1
|
Parolini C. Pathophysiology of bone remodelling cycle: Role of immune system and lipids. Biochem Pharmacol 2025; 235:116844. [PMID: 40044049 DOI: 10.1016/j.bcp.2025.116844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/31/2025] [Accepted: 02/28/2025] [Indexed: 03/15/2025]
Abstract
Osteoporosis is the most common skeletal disease worldwide, characterized by low bone mineral density, resulting in weaker bones, and an increased risk of fragility fractures. The maintenance of bone mass relies on the precise balance between bone synthesis and resorption. The close relationship between the immune and skeletal systems, called "osteoimmunology", was coined to identify these overlapping "scientific worlds", and its function resides in the evaluation of the mutual effects of the skeletal and immune systems at the molecular and cellular levels, in both physiological and pathological states. Lipids play an essential role in skeletal metabolism and bone health. Indeed, bone marrow and its skeletal components demand a dramatic amount of daily energy to control hematopoietic turnover, acquire and maintain bone mass, and actively being involved in whole-body metabolism. Statins, the main therapeutic agents in lowering plasma cholesterol levels, are able to promote osteoblastogenesis and inhibit osteoclastogenesis. This review is meant to provide an updated overview of the pathophysiology of bone remodelling cycle, focusing on the interplay between bone, immune system and lipids. Novel therapeutic strategies for the management of osteoporosis are also discussed.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti', via Balzaretti 9 - Università degli Studi di Milano 20133 Milano, Italy.
| |
Collapse
|
2
|
Yoon H, Park SG, Shin HR, Kim KT, Cho YD, Moon JI, Kim WJ, Ryoo HM. Unraveling the dynamics of osteoblast differentiation in MC3T3-E1 cells: Transcriptomic insights into matrix mineralization and cell proliferation. Bone 2025; 194:117442. [PMID: 40032015 DOI: 10.1016/j.bone.2025.117442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/11/2025] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Unraveling the intricacies of osteoblast differentiation is crucial for advancing our comprehension of bone biology. This study investigated the complicated molecular events orchestrating osteoblast differentiation in MC3T3-E1 cells, a well-established in vitro culture model. Employing longitudinal RNA-sequencing analysis, we explored transcriptomic changes at the pivotal time points of 0, 1, 4, 7, 10, 14, and 21 days and categorized osteogenic differentiation into proliferation, matrix maturation, and mineralization stages. Notably, we observed a simultaneous increase in matrix mineralization and cell proliferation during the mineralization stage, accompanied by a positive correlation between proliferation-associated genes and those enriched in ossification. Additionally, we identified the presence of proliferating cells over the mineralizing matrix layers. These results could serve as a model for understanding the principles by which bone lining cells are formed on the calcified bone matrix and the mechanism by which new osteoblasts are recruited during the bone remodeling process.
Collapse
Affiliation(s)
- Heein Yoon
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental-Multiomics Center, Seoul National University, Seoul 08826, South Korea
| | - Seung Gwa Park
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental-Multiomics Center, Seoul National University, Seoul 08826, South Korea
| | - Hye-Rim Shin
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental-Multiomics Center, Seoul National University, Seoul 08826, South Korea
| | - Ki-Tae Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental-Multiomics Center, Seoul National University, Seoul 08826, South Korea
| | - Young-Dan Cho
- Department of Periodontology, School of Dentistry and Dental Research Institute, Seoul National University and Seoul National University Dental Hospital, Seoul 03080, South Korea
| | - Jae-I Moon
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental-Multiomics Center, Seoul National University, Seoul 08826, South Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental-Multiomics Center, Seoul National University, Seoul 08826, South Korea.
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics & Dental Pharmacology, School of Dentistry and Dental Research Institute, Dental-Multiomics Center, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
3
|
Yashima N, Minamizono W, Matsunaga H, Lyu J, Fujikawa K, Suito H, Okunuki T, Nakai S, Ohsako M. Non-contact electrical stimulation via a Vector-potential transformer promotes bone healing in drill-hole injury model. J Bone Miner Metab 2025:10.1007/s00774-025-01603-0. [PMID: 40301161 DOI: 10.1007/s00774-025-01603-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025]
Abstract
INTRODUCTION We investigated the effects of non-contact electrical stimulation via a Vector-potential (VP) transformer, a novel physical therapy device, on bone healing in drill-hole injury models. MATERIALS AND METHODS Six-week-old male Wistar rats, after a one-week acclimation period, were divided into three groups: the control group (CO), the bone injury group (BI), in which a drill-hole injury was created, and the VP stimulation group (VP), which received non-contact electrical stimulation via a VP transformer after bone injury. In the VP group, rats underwent stimulation at 200 kHz for 30 minutes per day, seven days per week. RESULTS The VP group exhibited increased bone formation as early as day 7 post-injury, with significantly higher bone volume than the BI group at all time points (day 7: p = 0.0003; day 14: p = 0.0024; day 21: p = 0.0001). By day 21, the VP group showed lighter toluidine blue staining and reduced biglycan immunoreactivity compared to the BI group. Bone mineral density also increased (p = 0.0008). Osteoblasts in the VP group displayed abundant cytoplasm and a high capacity for osteocalcin synthesis. Additionally, the VP group demonstrated increased expression of Bglap (day 5: p = 0.0068; day 7: p = 0.0096) and Ctsk (day 7: p = 0.0329; day 14: p = 0.0171), along with a higher number of TRAP-positive osteoclasts (day 21: p = 0.0159) compared to the BI group. CONCLUSION Non-contact electrical stimulation via a VP transformer promotes bone healing in drill-hole injury models.
Collapse
Affiliation(s)
- Nao Yashima
- Graduate School of Health and Sports Science, Toyo University, 1-7-11 Akabanedai, Kita-ku, Tokyo, 115-8650, Japan.
| | - Wataru Minamizono
- Graduate School of Human Life Design, Toyo University, 1-7-11 Akabanedai, Kita-ku, Tokyo, 115-8650, Japan
| | - Hiroya Matsunaga
- Graduate School of Health and Sports Science, Toyo University, 1-7-11 Akabanedai, Kita-ku, Tokyo, 115-8650, Japan
| | - Jiazheng Lyu
- Graduate School of Health and Sports Science, Toyo University, 1-7-11 Akabanedai, Kita-ku, Tokyo, 115-8650, Japan
| | - Kaoru Fujikawa
- Department of Oral Anatomy, Showa Medical University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-0064, Japan
| | - Hirai Suito
- Department of Anatomy, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Takumi Okunuki
- Japan Society for the Promotion of Science, Research Organization of Science and Technology, Ritsumeikan University, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Shingo Nakai
- Department of Judo Seifuku and Health Sciences, Tokoha University School of Health Promotional Sciences, 1230 Miyakoda-cho, Hamana-ku, Hamamatsu-shi, Shizuoka, 431-2102, Japan
| | - Masafumi Ohsako
- Department of Health and Sports Science, Toyo University School of Health and Sports Science, 1-7-11 Akabanedai, Kita-ku, Tokyo, 115-8650, Japan
| |
Collapse
|
4
|
Lu J, He Q, Wang H, Yao L, Duffy M, Guo H, Braun C, Zhou Y, Liang Q, Lin Y, Bandyopadhyay S, Tan K, Choi Y, Liu XS, Qin L. Bone marrow adipogenic lineage precursors are the major regulator of bone resorption in adult mice. Bone Res 2025; 13:39. [PMID: 40102423 PMCID: PMC11920254 DOI: 10.1038/s41413-025-00405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 03/20/2025] Open
Abstract
Bone resorption by osteoclasts is a critical step in bone remodeling, a process important for maintaining bone homeostasis and repairing injured bone. We previously identified a bone marrow mesenchymal subpopulation, marrow adipogenic lineage precursors (MALPs), and showed that its production of RANKL stimulates bone resorption in young mice using Adipoq-Cre. To exclude developmental defects and to investigate the role of MALPs-derived RANKL in adult bone, we generated inducible reporter mice (Adipoq-CreER Tomato) and RANKL deficient mice (Adipoq-CreER RANKLflox/flox, iCKO). Single cell-RNA sequencing data analysis and lineage tracing revealed that Adipoq+ cells contain not only MALPs but also some mesenchymal progenitors capable of osteogenic differentiation. In situ hybridization showed that RANKL mRNA is only detected in MALPs, but not in osteogenic cells. RANKL deficiency in MALPs induced at 3 months of age rapidly increased trabecular bone mass in long bones as well as vertebrae due to diminished bone resorption but had no effect on the cortical bone. Ovariectomy (OVX) induced trabecular bone loss at both sites. RANKL depletion either before OVX or at 6 weeks post OVX protected and restored trabecular bone mass. Furthermore, bone healing after drill-hole injury was delayed in iCKO mice. Together, our findings demonstrate that MALPs play a dominant role in controlling trabecular bone resorption and that RANKL from MALPs is essential for trabecular bone turnover in adult bone homeostasis, postmenopausal bone loss, and injury repair.
Collapse
Affiliation(s)
- Jiawei Lu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Spine Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Qi He
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huan Wang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lutian Yao
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hanli Guo
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Corben Braun
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yilu Zhou
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qiushi Liang
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yuewei Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Shovik Bandyopadhyay
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Kai Tan
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Yongwen Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - X Sherry Liu
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
5
|
Melis S, Trompet D, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone physiology, ageing and disease. Nat Rev Endocrinol 2025; 21:135-153. [PMID: 39379711 DOI: 10.1038/s41574-024-01039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
Skeletal stem cells (SSCs) and related progenitors with osteogenic potential, collectively termed skeletal stem and/or progenitor cells (SSPCs), are crucial for providing osteoblasts for bone formation during homeostatic tissue turnover and fracture repair. Besides mediating normal bone physiology, they also have important roles in various metabolic bone diseases, including osteoporosis. SSPCs are of tremendous interest because they represent prime future targets for osteoanabolic therapies and bone regenerative medicine. Remarkable progress has been made in characterizing various SSC and SSPC populations in postnatal bone. SSPCs exist in the periosteum and within the bone marrow stroma, including subsets localizing around arteriolar and sinusoidal blood vessels; they can display osteogenic, chondrogenic, adipogenic and/or fibroblastic potential, and exert critical haematopoiesis-supportive functions. However, much remains to be clarified. By the current markers, bona fide SSCs are commonly contained within broader SSPC populations characterized by considerable heterogeneity and overlap, whose common versus specific functions in health and disease have not been fully unravelled. Here, we review the present knowledge of the identity, fates and relationships of SSPC populations in the postnatal bone environment, their contributions to bone maintenance, the changes observed upon ageing, and the effect of metabolic diseases such as osteoporosis and diabetes mellitus.
Collapse
Affiliation(s)
- Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Andrei S Chagin
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Nijsure MP, Tobin B, Jones DL, Lang A, Hallström G, Baitner M, Tanner GI, Moharrer Y, Panebianco CJ, Seidl EG, Dyment NA, Szeto GL, Wood L, Boerckel JD. YAP regulates periosteal expansion in fracture repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.23.630086. [PMID: 39764016 PMCID: PMC11703278 DOI: 10.1101/2024.12.23.630086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Bone fracture repair initiates by periosteal expansion. The periosteum is typically quiescent, but upon fracture, periosteal cells proliferate and contribute to bone fracture repair. The expansion of the periosteum is regulated by gene transcription; however, the molecular mechanisms behind periosteal expansion are unclear. Here, we show that Yes-Associated Protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) mediate periosteal expansion and periosteal cell proliferation. Bone fracture increases the number of YAP-expressing periosteal cells, and deletion of YAP and TAZ from Osterix (Osx) expressing cells impairs early periosteal expansion. Mechanistically, YAP regulates both 'cell-intrinsic' and 'cell-extrinsic' factors that allow for periosteal expansion. Specifically, we identified Bone Morphogenetic Protein 4 (BMP4) as a cell extrinsic factor regulated by YAP, that rescues the impairment of periosteal expansion upon YAP/TAZ deletion. Together, these data establish YAP mediated transcriptional mechanisms that induce periosteal expansion in the early stages of fracture repair and provide new putative targets for therapeutic interventions.
Collapse
Affiliation(s)
- Madhura P Nijsure
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brendan Tobin
- School of Chemical and Biomolecular Engineering, Georgia Tech College of Engineering, Atlanta, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, USA
| | - Dakota L Jones
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annemarie Lang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grey Hallström
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miriam Baitner
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabrielle I Tanner
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yasaman Moharrer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher J Panebianco
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth G Seidl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel A Dyment
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory L Szeto
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, USA
| | - Levi Wood
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Tech College of Engineering, Atlanta, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Joel D Boerckel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Bud A, Lazăr L, Mârțu MA, Dakó T, Suciu M, Vlasiu A, Lazăr AP. Challenges and Perspectives Regarding the Determination of Gingival Crevicular Fluid Biomarkers During Orthodontic Treatment: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2004. [PMID: 39768884 PMCID: PMC11728204 DOI: 10.3390/medicina60122004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Background: Changes in the positions of teeth occur during orthodontic treatment due to the application of forces that cause restructuring of the periodontal tissue. In the last decade, substantial research has been conducted to detect different biomarkers in the gingival crevicular fluid (GCF) to obtain a better assessment of the periodontal status. Aim: The purpose of this review is to describe how the levels of certain biomarkers from the gingival fluid change during tissue remodeling throughout orthodontic treatment. Materials and methods: To carry out the purpose of this research, electronic databases were searched using specific keywords, leading to 387 articles, out of which 19 were used in writing this narrative review. A sampling period of the last 10 years was used in selecting the articles. Results: The results highlight that the origin of the gingival crevicular fluid is at the gingival blood vessels' plexus. GCF has a complex composition with differences depending on the periodontal status and the tissue restructuring which takes place in the periodontium. The levels of inflammatory mediators, enzymes, and metabolic products of tissue remodeling in GCF change during orthodontic treatment. Being aware of their specific role, they can provide valuable information about bone remodeling during orthodontic tooth movement. Conclusions: By determining the biomarkers in GCF, as an investigative method, clinicians could easily monitor the orthodontic tooth movement, and, subsequently, the treatment period could be shortened and the adverse effects associated with it could be avoided.
Collapse
Affiliation(s)
- Anamaria Bud
- Department of Pedodontics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania; (A.B.); (A.V.)
| | - Luminița Lazăr
- Department of Periodontology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania
| | - Maria-Alexandra Mârțu
- Department of Periodontology, Grigore T. Popa University of Medicine and Pharmacy Iasi, Universitatii Street 16, 700115 Iasi, Romania
| | - Timea Dakó
- Department of Odontology and Oral Pathology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania;
| | - Mircea Suciu
- Department of Oral Rehabilitation and Occlusology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania; (M.S.); (A.-P.L.)
| | - Andreea Vlasiu
- Department of Pedodontics, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania; (A.B.); (A.V.)
| | - Ana-Petra Lazăr
- Department of Oral Rehabilitation and Occlusology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, 38 Ghe. Marinescu Street, 540139 Târgu Mures, Romania; (M.S.); (A.-P.L.)
| |
Collapse
|
8
|
Pragnere S, Essayan L, El-Kholti N, Petiot E, Pailler-Mattei C. In vitrobioprinted 3D model enhancing osteoblast-to-osteocyte differentiation. Biofabrication 2024; 17:015021. [PMID: 39533747 DOI: 10.1088/1758-5090/ad8ca6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
In vitrobone models are pivotal for understanding tissue behavior and cellular responses, particularly in unravelling certain pathologies' mechanisms and assessing the impact of new therapeutic interventions. A desirablein vitrobone model should incorporate primary human cells within a 3D environment that mimics the mechanical properties characteristics of osteoid and faithfully replicate all stages of osteogenic differentiation from osteoblasts to osteocytes. However, to date, no bio-printed model using primary osteoblasts has demonstrated the expression of osteocytic protein markers. This study aimed to develop bio-printedin vitromodel that accurately captures the differentiation process of human primary osteoblasts into osteocytes. Given the considerable impact of hydrogel stiffness and relaxation behavior on osteoblast activity, we employed three distinct cross-linking solutions to fabricate hydrogels. These hydrogels were designed to exhibit either similar elastic behavior with different elastic moduli, or similar elastic moduli with varying relaxation behavior. These hydrogels, composed of gelatin (5% w/v), alginate (1%w/v) and fibrinogen (2%w/v), were designed to be compatible with micro-extrusion bioprinting and proliferative. The modulation of their biomechanical properties, including stiffness and viscoelastic behavior, was achieved by applying various concentrations of cross-linkers targeting both gelatin covalent bonding (transglutaminase) and alginate chains' ionic cross-linking (calcium). Among the conditions tested, the hydrogel with a low elastic modulus of 8 kPa and a viscoelastic behavior over time exhibited promising outcomes regarding osteoblast-to-osteocyte differentiation. The cessation of cell proliferation coincided with a significant increase in alkaline phosphatase activity, the development of dendrites, and the expression of the osteocyte marker PHEX. Within this hydrogel, cells actively influenced their environment, as evidenced by hydrogel contraction and the secretion of collagen I. This bio-printed model, demonstrating primary human osteoblasts expressing an osteocyte-specific protein, marks a significant achievement. We envision its substantial utility in advancing research on bone pathologies, including osteoporosis and bone tumors.
Collapse
Affiliation(s)
- Sarah Pragnere
- Laboratory of Tribology and System Dynamics,, UMR-CNRS 5513-Ecole Centrale Lyon, Ecully, Auvergne-Rhône-Alpes FR 69134, France
| | - Lucie Essayan
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 3d.FAB Platform-Equipe Gembas-Batiment Lederer-1 rue Victor Grignard, Villeurbanne, Auvergne-Rhône-Alpes FR 69622, France
| | - Naima El-Kholti
- Tissue Biology and Therapeutic Engineering 7 Passage du Vercors UMR 5305 University of Lyon, CNRS, 69367 Lyon, France, Lyon, Auvergne-Rhône-Alpes FR 69367, France
| | - Emma Petiot
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, 3d.FAB Platform-Equipe Gembas-Batiment Lederer-1 rue Victor Grignard, Villeurbanne, Auvergne-Rhône-Alpes FR 69622, France
| | - Cyril Pailler-Mattei
- Laboratory of Tribology and System Dynamics,, UMR-CNRS 5513-Ecole Centrale Lyon, Ecully, Auvergne-Rhône-Alpes FR 69134, France
- ISPB-Faculté de Pharmacie de Lyon, Université Claude Bernard Lyon 1-University of Lyon, Lyon 69008, France
| |
Collapse
|
9
|
El-Masri BM, Andreasen CM, Laursen KS, Kofod VB, Dahl XG, Nielsen MH, Thomsen JS, Brüel A, Sørensen MS, Hansen LJ, Kim AS, Taylor VE, Massarotti C, McDonald MM, You X, Charles JF, Delaisse JM, Andersen TL. Mapping RANKL- and OPG-expressing cells in bone tissue: the bone surface cells as activators of osteoclastogenesis and promoters of the denosumab rebound effect. Bone Res 2024; 12:62. [PMID: 39424806 PMCID: PMC11489716 DOI: 10.1038/s41413-024-00362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/21/2024] Open
Abstract
Denosumab is a monoclonal anti-RANKL antibody that inhibits bone resorption, increases bone mass, and reduces fracture risk. Denosumab discontinuation causes an extensive wave of rebound resorption, but the cellular mechanisms remain poorly characterized. We utilized in situ hybridization (ISH) as a direct approach to identify the cells that activate osteoclastogenesis through the RANKL/OPG pathway. ISH was performed across species, skeletal sites, and following recombinant OPG (OPG:Fc) and parathyroid hormone 1-34 (PTH) treatment of mice. OPG:Fc treatment in mice induced an increased expression of RANKL mRNA mainly in trabecular, but not endocortical bone surface cells. Additionally, a decreased expression of OPG mRNA was detected in bone surface cells and osteocytes of both compartments. A similar but more pronounced effect on RANKL and OPG expression was seen one hour after PTH treatment. These findings suggest that bone surface cells and osteocytes conjointly regulate the activation of osteoclastogenesis, and that OPG:Fc treatment induces a local accumulation of osteoclastogenic activation sites, ready to recruit and activate osteoclasts upon treatment discontinuation. Analysis of publicly available single-cell RNA sequencing (scRNAseq) data from murine bone marrow stromal cells revealed that Tnfsf11+ cells expressed high levels of Mmp13, Limch1, and Wif1, confirming their osteoprogenitor status. ISH confirmed co-expression of Mmp13 and Tnfsf11 in bone surface cells of both vehicle- and OPG:Fc-treated mice. Under physiological conditions of human/mouse bone, RANKL is expressed mainly by osteoprogenitors proximate to the osteoclasts, while OPG is expressed mainly by osteocytes and bone-forming osteoblasts.
Collapse
Affiliation(s)
- Bilal M El-Masri
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
| | - Christina M Andreasen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Kaja S Laursen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Viktoria B Kofod
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
| | - Xenia G Dahl
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
| | - Malene H Nielsen
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Mads S Sørensen
- Department of Otorhinolaryngology - Head and Neck Surgery and Audiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lars J Hansen
- Department of Otorhinolaryngology - Head and Neck Surgery and Audiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Albert S Kim
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Victoria E Taylor
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Caitlyn Massarotti
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Michelle M McDonald
- Skeletal Diseases Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
- Cancer Theme, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Xiaomeng You
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jean-Marie Delaisse
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark
| | - Thomas L Andersen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
- Danish Spatial Imaging Consortium, University of Southern Denmark, Odense, Denmark.
- Department of Pathology, Odense University Hospital, Odense, Denmark.
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
10
|
Chavassieux P, Roux JP, Libanati C, Shi Y, Chapurlat R. Evaluation of romosozumab's effects on bone marrow adiposity in postmenopausal osteoporotic women: results from the FRAME bone biopsy sub-study. J Bone Miner Res 2024; 39:1278-1283. [PMID: 39023227 DOI: 10.1093/jbmr/zjae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Romosozumab, a humanized monoclonal antibody that binds and inhibits sclerostin, produces a marked increase in bone formation with a concomitant decreased bone resorption. This transient rise in bone formation in the first 2 months of treatment is mainly due to an increased modeling-based bone formation. This requires the recruitment and differentiation of osteoblasts, one possibility being a preferential switch in commitment of precursors to osteoblasts over adipocytes. The purpose of this study was to analyze the marrow adiposity in transiliac bone biopsies at months 2 or 12 from the FRAME biopsy sub-study in patients receiving romosozumab or placebo. The total adipocyte area, number, and density were measured on the total cancellous bone area. The size and shape at the individual adipocyte level were assessed including the mean adipocyte area, perimeter, min and max diameters, and aspect ratio. No significant difference in total adipocyte area, number, or density between placebo and romosozumab groups was observed at months 2 and 12, and no difference was observed between 2 and 12 months. After 2 or 12 months, romosozumab did not modify the size or shape of the adipocytes. No relationship between the adipocyte parameters and the dynamic parameters of bone formation could be evidenced. In conclusion, based on the analysis of a small number of biopsies, no effect of romosozumab on bone marrow adiposity of iliac crest was identified after 2 and 12 months suggesting that the modeling-based formation observed at month 2 was not due to a preferential commitment of the precursor to osteoblast over adipocyte cell lines but may result from a reactivation of bone lining cells and from a progenitor pool independent of the marrow adipocyte population.
Collapse
Affiliation(s)
| | | | | | - Yifei Shi
- Amgen Inc, Thousand Oaks, CA, United States
| | | |
Collapse
|
11
|
Qin L, Lu J, He Q, Wang H, Yao L, Duffy M, Guo H, Braun C, Lin Y, Zhou Y, Liang Q, Bandyopadhyay S, Tan K, Choi Y, Liu S. Bone marrow adipogenic lineage precursors are the major regulator of bone resorption in adult mice. RESEARCH SQUARE 2024:rs.3.rs-4809633. [PMID: 39257979 PMCID: PMC11384808 DOI: 10.21203/rs.3.rs-4809633/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Bone resorption by osteoclasts is a critical step in bone remodeling, a process important for maintaining bone homeostasis and repairing injured bone. We previously identified a bone marrow mesenchymal subpopulation, marrow adipogenic lineage precursors (MALPs), and showed that its production of RANKL stimulates bone resorption in young mice using Adipoq-Cre. To exclude developmental defects and to investigate the role of MALPs-derived RANKL in adult bone, we generated inducible reporter mice (Adipoq-CreER Tomato) and RANKL deficient mice (Adipoq-CreER RANKLflox/flox, iCKO). Single cell-RNA sequencing data analysis, lineage tracing, and in situ hybridization revealed that Adipoq+ cells contain not only MALPs but also late mesenchymal progenitors capable of osteogenic differentiation. However, RANKLmRNA was only detected in MALPs, but not in osteogenic cells. RANKL deficiency in MALPs induced at 3 months of age rapidly increased trabecular bone mass in long bones as well as vertebrae within 1 month due to diminished bone resorption but had no effect on the cortical bone. Ovariectomy (OVX) induced trabecular bone loss at both sites. RANKL depletion either before OVX or at 6 weeks post OVX protected and restored trabecular bone mass. Furthermore, bone healing after drill-hole injury was delayed in iCKO mice. Together, our findings demonstrate that MALPs play a dominant role in controlling trabecular bone resorption and that RANKL from MALPs is essential for trabecular bone turnover in adult bone homeostasis, postmenopausal bone loss, and injury repair.
Collapse
Affiliation(s)
| | | | - Qi He
- University of Pennsylvania
| | | | | | | | | | | | | | | | | | | | - Kai Tan
- The Children's Hospital of Philadelphia
| | - Yongwon Choi
- University of Pennsylvania Perelman School of Medicine
| | | |
Collapse
|
12
|
Dima O, Didilescu AC, Manole CC, Pameijer C, Călin C. Synthetic composites versus calcium phosphate cements in bone regeneration: A narrative review. Ann Anat 2024; 255:152273. [PMID: 38754741 DOI: 10.1016/j.aanat.2024.152273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND When the natural process of bone remodeling is disturbed, the need arises for a stimulant material in order to enhance the formation of a new healthy and strong osseous tissue to replace the damaged one. Recent studies have reported synthetic biomaterials to be a very good option for supporting bone regeneration. STUDY DESIGN Narrative review. OBJECTIVE This review aims to provide a brief presentation of two of the most recently developed synthetic biomaterials, i.e. calcium phosphate cements and synthetic composites, that are currently being used in bone regeneration with promising results. METHODS Literature searches using broad terms such as "bone regeneration," "biomaterials," "synthetic composites" and "calcium phosphate cements" were performed using PubMed. The osteal cells state of the art was explored by searching topic-specific full text keywords using Google Scholar. CONCLUSIONS Synthetic polymers such as PCL (poly-ε-caprolactone) and PLGA (poly lactic-co-glycolic acid) can improve the effectiveness of biomaterials like HA (hydroxyapatite) and BG (bioglass). Calcium phosphate, although being a suitable material for stimulating bone regeneration, needs an adjuvant in order to be effective in larger bone defects.
Collapse
Affiliation(s)
- Oana Dima
- Department of Embryology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Andreea Cristiana Didilescu
- Department of Embryology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Claudiu Constantin Manole
- Department of Biophysics, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Cornelis Pameijer
- Department of Reconstructive Sciences, School of Dental Medicine, University of Connecticut, Farmington, USA
| | - Claudiu Călin
- Department of Embryology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
13
|
Trompet D, Melis S, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone development and repair. J Bone Miner Res 2024; 39:633-654. [PMID: 38696703 DOI: 10.1093/jbmr/zjae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Bone development, growth, and repair are complex processes involving various cell types and interactions, with central roles played by skeletal stem and progenitor cells. Recent research brought new insights into the skeletal precursor populations that mediate intramembranous and endochondral bone development. Later in life, many of the cellular and molecular mechanisms determining development are reactivated upon fracture, with powerful trauma-induced signaling cues triggering a variety of postnatal skeletal stem/progenitor cells (SSPCs) residing near the bone defect. Interestingly, in this injury context, the current evidence suggests that the fates of both SSPCs and differentiated skeletal cells can be considerably flexible and dynamic, and that multiple cell sources can be activated to operate as functional progenitors generating chondrocytes and/or osteoblasts. The combined implementation of in vivo lineage tracing, cell surface marker-based cell selection, single-cell molecular analyses, and high-resolution in situ imaging has strongly improved our insights into the diversity and roles of developmental and reparative stem/progenitor subsets, while also unveiling the complexity of their dynamics, hierarchies, and relationships. Albeit incompletely understood at present, findings supporting lineage flexibility and possibly plasticity among sources of osteogenic cells challenge the classical dogma of a single primitive, self-renewing, multipotent stem cell driving bone tissue formation and regeneration from the apex of a hierarchical and strictly unidirectional differentiation tree. We here review the state of the field and the newest discoveries in the origin, identity, and fates of skeletal progenitor cells during bone development and growth, discuss the contributions of adult SSPC populations to fracture repair, and reflect on the dynamism and relationships among skeletal precursors and differentiated cell lineages. Further research directed at unraveling the heterogeneity and capacities of SSPCs, as well as the regulatory cues determining their fate and functioning, will offer vital new options for clinical translation toward compromised fracture healing and bone regenerative medicine.
Collapse
Affiliation(s)
- Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrei S Chagin
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
14
|
Wang K, Zhao X, Yang S, Qi X, Li A, Yu W. New insights into dairy management and the prevention and treatment of osteoporosis: The shift from single nutrient to dairy matrix effects-A review. Compr Rev Food Sci Food Saf 2024; 23:e13374. [PMID: 38847750 DOI: 10.1111/1541-4337.13374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/12/2024] [Indexed: 06/13/2024]
Abstract
Dairy is recognized as a good source of calcium, which is important for preventing osteoporosis. However, the relationship between milk and bone health is more complex than just calcium supplementation. It is unwise to focus solely on observing the effects of a single nutrient. Lactose, proteins, and vitamins in milk, as well as fatty acids, oligosaccharides, and exosomes, all work together with calcium to enhance its bioavailability and utilization efficiency through various mechanisms. We evaluate the roles of dairy nutrients and active ingredients in maintaining bone homeostasis from the perspective of the dairy matrix effects. Special attention is given to threshold effects, synergistic effects, and associations with the gut-bone axis. We also summarize the associations between probiotic/prebiotic milk, low-fat/high-fat milk, lactose-free milk, and fortified milk with a reduced risk of osteoporosis and discuss the potential benefits and controversies of these dairy products. Moreover, we examine the role of dairy products in increasing peak bone mass during adolescence and reducing bone loss in old age. It provides a theoretical reference for the use of dairy products in the accurate prevention and management of osteoporosis and related chronic diseases and offers personalized dietary recommendations for bone health in different populations.
Collapse
Affiliation(s)
- Kaili Wang
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xu Zhao
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Sijia Yang
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiaoxi Qi
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Aili Li
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
- Dairy Processing Technology Research Centre, Heilongjiang Green Food Science Research Institute, Harbin, China
| | - Wei Yu
- Key Laboratory of Dairy Science, College of Food Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
15
|
Ravazzano L, Colaianni G, Tarakanova A, Xiao YB, Grano M, Libonati F. Multiscale and multidisciplinary analysis of aging processes in bone. NPJ AGING 2024; 10:28. [PMID: 38879533 PMCID: PMC11180112 DOI: 10.1038/s41514-024-00156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/07/2024] [Indexed: 06/19/2024]
Abstract
The world population is increasingly aging, deeply affecting our society by challenging our healthcare systems and presenting an economic burden, thus turning the spotlight on aging-related diseases: exempli gratia, osteoporosis, a silent disease until you suddenly break a bone. The increase in bone fracture risk with age is generally associated with a loss of bone mass and an alteration in the skeletal architecture. However, such changes cannot fully explain increased fragility with age. To successfully tackle age-related bone diseases, it is paramount to comprehensively understand the fundamental mechanisms responsible for tissue degeneration. Aging mechanisms persist at multiple length scales within the complex hierarchical bone structure, raising the need for a multiscale and multidisciplinary approach to resolve them. This paper aims to provide an overarching analysis of aging processes in bone and to review the most prominent outcomes of bone aging. A systematic description of different length scales, highlighting the corresponding techniques adopted at each scale and motivating the need for combining diverse techniques, is provided to get a comprehensive description of the multi-physics phenomena involved.
Collapse
Affiliation(s)
- Linda Ravazzano
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy
| | - Graziana Colaianni
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Anna Tarakanova
- School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, 06269, CT, USA
- Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, CT, 06269, Storrs, USA
| | - Yu-Bai Xiao
- School of Mechanical, Aerospace, and Manufacturing Engineering, University of Connecticut, 191 Auditorium Road, Unit 3139, Storrs, 06269, CT, USA
| | - Maria Grano
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, Piazza Giulio Cesare 11, Bari, 70124, Italy
| | - Flavia Libonati
- Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy.
- Department of Mechanical, Energy, Management and Transport Engineering - DIME, University of Genova, Via all'Opera Pia 15, Genova, 16145, Italy.
| |
Collapse
|
16
|
Miller CJ, Trichilo S, Pickering E, Martelli S, Dall'Ara E, Delisser P, Meakin LB, Pivonka P. Cortical thickness adaptation to combined mechanical loading and parathyroid hormone treatments is site specific and synergistic in the mouse tibia model. Bone 2024; 180:116994. [PMID: 38135023 DOI: 10.1016/j.bone.2023.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
In this study, we aimed to quantify the localised effects of mechanical loading (ML), low (20 μg/kg/day), moderate (40 μg/kg/day) or high (80 μg/kg/day) dosages of parathyroid hormone (PTH), and combined (PTHML) treatments on cortical bone adaptation in healthy 19-week old female C57BL/6 mice. To this end, we utilise a previously reported image analysis algorithm on μCT data of the mouse tibia published by Sugiyama et al. (2008) to measure changes in cortical area, marrow cavity area and local cortical thickness measures (ΔCt.Ar, ΔMa.Ar, ΔCt.Th respectively), evaluated at two cross-sections within the mouse tibia (proximal-middle (37 %) and middle (50 %)), and are compared to a superposed summation (P + M) of individual treatments to determine the effectiveness of combining treatments in vivo. ΔCt.Ar analysis revealed a non-linear, synergistic interactions between PTH and ML in the 37 % cross-section that saturates at higher PTH dosages, whereas the 50 % cross-section experiences an approximately linear, additive adaptation response. This coincided with an increase in ΔMa.Ar (indicating resorption of the endosteal surface), which was only counteracted by combined high dose PTH with ML in the middle cross-section. Regional analysis of ΔCt.Th changes reveal localised cortical thinning in response to low dose PTH treatment in the posteromedial region of the middle cross-section, signifying that PTH does not provide a homogeneous adaptation response around the cortical perimeter. We observe a synergistic response in the proximal-middle cross-section, with regions of compressive strain experiencing the greatest adaptation response to PTHML treatments, (peak ΔCt.Th of 189.32, 213.78 and 239.30 μm for low, moderate and high PTHML groups respectively). In contrast, PTHML treatments in the middle cross-section show a similar response to the superposed P + M group, with the exception of the combined high dose PTHML treatment which shows a synergistic interaction. These analyses suggest that, in mice, adding mechanical loading to PTH treatments leads to region specific bone responses; synergism of PTHML is only achieved in some regions experiencing high loading, while other regions respond additively to this combined treatment.
Collapse
Affiliation(s)
- Corey J Miller
- Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Edmund Pickering
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Saulo Martelli
- Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Peter Delisser
- Veterinary Specialist Services, Brisbane, Queensland, Australia
| | | | - Peter Pivonka
- Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
17
|
Sharma G, Sultana A, Abdullah KM, Pothuraju R, Nasser MW, Batra SK, Siddiqui JA. Epigenetic regulation of bone remodeling and bone metastasis. Semin Cell Dev Biol 2024; 154:275-285. [PMID: 36379849 PMCID: PMC10175516 DOI: 10.1016/j.semcdb.2022.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bone remodeling is a continuous and dynamic process of bone formation and resorption to maintain its integrity and homeostasis. Bone marrow is a source of various cell lineages, including osteoblasts and osteoclasts, which are involved in bone formation and resorption, respectively, to maintain bone homeostasis. Epigenetics is one of the elementary regulations governing the physiology of bone remodeling. Epigenetic modifications, mainly DNA methylation, histone modifications, and non-coding RNAs, regulate stable transcriptional programs without causing specific heritable alterations. DNA methylation in CpG-rich promoters of the gene is primarily correlated with gene silencing, and histone modifications are associated with transcriptional activation/inactivation. However, non-coding RNAs regulate the metastatic potential of cancer cells to metastasize at secondary sites. Deregulated or altered epigenetic modifications are often seen in many cancers and interwound with bone-specific tropism and cancer metastasis. Histone acetyltransferases, histone deacetylase, and DNA methyltransferases are promising targets in epigenetically altered cancer. High throughput epigenome mapping and targeting specific epigenetics modifiers will be helpful in the development of personalized epi-drugs for advanced and bone metastasis cancer patients. This review aims to discuss and gather more knowledge about different epigenetic modifications in bone remodeling and metastasis. Further, it provides new approaches for targeting epigenetic changes and therapy research.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashrafi Sultana
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
18
|
Ozanne H, Moubri L, Abou-Nassif L, Thoumire O, Echalard A, Morin-Grognet S, Atmani H, Ladam G, Labat B. Active Osteoblasts or Quiescent Bone Lining Cells? Preosteoblasts Fate Orchestrated by Curvature and Stiffness of an In Vitro 2.5D Biomimetic Culture System. Adv Healthc Mater 2024; 13:e2302222. [PMID: 37929897 DOI: 10.1002/adhm.202302222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Indexed: 11/07/2023]
Abstract
Biomimetic cell culture systems are required to provide more physiologically relevant microenvironments for bone cells. Here, a simple 2.5D culture platform is proposed, combining adjustable stiffness and surface features that mimic bone topography by using sandpaper grits as master molds with two stiffness formulations of polydimethylsiloxane (PDMS). The subsequent replicas perfectly conform the grits and reproduce the corresponding negative relief with cavities separated by convex edges. Biomimicry is also provided by an extracellular matrix (ECM)-like thin film coating, using the layer-by-layer (LbL) method. The topographical features, alternating concave, and convex structures drive preosteoblasts organization and morphology. Strikingly, curvature orchestrates the commitment of preosteoblasts, with i) maturation to active osteoblasts able to produce a dense collagenous matrix that ultimately mineralizes in the cavities, and ii) edges hosting quiescent cells that synthetize a very thin immature collagen layer with no mineralization. In summary, the present in vitro culture system model offers a cell-instructive 2.5D microenvironment that controls preosteoblasts fate, leading to two coexisting subpopulations: mature osteoblasts and bone lining cells (BLC). This promising culture system opens new avenues to advanced tissue-engineered modeling and can be applied to precellularized bone biomaterials.
Collapse
Affiliation(s)
- Hélène Ozanne
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Loïc Moubri
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Léa Abou-Nassif
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Olivier Thoumire
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Aline Echalard
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | | | - Hassan Atmani
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Guy Ladam
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| | - Béatrice Labat
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, PBS UMR 6270, Evreux, F-27000, France
| |
Collapse
|
19
|
Root SH, Matthews BG, Torreggiani E, Aguila HL, Kalajzic I. Hematopoietic and stromal DMP1-Cre labeled cells form a unique niche in the bone marrow. Sci Rep 2023; 13:22403. [PMID: 38104230 PMCID: PMC10725438 DOI: 10.1038/s41598-023-49713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Skeletogenesis and hematopoiesis are interdependent. Niches form between cells of both lineages where microenvironmental cues support specific lineage commitment. Because of the complex topography of bone marrow (BM), the identity and function of cells within specialized niches has not been fully elucidated. Dentin Matrix Protein 1 (DMP1)-Cre mice have been utilized in bone studies as mature osteoblasts and osteocytes express DMP1. DMP1 has been identified in CXCL12+ cells and an undefined CD45+ population. We crossed DMP1-Cre with Ai9 reporter mice and analyzed the tdTomato+ (tdT+) population in BM and secondary hematopoietic organs. CD45+tdT+ express myeloid markers including CD11b and are established early in ontogeny. CD45+tdT+ cells phagocytose, respond to LPS and are radioresistant. Depletion of macrophages caused a significant decrease in tdT+CD11b+ myeloid populations. A subset of CD45+tdT+ cells may be erythroid island macrophages (EIM) which are depleted after G-CSF treatment. tdT+CXCL12+ cells are in direct contact with F4/80 macrophages, express RANKL and form a niche with B220+ B cells. A population of resident cells within the thymus are tdT+ and express myeloid markers and RANKL. In conclusion, in addition to targeting osteoblast/osteocytes, DMP1-Cre labels unique cell populations of macrophage and stromal cells within BM and thymus niches and expresses key microenvironmental factors.
Collapse
Affiliation(s)
- Sierra H Root
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
- Division of Pediatric Dentistry, MC1610, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| | - Brya G Matthews
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Elena Torreggiani
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | | | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
20
|
Kendall JJ, Ledoux C, Marques FC, Boaretti D, Schulte FA, Morgan EF, Müller R. An in silico micro-multiphysics agent-based approach for simulating bone regeneration in a mouse femur defect model. Front Bioeng Biotechnol 2023; 11:1289127. [PMID: 38164405 PMCID: PMC10757951 DOI: 10.3389/fbioe.2023.1289127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Bone defects represent a challenging clinical problem as they can lead to non-union. In silico models are well suited to study bone regeneration under varying conditions by linking both cellular and systems scales. This paper presents an in silico micro-multiphysics agent-based (micro-MPA) model for bone regeneration following an osteotomy. The model includes vasculature, bone, and immune cells, as well as their interaction with the local environment. The model was calibrated by time-lapsed micro-computed tomography data of femoral osteotomies in C57Bl/6J mice, and the differences between predicted bone volume fractions and the longitudinal in vivo measurements were quantitatively evaluated using root mean square error (RMSE). The model performed well in simulating bone regeneration across the osteotomy gap, with no difference (5.5% RMSE, p = 0.68) between the in silico and in vivo groups for the 5-week healing period - from the inflammatory phase to the remodelling phase - in the volume spanning the osteotomy gap. Overall, the proposed micro-MPA model was able to simulate the influence of the local mechanical environment on bone regeneration, and both this environment and cytokine concentrations were found to be key factors in promoting bone regeneration. Further, the validated model matched clinical observations that larger gap sizes correlate with worse healing outcomes and ultimately simulated non-union. This model could help design and guide future experimental studies in bone repair, by identifying which are the most critical in vivo experiments to perform.
Collapse
Affiliation(s)
- Jack J. Kendall
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States
| | - Charles Ledoux
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Elise F. Morgan
- Center for Multiscale and Translational Mechanobiology, Boston University, Boston, MA, United States
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
van Dijk Christiansen P, Andreasen CM, El-Masri BM, Laursen KS, Delaisse JM, Andersen TL. Osteoprogenitor recruitment and differentiation during intracortical bone remodeling of adolescent humans. Bone 2023; 177:116896. [PMID: 37699496 DOI: 10.1016/j.bone.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Recruitment and proliferation of osteoprogenitors during the reversal-resorption phase, and their differentiation into mature bone-forming osteoblasts is crucial for initiation of bone formation during bone remodeling. This study investigates the osteoprogenitors' gradual recruitment, proliferation, and differentiation into bone-forming osteoblasts within intracortical remodeling events of healthy adolescent humans. METHODS The study was conducted on cortical bone specimens from 11 adolescent human controls - patients undergoing surgery due to coxa valga. The osteoprogenitor recruitment route and differentiation into osteoblasts were backtracked using immunostainings and in situ hybridizations with osteoblastic markers (CD271/NGFR, osterix/SP7, COL3A1 and COL1A1). The osteoblastic cell populations were defined based on the pore surfaces, and their proliferation index (Ki67), density and number/circumference were estimated in multiplex-immunofluorescence (Ki67, TRAcP, CD34) stained sections. RESULTS During the reversal-resorption phase, osteoclasts are intermixed with (COL3A1+NFGR+) osteoblastic reversal cells, which are considered to be osteoprogenitors of (COL1A1+SP7+) bone-forming osteoblasts. Initiation of bone formation requires a critical density of these osteoprogenitors (43 ± 9 cells/mm), which is reached though proliferation (4.4 ± 0.5 % proliferative) and even more so through recruitment of osteoprogenitors, but challenged by the ongoing expansion of the canal circumference. These osteoprogenitors most likely originate from osteoblastic bone lining cells and mainly lumen osteoprogenitors, which expand their population though proliferation (4.6 ± 0.3 %) and vascular recruitment. These lumen osteoprogenitors resemble canopy cells above trabecular remodeling sites, and like canopy cells they extend above bone-forming osteoblasts where they may rejuvenate the osteoblast population during bone formation. CONCLUSION Initiation of bone formation during intracortical remodeling requires a critical density of osteoprogenitors on eroded surfaces, which is reached though proliferation and recruitment of local osteoprogenitors: bone lining cells and lumen osteoprogenitors.
Collapse
Affiliation(s)
- Pernille van Dijk Christiansen
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Christina Møller Andreasen
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Danish Spatial Imaging Consortium (DanSIC).
| | - Bilal Mohamad El-Masri
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Danish Spatial Imaging Consortium (DanSIC).
| | - Kaja Søndergaard Laursen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark; Danish Spatial Imaging Consortium (DanSIC).
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Thomas Levin Andersen
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Forensic Medicine, Aarhus University, Aarhus, Denmark; Danish Spatial Imaging Consortium (DanSIC).
| |
Collapse
|
22
|
Jiang T, Xia T, Qiao F, Wang N, Jiang Y, Xin H. Role and Regulation of Transcription Factors in Osteoclastogenesis. Int J Mol Sci 2023; 24:16175. [PMID: 38003376 PMCID: PMC10671247 DOI: 10.3390/ijms242216175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Bones serve mechanical and defensive functions, as well as regulating the balance of calcium ions and housing bone marrow.. The qualities of bones do not remain constant. Instead, they fluctuate throughout life, with functions increasing in some situations while deteriorating in others. The synchronization of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is critical for maintaining bone mass and microstructure integrity in a steady state. This equilibrium, however, can be disrupted by a variety of bone pathologies. Excessive osteoclast differentiation can result in osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis, all of which can adversely affect people's health. Osteoclast differentiation is regulated by transcription factors NFATc1, MITF, C/EBPα, PU.1, NF-κB, and c-Fos. The transcriptional activity of osteoclasts is largely influenced by developmental and environmental signals with the involvement of co-factors, RNAs, epigenetics, systemic factors, and the microenvironment. In this paper, we review these themes in regard to transcriptional regulation in osteoclastogenesis.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Tianshuang Xia
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Fangliang Qiao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China;
| | - Yiping Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Hailiang Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
23
|
Cao Y, Kalajzic I, Matthews BG. CD51 labels periosteal injury-responsive osteoprogenitors. Front Physiol 2023; 14:1231352. [PMID: 37731543 PMCID: PMC10507171 DOI: 10.3389/fphys.2023.1231352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
The periosteum is a critical source of skeletal stem and progenitor cells (SSPCs) that form callus tissue in response to injury. There is yet to be a consensus on how to identify SSPCs in the adult periosteum. The aim of this study was to understand how potential murine periosteal SSPC populations behave in vivo and in response to injury. We evaluated the in vivo differentiation potential of Sca1-CD51+ and Sca1+CD51+ cells following transplantation. In vitro, the Sca1+CD51+ population appears to be more primitive multipotent cells, but after transplantation, Sca1-CD51+ cells showed superior engraftment, expansion, and differentiation into chondrocytes and osteoblasts. Despite representing a clear population with flow cytometry, we identified very few Sca1+CD51+ cells histologically. Using a periosteal scratch injury model, we successfully mimicked the endochondral-like healing process seen in unstable fractures, including the expansion and osteochondral differentiation of αSMA+ cells following injury. CD51+ cells were present in the cambium layer of resting periosteum and expanded following injury. Sca1+CD51- cells were mainly localized in the outer periosteal layer. We found that injury increased colony-forming unit fibroblast (CFU-F) formation in the periosteum and led to rapid expansion of CD90+ cells. Several other populations, including Sca1-CD51+ and CD34+ cells, were expanded by day 7. Mice with enhanced fracture healing due to elevated Notch signaling mediated by NICD1 overexpression showed significant expansion of CD51+ and CD34hi cells in the early stages of healing, suggesting these populations contribute to more rapid healing. In conclusion, we demonstrate that periosteal injury leads to the expansion of various SSPC populations, but further studies are required to confirm their lineage hierarchy in the adult skeletal system. Our data indicate that CD51+ skeletal progenitor cells are injury-responsive and show good engraftment and differentiation potential upon transplantation.
Collapse
Affiliation(s)
- Ye Cao
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, CT, United States
| | - Brya G. Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, CT, United States
| |
Collapse
|
24
|
Liu Y, Chen Y, Li XH, Cao C, Zhang HX, Zhou C, Chen Y, Gong Y, Yang JX, Cheng L, Chen XD, Shen H, Xiao HM, Tan LJ, Deng HW. Dissection of Cellular Communication between Human Primary Osteoblasts and Bone Marrow Mesenchymal Stem Cells in Osteoarthritis at Single-Cell Resolution. Int J Stem Cells 2023; 16:342-355. [PMID: 37105556 PMCID: PMC10465330 DOI: 10.15283/ijsc22101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 04/29/2023] Open
Abstract
Background and Objectives Osteoblasts are derived from bone marrow mesenchymal stem cells (BMMSCs) and play important role in bone remodeling. While our previous studies have investigated the cell subtypes and heterogeneity in osteoblasts and BMMSCs separately, cell-to-cell communications between osteoblasts and BMMSCs in vivo in humans have not been characterized. The aim of this study was to investigate the cellular communication between human primary osteoblasts and bone marrow mesenchymal stem cells. Methods and Results To investigate the cell-to-cell communications between osteoblasts and BMMSCs and identify new cell subtypes, we performed a systematic integration analysis with our single-cell RNA sequencing (scRNA-seq) transcriptomes data from BMMSCs and osteoblasts. We successfully identified a novel preosteoblasts subtype which highly expressed ATF3, CCL2, CXCL2 and IRF1. Biological functional annotations of the transcriptomes suggested that the novel preosteoblasts subtype may inhibit osteoblasts differentiation, maintain cells to a less differentiated status and recruit osteoclasts. Ligand-receptor interaction analysis showed strong interaction between mature osteoblasts and BMMSCs. Meanwhile, we found FZD1 was highly expressed in BMMSCs of osteogenic differentiation direction. WIF1 and SFRP4, which were highly expressed in mature osteoblasts were reported to inhibit osteogenic differentiation. We speculated that WIF1 and sFRP4 expressed in mature osteoblasts inhibited the binding of FZD1 to Wnt ligand in BMMSCs, thereby further inhibiting osteogenic differentiation of BMMSCs. Conclusions Our study provided a more systematic and comprehensive understanding of the heterogeneity of osteogenic cells. At the single cell level, this study provided insights into the cell-to-cell communications between BMMSCs and osteoblasts and mature osteoblasts may mediate negative feedback regulation of osteogenesis process.
Collapse
Affiliation(s)
- Ying Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yan Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiao-Hua Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Chong Cao
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui-Xi Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Cui Zhou
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yu Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jun-Xiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Cheng
- Department of Orthopedics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-Ding Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hong-Mei Xiao
- School of Basic Medical Science, Central South University, Changsha, China
- Center of Reproductive Health, System Biology and Data Information, Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
25
|
Rifai A, Weerasinghe DK, Tilaye GA, Nisbet D, Hodge JM, Pasco JA, Williams LJ, Samarasinghe RM, Williams RJ. Biofabrication of functional bone tissue: defining tissue-engineered scaffolds from nature. Front Bioeng Biotechnol 2023; 11:1185841. [PMID: 37614632 PMCID: PMC10444209 DOI: 10.3389/fbioe.2023.1185841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
Damage to bone leads to pain and loss of movement in the musculoskeletal system. Although bone can regenerate, sometimes it is damaged beyond its innate capacity. Research interest is increasingly turning to tissue engineering (TE) processes to provide a clinical solution for bone defects. Despite the increasing biomimicry of tissue-engineered scaffolds, significant gaps remain in creating the complex bone substitutes, which include the biochemical and physical conditions required to recapitulate bone cells' natural growth, differentiation and maturation. Combining advanced biomaterials with new additive manufacturing technologies allows the development of 3D tissue, capable of forming cell aggregates and organoids based on natural and stimulated cues. Here, we provide an overview of the structure and mechanical properties of natural bone, the role of bone cells, the remodelling process, cytokines and signalling pathways, causes of bone defects and typical treatments and new TE strategies. We highlight processes of selecting biomaterials, cells and growth factors. Finally, we discuss innovative tissue-engineered models that have physiological and anatomical relevance for cancer treatments, injectable stimuli gels, and other therapeutic drug delivery systems. We also review current challenges and prospects of bone TE. Overall, this review serves as guide to understand and develop better tissue-engineered bone designs.
Collapse
Affiliation(s)
- Aaqil Rifai
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - D. Kavindi Weerasinghe
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Gebreselassie Addisu Tilaye
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - David Nisbet
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC, Australia
- Laboratory of Advanced Biomaterials, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent’s Hospital, Melbourne, VIC, Australia
| | - Jason M. Hodge
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Julie A. Pasco
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Medicine-Western Health, The University of Melbourne, St Albans, VIC, Australia
| | - Lana J. Williams
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, Geelong, VIC, Australia
| | - Rasika M. Samarasinghe
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Richard J. Williams
- Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, VIC, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC, Australia
- Aikenhead Centre for Medical Discovery, St. Vincent’s Hospital, Melbourne, VIC, Australia
| |
Collapse
|
26
|
Krasnova O, Neganova I. Assembling the Puzzle Pieces. Insights for in Vitro Bone Remodeling. Stem Cell Rev Rep 2023; 19:1635-1658. [PMID: 37204634 DOI: 10.1007/s12015-023-10558-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
As a highly dynamic organ, bone changes during throughout a person's life. This process is referred to as 'bone remodeling' and it involves two stages - a well-balanced osteoclastic bone resorption and an osteoblastic bone formation. Under normal physiological conditions bone remodeling is highly regulated that ensures tight coupling between bone formation and resorption, and its disruption results in a bone metabolic disorder, most commonly osteoporosis. Though osteoporosis is one of the most prevalent skeletal ailments that affect women and men aged over 40 of all races and ethnicities, currently there are few, if any safe and effective therapeutic interventions available. Developing state-of-the-art cellular systems for bone remodeling and osteoporosis can provide important insights into the cellular and molecular mechanisms involved in skeletal homeostasis and advise better therapies for patients. This review describes osteoblastogenesis and osteoclastogenesis as two vital processes for producing mature, active bone cells in the context of interactions between cells and the bone matrix. In addition, it considers current approaches in bone tissue engineering, pointing out cell sources, core factors and matrices used in scientific practice for modeling bone diseases and testing drugs. Finally, it focuses on the challenges that bone regenerative medicine is currently facing.
Collapse
Affiliation(s)
- O Krasnova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - I Neganova
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| |
Collapse
|
27
|
Ballesteros J, Rivas D, Duque G. The Role of the Kynurenine Pathway in the Pathophysiology of Frailty, Sarcopenia, and Osteoporosis. Nutrients 2023; 15:3132. [PMID: 37513550 PMCID: PMC10383689 DOI: 10.3390/nu15143132] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Tryptophan is an essential nutrient required to generate vitamin B3 (niacin), which is mainly involved in energy metabolism and DNA production. Alterations in tryptophan metabolism could have significant effects on aging and musculoskeletal health. The kynurenine pathway, essential in tryptophan catabolism, is modulated by inflammatory factors that are increased in older persons, a process known as inflammaging. Osteoporosis, sarcopenia, osteosarcopenia, and frailty have also been linked with chronically increased levels of inflammatory factors. Due to the disruption of the kynurenine pathway by chronic inflammation and/or changes in the gut microbiota, serum levels of toxic metabolites are increased and are associated with the pathophysiology of those conditions. In contrast, anabolic products of this pathway, such as picolinic acid, have demonstrated a positive effect on skeletal muscle and bone. In addition, physical activity can modulate this pathway by promoting the secretion of anabolic kynurenines. According to the evidence collected, kynurenines could have a promising role as biomarkers for osteoporosis sarcopenia, osteosarcopenia, and frailty in older persons. In addition, some of these metabolites could become important targets for developing new pharmacological treatments for these conditions.
Collapse
Affiliation(s)
- Juan Ballesteros
- Servicio de Geriatría, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Daniel Rivas
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Gustavo Duque
- Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Dr. Joseph Kaufmann Chair in Geriatric Medicine, Faculty of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
28
|
Otani S, Ohnuma M, Ito K, Matsushita Y. Cellular dynamics of distinct skeletal cells and the development of osteosarcoma. Front Endocrinol (Lausanne) 2023; 14:1181204. [PMID: 37229448 PMCID: PMC10203529 DOI: 10.3389/fendo.2023.1181204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Bone contributes to the maintenance of vital biological activities. At the cellular level, multiple types of skeletal cells, including skeletal stem and progenitor cells (SSPCs), osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, orchestrate skeletal events such as development, aging, regeneration, and tumorigenesis. Osteosarcoma (OS) is a primary malignant tumor and the main form of bone cancer. Although it has been proposed that the cellular origins of OS are in osteogenesis-related skeletal lineage cells with cancer suppressor gene mutations, its origins have not yet been fully elucidated because of a poor understanding of whole skeletal cell diversity and dynamics. Over the past decade, the advent and development of single-cell RNA sequencing analyses and mouse lineage-tracing approaches have revealed the diversity of skeletal stem and its lineage cells. Skeletal stem cells (SSCs) in the bone marrow endoskeletal region have now been found to efficiently generate OS and to be robust cells of origin under p53 deletion conditions. The identification of SSCs may lead to a more limited redefinition of bone marrow mesenchymal stem/stromal cells (BM-MSCs), and this population has been thought to contain cells from which OS originates. In this mini-review, we discuss the cellular diversity and dynamics of multiple skeletal cell types and the origin of OS in the native in vivo environment in mice. We also discuss future challenges in the study of skeletal cells and OS.
Collapse
Affiliation(s)
- Shohei Otani
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mizuho Ohnuma
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Clinical Oral Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuki Matsushita
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
29
|
Yang J, Li Q, Feng Y, Zeng Y. Iron Deficiency and Iron Deficiency Anemia: Potential Risk Factors in Bone Loss. Int J Mol Sci 2023; 24:ijms24086891. [PMID: 37108056 PMCID: PMC10138976 DOI: 10.3390/ijms24086891] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Iron is one of the essential mineral elements for the human body and this nutrient deficiency is a worldwide public health problem. Iron is essential in oxygen transport, participates in many enzyme systems in the body, and is an important trace element in maintaining basic cellular life activities. Iron also plays an important role in collagen synthesis and vitamin D metabolism. Therefore, decrease in intracellular iron can lead to disturbance in the activity and function of osteoblasts and osteoclasts, resulting in imbalance in bone homeostasis and ultimately bone loss. Indeed, iron deficiency, with or without anemia, leads to osteopenia or osteoporosis, which has been revealed by numerous clinical observations and animal studies. This review presents current knowledge on iron metabolism under iron deficiency states and the diagnosis and prevention of iron deficiency and iron deficiency anemia (IDA). With emphasis, studies related to iron deficiency and bone loss are discussed, and the potential mechanisms of iron deficiency leading to bone loss are analyzed. Finally, several measures to promote complete recovery and prevention of iron deficiency are listed to improve quality of life, including bone health.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Qingmei Li
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yan Feng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| |
Collapse
|
30
|
Brent MB. Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies. Pharmacol Ther 2023; 244:108383. [PMID: 36933702 DOI: 10.1016/j.pharmthera.2023.108383] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/18/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
Collapse
Affiliation(s)
- Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, Denmark, Wilhelm Meyers Allé 3, 8000 Aarhus C, Denmark.
| |
Collapse
|
31
|
Brommage R, Liu J, Powell DR. Skeletal phenotypes in secreted frizzled-related protein 4 gene knockout mice mimic skeletal architectural abnormalities in subjects with Pyle's disease from SFRP4 mutations. Bone Res 2023; 11:9. [PMID: 36808149 PMCID: PMC9941579 DOI: 10.1038/s41413-022-00242-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 02/22/2023] Open
Abstract
Mutations in SFRP4 cause Pyle's bone disease with wide metaphyses and increased skeletal fragility. The WNT signaling pathway plays important roles in determining skeletal architecture and SFRP4 is a secreted Frizzled decoy receptor that inhibits WNT signaling. Seven cohorts of male and female Sfrp4 gene knockout mice, examined through 2 years of age, had a normal lifespan but showed cortical and trabecular bone phenotypes. Mimicking human Erlenmeyer flask deformities, bone cross-sectional areas were elevated 2-fold in the distal femur and proximal tibia but only 30% in femur and tibia shafts. Reduced cortical bone thickness was observed in the vertebral body, midshaft femur and distal tibia. Elevated trabecular bone mass and numbers were observed in the vertebral body, distal femur metaphysis and proximal tibia metaphysis. Midshaft femurs retained extensive trabecular bone through 2 years of age. Vertebral bodies had increased compressive strength, but femur shafts had reduced bending strength. Trabecular, but not cortical, bone parameters in heterozygous Sfrp4 mice were modestly affected. Ovariectomy resulted in similar declines in both cortical and trabecular bone mass in wild-type and Sfrp4 KO mice. SFRP4 is critical for metaphyseal bone modeling involved in determining bone width. Sfrp4 KO mice show similar skeletal architecture and bone fragility deficits observed in patients with Pyle's disease with SFRP4 mutations.
Collapse
Affiliation(s)
- Robert Brommage
- Department of Metabolism Research, Lexicon Pharmaceuticals, The Woodlands, TX, 77381, USA.
- BoneGenomics, The Woodlands, TX, USA.
| | - Jeff Liu
- Department of Metabolism Research, Lexicon Pharmaceuticals, The Woodlands, TX, 77381, USA.
- Biogen, Cambridge, MA, USA.
| | - David R Powell
- Department of Metabolism Research, Lexicon Pharmaceuticals, The Woodlands, TX, 77381, USA.
| |
Collapse
|
32
|
Sun L, Lu M, Chen L, Zhao B, Yao J, Shao Z, Chen X, Liu Y. Silk-Inorganic Nanoparticle Hybrid Hydrogel as an Injectable Bone Repairing Biomaterial. J Funct Biomater 2023; 14:jfb14020086. [PMID: 36826885 PMCID: PMC9966230 DOI: 10.3390/jfb14020086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Silk fibroin is regarded as a promising biomaterial in various areas, including bone tissue regeneration. Herein, Laponite® (LAP), which can promote osteogenic differentiation, was introduced into regenerated silk fibroin (RSF) to prepare an RSF/LAP hybrid hydrogel. This thixotropic hydrogel is injectable during the operation process, which is favorable for repairing bone defects. Our previous work demonstrated that the RSF/LAP hydrogel greatly promoted the osteogenic differentiation of osteoblasts in vitro. In the present study, the RSF/LAP hydrogel was found to have excellent biocompatibility and significantly improved new bone formation in a standard rat calvarial defect model in vivo. Additionally, the underlying biological mechanism of the RSF/LAP hydrogel in promoting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was extensively explored. The results indicate that the RSF/LAP hydrogels provide suitable conditions for the adhesion and proliferation of BMSCs, showing good biocompatibility in vitro. With the increase in LAP content, the alkaline phosphatase (ALP) activity and mRNA and protein expression of the osteogenic markers of BMSCs improved significantly. Protein kinase B (AKT) pathway activation was found to be responsible for the inherent osteogenic properties of the RSF/LAP hybrid hydrogel. Therefore, the results shown in this study firmly suggest such an injectable RSF/LAP hydrogel with good biocompatibility (both in vitro and in vivo) would have good application prospects in the field of bone regeneration.
Collapse
Affiliation(s)
- Liangyan Sun
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Minqi Lu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Ling Chen
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Bingjiao Zhao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
| | - Jinrong Yao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Zhengzhong Shao
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Xin Chen
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
- Correspondence: (X.C.); (Y.L.)
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 200001, China
- Correspondence: (X.C.); (Y.L.)
| |
Collapse
|
33
|
Lysophosphatidic acid induces proliferation and osteogenic differentiation of human dental pulp stem cell through lysophosphatidic acid receptor 3/extracellular signal-regulated kinase signaling axis. J Dent Sci 2023. [DOI: 10.1016/j.jds.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
34
|
Targeting Agents in Biomaterial-Mediated Bone Regeneration. Int J Mol Sci 2023; 24:ijms24032007. [PMID: 36768328 PMCID: PMC9916506 DOI: 10.3390/ijms24032007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Bone diseases are a global public concern that affect millions of people. Even though current treatments present high efficacy, they also show several side effects. In this sense, the development of biocompatible nanoparticles and macroscopic scaffolds has been shown to improve bone regeneration while diminishing side effects. In this review, we present a new trend in these materials, reporting several examples of materials that specifically recognize several agents of the bone microenvironment. Briefly, we provide a subtle introduction to the bone microenvironment. Then, the different targeting agents are exposed. Afterward, several examples of nanoparticles and scaffolds modified with these agents are shown. Finally, we provide some future perspectives and conclusions. Overall, this topic presents high potential to create promising translational strategies for the treatment of bone-related diseases. We expect this review to provide a comprehensive description of the incipient state-of-the-art of bone-targeting agents in bone regeneration.
Collapse
|
35
|
Zaidi M, Kim SM, Mathew M, Korkmaz F, Sultana F, Miyashita S, Gumerova AA, Frolinger T, Moldavski O, Barak O, Pallapati A, Rojekar S, Caminis J, Ginzburg Y, Ryu V, Davies TF, Lizneva D, Rosen CJ, Yuen T. Bone circuitry and interorgan skeletal crosstalk. eLife 2023; 12:83142. [PMID: 36656634 PMCID: PMC9851618 DOI: 10.7554/elife.83142] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone integrity in disease. Recent breakthroughs have arisen mainly from identifying disease-causing mutations and modeling human bone disease in rodents, in essence, highlighting the integrative nature of skeletal physiology. It has become increasingly clear that bone cells, osteoblasts, osteoclasts, and osteocytes, communicate and regulate the fate of each other through RANK/RANKL/OPG, liver X receptors (LXRs), EphirinB2-EphB4 signaling, sphingolipids, and other membrane-associated proteins, such as semaphorins. Mounting evidence also showed that critical developmental pathways, namely, bone morphogenetic protein (BMP), NOTCH, and WNT, interact each other and play an important role in postnatal bone remodeling. The skeleton communicates not only with closely situated organs, such as bone marrow, muscle, and fat, but also with remote vital organs, such as the kidney, liver, and brain. The metabolic effect of bone-derived osteocalcin highlights a possible role of skeleton in energy homeostasis. Furthermore, studies using genetically modified rodent models disrupting the reciprocal relationship with tropic pituitary hormone and effector hormone have unraveled an independent role of pituitary hormone in skeletal remodeling beyond the role of regulating target endocrine glands. The cytokine-mediated skeletal actions and the evidence of local production of certain pituitary hormones by bone marrow-derived cells displays a unique endocrine-immune-skeletal connection. Here, we discuss recently elucidated mechanisms controlling the remodeling of bone, communication of bone cells with cells of other lineages, crosstalk between bone and vital organs, as well as opportunities for treating diseases of the skeleton.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mehr Mathew
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Farhath Sultana
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sari Miyashita
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Azatovna Gumerova
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tal Frolinger
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ofer Moldavski
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Orly Barak
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anusha Pallapati
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Satish Rojekar
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - John Caminis
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yelena Ginzburg
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Terry F Davies
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
36
|
Yuan G, Li Z, Lin X, Li N, Xu R. New perspective of skeletal stem cells. BIOMATERIALS TRANSLATIONAL 2022; 3:280-294. [PMID: 36846511 PMCID: PMC9947737 DOI: 10.12336/biomatertransl.2022.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 03/01/2023]
Abstract
Tissue-resident stem cells are a group of stem cells distinguished by their capacity for self-renewal and multilineage differentiation capability with tissue specificity. Among these tissue-resident stem cells, skeletal stem cells (SSCs) were discovered in the growth plate region through a combination of cell surface markers and lineage tracing series. With the process of unravelling the anatomical variation of SSCs, researchers were also keen to investigate the developmental diversity outside the long bones, including in the sutures, craniofacial sites, and spinal regions. Recently, fluorescence-activated cell sorting, lineage tracing, and single-cell sequencing have been used to map lineage trajectories by studying SSCs with different spatiotemporal distributions. The SSC niche also plays a pivotal role in regulating SSC fate, such as cell-cell interactions mediated by multiple signalling pathways. This review focuses on discussing the spatial and temporal distribution of SSCs, and broadening our understanding of the diversity and plasticity of SSCs by summarizing the progress of research into SSCs in recent years.
Collapse
Affiliation(s)
- Guixin Yuan
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Zan Li
- Department of Sports Medicine & Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xixi Lin
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China
| | - Na Li
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Corresponding authors: Ren Xu, ; Na Li,
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Centre for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian Province, China,Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Department of Human Anatomy, School of Medicine, Xiamen University, Xiamen, Fujian Province, China,Corresponding authors: Ren Xu, ; Na Li,
| |
Collapse
|
37
|
Hong AR, Yang JY, Lee JY, Suh J, Lee YS, Kim JE, Kim SW. Reactivation of Bone Lining Cells are Attenuated Over Repeated Anti-sclerostin Antibody Administration. Calcif Tissue Int 2022; 111:495-505. [PMID: 35925416 DOI: 10.1007/s00223-022-01013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
Reactivation of bone lining cells (BLCs) is a crucial mechanism governing the anabolic action of anti-sclerostin antibody (Scl-Ab) via modeling-based bone formation; however, it remains unclear whether this reactivation can be attenuated after persistent administration of Scl-Ab. Here, we aimed to investigate the reproducibility of persistent Scl-Ab administration for the reactivation of BLCs, and to elucidate the relationship between the activity of BLCs and serum levels of N-terminal procollagen type I (P1NP) during chronic Scl-Ab administration. We conducted an osteoblast lineage tracing study. Briefly, Dmp1-CreERt2(+):Rosa26R mice were injected with 1 mg of 4-hydroxy-tamoxifen weekly from postnatal weeks four to eight. Mice were treated twice with either vehicle or Scl-Ab (25 mg/kg) at weeks 12, 16, and 20, and were euthanized at weeks 8, 12, 13, 16, 17, 20, and 21 (4-6 mice in each group). After euthanization, the number and thickness of X-gal (+) cells on the periosteum of the femoral bones and the serum levels of P1NP were quantified at each time point. Scl-Ab induced a significant increase in the thickness of X-gal (+) cells on periosteal bone surfaces at postnatal weeks 13 (after 1st dose), 17 (after 2nd dose), and 21 (after 3rd dose) compared to that in vehicle-treated mice (all P < 0.001). In the Scl-Ab group, significant increases in the thickness of labeled cells were observed between weeks 16 and 17 and weeks 20 and 21 (both P < 0.001). The percentage increase in X-gal (+) cell thickness was 108.9% from week 12 to week 13, 54.6% from week 16 to week 17, and 49.2% from week 20 to week 21 in the Scl-Ab group. Although Scl-Ab treatment increased the serum levels of P1NP at postnatal weeks 13 and 17 compared with those at week 12 (P = 0.017 and P = 0.038, respectively), the same was not observed at week 21 (P = 0.296). A significant increase in P1NP levels was observed between weeks 16 and 17 and weeks 20 and 21 in the Scl-Ab group (P = 0.005 and P = 0.007, respectively). The percentage increase in P1NP levels was 141.7% from weeks 12 to 13, 114.8% from weeks 16 to 17, and 99.4% from weeks 20 to 21. Serum P1NP levels were positively correlated with X-gal (+) cell thickness (R2 = 0.732, P < 0.001). Reactivation of BLCs is modestly attenuated, but reproducible, during persistent Scl-Ab administration. Serum P1NP levels appear to be an indicator of the impact of Scl-Ab on the conversion of BLCs into mature osteoblasts on periosteal bone surfaces, thus contributing to modeling-based bone formation.
Collapse
Affiliation(s)
- A Ram Hong
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Jae-Yeon Yang
- Department of Research and Experiment, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| | - Ji Yeon Lee
- Department of Research and Experiment, Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| | - Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, South Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine and Boramae Medical Center, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061, South Korea.
| |
Collapse
|
38
|
Marx RE, Amailuk P, Patel N, Ledoux A, Stanbouly D. FlexMetric bone marrow aspirator yields laboratory and clinically improved results from mesenchymal stem and progenitor cells without centrifugation. J Tissue Eng Regen Med 2022; 16:1047-1057. [PMID: 36112534 DOI: 10.1002/term.3348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/22/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Several devices used to harvest stem/progenitor cells from bone marrow are available to clinicians. This study compared three devices measuring stem cell yields and correlating those yields to bone regeneration. A flexible forward aspirating system Marrow Marxman (MM), a straight needle aspirating on withdrawal system Marrow Cellutions (MC), and a straight needle aspirating on withdrawal and centrifuging the aspirate (BMAC) were compared in a side-to-side patient comparison, as well as tissue engineered bone grafts. The FlexMetric system (MM) produced greater CFU-f values compared to the straight needle (MC) Δ = 1083/ml, p < 0.001 and 1225/ml, p < 0.001 than the BMAC system. This increased stem/progenitor cell yield also translated into a greater radiographic bone density at 6 months Δ = 88.3 Hu, p ≤ 0.001 versus MC and Δ = 116.7, p < 0.001 versus BMAC at 6 months and Δ = 72.2, p < 0.001 and Δ = 93.3, p < 0.001 at 9 months respectively. The increased stem/progenitor cell yield of the MM system clinically translated into greater bone regeneration as measured by bone volume p < 0.014 and p < 0.001 respectively, trabecular thickness p < 0.007 and p < 0.002 respectively, and trabecular separation p = 0.011 and p < 0.001. A flexible bone marrow aspirator produces higher yields of stem/progenitor cells. Higher yields of stem/progenitor cells translate into greater bone regeneration in tissue engineering. Flexmetric technology produces better bone regeneration due to a forward aspiration concept reducing dilution from peripheral blood and its ability to target lining cells along the inner cortex. Centrifugation systems are not required in tissue engineering procedures involving stem/progenitor cells due to nonviability or functional loss from g-forces.
Collapse
Affiliation(s)
- Robert E Marx
- University of Miami Miller School of Medicine, Retired Hospital Corporation of America, Mercy Hospital, Consultant, Miami, Florida, USA
| | - Paul Amailuk
- University of Miami Miller School of Medicine, Retired Hospital Corporation of America, Mercy Hospital, Consultant, Miami, Florida, USA.,Gold Coast University Hospital Australia, Southport, Queensland, Australia.,Jackson Health Systems, Miami, Florida, USA
| | - Neel Patel
- University of Miami Miller School of Medicine, Retired Hospital Corporation of America, Mercy Hospital, Consultant, Miami, Florida, USA.,Jackson Health Systems, Miami, Florida, USA
| | - Andre Ledoux
- University of Miami Miller School of Medicine, Retired Hospital Corporation of America, Mercy Hospital, Consultant, Miami, Florida, USA.,Jackson Health Systems, Miami, Florida, USA.,US Army Walter Reed Military Medical Center, Private Practice, Baptist Health Systems, Miami, Florida, USA
| | - Dani Stanbouly
- Columbia University, College of Dental Medicine, New York, New York, USA
| |
Collapse
|
39
|
Tsuji N, Sakamoto T, Hoshi K, Hikita A. Spatiotemporal Analysis of Osteoblast Morphology and Wnt Signal‐Induced Osteoblast Reactivation during Bone Modeling in Vitro. JBMR Plus 2022; 6:e10689. [PMID: 36398107 PMCID: PMC9664540 DOI: 10.1002/jbm4.10689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/09/2022] Open
Abstract
Bone nodule formation by differentiating osteoblasts is considered an in vitro model that mimics bone modeling. However, the details of osteoblast behavior and matrix production during bone nodule formation are poorly understood. Here, we present a spatiotemporal analysis system for evaluating osteoblast morphology and matrix production during bone modeling in vitro via two-photon microscopy. Using this system, a change in osteoblast morphology from cuboidal to flat was observed during the formation of mineralized nodules, and this change was quantified. Areas with high bone formation were densely populated with cuboidal osteoblasts, which were characterized by blebs, protruding structures on their cell membranes. Cuboidal osteoblasts with blebs were highly mobile, and osteoblast blebs exhibited a polar distribution. Furthermore, mimicking romosozumab treatment, when differentiated flattened osteoblasts were stimulated with BIO, a GSK3β inhibitor, they were reactivated to acquire a cuboidal morphology with blebs on their membranes and produced more matrix than nonstimulated cells. Our analysis system is a powerful tool for evaluating the cell morphology and function of osteoblasts during bone modeling. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Naoki Tsuji
- Department of Sensory and Motor System Medicine, Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Tomoaki Sakamoto
- Department of Tissue Engineering The University of Tokyo Hospital Tokyo Japan
| | - Kazuto Hoshi
- Department of Sensory and Motor System Medicine, Graduate School of Medicine The University of Tokyo Tokyo Japan
- Department of Tissue Engineering The University of Tokyo Hospital Tokyo Japan
| | - Atsuhiko Hikita
- Department of Tissue Engineering The University of Tokyo Hospital Tokyo Japan
| |
Collapse
|
40
|
Li S, Yao JC, Oetjen KA, Krambs JR, Xia J, Zhang J, Schmidt AP, Helton NM, Fulton RS, Heath SE, Turnbull IR, Mbalaviele G, Ley TJ, Walter MJ, Link DC. IL-1β expression in bone marrow dendritic cells is induced by TLR2 agonists and regulates HSC function. Blood 2022; 140:1607-1620. [PMID: 35675516 PMCID: PMC9707400 DOI: 10.1182/blood.2022016084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem/progenitor cells (HSPCs) reside in localized microenvironments, or niches, in the bone marrow that provide key signals regulating their activity. A fundamental property of hematopoiesis is the ability to respond to environmental cues such as inflammation. How these cues are transmitted to HSPCs within hematopoietic niches is not well established. Here, we show that perivascular bone marrow dendritic cells (DCs) express a high basal level of Toll-like receptor-1 (TLR1) and TLR2. Systemic treatment with a TLR1/2 agonist induces HSPC expansion and mobilization. It also induces marked alterations in the bone marrow microenvironment, including a decrease in osteoblast activity and sinusoidal endothelial cell numbers. TLR1/2 agonist treatment of mice in which Myd88 is deleted specifically in DCs using Zbtb46-Cre show that the TLR1/2-induced expansion of multipotent HPSCs, but not HSPC mobilization or alterations in the bone marrow microenvironment, is dependent on TLR1/2 signaling in DCs. Interleukin-1β (IL-1β) is constitutively expressed in both murine and human DCs and is further induced after TLR1/2 stimulation. Systemic TLR1/2 agonist treatment of Il1r1-/- mice show that TLR1/2-induced HSPC expansion is dependent on IL-1β signaling. Single-cell RNA-sequencing of low-risk myelodysplastic syndrome bone marrow revealed that IL1B and TLR1 expression is increased in DCs. Collectively, these data suggest a model in which TLR1/2 stimulation of DCs induces secretion of IL-1β and other inflammatory cytokines into the perivascular niche, which in turn, regulates multipotent HSPCs. Increased DC TLR1/2 signaling may contribute to altered HSPC function in myelodysplastic syndrome by increasing local IL-1β expression.
Collapse
Affiliation(s)
- Sidan Li
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Hematology Oncology Center, Beijing Children’s Hospital, National Center for Children’s Health, Capital Medial University, Beijing, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juo-Chin Yao
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Karolyn A. Oetjen
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Joseph R. Krambs
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jun Xia
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Jingzhu Zhang
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Amy P. Schmidt
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Nichole M. Helton
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Robert S. Fulton
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Sharon E. Heath
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Isaiah R. Turnbull
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - Gabriel Mbalaviele
- Division of Bone and Mineral Disease, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Timothy J. Ley
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Matthew J. Walter
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Daniel C. Link
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
41
|
Al Maruf DSA, Ghosh YA, Xin H, Cheng K, Mukherjee P, Crook JM, Wallace GG, Klein TJ, Clark JR. Hydrogel: A Potential Material for Bone Tissue Engineering Repairing the Segmental Mandibular Defect. Polymers (Basel) 2022; 14:polym14194186. [PMID: 36236133 PMCID: PMC9571534 DOI: 10.3390/polym14194186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Free flap surgery is currently the only successful method used by surgeons to reconstruct critical-sized defects of the jaw, and is commonly used in patients who have had bony lesions excised due to oral cancer, trauma, infection or necrosis. However, donor site morbidity remains a significant flaw of this strategy. Various biomaterials have been under investigation in search of a suitable alternative for segmental mandibular defect reconstruction. Hydrogels are group of biomaterials that have shown their potential in various tissue engineering applications, including bone regeneration, both through in vitro and in vivo pre-clinical animal trials. This review discusses different types of hydrogels, their fabrication techniques, 3D printing, their potential for bone regeneration, outcomes, and the limitations of various hydrogels in preclinical models for bone tissue engineering. This review also proposes a modified technique utilizing the potential of hydrogels combined with scaffolds and cells for efficient reconstruction of mandibular segmental defects.
Collapse
Affiliation(s)
- D S Abdullah Al Maruf
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Correspondence:
| | - Yohaann Ali Ghosh
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Hai Xin
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
| | - Kai Cheng
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local, Camperdown 2050, Australia
| | - Payal Mukherjee
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local, Camperdown 2050, Australia
| | - Jeremy Micah Crook
- Biomedical Innovation, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Sarcoma and Surgical Research Centre, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong 2522, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong 2522, Australia
- Illawarra Health and Medical Research Institute, The University of Wollongong, Wollongong 2522, Australia
| | - Gordon George Wallace
- ARC Centre of Excellence for Electromaterials Science, The University of Wollongong, Wollongong 2522, Australia
- Intelligent Polymer Research Institute, AIIM Facility, The University of Wollongong, Wollongong 2522, Australia
| | - Travis Jacob Klein
- Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove 4059, Australia
| | - Jonathan Robert Clark
- Integrated Prosthetics and Reconstruction, Department of Head and Neck Surgery, Chris O’Brien Lifehouse, Camperdown 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown 2050, Australia
- Royal Prince Alfred Institute of Academic Surgery, Sydney Local, Camperdown 2050, Australia
| |
Collapse
|
42
|
Doube M. Closing cones create conical lamellae in secondary osteonal bone. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220712. [PMID: 35958092 PMCID: PMC9363998 DOI: 10.1098/rsos.220712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Lamellae are sheets of mineralized collagen 1-20 µm thick, extending over hundreds of µm in bone tissue, occupying bone's structural hierarchy at a level above collagen fibres and osteocytes, and below osteons and trabeculae. Osteons are tubular arrangements of lamellae surrounding central neurovascular canals. Lamellae in osteons are usually described as concentric cylinders based on their annular appearance in transverse section. In this review, I provide a perspective on current understanding of the relationship between geometry of the bone formation front and the shape of lamellae produced at it, reaching the conclusion that the 'closing cone' bone formation front in secondary osteonal remodelling must necessarily result in cone-shaped lamellae in the mature secondary osteon. Secondary osteons replace primary osteons through a tunnelling process of bone turnover, meaning that conical lamellae may become more common in older and damaged bone which is at greatest risk of fracture. Visualization and measurement of three-dimensional lamellar shape over hundreds of microns is needed to provide data for accurate micromechanical simulations. Treating secondary osteonal lamellae as a 'stack of cones' rather than 'nested cylinders' may have important implications for our appreciation of bone's function as a load-bearing tissue and of its behaviour in fracture.
Collapse
Affiliation(s)
- Michael Doube
- Department of Infectious Diseases and Public Health, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
43
|
Bolamperti S, Villa I, Rubinacci A. Bone remodeling: an operational process ensuring survival and bone mechanical competence. Bone Res 2022; 10:48. [PMID: 35851054 PMCID: PMC9293977 DOI: 10.1038/s41413-022-00219-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 05/02/2022] [Accepted: 05/15/2022] [Indexed: 12/12/2022] Open
Abstract
Bone remodeling replaces old and damaged bone with new bone through a sequence of cellular events occurring on the same surface without any change in bone shape. It was initially thought that the basic multicellular unit (BMU) responsible for bone remodeling consists of osteoclasts and osteoblasts functioning through a hierarchical sequence of events organized into distinct stages. However, recent discoveries have indicated that all bone cells participate in BMU formation by interacting both simultaneously and at different differentiation stages with their progenitors, other cells, and bone matrix constituents. Therefore, bone remodeling is currently considered a physiological outcome of continuous cellular operational processes optimized to confer a survival advantage. Bone remodeling defines the primary activities that BMUs need to perform to renew successfully bone structural units. Hence, this review summarizes the current understanding of bone remodeling and future research directions with the aim of providing a clinically relevant biological background with which to identify targets for therapeutic strategies in osteoporosis.
Collapse
Affiliation(s)
- Simona Bolamperti
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy
| | - Isabella Villa
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy
| | - Alessandro Rubinacci
- Osteoporosis and Bone and Mineral Metabolism Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132, Milano, Italy.
| |
Collapse
|
44
|
Gadomski S, Fielding C, García-García A, Korn C, Kapeni C, Ashraf S, Villadiego J, Toro RD, Domingues O, Skepper JN, Michel T, Zimmer J, Sendtner R, Dillon S, Poole KES, Holdsworth G, Sendtner M, Toledo-Aral JJ, De Bari C, McCaskie AW, Robey PG, Méndez-Ferrer S. A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise. Cell Stem Cell 2022; 29:528-544.e9. [PMID: 35276096 PMCID: PMC9033279 DOI: 10.1016/j.stem.2022.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/02/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
Abstract
The autonomic nervous system is a master regulator of homeostatic processes and stress responses. Sympathetic noradrenergic nerve fibers decrease bone mass, but the role of cholinergic signaling in bone has remained largely unknown. Here, we describe that early postnatally, a subset of sympathetic nerve fibers undergoes an interleukin-6 (IL-6)-induced cholinergic switch upon contacting the bone. A neurotrophic dependency mediated through GDNF-family receptor-α2 (GFRα2) and its ligand, neurturin (NRTN), is established between sympathetic cholinergic fibers and bone-embedded osteocytes, which require cholinergic innervation for their survival and connectivity. Bone-lining osteoprogenitors amplify and propagate cholinergic signals in the bone marrow (BM). Moderate exercise augments trabecular bone partly through an IL-6-dependent expansion of sympathetic cholinergic nerve fibers. Consequently, loss of cholinergic skeletal innervation reduces osteocyte survival and function, causing osteopenia and impaired skeletal adaptation to moderate exercise. These results uncover a cholinergic neuro-osteocyte interface that regulates skeletogenesis and skeletal turnover through bone-anabolic effects.
Collapse
Affiliation(s)
- Stephen Gadomski
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA; NIH Oxford-Cambridge Scholars Program in Partnership with Medical University of South Carolina, Charleston, SC 29425, USA
| | - Claire Fielding
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Andrés García-García
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Claudia Korn
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Chrysa Kapeni
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Sadaf Ashraf
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Javier Villadiego
- Instituto de Biomedicina de Sevilla-IBiS (Hospitales Universitarios Virgen del Rocío y Macarena/CSIC/Universidad de Sevilla), 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, (CIBERNED), Madrid 28029, Spain
| | - Raquel Del Toro
- Instituto de Biomedicina de Sevilla-IBiS (Hospitales Universitarios Virgen del Rocío y Macarena/CSIC/Universidad de Sevilla), 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur Alzette, Luxembourg
| | - Jeremy N Skepper
- Department of Physiology, Development, and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge CB2 3DY, UK
| | - Tatiana Michel
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur Alzette, Luxembourg
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur Alzette, Luxembourg
| | - Regine Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany
| | - Scott Dillon
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Kenneth E S Poole
- Cambridge NIHR Biomedical Research Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany
| | - Juan J Toledo-Aral
- Instituto de Biomedicina de Sevilla-IBiS (Hospitales Universitarios Virgen del Rocío y Macarena/CSIC/Universidad de Sevilla), 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, (CIBERNED), Madrid 28029, Spain
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Andrew W McCaskie
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Pamela G Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Instituto de Biomedicina de Sevilla-IBiS (Hospitales Universitarios Virgen del Rocío y Macarena/CSIC/Universidad de Sevilla), 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain.
| |
Collapse
|
45
|
Man J, Graham T, Squires-Donelly G, Laslett AL. The effects of microgravity on bone structure and function. NPJ Microgravity 2022; 8:9. [PMID: 35383182 PMCID: PMC8983659 DOI: 10.1038/s41526-022-00194-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Humans are spending an increasing amount of time in space, where exposure to conditions of microgravity causes 1-2% bone loss per month in astronauts. Through data collected from astronauts, as well as animal and cellular experiments conducted in space, it is evident that microgravity induces skeletal deconditioning in weight-bearing bones. This review identifies contentions in current literature describing the effect of microgravity on non-weight-bearing bones, different bone compartments, as well as the skeletal recovery process in human and animal spaceflight data. Experiments in space are not readily available, and experimental designs are often limited due to logistical and technical reasons. This review introduces a plethora of on-ground research that elucidate the intricate process of bone loss, utilising technology that simulates microgravity. Observations from these studies are largely congruent to data obtained from spaceflight experiments, while offering more insights behind the molecular mechanisms leading to microgravity-induced bone loss. These insights are discussed herein, as well as how that knowledge has contributed to studies of current therapeutic agents. This review also points out discrepancies in existing data, highlighting knowledge gaps in our current understanding. Further dissection of the exact mechanisms of microgravity-induced bone loss will enable the development of more effective preventative and therapeutic measures to protect against bone loss, both in space and possibly on ground.
Collapse
Affiliation(s)
- Joey Man
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia.
- Space Technology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia.
| | - Taylor Graham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Georgina Squires-Donelly
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia
| | - Andrew L Laslett
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Clayton, Victoria, 3168, Australia.
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, 3800, Australia.
- Space Technology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria, 3168, Australia.
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW Periosteal apposition and endosteal remodeling regulate cortical bone expansion and thickness, both critical determinants of bone strength. Yet, the cellular characteristics and local or paracrine factors that regulate the periosteum and endosteum remain largely elusive. Here we discuss novel insights in cortical bone growth, expansion, and homeostasis, provided by the study of Secreted Frizzled Receptor Protein 4 (Sfrp4), a decoy receptor for Wnt ligands. RECENT FINDINGS SFRP4 loss-of function mutations cause Pyle disease, a rare skeletal disorder characterized by cortical bone thinning and increased fragility fractures despite increased trabecular bone density. On the endosteal surface, Sfrp4-mediated repression of non-canonical Wnt signaling regulates endosteal resorption. On the periosteum, Sfrp4 identifies as a critical functional mediator of periosteal stem cell/progenitor expansion and differentiation. Analysis of signaling pathways regulating skeletal stem cells/progenitors provides an opportunity to advance our understanding of the mechanisms involved in cortical bone biology.
Collapse
Affiliation(s)
- Ruiying Chen
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
- Endocrine Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Francesca Gori
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
47
|
Fielding C, García-García A, Korn C, Gadomski S, Fang Z, Reguera JL, Pérez-Simón JA, Göttgens B, Méndez-Ferrer S. Cholinergic signals preserve haematopoietic stem cell quiescence during regenerative haematopoiesis. Nat Commun 2022; 13:543. [PMID: 35087060 PMCID: PMC8795384 DOI: 10.1038/s41467-022-28175-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
The sympathetic nervous system has been evolutionary selected to respond to stress and activates haematopoietic stem cells via noradrenergic signals. However, the pathways preserving haematopoietic stem cell quiescence and maintenance under proliferative stress remain largely unknown. Here we found that cholinergic signals preserve haematopoietic stem cell quiescence in bone-associated (endosteal) bone marrow niches. Bone marrow cholinergic neural signals increase during stress haematopoiesis and are amplified through cholinergic osteoprogenitors. Lack of cholinergic innervation impairs balanced responses to chemotherapy or irradiation and reduces haematopoietic stem cell quiescence and self-renewal. Cholinergic signals activate α7 nicotinic receptor in bone marrow mesenchymal stromal cells leading to increased CXCL12 expression and haematopoietic stem cell quiescence. Consequently, nicotine exposure increases endosteal haematopoietic stem cell quiescence in vivo and impairs hematopoietic regeneration after haematopoietic stem cell transplantation in mice. In humans, smoking history is associated with delayed normalisation of platelet counts after allogeneic haematopoietic stem cell transplantation. These results suggest that cholinergic signals preserve stem cell quiescence under proliferative stress.
Collapse
Affiliation(s)
- Claire Fielding
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Andrés García-García
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Claudia Korn
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Stephen Gadomski
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
- NIH-Oxford-Cambridge Scholars Program in partnership with Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Zijian Fang
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Juan L Reguera
- Department of Hematology, University Hospital Virgen del Rocio, 41013, Sevilla, Spain
| | - José A Pérez-Simón
- NIH-Oxford-Cambridge Scholars Program in partnership with Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Hematology, University Hospital Virgen del Rocio, 41013, Sevilla, Spain
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK.
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK.
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
- Instituto de Biomedicina de Sevilla (IBiS/CSIC), Universidad de Sevilla, 41013, Seville, Spain.
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009, Seville, Spain.
| |
Collapse
|
48
|
Buettmann EG, Yoneda S, Hu P, McKenzie JA, Silva MJ. Postnatal Osterix but not DMP1 lineage cells significantly contribute to intramembranous ossification in three preclinical models of bone injury. Front Physiol 2022; 13:1083301. [PMID: 36685200 PMCID: PMC9846510 DOI: 10.3389/fphys.2022.1083301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
Murine models of long-bone fracture, stress fracture, and cortical defect are used to discern the cellular and molecular mediators of intramembranous and endochondral bone healing. Previous work has shown that Osterix (Osx+) and Dentin Matrix Protein-1 (DMP1+) lineage cells and their progeny contribute to injury-induced woven bone formation during femoral fracture, ulnar stress fracture, and tibial cortical defect repair. However, the contribution of pre-existing versus newly-derived Osx+ and DMP1+ lineage cells in these murine models of bone injury is unclear. We addressed this knowledge gap by using male and female 12-week-old, tamoxifen-inducible Osx Cre_ERT2 and DMP1 Cre_ERT2 mice harboring the Ai9 TdTomato reporter allele. To trace pre-existing Osx+ and DMP1+ lineage cells, tamoxifen (TMX: 100 mg/kg gavage) was given in a pulse manner (three doses, 4 weeks before injury), while to label pre-existing and newly-derived lineage Osx+ and DMP1+ cells, TMX was first given 2 weeks before injury and continuously (twice weekly) throughout healing. TdTomato positive (TdT+) cell area and cell fraction were quantified from frozen histological sections of injured and uninjured contralateral samples at times corresponding with active woven bone formation in each model. We found that in uninjured cortical bone tissue, Osx Cre_ERT2 was more efficient than DMP1 Cre_ERT2 at labeling the periosteal and endosteal surfaces, as well as intracortical osteocytes. Pulse-labeling revealed that pre-existing Osx+ lineage and their progeny, but not pre-existing DMP1+ lineage cells and their progeny, significantly contributed to woven bone formation in all three injury models. In particular, these pre-existing Osx+ lineage cells mainly lined new woven bone surfaces and became embedded as osteocytes. In contrast, with continuous dosing, both Osx+ and DMP1+ lineage cells and their progeny contributed to intramembranous woven bone formation, with higher TdT+ tissue area and cell fraction in Osx+ lineage versus DMP1+ lineage calluses (femoral fracture and ulnar stress fracture). Similarly, Osx+ and DMP1+ lineage cells and their progeny significantly contributed to endochondral callus regions with continuous dosing only, with higher TdT+ chondrocyte fraction in Osx+ versus DMP1+ cell lineages. In summary, pre-existing Osx+ but not DMP1+ lineage cells and their progeny make up a significant amount of woven bone cells (particularly osteocytes) across three preclinical models of bone injury. Therefore, Osx+ cell lineage modulation may prove to be an effective therapy to enhance bone regeneration.
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States.,Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Susumu Yoneda
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Pei Hu
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, United States.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
49
|
Endocrinology of bone mineralization: an update. ANNALES D'ENDOCRINOLOGIE 2021; 83:46-53. [PMID: 34921812 DOI: 10.1016/j.ando.2021.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022]
Abstract
Throughout the world, millions of people suffer from fragilizing osteopathies such as osteomalacia and osteoporosis.Osteomalacia is a rare disorder, corresponding to mineralization abnormalities in adult bone, as opposed to rickets in children. Renal phosphate loss and hypophosphatasia are the main causes of vitamin-resistant osteomalacia. Diagnosis is based on clinical history, phosphocalcic metabolism assessment and, if necessary, molecular characterization, and must be rapid in order to initiate the most appropriate treatment and consider new treatments such as burosumab if necessary.Osteoporosis is characterized by reduced bone mass and strength, which increases the risk of fragility fracture. Fracture-related burden is expected to increase over the coming decades linked to the aging of population and a treatment gap. In order to reduce this treatment gap, it is important to develop two strategies: improvement of screening and of treatment. Systematic screening using the FRAX® fracture risk assessment tool could be useful to increase anti-osteoporosis medical treatment and reduce fracture rates. The question of treatment sequencing in osteoporosis is another challenge, notably after denosumab cessation, complicated by a decrease in bone mineral density and increased risk of fracture. New treatments are also available, including romosozumab, a humanized monoclonal antibody which promotes bone formation and inhibits bone resorption by inhibiting sclerostin. Romosozumab is approved in several countries, including France, for treating severe osteoporosis in postmenopausal women at high risk of fracture and free of cardiovascular comorbidity.Endocrinologists need to be aware of these fragilizing osteopathies in order to improve both diagnosis and treatment.
Collapse
|
50
|
Wee NK, Sims NA, Morello R. The Osteocyte Transcriptome: Discovering Messages Buried Within Bone. Curr Osteoporos Rep 2021; 19:604-615. [PMID: 34757588 PMCID: PMC8720072 DOI: 10.1007/s11914-021-00708-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE OF THE REVIEW Osteocytes are cells embedded within the bone matrix, but their function and specific patterns of gene expression remain only partially defined; this is beginning to change with recent studies using transcriptomics. This unbiased approach can generate large amounts of data and is now being used to identify novel genes and signalling pathways within osteocytes both at baseline conditions and in response to stimuli. This review outlines the methods used to isolate cell populations containing osteocytes, and key recent transcriptomic studies that used osteocyte-containing preparations from bone tissue. RECENT FINDINGS Three common methods are used to prepare samples to examine osteocyte gene expression: digestion followed by sorting, laser capture microscopy, and the isolation of cortical bone shafts. All these methods present challenges in interpreting the data generated. Genes previously not known to be expressed by osteocytes have been identified and variations in osteocyte gene expression have been reported with age, sex, anatomical location, mechanical loading, and defects in bone strength. A substantial proportion of newly identified transcripts in osteocytes remain functionally undefined but several have been cross-referenced with functional data. Future work and improved methods (e.g. scRNAseq) likely provide useful resources for the study of osteocytes and important new information on the identity and functions of this unique cell type within the skeleton.
Collapse
Affiliation(s)
- Natalie Ky Wee
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, 9 Princes St, Fitzroy, 3065, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, 3065, Australia
| | - Roy Morello
- Department of Physiology & Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|