gene, which is activated by a specific chemical inducer of dimerization (CID), is one of the most appealing safety strategies for cell therapies and is currently being tested in multicenter clinical trials. Here, we show that the iC9 suicide gene with a human EF1α promoter can be introduced into hiPSC by lentiviral transduction. The transduced hiPSC maintain their pluripotency, including their capacity for unlimited self-renewal and the potential to differentiate into three germ layer tissues. Transduced hiPSC are eliminated within 24 hours of exposure to pharmacological levels of CID in vitro, with induction of apoptosis in 94-99% of the cells. Importantly, the iC9 suicide gene can eradicate tumors derived from hiPSC in vivo. In conclusion, we have developed a direct and efficient hiPSC killing system that provides a necessary safety mechanism for therapies using hiPSC. We believe that our iC9 suicide gene will be of value in clinical applications of hiPSC-based therapy.
Collapse
|
47
|
Betts Z, Croxford AS, Dickson AJ. Evaluating the interaction between UCOE and DHFR-linked amplification and stability of recombinant protein expression. Biotechnol Prog 2015; 31:1014-25. [DOI: 10.1002/btpr.2083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/17/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Zeynep Betts
- Faculty of Life Sciences; University of Manchester; Michael Smith Building, Oxford Road Manchester M13 9PT UK
| | - Alexandra S Croxford
- Faculty of Life Sciences; University of Manchester; Michael Smith Building, Oxford Road Manchester M13 9PT UK
| | - Alan J Dickson
- Faculty of Life Sciences; University of Manchester; Michael Smith Building, Oxford Road Manchester M13 9PT UK
| |
Collapse
|
48
|
Chromatin function modifying elements in an industrial antibody production platform--comparison of UCOE, MAR, STAR and cHS4 elements. PLoS One 2015; 10:e0120096. [PMID: 25849659 PMCID: PMC4388700 DOI: 10.1371/journal.pone.0120096] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/02/2015] [Indexed: 01/02/2023] Open
Abstract
The isolation of stably transfected cell lines suitable for the manufacture of biotherapeutic protein products can be an arduous process relying on the identification of a high expressing clone; this frequently involves transgene amplification and maintenance of the clones' expression over at least 60 generations. Maintenance of expression, or cell line stability, is highly dependent upon the nature of the genomic environment at the site of transgene integration, where epigenetic mechanisms lead to variable expression and silencing in the vast majority of cases. We have assessed four chromatin function modifying elements (A2UCOE, MAR X_S29, STAR40 and cHS4) for their ability to negate chromatin insertion site position effects and their ability to express and maintain monoclonal antibody expression. Each element was analysed by insertion into different positions within a vector, either flanking or between heavy chain (HC) and light chain (LC) antibody expression cassettes. Our results clearly show that the A2UCOE is the most beneficial element in this system, with stable cell pools and clones increasing antibody yields 6.5-fold and 6.75-fold respectively. Stability analysis demonstrated that the reduction in antibody expression, seen with cells transfected with the control vector over 120 generations, was mitigated in the clones containing A2UCOE-augmented transgenes. Analysis also showed that the A2UCOE reduced the amount of transgene promoter DNA methylation, which contributed to the maintenance of starting levels of expression.
Collapse
|
49
|
Müller-Kuller U, Ackermann M, Kolodziej S, Brendel C, Fritsch J, Lachmann N, Kunkel H, Lausen J, Schambach A, Moritz T, Grez M. A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells. Nucleic Acids Res 2015; 43:1577-92. [PMID: 25605798 PMCID: PMC4330381 DOI: 10.1093/nar/gkv019] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Epigenetic silencing of transgene expression represents a major obstacle for the efficient genetic modification of multipotent and pluripotent stem cells. We and others have demonstrated that a 1.5 kb methylation-free CpG island from the human HNRPA2B1-CBX3 housekeeping genes (A2UCOE) effectively prevents transgene silencing and variegation in cell lines, multipotent and pluripotent stem cells, and their differentiated progeny. However, the bidirectional promoter activity of this element may disturb expression of neighboring genes. Furthermore, the epigenetic basis underlying the anti-silencing effect of the UCOE on juxtaposed promoters has been only partially explored. In this study we removed the HNRPA2B1 moiety from the A2UCOE and demonstrate efficient anti-silencing properties also for a minimal 0.7 kb element containing merely the CBX3 promoter. This DNA element largely prevents silencing of viral and tissue-specific promoters in multipotent and pluripotent stem cells. The protective activity of CBX3 was associated with reduced promoter CpG-methylation, decreased levels of repressive and increased levels of active histone marks. Moreover, the anti-silencing effect of CBX3 was locally restricted and when linked to tissue-specific promoters did not activate transcription in off target cells. Thus, CBX3 is a highly attractive element for sustained, tissue-specific and copy-number dependent transgene expression in vitro and in vivo.
Collapse
Affiliation(s)
- Uta Müller-Kuller
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Hessen, 60596, Germany
| | - Mania Ackermann
- RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany
| | - Stephan Kolodziej
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Hessen, 60596, Germany
| | - Christian Brendel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Hessen, 60596, Germany
| | - Jessica Fritsch
- RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany
| | - Nico Lachmann
- RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany
| | - Hana Kunkel
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Hessen, 60596, Germany
| | - Jörn Lausen
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Hessen, 60596, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thomas Moritz
- RG Reprogramming and Gene Therapy, REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany Institute of Experimental Hematology, Hannover Medical School, Hannover, Lower Saxony, 30625, Germany
| | - Manuel Grez
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt, Hessen, 60596, Germany
| |
Collapse
|
50
|
Wu C, Hong SG, Winkler T, Spencer DM, Jares A, Ichwan B, Nicolae A, Guo V, Larochelle A, Dunbar CE. Development of an inducible caspase-9 safety switch for pluripotent stem cell-based therapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2014; 1:14053. [PMID: 26052521 PMCID: PMC4448736 DOI: 10.1038/mtm.2014.53] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/12/2014] [Indexed: 02/07/2023]
Abstract
Induced pluripotent stem cell (iPSC) therapies offer a promising path for patient-specific regenerative medicine. However, tumor formation from residual undifferentiated iPSC or transformation of iPSC or their derivatives is a risk. Inclusion of a suicide gene is one approach to risk mitigation. We introduced a dimerizable-“inducible caspase-9” (iCasp9) suicide gene into mouse iPSC (miPSC) and rhesus iPSC (RhiPSC) via a lentivirus, driving expression from either a cytomegalovirus (CMV), elongation factor-1 α (EF1α) or pluripotency-specific EOS-C(3+) promoter. Exposure of the iPSC to the synthetic chemical dimerizer, AP1903, in vitro induced effective apoptosis in EF1α-iCasp9-expressing (EF1α)-iPSC, with less effective killing of EOS-C(3+)-iPSC and CMV-iPSC, proportional to transgene expression in these cells. AP1903 treatment of EF1α-iCasp9 miPSC in vitro delayed or prevented teratomas. AP1903 administration following subcutaneous or intravenous delivery of EF1α-iPSC resulted in delayed teratoma progression but did not ablate tumors. EF1α-iCasp9 expression was downregulated during in vitro and in vivo differentiation due to DNA methylation at CpG islands within the promoter, and methylation, and thus decreased expression, could be reversed by 5-azacytidine treatment. The level and stability of suicide gene expression will be important for the development of suicide gene strategies in iPSC regenerative medicine.
Collapse
Affiliation(s)
- Chuanfeng Wu
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - So Gun Hong
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Thomas Winkler
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | | | - Alexander Jares
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Brian Ichwan
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Alina Nicolae
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland, USA
| | - Vicky Guo
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Andre Larochelle
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health (NIH) , Bethesda, Maryland, USA
| |
Collapse
|