1
|
Przywara D, Petniak A, Gil-Kulik P. Optimizing Mesenchymal Stem Cells for Regenerative Medicine: Influence of Diabetes, Obesity, Autoimmune, and Inflammatory Conditions on Therapeutic Efficacy: A Review. Med Sci Monit 2024; 30:e945331. [PMID: 39154207 PMCID: PMC11340262 DOI: 10.12659/msm.945331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/28/2024] [Indexed: 08/19/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising tool that may be used in regenerative medicine. Thanks to their ability to differentiate and paracrine signaling, they can be used in the treatment of many diseases. Undifferentiated MSCs can support the regeneration of surrounding tissues through secreted substances and exosomes. This is possible thanks to the production of growth factors. These factors stimulate the growth of neighboring cells, have an anti-apoptotic effect, and support angiogenesis, and MSCs also have an immunomodulatory effect. The level of secreted factors may vary depending on many factors. Apart from the donor's health condition, it is also influenced by the source of MSCs, methods of harvesting, and even the banking of cells. This work is a review of research on how the patient's health condition affects the properties of obtained MSCs. The review discusses the impact of the patient's diabetes, obesity, autoimmune diseases, and inflammation, as well as the impact of the source of MSCs and methods of harvesting and banking cells on the phenotype, differentiation capacity, anti-inflammatory, angiogenic effects, and proliferation potential of MSCs. Knowledge about specific clinical factors allows for better use of the potential of stem cells and more appropriate targeting of procedures for collecting, multiplying, and banking these cells, as well as for their subsequent use. This article aims to review the characteristics, harvesting, banking, and paracrine signaling of MSCs and their role in diabetes, obesity, autoimmune and inflammatory diseases, and potential role in regenerative medicine.
Collapse
|
2
|
Chen B, Schneeberger M. Neuro-Adipokine Crosstalk in Alzheimer's Disease. Int J Mol Sci 2024; 25:5932. [PMID: 38892118 PMCID: PMC11173274 DOI: 10.3390/ijms25115932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The connection between body weight alterations and Alzheimer's disease highlights the intricate relationship between the brain and adipose tissue in the context of neurological disorders. During midlife, weight gain increases the risk of cognitive decline and dementia, whereas in late life, weight gain becomes a protective factor. Despite their substantial impact on metabolism, the role of adipokines in the transition from healthy aging to neurological disorders remains largely unexplored. We aim to investigate how the adipose tissue milieu and the secreted adipokines are involved in the transition between biological and pathological aging, highlighting the bidirectional relationship between the brain and systemic metabolism. Understanding the function of these adipokines will allow us to identify biomarkers for early detection of Alzheimer's disease and uncover novel therapeutic options.
Collapse
Affiliation(s)
- Bandy Chen
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Marc Schneeberger
- Laboratory of Neurovascular Control of Homeostasis, Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA;
- Wu Tsai Institute for Mind and Brain, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Meechem MB, Jadli AS, Patel VB. Uncovering the link between diabetes and cardiovascular diseases: insights from adipose-derived stem cells. Can J Physiol Pharmacol 2024; 102:229-241. [PMID: 38198660 DOI: 10.1139/cjpp-2023-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of morbidity and mortality worldwide. The escalating global occurrence of obesity and diabetes mellitus (DM) has led to a significant upsurge in individuals afflicted with CVDs. As the prevalence of CVDs continues to rise, it is becoming increasingly important to identify the underlying cellular and molecular mechanisms that contribute to their development and progression, which will help discover novel therapeutic avenues. Adipose tissue (AT) is a connective tissue that plays a crucial role in maintaining lipid and glucose homeostasis. However, when AT is exposed to diseased conditions, such as DM, this tissue will alter its phenotype to become dysfunctional. AT is now recognized as a critical contributor to CVDs, especially in patients with DM. AT is comprised of a heterogeneous cellular population, which includes adipose-derived stem cells (ADSCs). ADSCs resident in AT are believed to regulate physiological cardiac function and have potential cardioprotective roles. However, recent studies have also shown that ADSCs from various adipose tissue depots become pro-apoptotic, pro-inflammatory, less angiogenic, and lose their ability to differentiate into various cell lineages upon exposure to diabetic conditions. This review aims to summarize the current understanding of the physiological roles of ADSCs, the impact of DM on ADSC phenotypic changes, and how these alterations may contribute to the pathogenesis of CVDs.
Collapse
Affiliation(s)
- Megan B Meechem
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Wang B, Zhang G, Hu Y, Mohsin A, Chen Z, Hao W, Li Z, Gao WQ, Guo M, Xu H. Uncovering impaired mitochondrial and lysosomal function in adipose-derived stem cells from obese individuals with altered biological activity. Stem Cell Res Ther 2024; 15:12. [PMID: 38185703 PMCID: PMC10773039 DOI: 10.1186/s13287-023-03625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/22/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) have been extensively used in preclinical and clinical trials for treating various diseases. However, the differences between ADSCs from lean individuals (L-ADSCs) and those from obese individuals (O-ADSCs) have not been thoroughly investigated, particularly regarding their mitochondrial and lysosomal functions. Therefore, this study aims to evaluate the differences between L-ADSCs and O-ADSCs in terms of cell biological activity, mitochondria, and lysosomes. METHODS We first isolated and cultured L-ADSCs and O-ADSCs. We then compared the differences between the two groups in terms of biological activity, including cell proliferation, differentiation potential, and their effect on the polarization of macrophages. Additionally, we observed the mitochondrial and lysosomal morphology of ADSCs using an electronic microscope, MitoTracker Red, and lysotracker Red dyes. We assessed mitochondrial function by examining mitochondrial membrane potential and membrane fluidity, antioxidative ability, and cell energy metabolism. Lysosomal function was evaluated by measuring autophagy and phagocytosis. Finally, we performed transcriptome analysis of the ADSCs using RNA sequencing. RESULTS The biological activities of O-ADSCs were decreased, including cell immunophenotypic profiles, cell proliferation, and differentiation potential. Furthermore, compared to L-ADSCs, O-ADSCs promoted M1-type macrophage polarization and inhibited M2-type macrophage polarization. Additionally, the mitochondrial morphology of O-ADSCs was altered, with the size of the cells becoming smaller and mitochondrial fragments increasing. O-ADSCs also exhibited decreased mitochondrial membrane potential and membrane fluidity, antioxidative ability, and energy metabolism. With respect to lysosomes, O-ADSCs contained ungraded materials in their lysosomes, enhanced lysosomal permeability, and reduced autophagy and phagocytosis ability. RNA sequence analysis indicated that the signalling pathways related to cell senescence, cancer, and inflammation were upregulated, whereas the signalling pathways associated with stemness, cell differentiation, metabolism, and response to stress and stimuli were downregulated. CONCLUSIONS This study indicates that ADSCs from individuals (BMI > 30 kg/m2) exhibit impaired mitochondrial and lysosomal function with decreased biological activity.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Ge Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Yuwen Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China
| | - Zhimin Chen
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Weijie Hao
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Zhanxia Li
- Department of Respiratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Xuhui District, Shanghai, 200235, People's Republic of China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China.
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd., P.O. Box 329#, Shanghai, 200237, People's Republic of China.
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, and Renji-MedX Clinical Stem Cell Research Center RenJi Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
5
|
Mahmoud M, Abdel-Rasheed M, Galal ER, El-Awady RR. Factors Defining Human Adipose Stem/Stromal Cell Immunomodulation in Vitro. Stem Cell Rev Rep 2024; 20:175-205. [PMID: 37962697 PMCID: PMC10799834 DOI: 10.1007/s12015-023-10654-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Human adipose tissue-derived stem/stromal cells (hASCs) are adult multipotent mesenchymal stem/stromal cells with immunomodulatory capacities. Here, we present up-to-date knowledge on the impact of different experimental and donor-related factors on hASC immunoregulatory functions in vitro. The experimental determinants include the immunological status of hASCs relative to target immune cells, contact vs. contactless interaction, and oxygen tension. Factors such as the ratio of hASCs to immune cells, the cellular context, the immune cell activation status, and coculture duration are also discussed. Conditioning of hASCs with different approaches before interaction with immune cells, hASC culture in xenogenic or xenofree culture medium, hASC culture in two-dimension vs. three-dimension with biomaterials, and the hASC passage number are among the experimental parameters that greatly may impact the hASC immunosuppressive potential in vitro, thus, they are also considered. Moreover, the influence of donor-related characteristics such as age, sex, and health status on hASC immunomodulation in vitro is reviewed. By analysis of the literature studies, most of the indicated determinants have been investigated in broad non-standardized ranges, so the results are not univocal. Clear conclusions cannot be drawn for the fine-tuned scenarios of many important factors to set a standard hASC immunopotency assay. Such variability needs to be carefully considered in further standardized research. Importantly, field experts' opinions may help to make it clearer.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Eman Reda Galal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab R El-Awady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Pham DV, Nguyen TK, Nguyen BL, Kim JO, Jeong JH, Choi I, Park PH. Adiponectin restores the obesity-induced impaired immunomodulatory function of mesenchymal stromal cells via glycolytic reprogramming. Acta Pharm Sin B 2024; 14:273-291. [PMID: 38261813 PMCID: PMC10793097 DOI: 10.1016/j.apsb.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/07/2023] [Accepted: 10/18/2023] [Indexed: 01/25/2024] Open
Abstract
Obesity has been known to negatively modulate the life-span and immunosuppressive potential of mesenchymal stromal cells (MSC). However, it remains unclear what drives the compromised potency of obese MSC. In this study, we examined the involvement of adiponectin, an adipose tissue-derived hormone, in obesity-induced impaired therapeutic function of MSC. Diet-induced obesity leads to a decrease in serum adiponectin, accompanied by impairment of survival and immunomodulatory effects of adipose-derived MSC (ADSC). Interestingly, priming with globular adiponectin (gAcrp) improved the immunomodulatory potential of obese ADSC. Similar effects were also observed in lean ADSC. In addition, gAcrp potentiated the therapeutic effectiveness of ADSC in a mouse model of DSS-induced colitis. Mechanistically, while obesity inhibited the glycolytic capacity of MSC, gAcrp treatment induced a metabolic shift toward glycolysis through activation of adiponectin receptor type 1/p38 MAPK/hypoxia inducible factor-1α axis. These findings suggest that activation of adiponectin signaling is a promising strategy for enhancing the therapeutic efficacy of MSC against immune-mediated disorders.
Collapse
Affiliation(s)
- Duc-Vinh Pham
- Department of Pharmacology, Hanoi University of Pharmacy, Hanoi 100000, Viet Nam
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Thi-Kem Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Bao-Loc Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jong-Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
7
|
Alanteet A, Attia H, Alfayez M, Mahmood A, Alsaleh K, Alsanea S. Liraglutide attenuates obese-associated breast cancer cell proliferation via inhibiting PI3K/Akt/mTOR signaling pathway. Saudi Pharm J 2024; 32:101923. [PMID: 38223522 PMCID: PMC10784703 DOI: 10.1016/j.jsps.2023.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
This study aims to explore the anti-proliferative, pro-apoptotic, and anti-migration activities of liraglutide (LGT) in MCF-7 breast cancer (BC) cells in subjects with obesity, particularly its effects on the PI3K/Akt/mTOR/AMPK pathway. The role of AMPK/SIRT-1, an essential regulator of adipokine production, in the effect of LGT on the production of adipose-derived adipokine was also assessed. MCF-7 cells were incubated in conditioned medium (CM) generated from adipose-derived stem cells (ADSCs) of obese subjects. MCF-7 cells were then treated with LGT for 72 h. Anti-proliferative, pro-apoptotic, and anti-migration activities were investigated using alamarBlue, annexin V stain, and scratch assay, respectively. Protein levels of phosphorylated PI3K, p-Akt, p-mTOR, and p-AMPK were investigated using immunoblotting. Levels of adipokines in ADSCs were determined using RT-PCR before and after transfection of ADSCs using the specific small interference RNA sequences for AMPK and SIRT-1. LGT evoked anti-proliferative, apoptotic, and potential anti-migratory properties on MCF-7 cells incubated in CM from obese ADSCs and significantly mitigated the activity of the PI3K/Akt/mTOR survival pathway-but not AMPK-in MCF-7 cells. Furthermore, the anti-proliferative effects afforded by LGT were similar to those mediated by LY294002 (PI3K inhibitor) and rapamycin (mTOR inhibitor). Our results reveal that transfection of AMPK/SIRT-1 genes did not affect the beneficial role of LGT in the expression of adipokines in ADSCs. In conclusion, LGT elicits anti-proliferative, apoptotic, and anti-migratory effects on BC cells in obese conditions by suppressing the activity of survival pathways; however, this effect is independent of the AMPK/SIRT1 pathway in ADSCs or AMPK in BC cells.
Collapse
Affiliation(s)
- Alaa Alanteet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Musaed Alfayez
- Anatomy Department, Stem Cell Unit, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amer Mahmood
- Anatomy Department, Stem Cell Unit, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid Alsaleh
- College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Zhang Y, Gu J, Wang X, Li L, Fu L, Wang D, Wang X, Han X. Opportunities and challenges: mesenchymal stem cells in the treatment of multiple sclerosis. Int J Neurosci 2023; 133:1031-1044. [PMID: 35579409 DOI: 10.1080/00207454.2022.2042690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/08/2022] [Accepted: 02/09/2022] [Indexed: 10/18/2022]
Abstract
Multiple sclerosis (MS) was once considered an untreatable disease. Through years of research, many drugs have been discovered and are widely used for the treatment of MS. However, the current treatment can only alleviate the clinical symptoms of MS and has serious side effects. Mesenchymal stem cells (MSCs) provide neuroprotection by migrating to injured tissues, suppressing inflammation, and fostering neuronal repair. Therefore, MSCs therapy holds great promise for MS treatment. This review aimed to assess the feasibility and safety of use of MSCs in MS treatment as well as its development prospect in clinical treatment by analysing the existing clinical studies.
Collapse
Affiliation(s)
- Yingyu Zhang
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| | - Jiebing Gu
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| | - Xiaoshuang Wang
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| | - Linfang Li
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| | - Lingling Fu
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| | - Di Wang
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| | - Xiuting Wang
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| | - Xuemei Han
- Department of Neurology, China-Japan Union hospital of Jilin University, Changchun city, Jilin, P.R. China
| |
Collapse
|
9
|
Alves DVL, Claudio-da-Silva C, Souza MCA, Pinho RT, da Silva WS, Sousa-Vasconcelos PS, Borojevic R, Nogueira CM, Dutra HDS, Takiya CM, Bonfim DC, Rossi MID. Adipose Tissue-Derived Mesenchymal Stromal Cells from Ex-Morbidly Obese Individuals Instruct Macrophages towards a M2-Like Profile In Vitro. Int J Stem Cells 2023; 16:425-437. [PMID: 37643763 PMCID: PMC10686802 DOI: 10.15283/ijsc22172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 08/31/2023] Open
Abstract
Obesity, which continues to increase worldwide, was shown to irreversibly impair the differentiation potential and angiogenic properties of adipose tissue mesenchymal stromal cells (ADSCs). Because these cells are intended for regenerative medicine, especially for the treatment of inflammatory conditions, and the effects of obesity on the immunomodulatory properties of ADSCs are not yet clear, here we investigated how ADSCs isolated from former obese subjects (Ex-Ob) would influence macrophage differentiation and polarization, since these cells are the main instructors of inflammatory responses. Analysis of the subcutaneous adipose tissue (SAT) of overweight (OW) and Ex-Ob subjects showed the maintenance of approximately twice as many macrophages in Ex-Ob SAT, contained within the CD68+/FXIII-A- inflammatory pool. Despite it, in vitro, coculture experiments revealed that Ex-Ob ADSCs instructed monocyte differentiation into a M2-like profile, and under inflammatory conditions induced by LPS treatment, inhibited HLA-DR upregulation by resting M0 macrophages, originated a similar percentage of TNF-α+ cells, and inhibited IL-10 secretion, similar to OW-ADSCs and BMSCs, which were used for comparison, as these are the main alternative cell types available for therapeutic purposes. Our results showed that Ex-Ob ADSCs mirrored OW-ADSCs in macrophage education, favoring the M2 immunophenotype and a mixed (M1/M2) secretory response. These results have translational potential, since they provide evidence that ADSCs from both Ex-Ob and OW subjects can be used in regenerative medicine in eligible therapies. Further in vivo studies will be fundamental to validate these observations.
Collapse
Affiliation(s)
- Daiana V. Lopes Alves
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Integrated Laboratory of Morphology, Institute of Biodiversity and Sustainability, NUPEM, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Cesar Claudio-da-Silva
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Surgery Department, Medical School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelo C. A. Souza
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Surgery Department, Medical School, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rosa T. Pinho
- Laboratory of Clinical Immunology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | | | - Radovan Borojevic
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carmen M. Nogueira
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Hélio dos S. Dutra
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina M. Takiya
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danielle C. Bonfim
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Maria Isabel D. Rossi
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
10
|
Wu H, Fan Y, Zhang M. Advanced Progress in the Role of Adipose-Derived Mesenchymal Stromal/Stem Cells in the Application of Central Nervous System Disorders. Pharmaceutics 2023; 15:2637. [PMID: 38004615 PMCID: PMC10674952 DOI: 10.3390/pharmaceutics15112637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/29/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, adipose-derived mesenchymal stromal/stem cells (ADMSCs) are recognized as a highly promising material for stem cell therapy due to their accessibility and safety. Given the frequently irreversible damage to neural cells associated with CNS disorders, ADMSC-related therapy, which primarily encompasses ADMSC transplantation and injection with exosomes derived from ADMSCs or secretome, has the capability to inhibit inflammatory response and neuronal apoptosis, promote neural regeneration, as well as modulate immune responses, holding potential as a comprehensive approach to treat CNS disorders and improve prognosis. Empirical evidence from both experiments and clinical trials convincingly demonstrates the satisfactory safety and efficacy of ADMSC-related therapies. This review provides a systematic summary of the role of ADMSCs in the treatment of central nervous system (CNS) disorders and explores their therapeutic potential for clinical application. ADMSC-related therapy offers a promising avenue to mitigate damage and enhance neurological function in central nervous system (CNS) disorders. However, further research is necessary to establish the safety and efficacy of clinical ADMSC-based therapy, optimize targeting accuracy, and refine delivery approaches for practical applications.
Collapse
Affiliation(s)
- Haiyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; (H.W.); (Y.F.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; (H.W.); (Y.F.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; (H.W.); (Y.F.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
11
|
Han X, Li W, He X, Lu X, Zhang Y, Li Y, Bi G, Ma X, Huang X, Bai R, Zhang H. Blockade of TGF-β signalling alleviates human adipose stem cell senescence induced by native ECM in obesity visceral white adipose tissue. Stem Cell Res Ther 2023; 14:291. [PMID: 37807066 PMCID: PMC10561428 DOI: 10.1186/s13287-023-03525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Abdominal obesity is appreciated as a major player in insulin resistance and metabolically dysfunctional adipose tissue. Inappropriate extracellular matrix (ECM) remodelling and functional alterations in human adipose stromal/stem cells (hASCs) have been linked with visceral white adipose tissue (vWAT) dysfunction in obesity. Understanding the interactions between hASCs and the native ECM environment in obese vWAT is required for the development of future therapeutic approaches for obesity-associated metabolic complications. METHODS The phenotypes and transcriptome properties of hASCs from the vWAT of obese patients and lean donors were assessed. The hASC-derived matrix from vWAT of obese or lean patients was generated in vitro using a decellularized method. The topography and the major components of the hASC-derived matrix were determined. The effects of the obese hASC-derived matrix on cell senescence and mitochondrial function were further determined. RESULTS We showed that hASCs derived from the vWAT of obese patients exhibited senescence and were accompanied by the increased production of ECM. The matrix secreted by obese hASCs formed a fibrillar suprastructure with an abundance of fibronectin, type I collagen, and transforming growth factor beta 1 (TGF-β1), which resembles the native matrix microenvironment of hASCs in vWAT derived from obese patients. Furthermore, the obese hASC-derived matrix promoted lean hASC ageing and induced mitochondrial dysfunction compared to the lean hASC-derived matrix. Blockade of TGF-β1 signalling using an anti-TGF-β1 neutralizing antibody alleviated the lean hASC senescence and mitochondrial dysfunction induced by the obese hASC-derived matrix. CONCLUSIONS Native ECM in obesity vWAT initiates hASC senescence through TGF-β1-mediated mitochondrial dysfunction. These data provide a key mechanism for understanding the importance of cell-ECM interactions in hASCs senescence in obesity.
Collapse
Affiliation(s)
- Xueya Han
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Weihong Li
- Experimental Center for Basic Medical Teaching, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Xu He
- Experimental Center for Basic Medical Teaching, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Xin Lu
- Experimental Center for Basic Medical Teaching, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Yu Zhang
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Yaqiong Li
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Guoyun Bi
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Xuqing Ma
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China
| | - Xiaowu Huang
- Fu Xing Hospital, Capital Medical University, Beijing, 100038, China
| | - Rixing Bai
- Department of General Surgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, 100070, China
| | - Haiyan Zhang
- Department of Cell Biology, School of Basic Medical Science, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Mahmoud M, Abdel-Rasheed M. Influence of type 2 diabetes and obesity on adipose mesenchymal stem/stromal cell immunoregulation. Cell Tissue Res 2023; 394:33-53. [PMID: 37462786 PMCID: PMC10558386 DOI: 10.1007/s00441-023-03801-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/21/2023] [Indexed: 10/07/2023]
Abstract
Type 2 diabetes (T2D), associated with obesity, represents a state of metabolic inflammation and oxidative stress leading to insulin resistance and progressive insulin deficiency. Adipose-derived stem cells (ASCs) are adult mesenchymal stem/stromal cells identified within the stromal vascular fraction of adipose tissue. These cells can regulate the immune system and possess anti-inflammatory properties. ASCs are a potential therapeutic modality for inflammatory diseases including T2D. Patient-derived (autologous) rather than allogeneic ASCs may be a relatively safer approach in clinical perspectives, to avoid occasional anti-donor immune responses. However, patient characteristics such as body mass index (BMI), inflammatory status, and disease duration and severity may limit the therapeutic utility of ASCs. The current review presents human ASC (hASC) immunoregulatory mechanisms with special emphasis on those related to T lymphocytes, hASC implications in T2D treatment, and the impact of T2D and obesity on hASC immunoregulatory potential. hASCs can modulate the proliferation, activation, and functions of diverse innate and adaptive immune cells via direct cell-to-cell contact and secretion of paracrine mediators and extracellular vesicles. Preclinical studies recommend the therapeutic potential of hASCs to improve inflammation and metabolic indices in a high-fat diet (HFD)-induced T2D disease model. Discordant data have been reported to unravel intact or detrimentally affected immunomodulatory functions of ASCs, isolated from patients with obesity and/or T2D patients, in vitro and in vivo. Numerous preconditioning strategies have been introduced to potentiate hASC immunomodulation; they are also discussed here as possible options to potentiate the immunoregulatory functions of hASCs isolated from patients with obesity and T2D.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| |
Collapse
|
13
|
Baldassarro VA, Perut F, Cescatti M, Pinto V, Fazio N, Alastra G, Parziale V, Bassotti A, Fernandez M, Giardino L, Baldini N, Calzà L. Intra-individual variability in the neuroprotective and promyelinating properties of conditioned culture medium obtained from human adipose mesenchymal stromal cells. Stem Cell Res Ther 2023; 14:128. [PMID: 37170115 PMCID: PMC10173531 DOI: 10.1186/s13287-023-03344-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Greater knowledge of mesenchymal stromal cell (MSC)-based therapies is driving the research into their secretome, identified as the main element responsible for their therapeutic effects. The aim of this study is to characterize the individual variability of the secretome of adipose tissue-derived MSCs (adMSCs) with regard to potential therapeutical applications in neurology. METHODS adMSCs were isolated from the intact adipose tissue of ten subjects undergoing abdominal plastic surgery or reduction mammoplasty. Two commercial lines were also included. We analyzed the expansion rate, production, and secretion of growth factors of interest for neurological applications (VEGF-A, BDNF, PDGF-AA and AA/BB, HGF, NGF, FGF-21, GDNF, IGF-I, IGF-II, EGF and FGF-2). To correlate these characteristics with the biological effects on the cellular targets, we used individual media conditioned with adMSCs from the various donors on primary cultures of neurons/astrocytes and oligodendrocyte precursor cells (OPCs) exposed to noxious stimuli (oxygen-glucose deprivation, OGD) to evaluate their protective and promyelinating properties, using MSC medium as a control group. RESULTS The MSC secretome showed significant individual variability within the considered population with regard to PDGF-AA, PDGF-AB/BB, VEGF-A and BDNF. None of the MSC-derived supernatants affected neuron viability in normoxia, while substantial protection by high BDNF-containing conditioned MSC medium was observed in neuronal cultures exposed to OGD conditions. In OPC cultures, the MSC-derived supernatants protected cells from OGD-induced cell death, also increasing the differentiation in mature oligodendrocytes. Neuroprotection showed a positive correlation with VEGF-A, BDNF and PDGF-AA concentrations in the culture supernatants, and an inverse correlation with HGF, while OPC differentiation following OGD was positively correlated to PDGF-AA concentration. CONCLUSIONS Despite the limited number of adMSC donors, this study showed significant individual variability in the biological properties of interest for neurological applications for adMSC secretome, an under-researched aspect which may represent an important step in the translation of MSC-derived acellular products to clinical practice. We also showed the potential protection capability of MSC conditioned medium on neuronal and oligodendroglial lineages exposed to oxygen-glucose deprivation. These effects are directly correlated to the concentration of specific growth factors, and indicate that the remyelination should be included as a primary target in MSC-based therapies.
Collapse
Affiliation(s)
- Vito Antonio Baldassarro
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Maura Cescatti
- IRET Foundation, Via Tolara Di Sopra 41/E, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Valentina Pinto
- Division of Plastic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124, Modena, Italy
| | - Nicola Fazio
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Giuseppe Alastra
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Valentina Parziale
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Alessandra Bassotti
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Mercedes Fernandez
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Sciences (DIMEVET), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology Laboratory, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano 1/10, 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Di Barbiano 1/10, 40136, Bologna, Italy
| | - Laura Calzà
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara Di Sopra 50, 40064, Ozzano Dell'Emilia, Bologna, Italy.
- Pharmacology and Biotecnology Department (FaBiT), University of Bologna, Via San Donato, 15, 40127, Bologna, Italy.
- Monetecatone Rehabilitation Institute (MRI), Via Montecatone, 37, 40026, Imola, Bologna, Italy.
| |
Collapse
|
14
|
Pham DV, Nguyen TK, Park PH. Adipokines at the crossroads of obesity and mesenchymal stem cell therapy. Exp Mol Med 2023; 55:313-324. [PMID: 36750692 PMCID: PMC9981593 DOI: 10.1038/s12276-023-00940-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 02/09/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is an emerging treatment strategy to counteract metabolic syndromes, including obesity and its comorbid disorders. However, its effectiveness is challenged by various factors in the obese environment that negatively impact MSC survival and function. The identification of these detrimental factors will provide opportunities to optimize MSC therapy for the treatment of obesity and its comorbidities. Dysregulated production of adipokines, a group of cytokines and hormones derived from adipose tissue, has been postulated to play a pivotal role in the development of obesity-associated complications. Intriguingly, adipokines have also been implicated in the modulation of viability, self-renewal, proliferation, and other properties of MSC. However, the involvement of adipokine imbalance in impaired MSC functionality has not been completely understood. On the other hand, treatment of obese individuals with MSC can restore the serum adipokine profile, suggesting the bidirectionality of the adipokine-MSC relationship. In this review, we aim to discuss the current knowledge on the central role of adipokines in the crosstalk between obesity and MSC dysfunction. We also summarize recent advances in the use of MSC for the treatment of obesity-associated diseases to support the hypothesis that adipokines modulate the benefits of MSC therapy in obese patients.
Collapse
Affiliation(s)
- Duc-Vinh Pham
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Thi-Kem Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea. .,Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea.
| |
Collapse
|
15
|
Pathogenic Role of Adipose Tissue-Derived Mesenchymal Stem Cells in Obesity and Obesity-Related Inflammatory Diseases. Cells 2023; 12:cells12030348. [PMID: 36766689 PMCID: PMC9913687 DOI: 10.3390/cells12030348] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (ASCs) are adult stem cells, endowed with self-renewal, multipotent capacities, and immunomodulatory properties, as mesenchymal stem cells (MSCs) from other origins. However, in a pathological context, ASCs like MSCs can exhibit pro-inflammatory properties and attract inflammatory immune cells at their neighborhood. Subsequently, this creates an inflammatory microenvironment leading to ASCs' or MSCs' dysfunctions. One such example is given by obesity where adipogenesis is impaired and insulin resistance is initiated. These opposite properties have led to the classification of MSCs into two categories defined as pro-inflammatory ASC1 or anti-inflammatory ASC2, in which plasticity depends on the micro-environmental stimuli. The aim of this review is to (i) highlight the pathogenic role of ASCs during obesity and obesity-related inflammatory diseases, such as rheumatoid arthritis, multiple sclerosis, psoriasis, inflammatory bowel disease, and cancer; and (ii) describe some of the mechanisms leading to ASCs dysfunctions. Thus, the role of soluble factors, adhesion molecules; TLRs, Th17, and Th22 cells; γδ T cells; and immune checkpoint overexpression will be addressed.
Collapse
|
16
|
Yari H, Mikhailova MV, Mardasi M, Jafarzadehgharehziaaddin M, Shahrokh S, Thangavelu L, Ahmadi H, Shomali N, Yaghoubi Y, Zamani M, Akbari M, Alesaeidi S. Emerging role of mesenchymal stromal cells (MSCs)-derived exosome in neurodegeneration-associated conditions: a groundbreaking cell-free approach. Stem Cell Res Ther 2022; 13:423. [PMID: 35986375 PMCID: PMC9389725 DOI: 10.1186/s13287-022-03122-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Accumulating proofs signify that pleiotropic effects of mesenchymal stromal cells (MSCs) are not allied to their differentiation competencies but rather are mediated mainly by the releases of soluble paracrine mediators, making them a reasonable therapeutic option to enable damaged tissue repair. Due to their unique immunomodulatory and regenerative attributes, the MSC-derived exosomes hold great potential to treat neurodegeneration-associated neurological diseases. Exosome treatment circumvents drawbacks regarding the direct administration of MSCs, such as tumor formation or reduced infiltration and migration to brain tissue. Noteworthy, MSCs-derived exosomes can cross the blood-brain barrier (BBB) and then efficiently deliver their cargo (e.g., protein, miRNAs, lipid, and mRNA) to damaged brain tissue. These biomolecules influence various biological processes (e.g., survival, proliferation, migration, etc.) in neurons, oligodendrocytes, and astrocytes. Various studies have shown that the systemic or local administration of MSCs-derived exosome could lead to the favored outcome in animals with neurodegeneration-associated disease mainly by supporting BBB integrity, eliciting pro-angiogenic effects, attenuating neuroinflammation, and promoting neurogenesis in vivo. In the present review, we will deliver an overview of the therapeutic benefits of MSCs-derived exosome therapy to ameliorate the pathological symptoms of acute and chronic neurodegenerative disease. Also, the underlying mechanism behind these favored effects has been elucidated.
Collapse
Affiliation(s)
- Hadi Yari
- Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Maria V. Mikhailova
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mahsa Mardasi
- Biotechnology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C, Evin, Tehran, Iran
| | - Mohsen Jafarzadehgharehziaaddin
- Translational Neuropsychology Lab, Department of Education and Psychology and William James Center for Research (WJCR), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Somayeh Shahrokh
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Shahrekord, Shahrekord, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Hosein Ahmadi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yoda Yaghoubi
- School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Alesaeidi
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Boland L, Bitterlich LM, Hogan AE, Ankrum JA, English K. Translating MSC Therapy in the Age of Obesity. Front Immunol 2022; 13:943333. [PMID: 35860241 PMCID: PMC9289617 DOI: 10.3389/fimmu.2022.943333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stromal cell (MSC) therapy has seen increased attention as a possible option to treat a number of inflammatory conditions including COVID-19 acute respiratory distress syndrome (ARDS). As rates of obesity and metabolic disease continue to rise worldwide, increasing proportions of patients treated with MSC therapy will be living with obesity. The obese environment poses critical challenges for immunomodulatory therapies that should be accounted for during development and testing of MSCs. In this review, we look to cancer immunotherapy as a model for the challenges MSCs may face in obese environments. We then outline current evidence that obesity alters MSC immunomodulatory function, drastically modifies the host immune system, and therefore reshapes interactions between MSCs and immune cells. Finally, we argue that obese environments may alter essential features of allogeneic MSCs and offer potential strategies for licensing of MSCs to enhance their efficacy in the obese microenvironment. Our aim is to combine insights from basic research in MSC biology and clinical trials to inform new strategies to ensure MSC therapy is effective for a broad range of patients.
Collapse
Affiliation(s)
- Lauren Boland
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Laura Melanie Bitterlich
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - Andrew E. Hogan
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
- *Correspondence: James A. Ankrum, ; Karen English,
| | - Karen English
- Biology Department, Maynooth University, Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth, Ireland
- *Correspondence: James A. Ankrum, ; Karen English,
| |
Collapse
|
18
|
Wise RM, Al-Ghadban S, Harrison MAA, Sullivan BN, Monaco ER, Aleman SJ, Donato UM, Bunnell BA. Short-Term Autophagy Preconditioning Upregulates the Expression of COX2 and PGE2 and Alters the Immune Phenotype of Human Adipose-Derived Stem Cells In Vitro. Cells 2022; 11:cells11091376. [PMID: 35563682 PMCID: PMC9101706 DOI: 10.3390/cells11091376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/28/2022] [Accepted: 04/07/2022] [Indexed: 12/28/2022] Open
Abstract
Human adipose-derived stem cells (hASCs) are potent modulators of inflammation and promising candidates for the treatment of inflammatory and autoimmune diseases. Strategies to improve hASC survival and immunoregulation are active areas of investigation. Autophagy, a homeostatic and stress-induced degradative pathway, plays a crucial role in hASC paracrine signaling—a primary mechanism of therapeutic action. Therefore, induction of autophagy with rapamycin (Rapa), or inhibition with 3-methyladenine (3-MA), was examined as a preconditioning strategy to enhance therapeutic efficacy. Following preconditioning, both Rapa and 3-MA-treated hASCs demonstrated preservation of stemness, as well as upregulated transcription of cyclooxygenase-2 (COX2) and interleukin-6 (IL-6). Rapa-ASCs further upregulated TNFα-stimulated gene-6 (TSG-6) and interleukin-1 beta (IL-1β), indicating additional enhancement of immunomodulatory potential. Preconditioned cells were then stimulated with the inflammatory cytokine interferon-gamma (IFNγ) and assessed for immunomodulatory factor production. Rapa-pretreated cells, but not 3-MA-pretreated cells, further amplified COX2 and IL-6 transcripts following IFNγ exposure, and both groups upregulated secretion of prostaglandin-E2 (PGE2), the enzymatic product of COX2. These findings suggest that a 4-h Rapa preconditioning strategy may bestow the greatest improvement to hASC expression of cytokines known to promote tissue repair and regeneration and may hold promise for augmenting the therapeutic potential of hASCs for inflammation-driven pathological conditions.
Collapse
Affiliation(s)
- Rachel M. Wise
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sara Al-Ghadban
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Mark A. A. Harrison
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Brianne N. Sullivan
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Emily R. Monaco
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
| | - Sarah J. Aleman
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
| | - Umberto M. Donato
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (E.R.M.); (S.J.A.); (U.M.D.)
| | - Bruce A. Bunnell
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
19
|
Efficacy and Safety of Mesenchymal Stem Cell Transplantation in the Treatment of Autoimmune Diseases (Rheumatoid Arthritis, Systemic Lupus Erythematosus, Inflammatory Bowel Disease, Multiple Sclerosis, and Ankylosing Spondylitis): A Systematic Review and Meta-Analysis of Randomized Controlled Trial. Stem Cells Int 2022; 2022:9463314. [PMID: 35371265 PMCID: PMC8970953 DOI: 10.1155/2022/9463314] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/05/2021] [Accepted: 01/04/2022] [Indexed: 01/30/2023] Open
Abstract
Objective To evaluate the efficacy and safety of mesenchymal stem cell (MSC) transplantation in the treatment of autoimmune diseases. Methods The Chinese and English databases were searched for clinical research on the treatment of autoimmune diseases with mesenchymal stem cells. The search time range is from a self-built database to October 1, 2021. Two reviewers independently screened the literature according to the inclusion and exclusion criteria, extracted data, and evaluated the bias of the included studies. RevMan 5.3 analysis software was used for meta-analysis. Results A total of 18 RCTs involving 5 autoimmune diseases were included. The 5 autoimmune disease were rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), inflammatory bowel disease, ankylosing spondylitis, and multiple sclerosis. For RA, the current randomized controlled trials (RCTs) still believe that stem cell transplantation may reduce disease activity, improve the clinical symptoms (such as DAS28), and the percentage of CD4+CD 25+Foxp3+Tregs in the response group increased and the percentage of CD4+IL-17A+Th17 cells decreased. The total clinical effective rate of RA is 54%. For SLE, the results showed that mesenchymal stem cell transplantation may improve SLEDAI [-2.18 (-3.62, -0.75), P = 0.003], urine protein [-0.93 (-1.04, -0.81), P < 0.00001], and complement C3 [0.31 (0.19, 0.42), P < 0.00001]. For inflammatory bowel disease, the results showed that mesenchymal stem cell transplantation may improve clinical efficacy [2.50 (1.07, 5.84), P = 0.03]. For ankylosing spondylitis, MSC treatment for 6 months may increase the total effective rate; reduce erythrocyte sedimentation rate, intercellular adhesion molecules, and serum TNF-α; and improve pain and activity. For multiple sclerosis, the current research results are still controversial, so more RCTs are needed to amend or confirm the conclusions. No obvious adverse events of mesenchymal stem cell transplantation were found in all RCTs. Conclusion MSCs have a certain effect on different autoimmune diseases, but more RCTs are needed to further modify or confirm the conclusion.
Collapse
|
20
|
CD40L-expressing CD4+ T cells prime adipose-derived stromal cells to produce inflammatory chemokines. Cytotherapy 2022; 24:500-507. [DOI: 10.1016/j.jcyt.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 11/18/2022]
|
21
|
Juntunen M, Heinonen S, Huhtala H, Rissanen A, Kaprio J, Kuismanen K, Pietiläinen KH, Miettinen S, Patrikoski M. Evaluation of the effect of donor weight on adipose stromal/stem cell characteristics by using weight-discordant monozygotic twin pairs. Stem Cell Res Ther 2021; 12:516. [PMID: 34565451 PMCID: PMC8474937 DOI: 10.1186/s13287-021-02587-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/11/2021] [Indexed: 02/06/2023] Open
Abstract
Background Adipose stromal/stem cells (ASCs) are promising candidates for future clinical applications. ASCs have regenerative capacity, low immunogenicity, and immunomodulatory ability. The success of future cell-based therapies depends on the appropriate selection of donors. Several factors, including age, sex, and body mass index (BMI), may influence ASC characteristics. Our aim was to investigate the effect of acquired weight on ASC characteristics under the same genetic background using ASCs derived from monozygotic (MZ) twin pairs.
Methods ASCs were isolated from subcutaneous adipose tissue from five weight-discordant (WD, within-pair difference in BMI > 3 kg/m2) MZ twin pairs, with measured BMI and metabolic status. The ASC immunophenotype, proliferation and osteogenic and adipogenic differentiation capacity were studied. ASC immunogenicity, immunosuppression capacity and the expression of inflammation markers were investigated. ASC angiogenic potential was assessed in cocultures with endothelial cells. Results ASCs showed low immunogenicity, proliferation, and osteogenic differentiation capacity independent of weight among all donors. ASCs showed a mesenchymal stem cell-like immunophenotype; however, the expression of CD146 was significantly higher in leaner WD twins than in heavier cotwins. ASCs from heavier twins from WD pairs showed significantly greater adipogenic differentiation capacity and higher expression of TNF and lower angiogenic potential compared with their leaner cotwins. ASCs showed immunosuppressive capacity in direct cocultures; however, heavier WD twins showed stronger immunosuppressive capacity than leaner cotwins. Conclusions Our genetically matched data suggest that a higher weight of the donor may have some effect on ASC characteristics, especially on angiogenic and adipogenic potential, which should be considered when ASCs are used clinically. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02587-0.
Collapse
Affiliation(s)
- Miia Juntunen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Tampere, Finland. .,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland.
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Obesity Center, Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Aila Rissanen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kirsi Kuismanen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Tampere, Finland.,Department of Obstetrics and Gynecology, Tampere University Hospital, Tampere, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Obesity Center, Abdominal Center, Endocrinology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Mimmi Patrikoski
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33014, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland.,Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Lotfy A, Ali NS, Abdelgawad M, Salama M. Mesenchymal stem cells as a treatment for multiple sclerosis: a focus on experimental animal studies. Rev Neurosci 2021; 31:161-179. [PMID: 31605598 DOI: 10.1515/revneuro-2019-0040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is a progressive and debilitating neurological condition in which the immune system abnormally attacks the myelin sheath insulating the nerves. Mesenchymal stem cells (MSCs) are found in most adult tissues and play a significant systemic role in self-repair. MSCs have promising therapeutic effects in many diseases, such as autoimmune diseases, including MS. MSCs have been tested in MS animal models, such as experimental autoimmune encephalomyelitis. Other studies have combined other agents with MSCs, genetically modified MSCs, or used culture medium from MSCs. In this review, we will summarize these studies and compare the main factors in each study, such as the source of MSCs, the type of animal model, the route of injection, the number of injected cells, and the mechanism of action.
Collapse
Affiliation(s)
- Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt, e-mail:
| | - Nourhan S Ali
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed Salama
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansourah, Ad Daqahliyah, Egypt.,Institute of Global Health and Human Ecology (IGHHE), American University in Cairo (AUC), Cairo, Egypt
| |
Collapse
|
23
|
Adipose-Derived Exosomes as Possible Players in the Development of Insulin Resistance. Int J Mol Sci 2021; 22:ijms22147427. [PMID: 34299048 PMCID: PMC8304687 DOI: 10.3390/ijms22147427] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Adipose tissue (AT) is an endocrine organ involved in the management of energy metabolism via secretion of adipokines, hormones, and recently described secretory microvesicles, i.e., exosomes. Exosomes are rich in possible biologically active factors such as proteins, lipids, and RNA. The secretory function of adipose tissue is affected by pathological processes. One of the most important of these is obesity, which triggers adipose tissue inflammation and adversely affects the release of beneficial adipokines. Both processes may lead to further AT dysfunction, contributing to changes in whole-body metabolism and, subsequently, to insulin resistance. According to recent data, changes within the production, release, and content of exosomes produced by AT may be essential to understand the role of adipose tissue in the development of metabolic disorders. In this review, we summarize actual knowledge about the possible role of AT-derived exosomes in the development of insulin resistance, highlighting methodological challenges and potential gains resulting from exosome studies.
Collapse
|
24
|
Hsu WT, Huang WJ, Chiang BL, Tseng PH. Butyrate modulates adipose-derived stem cells isolated from polygenic obese and diabetic mice to drive enhanced immunosuppression. Cytotherapy 2021; 23:567-581. [PMID: 33875384 DOI: 10.1016/j.jcyt.2021.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AIMS Adipose-derived stem cells (ASCs) offer promising therapeutic possibilities for immunomodulation. Butyrate (BA) exerts potent anti-inflammatory effects and exhibits multiple regulatory functionalities in adipose tissue (AT). The authors aimed to explore whether BA modulates ASCs to augment their immunosuppressive capabilities. METHODS The authors examined the potency of BA and ASCs for controlling anti-CD3 plus CD28-stimulated splenocyte proliferation in vitro, both in combination and with pre-treatment. Further, the authors investigated genes specifically upregulated by BA-treated ASCs, which were harvested from ASC-splenocyte co-culture after the removal of floating splenocytes. In addition, the authors investigated the influence of oral BA supplementation on the ex vivo immunosuppressive potency of ASCs from BALB/c and Tsumura, Suzuki, obese, diabetes (TSOD) mice. RESULTS BA enhanced the immunosuppressive potency of ASCs when directly added to ASC-splenocyte co-cultures or via pre-conditioning treatment. The percentages of ASC-induced Foxp3+ regulatory T cells increased, whereas the numbers of ASC-suppressed T helper 17 cells further decreased after BA exposure. The messenger RNA expression levels of inducible nitric oxide (NO) synthase (iNOS), chemokines, IL-10 and amphiregulin in ASCs co-cultured with activated splenocytes were upregulated after incubation with BA. This was accompanied by an amplification of iNOS-inducing cytokines, interferon gamma and tumor necrosis factor alpha in the ASC-splenocyte co-culture, triggering ASCs to produce high NO levels under the influence of BA. Mechanistically, the authors detected BA-mediated acetylated histone H3 in ASCs. BA treatment consistently improved the immunosuppressive potency of ASCs derived from both BALB/c and TSOD mice. CONCLUSIONS The use of BA to counteract metaflammation by restoring the defective immunomodulation of ASCs from dysregulated AT in obese donors is recommended.
Collapse
Affiliation(s)
- Wan-Tseng Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Bor-Luen Chiang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Huei Tseng
- Department of Internal Medicine, Division of Gastroenterology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Alanteet AA, Attia HA, Shaheen S, Alfayez M, Alshanawani B. Anti-Proliferative Activity of Glucagon-Like Peptide-1 Receptor Agonist on Obesity-Associated Breast Cancer: The Impact on Modulating Adipokines' Expression in Adipocytes and Cancer Cells. Dose Response 2021; 19:1559325821995651. [PMID: 33746653 PMCID: PMC7903831 DOI: 10.1177/1559325821995651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 01/04/2023] Open
Abstract
Obesity is associated with high risk and poor prognosis of breast cancer (BC). Obesity promotes BC cells proliferation via modulating the production of adipokines, including adiponectin (anti-neoplastic adipokine), leptin (carcinogenic adipokine) and inflammatory mediators. In the present study we investigated the anti-proliferative effects of liraglutide (LG; anti-diabetic and weight reducing drug) on MCF-7 human BC cells cultured in obese adipose tissue-derived stem cells-conditioned medium (ADSCs-CM) and whether this effect is mediated via modulating the adipokines in ADSCs and cancer cells. Proliferation was investigated using AlamarBlue viability test, colony forming assay and cell cycle analysis. Levels and expression of adipokines and their receptors were assayed using ELISA and RT-PCR. LG caused 48% inhibition of MCF-7 proliferation in obese ADSCs-CM, reduced the colony formation and induced G0/G1 phase arrest. LG also decreased the levels of inflammatory mediators, suppressed the expression of leptin, while increased mRNA levels of adiponectin and their receptors in obese ADSCs and cancer cells cultured in obese ADCSs-CM. In conclusion, LG could mitigate BC cell growth in obese subjects; therefore it could be used for clinical prevention and/or treatment of BC in obese subjects. It may assist to improve treatment outcomes and, reduce the mortality rate in obese patients with BC.
Collapse
Affiliation(s)
- Alaa A Alanteet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hala A Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Sameerah Shaheen
- Anatomy Department and Stem Cell Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Musaed Alfayez
- Anatomy Department and Stem Cell Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Bisher Alshanawani
- Plastic Surgery Unit, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Adipose-Derived Stem Cells from Obese Donors Polarize Macrophages and Microglia toward a Pro-Inflammatory Phenotype. Cells 2020; 10:cells10010026. [PMID: 33375695 PMCID: PMC7823699 DOI: 10.3390/cells10010026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022] Open
Abstract
Macrophages and microglia represent the primary phagocytes and first line of defense in the peripheral and central immune systems. They activate and polarize into a spectrum of pro- and anti-inflammatory phenotypes in response to various stimuli. This activation is tightly regulated to balance the appropriate immune response with tissue repair and homeostasis. Disruption of this balance results in inflammatory disease states and tissue damage. Adipose stem cells (ASCs) have great therapeutic potential because of the potent immunomodulatory capabilities which induce the polarization of microglia and macrophages to the anti-inflammatory, M2, phenotype. In this study, we examined the effects of donor heterogeneity on ASC function. Specifically, we investigated the impact of donor obesity on ASC stemness and immunomodulatory abilities. Our findings revealed that ASCs from obese donors (ObASCs) exhibited reduced stem cell characteristics when compared to ASCs from lean donors (LnASCs). We also found that ObASCs promote a pro-inflammatory phenotype in murine macrophage and microglial cells, as indicated by the upregulated expression of pro-inflammatory genes, increased nitric oxide pathway activity, and impaired phagocytosis and migration. These findings highlight the importance of considering individual donor characteristics such as obesity when selecting donors and cells for use in ASC therapeutic applications and regenerative medicine.
Collapse
|
27
|
Zang L, Kothan S, Yang Y, Zeng X, Ye L, Pan J. Insulin negatively regulates dedifferentiation of mouse adipocytes in vitro. Adipocyte 2020; 9:24-34. [PMID: 31989870 PMCID: PMC6999839 DOI: 10.1080/21623945.2020.1721235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
Insulin plays an important role during adipogenic differentiation of animal preadipocytes and the maintenance of mature phenotypes. However, its role and mechanism in dedifferentiation of adipocyte remains unclear. This study investigated the effects of insulin on dedifferentiation of mice adipocytes, and the potential mechanisms. The preadipocytes were isolated from the subcutaneous white adipose tissue of wild type (WT), TNFα gene mutant (TNFα-/-), leptin gene spontaneous point mutant (db/db) and TNFα-/-/db/db mice and were then induced for differentiation. Interestingly, dedifferentiation of these adipocytes occurred once removing exogenous insulin from the adipogenic medium. As characteristics of dedifferentiation of the adipocytes, downregulation of adipogenic markers, upregulation of stemness markers and loss of intracellular lipids were observed from the four genotypes. Notably, dedifferentiation was occurring earlier if the insulin signal was blocked. These dedifferentiated cells regained the potentials of the stem cell-like characteristics. There is no significant difference in the characteristics of the dedifferentiation between the adipocytes. Overall, the study provided evidence that insulin plays a negative regulatory role in the dedifferentiation of adipocytes. We also confirmed that both dedifferentiation of mouse adipocytes, and effect of the insulin on this process were independent of the cell genotypes, while it is a widespread phenomenon in the adipocytes.
Collapse
Affiliation(s)
- Liguo Zang
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Suchart Kothan
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Yiyi Yang
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Xiangyi Zeng
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Lingmin Ye
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jie Pan
- Shandong Provincial Key Laboratory of Animal Resistant Biology, College of Life Sciences, Shandong Normal University, Jinan, China
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
28
|
Mesenchymal Stem Cells in Multiple Sclerosis: Recent Evidence from Pre-Clinical to Clinical Studies. Int J Mol Sci 2020; 21:ijms21228662. [PMID: 33212873 PMCID: PMC7698327 DOI: 10.3390/ijms21228662] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system. Nowadays, available therapies for MS can help to manage MS course and symptoms, but new therapeutic approaches are required. Stem cell therapy using mesenchymal stem cells (MSCs) appeared promising in different neurodegenerative conditions, thanks to their beneficial capacities, including the immunomodulation ability, and to their secretome. The secretome is represented by growth factors, cytokines, and extracellular vesicles (EVs) released by MSCs. In this review, we focused on studies performed on in vivo MS models involving the administration of MSCs and on clinical trials evaluating MSCs administration. Experimental models of MS evidenced that MSCs were able to reduce inflammatory cell infiltration and disease score. Moreover, MSCs engineered to express different genes, preconditioned with different compounds, differentiated or in combination with other compounds also exerted beneficial actions in MS models, in some cases also superior to native MSCs. Secretome, both conditioned medium and EVs, also showed protective effects in MS models and appeared promising to develop new approaches. Clinical trials highlighted the safety and feasibility of MSC administration and reported some improvements, but other trials using larger cohorts of patients are needed.
Collapse
|
29
|
Wise RM, Harrison MAA, Sullivan BN, Al-Ghadban S, Aleman SJ, Vinluan AT, Monaco ER, Donato UM, Pursell IA, Bunnell BA. Short-Term Rapamycin Preconditioning Diminishes Therapeutic Efficacy of Human Adipose-Derived Stem Cells in a Murine Model of Multiple Sclerosis. Cells 2020; 9:E2218. [PMID: 33008073 PMCID: PMC7600854 DOI: 10.3390/cells9102218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 01/22/2023] Open
Abstract
Human adipose-derived stem cells (ASCs) show immense promise for treating inflammatory diseases, attributed primarily to their potent paracrine signaling. Previous investigations demonstrated that short-term Rapamycin preconditioning of bone marrow-derived stem cells (BMSCs) elevated secretion of prostaglandin E2, a pleiotropic molecule with therapeutic effects in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), and enhanced immunosuppressive capacity in vitro. However, this has yet to be examined in ASCs. The present study examined the therapeutic potential of short-term Rapamycin-preconditioned ASCs in the EAE model. Animals were treated at peak disease with control ASCs (EAE-ASCs), Rapa-preconditioned ASCs (EAE-Rapa-ASCs), or vehicle control (EAE). Results show that EAE-ASCs improved clinical disease scores and elevated intact myelin compared to both EAE and EAE-Rapa-ASC animals. These results correlated with augmented CD4+ T helper (Th) and T regulatory (Treg) cell populations in the spinal cord, and increased gene expression of interleukin-10 (IL-10), an anti-inflammatory cytokine. Conversely, EAE-Rapa-ASC mice showed no improvement in clinical disease scores, reduced myelin levels, and significantly less Th and Treg cells in the spinal cord. These findings suggest that short-term Rapamycin preconditioning reduces the therapeutic efficacy of ASCs when applied to late-stage EAE.
Collapse
Affiliation(s)
- Rachel M. Wise
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (S.J.A.); (A.T.V.); (E.R.M.); (U.M.D.)
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (S.A.-G.); (I.A.P.)
| | - Mark A. A. Harrison
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (S.J.A.); (A.T.V.); (E.R.M.); (U.M.D.)
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (S.A.-G.); (I.A.P.)
| | - Brianne N. Sullivan
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (S.J.A.); (A.T.V.); (E.R.M.); (U.M.D.)
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (S.A.-G.); (I.A.P.)
| | - Sara Al-Ghadban
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (S.A.-G.); (I.A.P.)
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Sarah J. Aleman
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (S.J.A.); (A.T.V.); (E.R.M.); (U.M.D.)
| | - Amber T. Vinluan
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (S.J.A.); (A.T.V.); (E.R.M.); (U.M.D.)
| | - Emily R. Monaco
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (S.J.A.); (A.T.V.); (E.R.M.); (U.M.D.)
| | - Umberto M. Donato
- Neuroscience Program, Tulane Brain Institute, Tulane University School of Science & Engineering, New Orleans, LA 70118, USA; (R.M.W.); (M.A.A.H.); (B.N.S.); (S.J.A.); (A.T.V.); (E.R.M.); (U.M.D.)
| | - India A. Pursell
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (S.A.-G.); (I.A.P.)
| | - Bruce A. Bunnell
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA; (S.A.-G.); (I.A.P.)
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
30
|
Xiong M, Zhang Q, Hu W, Zhao C, Lv W, Yi Y, Wu Y, Wu M. Exosomes From Adipose-Derived Stem Cells: The Emerging Roles and Applications in Tissue Regeneration of Plastic and Cosmetic Surgery. Front Cell Dev Biol 2020; 8:574223. [PMID: 33015067 PMCID: PMC7511773 DOI: 10.3389/fcell.2020.574223] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Adipose-derived stem cells (ASCs) are an important stem cell type separated from adipose tissue, with the properties of multilineage differentiation, easy availability, high proliferation potential, and self-renewal. Exosomes are novel frontiers of intercellular communication regulating the biological behaviors of cells, such as angiogenesis, immune modulation, proliferation, and migration. ASC-derived exosomes (ASC-exos) are important components released by ASCs paracrine, possessing multiple biological activities. Tissue regeneration requires coordinated “vital networks” of multiple growth factors, proteases, progenitors, and immune cells producing inflammatory cytokines. Recently, as cell-to-cell messengers, ASC-exos have received much attention for the fact that they are important paracrine mediators contributing to their suitability for tissue regeneration. ASC-exos, with distinct properties by encapsulating various types of bioactive cargoes, are endowed with great application potential in tissue regeneration, mechanically via the migration and proliferation of repair cells, facilitation of the neovascularization, and other specific functions in different tissues. Here, this article elucidated the research progress of ASC-exos about tissue regeneration in plastic and cosmetic surgery, including skin anti-aging therapy, dermatitis improvement, wound healing, scar removal, flap transplantation, bone tissue repair and regeneration, obesity prevention, fat grafting, breast cancer, and breast reconstruction. Deciphering the biological properties of ASC-exos will provide further insights for exploring novel therapeutic strategies of tissue regeneration in plastic and cosmetic surgery.
Collapse
Affiliation(s)
- Mingchen Xiong
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhang
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weijie Hu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongru Zhao
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchang Lv
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yi
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiping Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Plastic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Mesenchymal Stem/Progenitor Cells: The Prospect of Human Clinical Translation. Stem Cells Int 2020; 2020:8837654. [PMID: 33953753 PMCID: PMC8063852 DOI: 10.1155/2020/8837654] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSCs) are key players in regenerative medicine, relying principally on their differentiation/regeneration potential, immunomodulatory properties, paracrine effects, and potent homing ability with minimal if any ethical concerns. Even though multiple preclinical and clinical studies have demonstrated remarkable properties for MSCs, the clinical applicability of MSC-based therapies is still questionable. Several challenges exist that critically hinder a successful clinical translation of MSC-based therapies, including but not limited to heterogeneity of their populations, variability in their quality and quantity, donor-related factors, discrepancies in protocols for isolation, in vitro expansion and premodification, and variability in methods of cell delivery, dosing, and cell homing. Alterations of MSC viability, proliferation, properties, and/or function are also affected by various drugs and chemicals. Moreover, significant safety concerns exist due to possible teratogenic/neoplastic potential and transmission of infectious diseases. Through the current review, we aim to highlight the major challenges facing MSCs' human clinical translation and shed light on the undergoing strategies to overcome them.
Collapse
|
32
|
Yanwu Y, Meiling G, Yunxia Z, Qiukui H, Birong D. Mesenchymal stem cells in experimental autoimmune encephalomyelitis model of multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2020; 44:102200. [PMID: 32535500 DOI: 10.1016/j.msard.2020.102200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 05/05/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS Mesenchymal stem cells (MSCs) transplantation has been considered a possible therapeutic method for Multiple Sclerosis (MS). However, no quantitative data synthesis of MSCs therapy for MS exists. We conducted a systematic review and meta-analysis to evaluate the effects of MSCs in experimental autoimmune encephalomyelitis (EAE) animal model of MS. METHODS We identified eligible studies published from January 1980 to January 2017 by searching four electronic databases (PubMed, MEDLINE, Embase and Web of Science). The outcome was the effects of MSCs on clinical performance evaluated by the EAE clinical score. RESULTS 36 preclinical studies including 675 animals in MSCs treatment group, and 693 animals in control group were included in this meta-analysis. We found that MSCs transplantation significantly ameliorated the symptoms and delayed the disease progression (SMD = -1.25, 95% CI: -1.45 to -1.05, P < 0.001). However, no significant differences in effect sizes were unveiled relative to clinical score standard (P = 0.35), type of MSCs (P = 0.35), source of MSCs (P = 0.06), MSCs dose (P = 0.44), delivery methods (P = 0.31) and follow up period (P = 0.73). CONCLUSIONS The current study showed that MSCs transplantation could ameliorate clinical performance in EAE animal model of MS. These findings support the further studies translate MSCs to treat MS in humans.
Collapse
Affiliation(s)
- Yang Yanwu
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ge Meiling
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Zhang Yunxia
- Department of Geriatric, Sichuan Science City Hospital, No. 64, Mianshan Road, Mianyang, Sichuan, China
| | - Hao Qiukui
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China
| | - Dong Birong
- Department of Neurosurgery, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, Sichuan, China; Department of Geriatric, Sichuan Science City Hospital, No. 64, Mianshan Road, Mianyang, Sichuan, China.
| |
Collapse
|
33
|
Sabol RA, Villela VA, Denys A, Freeman BT, Hartono AB, Wise RM, Harrison MAA, Sandler MB, Hossain F, Miele L, Bunnell BA. Obesity-Altered Adipose Stem Cells Promote Radiation Resistance of Estrogen Receptor Positive Breast Cancer through Paracrine Signaling. Int J Mol Sci 2020; 21:ijms21082722. [PMID: 32326381 PMCID: PMC7216284 DOI: 10.3390/ijms21082722] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is associated with poorer responses to chemo- and radiation therapy for breast cancer, which leads to higher mortality rates for obese women who develop breast cancer. Adipose stem cells (ASCs) are an integral stromal component of the tumor microenvironment (TME). In this study, the effects of obesity-altered ASCs (obASCs) on estrogen receptor positive breast cancer cell’s (ER+BCCs) response to radiotherapy (RT) were evaluated. We determined that BCCs had a decreased apoptotic index and increased surviving fraction following RT when co-cultured with obASCs compared to lnASCs or non-co-cultured cells. Further, obASCs reduced oxidative stress and induced IL-6 expression in co-cultured BCCs after radiation. obASCs produce increased levels of leptin relative to ASCs from normal-weight individuals (lnASCs). obASCs upregulate the expression of IL-6 compared to non-co-cultured BCCs, but BCCs co-cultured with leptin knockdown obASCs did not upregulate IL-6. The impact of shLeptin obASCs on radiation resistance of ER+BCCs demonstrate a decreased radioprotective ability compared to shControl obASCs. Key NOTCH signaling players were enhanced in ER+BBCs following co-culture with shCtrl obASCs but not shLep obASCs. This work demonstrates that obesity-altered ASCs, via enhanced secretion of leptin, promote IL-6 and NOTCH signaling pathways in ER+BCCs leading to radiation resistance.
Collapse
Affiliation(s)
- Rachel A. Sabol
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Vidal A. Villela
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Alexandra Denys
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Benjamin T. Freeman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA;
| | - Alifiani B. Hartono
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Rachel M. Wise
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Mark A. A. Harrison
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Maxwell B. Sandler
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
| | - Fokhrul Hossain
- Louisiana State University Health Sciences Center (LSUHSC), Department of Genetics, New Orleans, LA 70112, USA; (F.H.); (L.M.)
- Louisiana Cancer Research Center (LCRC), Stanley S. Scott Cancer Center, LSUSHC, New Orleans, LA 70112, USA
| | - Lucio Miele
- Louisiana State University Health Sciences Center (LSUHSC), Department of Genetics, New Orleans, LA 70112, USA; (F.H.); (L.M.)
- Louisiana Cancer Research Center (LCRC), Stanley S. Scott Cancer Center, LSUSHC, New Orleans, LA 70112, USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.A.S.); (V.A.V.); (A.D.); (R.M.W.); (M.A.A.H.); (M.B.S.)
- Department of Pharmacology, Tulane University, New Orleans, LA 70112, USA
- Division of Regenerative Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA
- Correspondence: ; Tel.: +1-504-988-7071
| |
Collapse
|
34
|
Andrejew R, Glaser T, Oliveira-Giacomelli Á, Ribeiro D, Godoy M, Granato A, Ulrich H. Targeting Purinergic Signaling and Cell Therapy in Cardiovascular and Neurodegenerative Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1201:275-353. [PMID: 31898792 DOI: 10.1007/978-3-030-31206-0_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular purines exert several functions in physiological and pathophysiological mechanisms. ATP acts through P2 receptors as a neurotransmitter and neuromodulator and modulates heart contractility, while adenosine participates in neurotransmission, blood pressure, and many other mechanisms. Because of their capability to differentiate into mature cell types, they provide a unique therapeutic strategy for regenerating damaged tissue, such as in cardiovascular and neurodegenerative diseases. Purinergic signaling is pivotal for controlling stem cell differentiation and phenotype determination. Proliferation, differentiation, and apoptosis of stem cells of various origins are regulated by purinergic receptors. In this chapter, we selected neurodegenerative and cardiovascular diseases with clinical trials using cell therapy and purinergic receptor targeting. We discuss these approaches as therapeutic alternatives to neurodegenerative and cardiovascular diseases. For instance, promising results were demonstrated in the utilization of mesenchymal stem cells and bone marrow mononuclear cells in vascular regeneration. Regarding neurodegenerative diseases, in general, P2X7 and A2A receptors mostly worsen the degenerative state. Stem cell-based therapy, mainly through mesenchymal and hematopoietic stem cells, showed promising results in improving symptoms caused by neurodegeneration. We propose that purinergic receptor activity regulation combined with stem cells could enhance proliferative and differentiation rates as well as cell engraftment.
Collapse
Affiliation(s)
- Roberta Andrejew
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Talita Glaser
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Ágatha Oliveira-Giacomelli
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Deidiane Ribeiro
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Mariana Godoy
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.,Laboratory of Neurodegenerative Diseases, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Granato
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Neuroscience Laboratory, Institute of Chemistry, Department of Biochemistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
35
|
Vyas KS, Bole M, Vasconez HC, Banuelos JM, Martinez-Jorge J, Tran N, Lemaine V, Mardini S, Bakri K. Profile of Adipose-Derived Stem Cells in Obese and Lean Environments. Aesthetic Plast Surg 2019; 43:1635-1645. [PMID: 31267153 DOI: 10.1007/s00266-019-01397-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 05/04/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND With the demand for stem cells in regenerative medicine, new methods of isolating stem cells are highly sought. Adipose tissue is a readily available and non-controversial source of multipotent stem cells that carries a low risk for potential donors. However, elevated donor body mass index has been associated with an altered cellular microenvironment and thus has implications for stem cell efficacy in recipients. This review explored the literature on adipose-derived stem cells (ASCs) and the effect of donor obesity on cellular function. METHODS A review of published articles on obesity and ASCs was conducted with the PubMed database and the following search terms: obesity, overweight, adipose-derived stem cells and ASCs. Two investigators screened and reviewed the relevant abstracts. RESULTS There is agreement on reduced ASC function in response to obesity in terms of angiogenic differentiation, proliferation, migration, viability, and an altered and inflammatory transcriptome. Osteogenic differentiation and cell yield do not show reasonable agreement. Weight loss partially rescues some of the aforementioned features. CONCLUSIONS Generally, obesity reduces ASC qualities and may have an effect on the therapeutic value of ASCs. Because weight loss and some biomolecules have been shown to rescue these qualities, further research should be conducted on methods to return obese-derived ASCs to baseline. LEVEL V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors- www.springer.com/00266.
Collapse
Affiliation(s)
- Krishna S Vyas
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| | - Madhav Bole
- Division of Orthopaedic Surgery, London Health Sciences Centre, University Hospital, 339 Windermere Rd., London, ON, N6A 5A5, Canada
| | - Henry C Vasconez
- Division of Plastic Surgery, University of Kentucky, Lexington, KY, USA
| | - Joseph M Banuelos
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Jorys Martinez-Jorge
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Nho Tran
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Valerie Lemaine
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Samir Mardini
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Karim Bakri
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
36
|
Sabol RA, Giacomelli P, Beighley A, Bunnell BA. Adipose Stem Cells and Cancer: Concise Review. Stem Cells 2019; 37:1261-1266. [DOI: 10.1002/stem.3050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/11/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Rachel A. Sabol
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Paulina Giacomelli
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Adam Beighley
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
| | - Bruce A. Bunnell
- Center for Stem Cell Research; Tulane University School of Medicine; New Orleans Louisiana USA
- Department of Pharmacology; Tulane University; New Orleans Louisiana USA
- Division of Regenerative Medicine; Tulane National Primate Research Center; Covington Louisiana USA
| |
Collapse
|
37
|
Hu C, Zhao L, Li L. Current understanding of adipose-derived mesenchymal stem cell-based therapies in liver diseases. Stem Cell Res Ther 2019; 10:199. [PMID: 31287024 PMCID: PMC6613269 DOI: 10.1186/s13287-019-1310-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The liver, the largest organ with multiple synthetic and secretory functions in mammals, consists of hepatocytes, cholangiocytes, hepatic stellate cells (HSCs), sinusoidal endothelial cells, Kupffer cells (KCs), and immune cells, among others. Various causative factors, including viral infection, toxins, autoimmune defects, and genetic disorders, can impair liver function and result in chronic liver disease or acute liver failure. Mesenchymal stem cells (MSCs) from various tissues have emerged as a potential candidate for cell transplantation to promote liver regeneration. Adipose-derived MSCs (ADMSCs) with high multi-lineage potential and self-renewal capacity have attracted great attention as a promising means of liver regeneration. The abundance source and minimally invasive procedure required to obtain ADMSCs makes them superior to bone marrow-derived MSCs (BMMSCs). In this review, we comprehensively analyze landmark studies that address the isolation, proliferation, and hepatogenic differentiation of ADMSCs and summarize the therapeutic effects of ADMSCs in animal models of liver diseases. We also discuss key points related to improving the hepatic differentiation of ADMSCs via exposure of the cells to cytokines and growth factors (GFs), extracellular matrix (ECM), and various physical parameters in in vitro culture. The optimization of culturing methods and of the transplantation route will contribute to the further application of ADMSCs in liver regeneration and help improve the survival rate of patients with liver diseases. To this end, ADMSCs provide a potential strategy in the field of liver regeneration for treating acute or chronic liver injury, thus ensuring the availability of ADMSCs for research, trial, and clinical applications in various liver diseases in the future.
Collapse
Affiliation(s)
- Chenxia Hu
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Lingfei Zhao
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| | - Lanjuan Li
- 0000 0004 1759 700Xgrid.13402.34Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University; Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang People’s Republic of China
| |
Collapse
|
38
|
Sabol RA, Bowles AC, Côté A, Wise R, O'Donnell B, Matossian MD, Hossain FM, Burks HE, Del Valle L, Miele L, Collins-Burow BM, Burow ME, Bunnell BA. Leptin produced by obesity-altered adipose stem cells promotes metastasis but not tumorigenesis of triple-negative breast cancer in orthotopic xenograft and patient-derived xenograft models. Breast Cancer Res 2019; 21:67. [PMID: 31118047 PMCID: PMC6530039 DOI: 10.1186/s13058-019-1153-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Background Breast cancer is the second leading cause of cancer deaths in the USA. Triple-negative breast cancer (TNBC) is a clinically aggressive subtype of breast cancer with high rates of metastasis, tumor recurrence, and resistance to therapeutics. Obesity, defined by a high body mass index (BMI), is an established risk factor for breast cancer. Women with a high BMI have increased incidence and mortality of breast cancer; however, the mechanisms(s) by which obesity promotes tumor progression are not well understood. Methods In this study, obesity-altered adipose stem cells (obASCs) were used to evaluate obesity-mediated effects of TNBC. Both in vitro and in vivo analyses of TNBC cell lines were co-cultured with six pooled donors of obASCs (BMI > 30) or ASCs isolated from lean women (lnASCs) (BMI < 25). Results We found that obASCs promote a pro-metastatic phenotype by upregulating genes associated with epithelial-to-mesenchymal transition and promoting migration in vitro. We confirmed our findings using a TNBC patient-derived xenograft (PDX) model. PDX tumors grown in the presence of obASCS in SCID/beige mice had increased circulating HLA1+ human cells as well as increased numbers of CD44+CD24− cancer stem cells in the peripheral blood. Exposure of the TNBC PDX to obASCs also increased the formation of metastases. The knockdown of leptin expression in obASCs suppressed the pro-metastatic effects of obASCs. Conclusions Leptin signaling is a potential mechanism through which obASCs promote metastasis of TNBC in both in vitro and in vivo analyses. Electronic supplementary material The online version of this article (10.1186/s13058-019-1153-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachel A Sabol
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Annie C Bowles
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Alex Côté
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Rachel Wise
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Benjamen O'Donnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA
| | - Margarite D Matossian
- Department of Medicine, Section of Hematology and Oncology, Tulane University, New Orleans, LA, USA
| | - Fokhrul M Hossain
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana Cancer Research Center (LCRC), LSUSHC, New Orleans, LA, USA
| | - Hope E Burks
- Department of Medicine, Section of Hematology and Oncology, Tulane University, New Orleans, LA, USA
| | - Luis Del Valle
- Stanley S. Scott Cancer Center, Louisiana Cancer Research Center (LCRC), LSUSHC, New Orleans, LA, USA.,Department of Pathology, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA.,Stanley S. Scott Cancer Center, Louisiana Cancer Research Center (LCRC), LSUSHC, New Orleans, LA, USA
| | | | - Matthew E Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University, New Orleans, LA, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, 1430 Tulane Ave, #8699, New Orleans, LA, 70112, USA. .,Department of Pharmacology, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
39
|
Boland LK, Burand AJ, Boyt DT, Dobroski H, Di L, Liszewski JN, Schrodt MV, Frazer MK, Santillan DA, Ankrum JA. Nature vs. Nurture: Defining the Effects of Mesenchymal Stromal Cell Isolation and Culture Conditions on Resiliency to Palmitate Challenge. Front Immunol 2019; 10:1080. [PMID: 31134100 PMCID: PMC6523025 DOI: 10.3389/fimmu.2019.01080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022] Open
Abstract
As MSC products move from early development to clinical translation, culture conditions shift from xeno- to xeno-free systems. However, the impact of isolation and culture-expansion methods on the long-term resiliency of MSCs within challenging transplant environments is not fully understood. Recent work in our lab has shown that palmitate, a saturated fatty acid elevated in the serum of patients with obesity, causes MSCs to convert from an immunosuppressive to an immunostimulatory state at moderate to high physiological levels. This demonstrated that metabolically-diseased environments, like obesity, alter the immunomodulatory efficacy of healthy donor MSCs. In addition, it highlighted the need to test MSC efficacy not only in ideal conditions, but within challenging metabolic environments. To determine how the choice of xeno- vs. xeno-free media during isolation and expansion would affect future immunosuppressive function, umbilical cord explants from seven donors were subdivided and cultured within xeno- (fetal bovine serum, FBS) or xeno-free (human platelet lysate, PLT) medias, creating 14 distinct MSC preparations. After isolation and primary expansion, umbilical cord MSCs (ucMSC) were evaluated according to the ISCT minimal criteria for MSCs. Following baseline characterization, ucMSC were exposed to physiological doses of palmitate and analyzed for metabolic health, apoptotic induction, and immunomodulatory potency in co-cultures with stimulated human peripheral blood mononuclear cells. The paired experimental design (each ucMSC donor grown in two distinct culture environments) allowed us to delineate the contribution of inherent (nature) vs. environmentally-driven (nurture) donor characteristics to the phenotypic response of ucMSC during palmitate exposure. Culturing MSCs in PLT-media led to more consistent growth characteristics during the isolation and expansion for all donors, resulting in faster doubling times and higher cell yields compared to FBS. Upon palmitate challenge, PLT-ucMSCs showed a higher susceptibility to palmitate-induced metabolic disturbance, but less susceptibility to palmitate-induced apoptosis. Most striking however, was that the PLT-ucMSCs resisted the conversion to an immunostimulatory phenotype better than their FBS counterparts. Interestingly, examining MSC suppression of PBMC proliferation at physiologic doses of palmitate magnified the differences between donors, highlighting the utility of evaluating MSC products in stress-based assays that reflect the challenges MSCs may encounter post-transplantation.
Collapse
Affiliation(s)
- Lauren K Boland
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Anthony J Burand
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Devlin T Boyt
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Hannah Dobroski
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Lin Di
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Jesse N Liszewski
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Michael V Schrodt
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Maria K Frazer
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Center for Immunology and Immune Based Diseases, Center for Hypertension Research, University of Iowa, Iowa City, IA, United States
| | - James A Ankrum
- University of Iowa Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
40
|
Perspectives for Clinical Translation of Adipose Stromal/Stem Cells. Stem Cells Int 2019; 2019:5858247. [PMID: 31191677 PMCID: PMC6525805 DOI: 10.1155/2019/5858247] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 12/15/2022] Open
Abstract
Adipose stromal/stem cells (ASCs) are an ideal cell type for regenerative medicine applications, as they can easily be harvested from adipose tissue in large quantities. ASCs have excellent proliferation, differentiation, and immunoregulatory capacities that have been demonstrated in numerous studies. Great interest and investment have been placed in efforts to exploit the allogeneic use and immunomodulatory and anti-inflammatory effects of ASCs. However, bridging the gap between in vitro and in vivo studies and moving into clinical practice remain a challenge. For the clinical translation of ASCs, several issues must be considered, including how to characterise such a heterogenic cell population and how to ensure their safety and efficacy. This review explores the different phases of in vitro and preclinical ASC characterisation and describes the development of appropriate potency assays. In addition, good manufacturing practice requirements are discussed, and cell-based medicinal products holding marketing authorisation in the European Union are reviewed. Moreover, the current status of clinical trials applying ASCs and the patent landscape in the field of ASC research are presented. Overall, this review highlights the applicability of ASCs for clinical cell therapies and discusses their potential.
Collapse
|
41
|
Discussion: CRISPR/Cas9-Mediated BRCA1 Knockdown Adipose Stem Cells Promote Breast Cancer Progression. Plast Reconstr Surg 2019; 143:757-758. [PMID: 30817647 DOI: 10.1097/prs.0000000000005391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Atkinson SP. A Preview of Selected Articles. Stem Cells Transl Med 2018; 7:699-701. [PMID: 30317701 PMCID: PMC6186270 DOI: 10.1002/sctm.18-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 11/08/2022] Open
|
43
|
Ritter A, Louwen F, Yuan J. Deficient primary cilia in obese adipose-derived mesenchymal stem cells: obesity, a secondary ciliopathy? Obes Rev 2018; 19:1317-1328. [PMID: 30015415 DOI: 10.1111/obr.12716] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022]
Abstract
Obesity alters the composition, structure and function of adipose tissue, characterized by chronic inflammation, insulin resistance and metabolic dysfunction. Adipose-derived mesenchymal stem cells (ASCs) are responsible for cell renewal, spontaneous repair and immunomodulation in adipose tissue. Increasing evidence highlights that ASCs are deficient in obesity, and the underlying mechanisms are not well understood. We have recently shown that obese ASCs have defective primary cilia, which are shortened and unable to properly respond to stimuli. Impaired cilia compromise ASC functions. This work suggests an intertwined connection of obesity, defective cilia and dysfunctional ASCs. We have here discussed the current data regarding defective cilia in various cell types in obesity. Based on these observations, we hypothesize that obesity, a systemic chronic metainflammation, could impair cilia in diverse ciliated cells, like pancreatic islet cells, stem cells and hypothalamic neurons, making these critical cells dysfunctional by shutting down their signal sensors and transducers. In this context, obesity may represent a secondary form of ciliopathy induced by obesity-related inflammation and metabolic dysfunction. Reactivation of ciliated cells might be an alternative strategy to combat obesity and its associated diseases.
Collapse
Affiliation(s)
- A Ritter
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - F Louwen
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - J Yuan
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
44
|
Leyendecker A, Pinheiro CCG, Amano MT, Bueno DF. The Use of Human Mesenchymal Stem Cells as Therapeutic Agents for the in vivo Treatment of Immune-Related Diseases: A Systematic Review. Front Immunol 2018; 9:2056. [PMID: 30254638 PMCID: PMC6141714 DOI: 10.3389/fimmu.2018.02056] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background: One of the greatest challenges for medicine is to find a safe and effective treatment for immune-related diseases. However, due to the low efficacy of the treatment available and the occurrence of serious adverse effects, many groups are currently searching for alternatives to the traditional therapy. In this regard, the use of human mesenchymal stem cells (hMSCs) represents a great promise for the treatment of a variety of immune-related diseases due to their potent immunomodulatory properties. The main objective of this study is, therefore, to present and summarize, through a systematic review of the literature, in vivo studies in which the efficacy of the administration of hMSCs for the treatment of immune-related diseases was evaluated. Methods: The article search was conducted in PubMed/MEDLINE, Scopus and Web of Science databases. Original research articles assessing the therapeutic potential of hMSCs administration for the in vivo treatment immune-related diseases, published from 1984 to December 2017, were selected and evaluated. Results: A total of 132 manuscripts formed the basis of this systematic review. Most of the studies analyzed reported positive results after hMSCs administration. Clinical effects commonly observed include an increase in the survival rates and a reduction in the severity and incidence of the immune-related diseases studied. In addition, hMSCs administration resulted in an inhibition in the proliferation and activation of CD19+ B cells, CD4+ Th1 and Th17 cells, CD8+ T cells, NK cells, macrophages, monocytes, and neutrophils. The clonal expansion of both Bregs and Tregs cells, however, was stimulated. Administration of hMSCs also resulted in a reduction in the levels of pro-inflammatory cytokines such as IFN-γ, TNF-α, IL-1, IL-2, IL-12, and IL-17 and in an increase in the levels of immunoregulatory cytokines such as IL-4, IL-10, and IL-13. Conclusions: The results obtained in this study open new avenues for the treatment of immune-related diseases through the administration of hMSCs and emphasize the importance of the conduction of further studies in this area.
Collapse
|
45
|
Yan L, Zheng D, Xu RH. Critical Role of Tumor Necrosis Factor Signaling in Mesenchymal Stem Cell-Based Therapy for Autoimmune and Inflammatory Diseases. Front Immunol 2018; 9:1658. [PMID: 30079066 PMCID: PMC6062591 DOI: 10.3389/fimmu.2018.01658] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/04/2018] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been broadly used as a therapy for autoimmune disease in both animal models and clinical trials. MSCs inhibit T effector cells and many other immune cells, while activating regulatory T cells, thus reducing the production of pro-inflammatory cytokines, including tumor necrosis factor (TNF), and repressing inflammation. TNF can modify the MSC effects via two TNF receptors, i.e., TNFR1 in general mediates pro-inflammatory effects and TNFR2 mediates anti-inflammatory effects. In the central nervous system, TNF signaling plays a dual role, which enhances inflammation via TNFR1 on immune cells while providing cytoprotection via TNFR2 on neural cells. In addition, the soluble form of TNFR1 and membrane-bound TNF also participate in the regulation to fine-tune the functions of target cells. Other factors that impact TNF signaling and MSC functions include the gender of the host, disease course, cytokine concentrations, and the length of treatment time. This review will introduce the fascinating progress in this aspect of research and discuss remaining questions and future perspectives.
Collapse
Affiliation(s)
- Li Yan
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Dejin Zheng
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| |
Collapse
|
46
|
Bateman ME, Strong AL, Gimble JM, Bunnell BA. Concise Review: Using Fat to Fight Disease: A Systematic Review of Nonhomologous Adipose-Derived Stromal/Stem Cell Therapies. Stem Cells 2018; 36:1311-1328. [PMID: 29761573 DOI: 10.1002/stem.2847] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/09/2018] [Accepted: 04/22/2018] [Indexed: 12/18/2022]
Abstract
The objective of this Review is to describe the safety and efficacy of adipose stem/stromal cells (ASC) and stromal vascular fraction (SVF) in treating common diseases and the next steps in research that must occur prior to clinical use. Pubmed, Ovid Medline, Embase, Web of Science, and the Cochrane Library were searched for articles about use of SVF or ASC for disease therapy published between 2012 and 2017. One meta-analysis, 2 randomized controlled trials, and 16 case series were included, representing 844 human patients. Sixty-nine studies were performed in preclinical models of disease. ASCs improved symptoms, fistula healing, remission, and recurrence rates in severe cases of inflammatory bowel disease. In osteoarthritis, ASC and SVF improved symptom-related, functional, radiographic, and histological scores. ASC and SVF were also shown to improve clinical outcomes in ischemic stroke, multiple sclerosis, myocardial ischemia, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, chronic liver failure, glioblastoma, acute kidney injury, and chronic skin wounds. These effects were primarily paracrine in nature and mediated through reduction of inflammation and promotion of tissue repair. In the majority of human studies, autologous ASC and SVF from liposuction procedures were used, minimizing the risk to recipients. Very few serious, treatment-related adverse events were reported. The main adverse event was postprocedural pain. SVF and ASC are promising therapies for a variety of human diseases, particularly for patients with severe cases refractory to current medical treatments. Further randomized controlled trials must be performed to elaborate potential safety and efficacy prior to clinical use. Stem Cells 2018;36:1311-1328.
Collapse
Affiliation(s)
- Marjorie E Bateman
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Amy L Strong
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Plastic Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jeffrey M Gimble
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,La Cell LLC, New Orleans BioInnovation Center, New Orleans, Louisiana, USA.,Department of Structural and Cell Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Surgery, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Department of Pharmacology, Tulane University School of Medicine, New Orleans, Louisiana, USA.,Division of Regenerative Medicine, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| |
Collapse
|
47
|
Louwen F, Ritter A, Kreis NN, Yuan J. Insight into the development of obesity: functional alterations of adipose-derived mesenchymal stem cells. Obes Rev 2018. [PMID: 29521029 DOI: 10.1111/obr.12679] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is associated with a variety of disorders including cardiovascular diseases, diabetes mellitus and cancer. Obesity changes the composition and structure of adipose tissue, linked to pro-inflammatory environment, endocrine/metabolic dysfunction, insulin resistance and oxidative stress. Adipose-derived mesenchymal stem cells (ASCs) have multiple functions like cell renewal, spontaneous repair and homeostasis in adipose tissue. In this review article, we have summarized the recent data highlighting that ASCs in obesity are defective in various functionalities and properties including differentiation, angiogenesis, motility, multipotent state, metabolism and immunomodulation. Inflammatory milieu, hypoxia and abnormal metabolites in obese tissue are crucial for impairing the functions of ASCs. Further work is required to explore the precise molecular mechanisms underlying its alterations and impairments. Based on these data, we suggest that deregulated ASCs, possibly also other mesenchymal stem cells, are important in promoting the development of obesity. Restoration of ASCs/mesenchymal stem cells might be an additional strategy to combat obesity and its associated diseases.
Collapse
Affiliation(s)
- F Louwen
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - A Ritter
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - N N Kreis
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - J Yuan
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
48
|
Methods of Isolation, Characterization and Expansion of Human Adipose-Derived Stem Cells (ASCs): An Overview. Int J Mol Sci 2018; 19:ijms19071897. [PMID: 29958391 PMCID: PMC6073397 DOI: 10.3390/ijms19071897] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/17/2022] Open
Abstract
Considering the increasing interest in adipose-derived stem cells (ASCs) in regenerative medicine, optimization of methods aimed at isolation, characterization, expansion and evaluation of differentiation potential is critical to ensure (a) the quality of stem cells also in terms of genetic stability; (b) the reproducibility of beneficial effects; and (c) the safety of their use. Numerous studies have been conducted to understand the mechanisms that regulate ASC proliferation, growth and differentiation, however standard protocols about harvesting and processing techniques are not yet defined. It is also important to note that some steps in the procedures of harvesting and/or processing have been reported to affect recovery and/or the physiology of ASCs. Even considering the great opportunity that the ASCs provide for the identification of novel molecular targets for new or old drugs, the definition of homogeneous preparation methods that ensure adequate quality assurance and control, in accordance with current GMPs (good manufacturing practices), is required. Here, we summarize the literature reports to provide a detailed overview of the methodological issues underlying human ASCs isolation, processing, characterization, expansion, differentiation techniques, recalling at the same time their basilar principles, advantages and limits, in particular focusing on how these procedures could affect the ASC quality, functionality and plasticity.
Collapse
|
49
|
Ritter A, Friemel A, Kreis NN, Hoock SC, Roth S, Kielland-Kaisen U, Brüggmann D, Solbach C, Louwen F, Yuan J. Primary Cilia Are Dysfunctional in Obese Adipose-Derived Mesenchymal Stem Cells. Stem Cell Reports 2018; 10:583-599. [PMID: 29396182 PMCID: PMC5830986 DOI: 10.1016/j.stemcr.2017.12.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 12/20/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) have crucial functions, but their roles in obesity are not well defined. We show here that ASCs from obese individuals have defective primary cilia, which are shortened and unable to properly respond to stimuli. Impaired cilia compromise ASC functionalities. Exposure to obesity-related hypoxia and cytokines shortens cilia of lean ASCs. Like obese ASCs, lean ASCs treated with interleukin-6 are deficient in the Hedgehog pathway, and their differentiation capability is associated with increased ciliary disassembly genes like AURKA. Interestingly, inhibition of Aurora A or its downstream target the histone deacetylase 6 rescues the cilium length and function of obese ASCs. This work highlights a mechanism whereby defective cilia render ASCs dysfunctional, resulting in diseased adipose tissue. Impaired cilia in ASCs may be a key event in the pathogenesis of obesity, and its correction might provide an alternative strategy for combating obesity and its associated diseases.
Collapse
Affiliation(s)
- Andreas Ritter
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Alexandra Friemel
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Samira Catharina Hoock
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Susanne Roth
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Ulrikke Kielland-Kaisen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Dörthe Brüggmann
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Christine Solbach
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
50
|
Zhao H, Shang Q, Pan Z, Bai Y, Li Z, Zhang H, Zhang Q, Guo C, Zhang L, Wang Q. Exosomes From Adipose-Derived Stem Cells Attenuate Adipose Inflammation and Obesity Through Polarizing M2 Macrophages and Beiging in White Adipose Tissue. Diabetes 2018; 67:235-247. [PMID: 29133512 DOI: 10.2337/db17-0356] [Citation(s) in RCA: 472] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/04/2017] [Indexed: 12/15/2022]
Abstract
Adipose-derived stem cells (ADSCs) play critical roles in controlling obesity-associated inflammation and metabolic disorders. Exosomes from ADSCs exert protective effects in several diseases, but their roles in obesity and related pathological conditions remain unclear. In this study, we showed that treatment of obese mice with ADSC-derived exosomes facilitated their metabolic homeostasis, including improved insulin sensitivity (27.8% improvement), reduced obesity, and alleviated hepatic steatosis. ADSC-derived exosomes drove alternatively activated M2 macrophage polarization, inflammation reduction, and beiging in white adipose tissue (WAT) of diet-induced obese mice. Mechanistically, exosomes from ADSCs transferred into macrophages to induce anti-inflammatory M2 phenotypes through the transactivation of arginase-1 by exosome-carried active STAT3. Moreover, M2 macrophages induced by ADSC-derived exosomes not only expressed high levels of tyrosine hydroxylase responsible for catecholamine release, but also promoted ADSC proliferation and lactate production, thereby favoring WAT beiging and homeostasis in response to high-fat challenge. These findings delineate a novel exosome-mediated mechanism for ADSC-macrophage cross talk that facilitates immune and metabolic homeostasis in WAT, thus providing potential therapy for obesity and diabetes.
Collapse
MESH Headings
- Adipocytes, Beige/immunology
- Adipocytes, Beige/metabolism
- Adipocytes, Beige/pathology
- Adipocytes, White/immunology
- Adipocytes, White/metabolism
- Adipocytes, White/pathology
- Adipogenesis
- Adult Stem Cells/immunology
- Adult Stem Cells/metabolism
- Adult Stem Cells/pathology
- Animals
- Biomarkers/metabolism
- Cell Communication
- Cell Polarity
- Cell Proliferation
- Cells, Cultured
- Diet, High-Fat/adverse effects
- Exosomes/immunology
- Exosomes/metabolism
- Exosomes/pathology
- Exosomes/transplantation
- Insulin Resistance
- Macrophage Activation
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Macrophages, Peritoneal/transplantation
- Male
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Microscopy, Fluorescence
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/prevention & control
- Obesity/immunology
- Obesity/pathology
- Obesity/physiopathology
- Obesity/therapy
- Phagocytosis
Collapse
Affiliation(s)
- Hui Zhao
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Qianwen Shang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Zhenzhen Pan
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yang Bai
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Zequn Li
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Huiying Zhang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Qiu Zhang
- School of Environmental Science and Engineering, Shandong University, Jinan, Shandong, China
| | - Chun Guo
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Lining Zhang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Qun Wang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|