1
|
Tkachenko A, Havranek O. Cell death signaling in human erythron: erythrocytes lose the complexity of cell death machinery upon maturation. Apoptosis 2025; 30:652-673. [PMID: 39924584 PMCID: PMC11947060 DOI: 10.1007/s10495-025-02081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/11/2025]
Abstract
Over the recent years, our understanding of the cell death machinery of mature erythrocytes has been greatly expanded. It resulted in the discovery of several regulated cell death (RCD) pathways in red blood cells. Apoptosis (eryptosis) and necroptosis of erythrocytes share certain features with their counterparts in nucleated cells, but they are also critically different in particular details. In this review article, we summarize the cell death subroutines in the erythroid precursors (apoptosis, necroptosis, and ferroptosis) in comparison to mature erythrocytes (eryptosis and erythronecroptosis) to highlight the consequences of organelle clearance and associated loss of multiple components of the cell death machinery upon erythrocyte maturation. Recent advances in understanding the role of erythrocyte RCDs in health and disease have expanded potential clinical applications of these lethal subroutines, emphasizing their contribution to the development of anemia, microthrombosis, and endothelial dysfunction, as well as their role as diagnostic biomarkers and markers of erythrocyte storage-induced lesions. Fas signaling and the functional caspase-8/caspase-3 system are not indispensable for eryptosis, but might be retained in mature erythrocytes to mediate the crosstalk between both erythrocyte-associated RCDs. The ability of erythrocytes to switch between eryptosis and necroptosis suggests that their cell death is not a simple unregulated mechanical disintegration, but a tightly controlled process. This allows investigation of eventual pharmacological interventions aimed at individual cell death subroutines of erythrocytes.
Collapse
Affiliation(s)
- Anton Tkachenko
- First Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| | - Ondrej Havranek
- First Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic
- First Department of Medicine - Hematology, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Bowers E, Entrup GP, Islam M, Mohan R, Lerner A, Mancuso P, Moore BB, Singer K. High fat diet feeding impairs neutrophil phagocytosis, bacterial killing, and neutrophil-induced hematopoietic regeneration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf024. [PMID: 40094316 DOI: 10.1093/jimmun/vkaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 01/08/2025] [Accepted: 02/01/2025] [Indexed: 03/19/2025]
Abstract
The prevalence of obesity and metabolic diseases have risen significantly over the past decades. Chronic inflammation in obesity is a link between obesity and secondary disease. While macrophages and monocytes are known to contribute to metabolic disease risk during diet exposure, little is known about the contribution of neutrophils. We assessed the impact of obesity on neutrophils using a 16-week model of diet-induced obesity. Bone marrow (BM) neutrophils significantly expanded with chronic high-fat diet (HFD), significantly decreased TNFɑ protein release, and impaired neutrophil regenerative function compared to normal diet (ND) neutrophils. scRNAseq and flow cytometry demonstrated HFD neutrophil heterogeneity and validated that these cells do not have elevated expression of proinflammatory genes without secondary stimulation. HFD neutrophils showed elevated expression of genes associated with lipid metabolism-acyl-CoA thioesterase 1 (Acot1), carnitine palmitoyltransferase 1a (Cpt1a), and perilipin 2 (Plin2). Consistent with the importance of lipid metabolism in driving dysfunction, neutrophils from HFD-fed animals and neutrophils treated with palmitate had impaired bacterial phagocytosis and killing responses. These data shed light on the complex regulation of intracellular lipids and the role of metabolism on neutrophil function during homeostasis and disease.
Collapse
Affiliation(s)
- Emily Bowers
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gabrielle P Entrup
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mohammed Islam
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ramkumar Mohan
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Arianna Lerner
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Peter Mancuso
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kanakadurga Singer
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
- Department Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
3
|
Hu X, He Y, Li S, Jiang Y, Yu R, Wu Y, Fu X, Song Y, Lin C, Shi J, Li HB, Gao Y. Acute inflammation induces acute megakaryopoiesis with impaired platelet production during fetal hematopoiesis. Development 2025; 152:dev204226. [PMID: 39817838 DOI: 10.1242/dev.204226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Hematopoietic development is tightly regulated by various factors. The role of RNA m6A modification during fetal hematopoiesis, particularly in megakaryopoiesis, remains unclear. Here, we demonstrate that loss of m6A methyltransferase METTL3 induces formation of double-stranded RNAs (dsRNAs) and activates acute inflammation during fetal hematopoiesis in mouse. This dsRNA-mediated inflammation leads to acute megakaryopoiesis, which facilitates the generation of megakaryocyte progenitors but disrupts megakaryocyte maturation and platelet production. The inflammation and immune response activate the phosphorylation of STAT1 and IRF3, and upregulate downstream interferon-stimulated genes (ISGs). Inflammation inhibits the proliferation rate of hematopoietic progenitors and further skews the cell fate determination toward megakaryocytes rather than toward erythroid from megakaryocyte-erythroid progenitors (MEPs). Transcriptional-wide gene expression analysis identifies IGF1 as a major factor whose reduction is responsible for the inhibition of megakaryopoiesis and thrombopoiesis. Restoration of IGF1 with METTL3-deficient hematopoietic cells significantly increases megakaryocyte maturation. In summary, we elucidate that the loss of RNA m6A modification-induced acute inflammation activates acute megakaryopoiesis, but impairs its final maturation through the inhibition of IGF1 expression during fetal hematopoiesis.
Collapse
Affiliation(s)
- Xiaojie Hu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yirui He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shengwei Li
- Department of General Surgery, Shanghai Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yue Jiang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Renjie Yu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yi Wu
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoying Fu
- Department of Laboratory Medicine, Shenzhen Children's Hospital, Shenzhen, Guangdong 518000, China
| | - Yuanbin Song
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou 510006, 510006 Guangdong, China
| | - Changdong Lin
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| | - Jiejun Shi
- Department of General Surgery, Shanghai Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hua-Bing Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Immunological Innovation & Translation, Chongqing Medical University, Chongqing 400016, China
| | - Yimeng Gao
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Lykins J, Becker IC, Camacho V, Alfar HR, Park J, Italiano J, Whiteheart SW. Serglycin controls megakaryocyte retention of platelet factor 4 and influences megakaryocyte fate in bone marrow. Blood Adv 2025; 9:15-28. [PMID: 38941534 PMCID: PMC11732581 DOI: 10.1182/bloodadvances.2024012995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024] Open
Abstract
ABSTRACT Megakaryocytes (MKs) produce platelets, and similar to other hematopoietic progenitors, they are involved in homeostatic aspects of their bone marrow niche. MKs release and endocytose various factors, such as platelet factor 4 (PF4)/CXCL4. Here, we show that the intra-α-granular proteoglycan, serglycin (SRGN), plays a key role in this process by retaining PF4, and perhaps other factors, during MK maturation. Immature, SRGN-/- MKs released ∼80% of their PF4, and conditioned media from these cells negatively affected wild-type MK differentiation in vitro. This was replicated in wild-type MKs by treatment with the polycation surfen, a known inhibitor of glycosaminoglycan (GAG)/protein interactions. In vivo, SRGN-/- mice had an interstitial accumulation of PF4, transforming growth factor β1, interleukin-1β, and tumor necrosis factor α in their bone marrow and increased numbers of immature MKs, consistent with their mild thrombocytopenia. SRGN-/- mice also had reduced numbers of hematopoietic stem cells and multipotent progenitors, reduced laminin, and increased collagen I deposition. These findings demonstrate that MKs depend on SRGN and its charged GAGs to balance the distribution of PF4 and perhaps other factors between their α-granules and their adjacent extracellular spaces. Disrupting this balance negatively affects MK development and bone marrow microenvironment homeostasis.
Collapse
Affiliation(s)
- Joshua Lykins
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Isabelle C. Becker
- Department of Surgery, Boston Children’s Hospital, Boston, MA
- Department of Surgery, Harvard Medical School, Boston, MA
| | - Virginia Camacho
- Department of Surgery, Boston Children’s Hospital, Boston, MA
- Department of Surgery, Harvard Medical School, Boston, MA
| | - Hammodah R. Alfar
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - JoonWoo Park
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Joseph Italiano
- Department of Surgery, Boston Children’s Hospital, Boston, MA
- Department of Surgery, Harvard Medical School, Boston, MA
| | - Sidney W. Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| |
Collapse
|
5
|
Kwon N, Lu YC, Thompson EN, Mancuso RI, Wang L, Zhang PX, Krause DS. CDK9 phosphorylates RUNX1 to promote megakaryocytic fate in megakaryocytic-erythroid progenitors. Blood 2024; 144:1800-1812. [PMID: 39102635 PMCID: PMC11530366 DOI: 10.1182/blood.2024023963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 08/07/2024] Open
Abstract
ABSTRACT The specification of megakaryocytic (Mk) or erythroid (E) lineages from primary human megakaryocytic-erythroid progenitors (MEPs) is crucial for hematopoietic homeostasis, yet the underlying mechanisms regulating fate specification remain elusive. In this study, we identify RUNX1 as a key modulator of gene expression during MEP fate specification. Overexpression of RUNX1 in primary human MEPs promotes Mk specification, whereas pan-RUNX inhibition favors E specification. Although total RUNX1 levels do not differ between Mk progenitors (MkPs) and E progenitors (ErPs), there are higher levels of serine-phosphorylated RUNX1 in MkPs than ErPs, and mutant RUNX1 with phosphorylated-serine/threonine mimetic mutations (RUNX1-4D) significantly enhances the functional efficacy of RUNX1. To model the effects of RUNX1 variants, we use human erythroleukemia (HEL) cell lines expressing wild-type (WT), phosphomimetic (RUNX1-4D), and nonphosphorylatable (RUNX1-4A) mutants showing that the 3 forms of RUNX1 differentially regulate expression of 2625 genes. Both WT and RUNX1-4D variants increase expression in 40%, and decrease expression in another 40%, with lesser effects of RUNX1-4A. We find a significant overlap between the upregulated genes in WT and RUNX1-4D-expressing HEL cells and those upregulated in primary human MkPs vs MEPs. Although inhibition of known RUNX1 serine/threonine kinases does not affect phosphoserine RUNX1 levels in primary MEPs, specific inhibition of cyclin dependent kinase 9 (CDK9) in MEPs leads to both decreased RUNX1 phosphorylation and increased E commitment. Collectively, our findings show that serine/threonine phosphorylation of RUNX1 promotes Mk fate specification and introduce a novel kinase for RUNX1 linking the fundamental transcriptional machinery with activation of a cell type-specific transcription factor.
Collapse
Affiliation(s)
- Nayoung Kwon
- Department of Cell Biology, Yale University, New Haven, CT
- Yale Stem Cell Center, Yale University, New Haven, CT
| | - Yi-Chien Lu
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Evrett N. Thompson
- Department of Cell Biology, Yale University, New Haven, CT
- Yale Stem Cell Center, Yale University, New Haven, CT
| | - Rubia Isler Mancuso
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Lin Wang
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Ping-Xia Zhang
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
| | - Diane S. Krause
- Department of Cell Biology, Yale University, New Haven, CT
- Yale Stem Cell Center, Yale University, New Haven, CT
- Department of Laboratory Medicine, Yale University, New Haven, CT
- Department of Pathology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
6
|
Bornhorst D, Hejjaji AV, Steuter L, Woodhead NM, Maier P, Gentile A, Alhajkadour A, Santis Larrain O, Weber M, Kikhi K, Guenther S, Huisken J, Tamplin OJ, Stainier DYR, Gunawan F. The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish. Nat Commun 2024; 15:7589. [PMID: 39217144 PMCID: PMC11366026 DOI: 10.1038/s41467-024-51920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The contribution of endocardial cells (EdCs) to the hematopoietic lineages has been strongly debated. Here, we provide evidence that in zebrafish, the endocardium gives rise to and maintains a stable population of hematopoietic cells. Using single-cell sequencing, we identify an endocardial subpopulation expressing enriched levels of hematopoietic-promoting genes. High-resolution microscopy and photoconversion tracing experiments uncover hematopoietic cells, mainly hematopoietic stem and progenitor cells (HSPCs)/megakaryocyte-erythroid precursors (MEPs), derived from EdCs as well as the dorsal aorta stably attached to the endocardium. Emergence of HSPCs/MEPs in hearts cultured ex vivo without external hematopoietic sources, as well as longitudinal imaging of the beating heart using light sheet microscopy, support endocardial contribution to hematopoiesis. Maintenance of these hematopoietic cells depends on the adhesion factors Integrin α4 and Vcam1 but is at least partly independent of cardiac trabeculation or shear stress. Finally, blocking primitive erythropoiesis increases cardiac-residing hematopoietic cells, suggesting that the endocardium is a hematopoietic reservoir. Altogether, these studies uncover the endocardium as a resident tissue for HSPCs/MEPs and a de novo source of hematopoietic cells.
Collapse
Affiliation(s)
- Dorothee Bornhorst
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Amulya V Hejjaji
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Lena Steuter
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany
| | - Nicole M Woodhead
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Paul Maier
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Alessandra Gentile
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research (MPI-HLR), Bad Nauheim, 61231, Germany
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alice Alhajkadour
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Octavia Santis Larrain
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Michael Weber
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Khrievono Kikhi
- Flow Cytometry and Cell Sorting Core Facility, MPI-HLR, Bad Nauheim, 61231, Germany
| | - Stefan Guenther
- Deep Sequencing Platform, MPI-HLR, Bad Nauheim, 61231, Germany
| | - Jan Huisken
- Multiscale Biology, Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, 37077, Germany
| | - Owen J Tamplin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research (MPI-HLR), Bad Nauheim, 61231, Germany
| | - Felix Gunawan
- Institute of Cell Biology, Faculty of Medicine, University of Münster, Münster, 48149, Germany.
- 'Cells-in-Motion' Interfaculty Center, University of Münster, Münster, 48149, Germany.
| |
Collapse
|
7
|
Kim OV, Litvinov RI, Gagne AL, French DL, Brass LF, Weisel JW. Megakaryocyte-induced contraction of plasma clots: cellular mechanisms and structural mechanobiology. Blood 2024; 143:548-560. [PMID: 37944157 PMCID: PMC11033616 DOI: 10.1182/blood.2023021545] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
ABSTRACT Nonmuscle cell contractility is an essential feature underlying diverse cellular processes such as motility, morphogenesis, division and genome replication, intracellular transport, and secretion. Blood clot contraction is a well-studied process driven by contracting platelets. Megakaryocytes (MKs), which are the precursors to platelets, can be found in bone marrow and lungs. Although they express many of the same proteins and structures found in platelets, little is known about their ability to engage with extracellular proteins such as fibrin and contract. Here, we have measured the ability of MKs to compress plasma clots. Megakaryocytes derived from human induced pluripotent stem cells (iPSCs) were suspended in human platelet-free blood plasma and stimulated with thrombin. Using real-time macroscale optical tracking, confocal microscopy, and biomechanical measurements, we found that activated iPSC-derived MKs (iMKs) caused macroscopic volumetric clot shrinkage, as well as densification and stiffening of the fibrin network via fibrin-attached plasma membrane protrusions undergoing extension-retraction cycles that cause shortening and bending of fibrin fibers. Contraction induced by iMKs involved 2 kinetic phases with distinct rates and durations. It was suppressed by inhibitors of nonmuscle myosin IIA, actin polymerization, and integrin αIIbβ3-fibrin interactions, indicating that the molecular mechanisms of iMK contractility were similar or identical to those in activated platelets. Our findings provide new insights into MK biomechanics and suggest that iMKs can be used as a model system to study platelet contractility. Physiologically, the ability of MKs to contract plasma clots may play a role in the mechanical remodeling of intravascular blood clots and thrombi.
Collapse
Affiliation(s)
- Oleg V. Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA
| | - Rustem I. Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Alyssa L. Gagne
- Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Deborah L. French
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lawrence F. Brass
- Division of Hematology and Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John W. Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
8
|
Zou H, Wong RSM, Yan X. Thrombopoietin treats erythropoietin resistance by correcting EPO-induced progenitorcell depletion. Biochem Pharmacol 2024; 220:116008. [PMID: 38154543 DOI: 10.1016/j.bcp.2023.116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Recombinant human erythropoietin (rHuEPO) is a prevalent treatment for anemia in patients with chronic kidney disease. However, up to 10% of these patients exhibit EPO resistance or hyporesponsiveness, which may be caused by the depletion of erythroid progenitor cells. Thrombopoietin (TPO) has the potential to promote the growth of early progenitor cells and correct the depletion. In this study, we investigate the efficacy and the underlying mechanism of the combination therapy of TPO and EPO to EPO resistance. First, the in vivo studies suggested that intensive EPO treatment induced progenitor cell depletion in the bone marrow, where the depletion was corrected by TPO. Then, colony assays showed that EPO and TPO synergistically enhanced the burst-forming unit-erythroid (BFU-E) production but antagonistically boosted the colony-forming units of megakaryocytes (CFU-MK) production. Also, we found TPO promoted hematopoietic stem and progenitor cells (HSPCs) production, while EPO drove HSPCs toward the erythroid lineage. Additionally, EPO induced more megakaryocytic-erythroid progenitors (MEPs) toward the erythroid output. Model-based simulations indicate the efficacy of this combination therapy for treating EPO-resistant anemia in rats. In conclusion, our study demonstrated the efficacy of combination therapy in addressing EPO-resistant anemia by correcting EPO-induced erythroid progenitor depletion.
Collapse
Affiliation(s)
- Huixi Zou
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Raymond S M Wong
- Division of Hematology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Xiaoyu Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
9
|
Soslau G. Platelet protein synthesis, regulation, and post-translational modifications: mechanics and function. Crit Rev Biochem Mol Biol 2023; 58:99-117. [PMID: 37347996 DOI: 10.1080/10409238.2023.2224532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Dogma had been firmly entrenched in the minds of the scientific community that the anucleate mammalian platelet was incapable of protein biosynthesis since their identification in the late 1880s. These beliefs were not challenged until the 1960s when several reports demonstrated that platelets possessed the capacity to biosynthesize proteins. Even then, many still dismissed the synthesis as trivial and unimportant for at least another two decades. Research in the field expanded after the 1980s and numerous reports have since been published that now clearly demonstrate the potential significance of platelet protein synthesis under normal, pathological, and activating conditions. It is now clear that the platelet proteome is not a static entity but can be altered slowly or rapidly in response to external signals to support physiological requirements to maintain hemostasis and other biological processes. All the necessary biological components to support protein synthesis have been identified in platelets along with post-transcriptional processing of mRNAs, regulators of translation, and post-translational modifications such as glycosylation. The last comprehensive review of the subject appeared in 2009 and much work has been conducted since that time. The current review of the field will briefly incorporate the information covered in earlier reviews and then bring the reader up to date with more recent findings.
Collapse
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular Biology Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
10
|
Peters IJA, de Pater E, Zhang W. The role of GATA2 in adult hematopoiesis and cell fate determination. Front Cell Dev Biol 2023; 11:1250827. [PMID: 38033856 PMCID: PMC10682726 DOI: 10.3389/fcell.2023.1250827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
The correct maintenance and differentiation of hematopoietic stem cells (HSC) in bone marrow is vital for the maintenance and operation of the human blood system. GATA2 plays a critical role in the maintenance of HSCs and the specification of HSCs into the different hematopoietic lineages, highlighted by the various defects observed in patients with heterozygous mutations in GATA2, resulting in cytopenias, bone marrow failure and increased chance of myeloid malignancy, termed GATA2 deficiency syndrome. Despite this, the mechanisms underlying GATA2 deficiency syndrome remain to be elucidated. The detailed description of how GATA2 regulates HSC maintenance and blood lineage determination is crucial to unravel the pathogenesis of GATA2 deficiency syndrome. In this review, we summarize current advances in elucidating the role of GATA2 in hematopoietic cell fate determination and discuss the challenges of modeling GATA2 deficiency syndrome.
Collapse
Affiliation(s)
| | | | - Wei Zhang
- *Correspondence: Wei Zhang, ; Emma de Pater,
| |
Collapse
|
11
|
Nassiri SM, Ahmadi Afshar N, Almasi P. Insight into microRNAs' involvement in hematopoiesis: current standing point of findings. Stem Cell Res Ther 2023; 14:282. [PMID: 37794439 PMCID: PMC10552299 DOI: 10.1186/s13287-023-03504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 09/20/2023] [Indexed: 10/06/2023] Open
Abstract
Hematopoiesis is a complex process in which hematopoietic stem cells are differentiated into all mature blood cells (red blood cells, white blood cells, and platelets). Different microRNAs (miRNAs) involve in several steps of this process. Indeed, miRNAs are small single-stranded non-coding RNA molecules, which control gene expression by translational inhibition and mRNA destabilization. Previous studies have revealed that increased or decreased expression of some of these miRNAs by targeting several proto-oncogenes could inhibit or stimulate the myeloid and erythroid lineage commitment, proliferation, and differentiation. During the last decades, the development of molecular and bioinformatics techniques has led to a comprehensive understanding of the role of various miRNAs in hematopoiesis. The critical roles of miRNAs in cell processes such as the cell cycle, apoptosis, and differentiation have been confirmed as well. However, the main contribution of some miRNAs is still unclear. Therefore, it seems undeniable that future studies are required to focus on miRNA activities during various hematopoietic stages and hematological malignancy.
Collapse
Affiliation(s)
- Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran.
| | - Neda Ahmadi Afshar
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran
| | - Parsa Almasi
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Qarib St., Azadi Ave, Tehran, Iran
| |
Collapse
|
12
|
van Eck van der Sluijs J, van Ens D, Brummelman J, Heister D, Sareen A, Truijen L, van Ingen Schenau DS, Heemskerk MHM, Griffioen M, Kester MGD, Schaap NPM, Jansen JH, van der Waart AB, Dolstra H, Hobo W. Human CD34 +-derived complete plasmacytoid and conventional dendritic cell vaccine effectively induces antigen-specific CD8 + T cell and NK cell responses in vitro and in vivo. Cell Mol Life Sci 2023; 80:298. [PMID: 37728691 PMCID: PMC10511603 DOI: 10.1007/s00018-023-04923-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023]
Abstract
Allogeneic stem cell transplantation (alloSCT) can be curative for hemato-oncology patients due to effective graft-versus-tumor immunity. However, relapse remains the major cause of treatment failure, emphasizing the need for adjuvant immunotherapies. In this regard, post-transplantation dendritic cell (DC) vaccination is a highly interesting strategy to boost graft-versus-tumor responses. Previously, we developed a clinically applicable protocol for simultaneous large-scale generation of end-stage blood DC subsets from donor-derived CD34+ stem cells, including conventional type 1 and 2 DCs (cDC1s and cDC2s), and plasmacytoid DCs (pDCs). In addition, the total cultured end-product (DC-complete vaccine), also contains non-end-stage-DCs (i.e. non-DCs). In this study, we aimed to dissect the phenotypic identity of these non-DCs and their potential immune modulatory functions on the potency of cDCs and pDCs in stimulating tumor-reactive CD8+ T and NK cell responses, in order to obtain rationale for clinical translation of our DC-complete vaccine. The non-DC compartment was heterogeneous and comprised of myeloid progenitors and (immature) granulocyte- and monocyte-like cells. Importantly, non-DCs potentiated toll-like receptor-induced DC maturation, as reflected by increased expression of co-stimulatory molecules and enhanced cDC-derived IL-12 and pDC-derived IFN-α production. Additionally, antigen-specific CD8+ T cells effectively expanded upon DC-complete vaccination in vitro and in vivo. This effect was strongly augmented by non-DCs in an antigen-independent manner. Moreover, non-DCs did not impair in vitro DC-mediated NK cell activation, degranulation nor cytotoxicity. Notably, in vivo i.p. DC-complete vaccination activated i.v. injected NK cells. Together, these data demonstrate that the non-DC compartment potentiates DC-mediated activation and expansion of antigen-specific CD8+ T cells and do not impair NK cell responses in vitro and in vivo. This underscores the rationale for further clinical translation of our CD34+-derived DC-complete vaccine in hemato-oncology patients post alloSCT.
Collapse
Affiliation(s)
- Jesper van Eck van der Sluijs
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Diede van Ens
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Jolanda Brummelman
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Daan Heister
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Aastha Sareen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Lisa Truijen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michel G D Kester
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicolaas P M Schaap
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joop H Jansen
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Anniek B van der Waart
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Willemijn Hobo
- Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein 8, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
13
|
Olson WJ, Derudder E. The miR-142 miRNAs: Shaping the naïve immune system. Immunol Lett 2023; 261:37-46. [PMID: 37459958 DOI: 10.1016/j.imlet.2023.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Immunity in a naïve organism is tightly controlled. Adequate proportions of the many immune cell subsets must be produced to mount efficient responses to eventual challenges. In addition, a functioning immune system is highly dynamic at steady state. Mature immune cells must be positioned properly and/or circulate to facilitate the detection of dangers. They must also be poised to promptly react to unusual encounters, while ignoring innocuous germs and self. Numerous regulatory mechanisms act at the molecular level to generate such an exquisite structure, including miRNA-mediated repression of protein synthesis. Notably, the miRNAs from the miR-142 locus are preferentially expressed in hematopoietic cells. Their importance is underscored by the deeply disturbed immune system seen upon inactivation of the locus in mice. In this review, we explore reported roles for the miR-142 miRNAs in the shaping of immunity in vertebrates, discussing in particular their contributions to the generation, migration and survival of hematopoietic cells.
Collapse
Affiliation(s)
- William J Olson
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Emmanuel Derudder
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
14
|
Schippel N, Sharma S. Dynamics of human hematopoietic stem and progenitor cell differentiation to the erythroid lineage. Exp Hematol 2023; 123:1-17. [PMID: 37172755 PMCID: PMC10330572 DOI: 10.1016/j.exphem.2023.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Erythropoiesis, the development of erythrocytes from hematopoietic stem cells, occurs through four phases: erythroid progenitor (EP) development, early erythropoiesis, terminal erythroid differentiation (TED), and maturation. According to the classical model that is based on immunophenotypic profiles of cell populations, each of these phases comprises multiple differentiation states that arise in a hierarchical manner. After segregation of lymphoid potential, erythroid priming begins during progenitor development and progresses through progenitor cell types that have multilineage potential. Complete separation of the erythroid lineage is achieved during early erythropoiesis with the formation of unipotent EPs: burst-forming unit-erythroid and colony-forming unit-erythroid. These erythroid-committed progenitors undergo TED and maturation, which involves expulsion of the nucleus and remodeling to form functional biconcave, hemoglobin-filled erythrocytes. In the last decade or so, many studies employing advanced techniques such as single-cell RNA-sequencing (scRNA-seq) as well as the conventional methods, including colony-forming cell assays and immunophenotyping, have revealed heterogeneity within the stem, progenitor, and erythroblast stages, and uncovered alternate paths for segregation of erythroid lineage potential. In this review, we provide an in-depth account of immunophenotypic profiles of all cell types within erythropoiesis, highlight studies that demonstrate heterogeneous erythroid stages, and describe deviations to the classical model of erythropoiesis. Overall, although scRNA-seq approaches have provided new insights, flow cytometry remains relevant and is the primary method for validation of novel immunophenotypes.
Collapse
Affiliation(s)
- Natascha Schippel
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ
| | - Shalini Sharma
- Department of Basic Medical Sciences, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ.
| |
Collapse
|
15
|
Nagel S. The Role of IRX Homeobox Genes in Hematopoietic Progenitors and Leukemia. Genes (Basel) 2023; 14:genes14020297. [PMID: 36833225 PMCID: PMC9957183 DOI: 10.3390/genes14020297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
IRX genes are members of the TALE homeobox gene class and encode six related transcription factors (IRX1-IRX6) controlling development and cell differentiation of several tissues in humans. Classification of TALE homeobox gene expression patterns for the hematopoietic compartment, termed TALE-code, has revealed exclusive IRX1 activity in pro-B-cells and megakaryocyte erythroid progenitors (MEPs), highlighting its specific contribution to developmental processes at these early stages of hematopoietic lineage differentiation. Moreover, aberrant expression of IRX homeobox genes IRX1, IRX2, IRX3 and IRX5 has been detected in hematopoietic malignancies, including B-cell precursor acute lymphoblastic leukemia (BCP-ALL), T-cell ALL, and some subtypes of acute myeloid leukemia (AML). Expression analyses of patient samples and experimental studies using cell lines and mouse models have revealed oncogenic functions in cell differentiation arrest and upstream and downstream genes, thus, revealing normal and aberrant regulatory networks. These studies have shown how IRX genes play key roles in the development of both normal blood and immune cells, and hematopoietic malignancies. Understanding their biology serves to illuminate developmental gene regulation in the hematopoietic compartment, and may improve diagnostic classification of leukemias in the clinic and reveal new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Cultures, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| |
Collapse
|
16
|
Zhao X, Chong Z, Chen Y, Zheng XL, Wang QF, Li Y. Protein arginine methyltransferase 1 in the generation of immune megakaryocytes: A perspective review. J Biol Chem 2022; 298:102517. [PMID: 36152748 PMCID: PMC9579037 DOI: 10.1016/j.jbc.2022.102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/05/2022] Open
Abstract
Megakaryocytes (Mks) in bone marrow are heterogeneous in terms of polyploidy. They not only produce platelets but also support the self-renewal of hematopoietic stem cells and regulate immune responses. Yet, how the diverse functions are generated from the heterogeneous Mks is not clear at the molecular level. Advances in single-cell RNA seq analysis from several studies have revealed that bone marrow Mks are heterogeneous and can be clustered into 3 to 4 subpopulations: a subgroup that is adjacent to the hematopoietic stem cells, a subgroup expressing genes for platelet biogenesis, and a subgroup expressing immune-responsive genes, the so-called immune Mks that exist in both humans and mice. Immune Mks are predominantly in the low-polyploid (≤8 N nuclei) fraction and also exist in the lung. Protein arginine methyltransferase 1 (PRMT1) expression is positively correlated with the expression of genes involved in immune response pathways and is highly expressed in immune Mks. In addition, we reported that PRMT1 promotes the generation of low-polyploid Mks. From this perspective, we highlighted the data suggesting that PRMT1 is essential for the generation of immune Mks via its substrates RUNX1, RBM15, and DUSP4 that we reported previously. Thus, we suggest that protein arginine methylation may play a critical role in the generation of proinflammatory platelet progeny from immune Mks, which may affect many immune, thrombotic, and inflammatory disorders.
Collapse
Affiliation(s)
- Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | - Zechen Chong
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yabing Chen
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - X Long Zheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Qian-Fei Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Yueying Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| |
Collapse
|
17
|
Leong YW, Russell B, Malleret B, Rénia L. Erythrocyte tropism of malarial parasites: The reticulocyte appeal. Front Microbiol 2022; 13:1022828. [PMID: 36386653 PMCID: PMC9643692 DOI: 10.3389/fmicb.2022.1022828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
Erythrocytes are formed from the enucleation of erythroblasts in the bone marrow, and as erythrocytes develop from immature reticulocytes into mature normocytes, they undergo extensive cellular changes through their passage in the blood. During the blood stage of the malarial parasite life cycle, the parasite sense and invade susceptible erythrocytes. However, different parasite species display varying erythrocyte tropisms (i.e., preference for either reticulocytes or normocytes). In this review, we explore the erythrocyte tropism of malarial parasites, especially their predilection to invade reticulocytes, as shown from recent studies. We also discuss possible mechanisms mediating erythrocyte tropism and the implications of specific tropisms to disease pathophysiology. Understanding these allows better insight into the role of reticulocytes in malaria and provides opportunities for targeted interventions.
Collapse
Affiliation(s)
- Yew Wai Leong
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Benoit Malleret
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
18
|
Qin J, Zhang J, Jiang J, Zhang B, Li J, Lin X, Wang S, Zhu M, Fan Z, Lv Y, He L, Chen L, Yue W, Li Y, Pei X. Direct chemical reprogramming of human cord blood erythroblasts to induced megakaryocytes that produce platelets. Cell Stem Cell 2022; 29:1229-1245.e7. [PMID: 35931032 DOI: 10.1016/j.stem.2022.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 11/19/2022]
Abstract
Reprogramming somatic cells into megakaryocytes (MKs) would provide a promising source of platelets. However, using a pharmacological approach to generate human MKs from somatic cells remains an unmet challenge. Here, we report that a combination of four small molecules (4M) successfully converted human cord blood erythroblasts (EBs) into induced MKs (iMKs). The iMKs could produce proplatelets and release functional platelets, functionally resembling natural MKs. Reprogramming trajectory analysis revealed an efficient cell fate conversion of EBs into iMKs by 4M via the intermediate state of bipotent precursors. 4M induced chromatin remodeling and drove the transition of transcription factor (TF) regulatory network from key erythroid TFs to essential TFs for megakaryopoiesis, including FLI1 and MEIS1. These results demonstrate that the chemical reprogramming of cord blood EBs into iMKs provides a simple and efficient approach to generate MKs and platelets for clinical applications.
Collapse
Affiliation(s)
- Jinhua Qin
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Jian Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jianan Jiang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bowen Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Jisheng Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaosong Lin
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Sihan Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Meiqi Zhu
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zeng Fan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Yang Lv
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Lijuan He
- South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China; Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Lin Chen
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Yanhua Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China.
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China.
| |
Collapse
|
19
|
Fan X, Krzyzanski W, Wong RSM, Yan X. Fate Determination Role of Erythropoietin and Romiplostim in the Lineage Commitment of Hematopoietic Progenitors. J Pharmacol Exp Ther 2022; 382:31-43. [PMID: 35489782 DOI: 10.1124/jpet.122.001130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022] Open
Abstract
Erythropoietin (EPO) and thrombopoietin (TPO) have long been known to promote erythropoiesis and megakaryopoiesis, respectively. However, the fate-changing role of EPO and TPO on megakaryocyte-erythroid progenitors (MEPs) to develop along the erythroid versus megakaryocyte lineage remains unclear. We have previously shown that EPO may have a fate-changing role because EPO treatment could induce progenitor cells depletion and result in EPO resistance. Therefore, we hypothesize that a combination of romiplostim, a TPO receptor agonist that could stimulate the expansion of progenitors, with EPO can treat EPO resistance. Using rats with anemia due to chronic kidney disease, we demonstrated that romiplostim synergized with EPO to promote red blood cells production whereas EPO inhibited platelet production in a dose-dependent manner to reduce the risk of thrombosis. Corroborating findings from in vivo, in vitro experiments demonstrated that romiplostim expanded hematopoietic stem cells and stimulated megakaryopoiesis whereas EPO drove the progenitors toward an erythroid fate. We further developed a novel pharmacokinetic-pharmacodynamic model to quantify the effects of EPO and romiplostim on megakaryopoiesis and erythropoiesis simultaneously. The modeling results demonstrated that EPO increased the differentiation rate of MEPs into burst-forming unit-erythroid cells up to 22-fold, indicating that the slight increase of MEPs induced by romiplostim could be further amplified and recruited by EPO to promote erythropoiesis. The data herein support that romiplostim in combination with EPO can treat EPO resistance. SIGNIFICANCE STATEMENT: This study clarified that erythropoietin (EPO) drives the fate of megakaryocyte-erythroid progenitors (MEPs) toward the erythroid lineage, thus reducing their megakaryocyte (MK) lineage commitment, whereas romiplostim, a thrombopoietin receptor agonist, stimulates megakaryopoiesis through the MK-committed progenitor and MEP bifurcation pathways simultaneously. These findings support an innovative combination of romiplostim and EPO to treat EPO-resistant anemia because the combination therapy further promotes erythropoiesis compared to EPO monotherapy and inhibits platelet production compared to romiplostim monotherapy.
Collapse
Affiliation(s)
- Xiaoqing Fan
- School of Pharmacy (X.F., X.Y.) and Division of Hematology, Department of Medicine and Therapeutics (R.S.M.W.), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; and Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York (W.K.)
| | - Wojciech Krzyzanski
- School of Pharmacy (X.F., X.Y.) and Division of Hematology, Department of Medicine and Therapeutics (R.S.M.W.), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; and Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York (W.K.)
| | - Raymond S M Wong
- School of Pharmacy (X.F., X.Y.) and Division of Hematology, Department of Medicine and Therapeutics (R.S.M.W.), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; and Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York (W.K.)
| | - Xiaoyu Yan
- School of Pharmacy (X.F., X.Y.) and Division of Hematology, Department of Medicine and Therapeutics (R.S.M.W.), Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong; and Department of Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, New York (W.K.)
| |
Collapse
|
20
|
Luanpitpong S, Kang X, Janan M, Thumanu K, Li J, Kheolamai P, Issaragrisil S. Metabolic sensor O-GlcNAcylation regulates erythroid differentiation and globin production via BCL11A. Stem Cell Res Ther 2022; 13:274. [PMID: 35739577 PMCID: PMC9219246 DOI: 10.1186/s13287-022-02954-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/24/2022] [Indexed: 12/25/2022] Open
Abstract
Background Human erythropoiesis is a tightly regulated, multistep process encompassing the differentiation of hematopoietic stem cells (HSCs) toward mature erythrocytes. Cellular metabolism is an important regulator of cell fate determination during the differentiation of HSCs. However, how O-GlcNAcylation, a posttranslational modification of proteins that is an ideal metabolic sensor, contributes to the commitment of HSCs to the erythroid lineage and to the terminal erythroid differentiation has not been addressed. Methods Cellular O-GlcNAcylation was manipulated using small molecule inhibition or CRISPR/Cas9 manipulation of catalyzing enzyme O-GlcNAc transferase (OGT) and removing enzyme O-GlcNAcase (OGA) in two cell models of erythroid differentiation, starting from: (i) human umbilical cord blood-derived CD34+ hematopoietic stem/progenitor cells (HSPCs) to investigate the erythroid lineage specification and differentiation; and (ii) human-derived erythroblastic leukemia K562 cells to investigate the terminal differentiation. The functional and regulatory roles of O-GlcNAcylation in erythroid differentiation, maturation, and globin production were investigated, and downstream signaling was delineated. Results First, we observed that two-step inhibition of OGT and OGA, which were established from the observed dynamics of O-GlcNAc level along the course of differentiation, promotes HSPCs toward erythroid differentiation and enucleation, in agreement with an upregulation of a multitude of erythroid-associated genes. Further studies in the efficient K562 model of erythroid differentiation confirmed that OGA inhibition and subsequent hyper-O-GlcNAcylation enhance terminal erythroid differentiation and affect globin production. Mechanistically, we found that BCL11A is a key mediator of O-GlcNAc-driven erythroid differentiation and β- and α-globin production herein. Additionally, analysis of biochemical contents using synchrotron-based Fourier transform infrared (FTIR) spectroscopy showed unique metabolic fingerprints upon OGA inhibition during erythroid differentiation, supporting that metabolic reprogramming plays a part in this process. Conclusions The evidence presented here demonstrated the novel regulatory role of O-GlcNAc/BCL11A axis in erythroid differentiation, maturation, and globin production that could be important in understanding erythropoiesis and hematologic disorders whose etiology is related to impaired erythroid differentiation and hemoglobinopathies. Our findings may lay the groundwork for future clinical applications toward an ex vivo production of functional human reticulocytes for transfusion from renewable cell sources, i.e., HSPCs and pluripotent stem cells. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02954-5.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Xing Kang
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
| | - Montira Janan
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Jingting Li
- Institute of Precision Medicine, Department of Burns, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Pakpoom Kheolamai
- Center of Excellence in Stem Cell Research and Innovation, Faculty of Medicine, Thammasat University, Pathum Thani, 12120, Thailand.
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Siriraj Hospital, Bangkoknoi, Bangkok, 10700, Thailand.,Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Li B, An W, Wang H, Baslan T, Mowla S, Krishnan A, Xiao W, Koche RP, Liu Y, Cai SF, Xiao Z, Derkach A, Iacobucci I, Mullighan CG, Helin K, Lowe SW, Levine RL, Rampal RK. BMP2/SMAD pathway activation in JAK2/p53-mutant megakaryocyte/erythroid progenitors promotes leukemic transformation. Blood 2022; 139:3630-3646. [PMID: 35421216 PMCID: PMC9728578 DOI: 10.1182/blood.2021014465] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
Leukemic transformation (LT) of myeloproliferative neoplasm (MPN) has a dismal prognosis and is largely fatal. Mutational inactivation of TP53 is the most common somatic event in LT; however, the mechanisms by which TP53 mutations promote LT remain unresolved. Using an allelic series of mouse models of Jak2/Trp53 mutant MPN, we identify that only biallelic inactivation of Trp53 results in LT (to a pure erythroleukemia [PEL]). This PEL arises from the megakaryocyte-erythroid progenitor population. Importantly, the bone morphogenetic protein 2/SMAD pathway is aberrantly activated during LT and results in abnormal self-renewal of megakaryocyte-erythroid progenitors. Finally, we identify that Jak2/Trp53 mutant PEL is characterized by recurrent copy number alterations and DNA damage. Using a synthetic lethality strategy, by targeting active DNA repair pathways, we show that this PEL is highly sensitive to combination WEE1 and poly(ADP-ribose) polymerase inhibition. These observations yield new mechanistic insights into the process of p53 mutant LT and offer new, clinically translatable therapeutic approaches.
Collapse
Affiliation(s)
- Bing Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wenbin An
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hua Wang
- Cell Biology Program
- Center for Epigenetics Research
| | | | - Shoron Mowla
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Aishwarya Krishnan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenbin Xiao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Hematopathology Service, Department of Pathology and Laboratory Medicine
| | | | - Ying Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Hematopathology Service, Department of Pathology and Laboratory Medicine
| | - Sheng F. Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Andriy Derkach
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN
| | | | | | - Scott W. Lowe
- Cancer Biology and Genetics Program
- Howard Hughes Medical Institute, New York, NY
| | - Ross L. Levine
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine
- Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Raajit K. Rampal
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Leukemia Service, Department of Medicine
| |
Collapse
|
22
|
Tilburg J, Becker IC, Italiano JE. Don't you forget about me(gakaryocytes). Blood 2022; 139:3245-3254. [PMID: 34582554 PMCID: PMC9164737 DOI: 10.1182/blood.2020009302] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Platelets (small, anucleate cell fragments) derive from large precursor cells, megakaryocytes (MKs), that reside in the bone marrow. MKs emerge from hematopoietic stem cells in a complex differentiation process that involves cytoplasmic maturation, including the formation of the demarcation membrane system, and polyploidization. The main function of MKs is the generation of platelets, which predominantly occurs through the release of long, microtubule-rich proplatelets into vessel sinusoids. However, the idea of a 1-dimensional role of MKs as platelet precursors is currently being questioned because of advances in high-resolution microscopy and single-cell omics. On the one hand, recent findings suggest that proplatelet formation from bone marrow-derived MKs is not the only mechanism of platelet production, but that it may also occur through budding of the plasma membrane and in distant organs such as lung or liver. On the other hand, novel evidence suggests that MKs not only maintain physiological platelet levels but further contribute to bone marrow homeostasis through the release of extracellular vesicles or cytokines, such as transforming growth factor β1 or platelet factor 4. The notion of multitasking MKs was reinforced in recent studies by using single-cell RNA sequencing approaches on MKs derived from adult and fetal bone marrow and lungs, leading to the identification of different MK subsets that appeared to exhibit immunomodulatory or secretory roles. In the following article, novel insights into the mechanisms leading to proplatelet formation in vitro and in vivo will be reviewed and the hypothesis of MKs as immunoregulatory cells will be critically discussed.
Collapse
Affiliation(s)
- Julia Tilburg
- Vascular Biology Program, Boston Children's Hospital, Boston, MA
| | | | | |
Collapse
|
23
|
Turudic D, Milosevic D, Bilic K, Prohászka Z, Bilic E. A Limited Course of Eculizumab in a Child with the Atypical Hemolytic Uremic Syndrome and Pre-B Acute Lymphoblastic Leukemia on Maintenance Therapy: Case Report and Literature Review. J Clin Med 2022; 11:jcm11102779. [PMID: 35628906 PMCID: PMC9142928 DOI: 10.3390/jcm11102779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is considered a possible risk for the occurrence of thrombotic microangiopathies. We present a girl with pre-B ALL successfully treated according to the BFM ALL IC-2009 protocol on maintenance therapy followed by aHUS occurrence. This is the seventh case of HUS/aHUS on ALL maintenance therapy and the first with clearly documented eculizumab use in the early stage of aHUS/secondary TMA. Standard and additional parameters were used in aHUS monitoring alongside the reticulocyte production index adjusted for age (RPI/A) and the aspartate aminotransferase-to-platelet ratio index (APRI) as markers of hemolysis and rapid response following treatment. RPI/A and APRI are markers of bone marrow response to anemia serving as red blood cell vs. platelet recovery markers. Together they mark the exact recovery point of thrombotic microangiopathy and serve as a prognostic marker of eculizumab treatment success. During the 8-month treatment and 6-month follow-up, no recurrence of hemolysis, ALL relapse, or renal damage were observed. A systematic review of the literature revealed 14/312 articles; five children had aHUS before the onset of ALL, and two children had both diseases concurrently. At least 3/7 patients are attributed to aHUS, of whom 2/7 have renal damage. Potential undiagnosed/unpublished cases may be assumed.
Collapse
Affiliation(s)
- Daniel Turudic
- Department of Pediatric Hematology and Oncology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia; (D.T.); (E.B.)
| | - Danko Milosevic
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
- Department of Pediatrics, General Hospital Zabok and Hospital of Croatian Veterans, Bracak 8, 49210 Bracak, Croatia
- Correspondence:
| | - Katarina Bilic
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, 1085 Budapest, Hungary;
- Research Group for Immunology and Haematology, Semmelweis University, 1085 Budapest, Hungary
| | - Ernest Bilic
- Department of Pediatric Hematology and Oncology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia; (D.T.); (E.B.)
- School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia;
| |
Collapse
|
24
|
Mann Z, Sengar M, Verma YK, Rajalingam R, Raghav PK. Hematopoietic Stem Cell Factors: Their Functional Role in Self-Renewal and Clinical Aspects. Front Cell Dev Biol 2022; 10:664261. [PMID: 35399522 PMCID: PMC8987924 DOI: 10.3389/fcell.2022.664261] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/14/2022] [Indexed: 01/29/2023] Open
Abstract
Hematopoietic stem cells (HSCs) possess two important properties such as self-renewal and differentiation. These properties of HSCs are maintained through hematopoiesis. This process gives rise to two subpopulations, long-term and short-term HSCs, which have become a popular convention for treating various hematological disorders. The clinical application of HSCs is bone marrow transplant in patients with aplastic anemia, congenital neutropenia, sickle cell anemia, thalassemia, or replacement of damaged bone marrow in case of chemotherapy. The self-renewal attribute of HSCs ensures long-term hematopoiesis post-transplantation. However, HSCs need to be infused in large numbers to reach their target site and meet the demands since they lose their self-renewal capacity after a few passages. Therefore, a more in-depth understanding of ex vivo HSCs expansion needs to be developed to delineate ways to enhance the self-renewability of isolated HSCs. The multifaceted self-renewal process is regulated by factors, including transcription factors, miRNAs, and the bone marrow niche. A developed classical hierarchical model that outlines the hematopoiesis in a lineage-specific manner through in vivo fate mapping, barcoding, and determination of self-renewal regulatory factors are still to be explored in more detail. Thus, an in-depth study of the self-renewal property of HSCs is essentially required to be utilized for ex vivo expansion. This review primarily focuses on the Hematopoietic stem cell self-renewal pathway and evaluates the regulatory molecular factors involved in considering a targeted clinical approach in numerous malignancies and outlining gaps in the current knowledge.
Collapse
Affiliation(s)
- Zoya Mann
- Independent Researcher, New Delhi, India
| | - Manisha Sengar
- Department of Zoology, Deshbandhu College, University of Delhi, Delhi, India
| | - Yogesh Kumar Verma
- Stem Cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi, India
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Pawan Kumar Raghav
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
25
|
Wunderlich F, Delic D, Gerovska D, Araúzo-Bravo MJ. Vaccination Accelerates Liver-Intrinsic Expression of Megakaryocyte-Related Genes in Response to Blood-Stage Malaria. Vaccines (Basel) 2022; 10:vaccines10020287. [PMID: 35214745 PMCID: PMC8880532 DOI: 10.3390/vaccines10020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Erythropoiesis and megakaryo-/thrombopoiesis occur in the bone marrow proceeding from common, even bipotent, progenitor cells. Recently, we have shown that protective vaccination accelerates extramedullary hepatic erythroblastosis in response to blood-stage malaria of Plasmodium chabaudi. Here, we investigated whether protective vaccination also accelerates extramedullary hepatic megakaryo-/thrombopoiesis. Female Balb/c mice were twice vaccinated with a non-infectious vaccine before infecting with 106 P. chabaudi-parasitized erythrocytes. Using gene expression microarrays and quantitative real-time PCR, transcripts of genes known to be expressed in the bone marrow by cells of the megakaryo-/thrombocytic lineage were compared in livers of vaccination-protected and unprotected mice on days 0, 1, 4, 8, and 11 p.i. Livers of vaccination-protected mice responded with expression of megakaryo-/thrombocytic genes faster to P. chabaudi than those of unvaccinated mice, evidenced at early patency on day 4 p.i., when livers exhibited significantly higher levels of malaria-induced transcripts of the genes Selp and Pdgfb (p-values < 0.0001), Gp5 (p-value < 0.001), and Fli1, Runx1, Myb, Mpl, Gp1ba, Gp1bb, Gp6, Gp9, Pf4, and Clec1b (p-values < 0.01). Together with additionally analyzed genes known to be related to megakaryopoiesis, our data suggest that protective vaccination accelerates liver-intrinsic megakaryo-/thrombopoiesis in response to blood-stage malaria that presumably contributes to vaccination-induced survival of otherwise lethal blood-stage malaria.
Collapse
Affiliation(s)
- Frank Wunderlich
- Department of Biology, Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88400 Biberach, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, 68167 Heidelberg, Germany
- Correspondence: (D.D.); (M.J.A.-B.)
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
| | - Marcos J. Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- TransBioNet Thematic Network of Excellence for Transitional Bioinformatics, Barcelona Supercomputing Center, 08034 Barcelona, Spain
- Correspondence: (D.D.); (M.J.A.-B.)
| |
Collapse
|
26
|
Erythropoietin receptor contributes to thrombopoietin receptor (Mpl)-independent thrombocytopoiesis in zebrafish. Leukemia 2022; 36:1193-1197. [PMID: 35039636 DOI: 10.1038/s41375-021-01495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022]
|
27
|
NKL Homeobox Genes NKX2-3 and NKX2-4 Deregulate Megakaryocytic-Erythroid Cell Differentiation in AML. Int J Mol Sci 2021; 22:ijms222111434. [PMID: 34768865 PMCID: PMC8583893 DOI: 10.3390/ijms222111434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
NKL homeobox genes encode transcription factors that impact normal development and hematopoietic malignancies if deregulated. Recently, we established an NKL-code that describes the physiological expression pattern of eleven NKL homeobox genes in the course of hematopoiesis, allowing evaluation of aberrantly activated NKL genes in leukemia/lymphoma. Here, we identify ectopic expression of NKL homeobox gene NKX2-4 in an erythroblastic acute myeloid leukemia (AML) cell line OCI-M2 and describe investigation of its activating factors and target genes. Comparative expression profiling data of AML cell lines revealed in OCI-M2 an aberrantly activated program for endothelial development including master factor ETV2 and the additional endothelial signature genes HEY1, IRF6, and SOX7. Corresponding siRNA-mediated knockdown experiments showed their role in activating NKX2-4 expression. Furthermore, the ETV2 locus at 19p13 was genomically amplified, possibly underlying its aberrant expression. Target gene analyses of NKX2-4 revealed activated ETV2, HEY1, and SIX5 and suppressed FLI1. Comparative expression profiling analysis of public datasets for AML patients and primary megakaryocyte–erythroid progenitor cells showed conspicuous similarities to NKX2-4 activating factors and the target genes we identified, supporting the clinical relevance of our findings and developmental disturbance by NKX2-4. Finally, identification and target gene analysis of aberrantly expressed NKX2-3 in AML patients and a megakaryoblastic AML cell line ELF-153 showed activation of FLI1, contrasting with OCI-M2. FLI1 encodes a master factor for myelopoiesis, driving megakaryocytic differentiation and suppressing erythroid differentiation, thus representing a basic developmental target of these homeo-oncogenes. Taken together, we have identified aberrantly activated NKL homeobox genes NKX2-3 and NKX2-4 in AML, deregulating genes involved in megakaryocytic and erythroid differentiation processes, and thereby contributing to the formation of specific AML subtypes.
Collapse
|
28
|
Yan H, Ali A, Blanc L, Narla A, Lane JM, Gao E, Papoin J, Hale J, Hillyer CD, Taylor N, Gallagher PG, Raza A, Kinet S, Mohandas N. Comprehensive phenotyping of erythropoiesis in human bone marrow: Evaluation of normal and ineffective erythropoiesis. Am J Hematol 2021; 96:1064-1076. [PMID: 34021930 DOI: 10.1002/ajh.26247] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023]
Abstract
Identification of stage-specific erythroid cells is critical for studies of normal and disordered human erythropoiesis. While immunophenotypic strategies have previously been developed to identify cells at each stage of terminal erythroid differentiation, erythroid progenitors are currently defined very broadly. Refined strategies to identify and characterize BFU-E and CFU-E subsets are critically needed. To address this unmet need, a flow cytometry-based technique was developed that combines the established surface markers CD34 and CD36 with CD117, CD71, and CD105. This combination allowed for the separation of erythroid progenitor cells into four discrete populations along a continuum of progressive maturation, with increasing cell size and decreasing nuclear/cytoplasmic ratio, proliferative capacity and stem cell factor responsiveness. This strategy was validated in uncultured, primary erythroid cells isolated from bone marrow of healthy individuals. Functional colony assays of these progenitor populations revealed enrichment of BFU-E only in the earliest population, transitioning to cells yielding BFU-E and CFU-E, then CFU-E only. Utilizing CD34/CD105 and GPA/CD105 profiles, all four progenitor stages and all five stages of terminal erythroid differentiation could be identified. Applying this immunophenotyping strategy to primary bone marrow cells from patients with myelodysplastic syndrome, identified defects in erythroid progenitors and in terminal erythroid differentiation. This novel immunophenotyping technique will be a valuable tool for studies of normal and perturbed human erythropoiesis. It will allow for the discovery of stage-specific molecular and functional insights into normal erythropoiesis as well as for identification and characterization of stage-specific defects in inherited and acquired disorders of erythropoiesis.
Collapse
Affiliation(s)
- Hongxia Yan
- New York Blood Center New York New York USA
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS Montpellier France
| | - Abdullah Ali
- Myelodysplastic Syndromes Center Columbia University New York New York USA
| | - Lionel Blanc
- The Feinstein Institute for Medical Research Manhasset New York USA
- Zucker School of Medicine at Hofstra/Northwell Hempstead New York USA
| | - Anupama Narla
- Stanford University School of Medicine Stanford California USA
| | - Joseph M. Lane
- Department of Orthopaedic Surgery Hospital for Special Surgery New York New York USA
- Department of Orthopaedic Surgery New York‐Presbyterian Hospital, Weill Cornell Medical Center New York New York USA
| | - Erjing Gao
- New York Blood Center New York New York USA
| | - Julien Papoin
- The Feinstein Institute for Medical Research Manhasset New York USA
| | - John Hale
- New York Blood Center New York New York USA
| | | | - Naomi Taylor
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS Montpellier France
- Pediatric Oncology Branch NCI, CCR, NIH Bethesda Maryland USA
| | - Patrick G. Gallagher
- Department of Pediatrics Yale University School of Medicine New Haven Connecticut USA
- Department of Pathology Yale University School of Medicine New Haven Connecticut USA
- Department of Genetics Yale University School of Medicine New Haven Connecticut USA
| | - Azra Raza
- Myelodysplastic Syndromes Center Columbia University New York New York USA
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS Montpellier France
| | | |
Collapse
|
29
|
Su H, Jiang M, Senevirathne C, Aluri S, Zhang T, Guo H, Xavier-Ferrucio J, Jin S, Tran NT, Liu SM, Sun CW, Zhu Y, Zhao Q, Chen Y, Cable L, Shen Y, Liu J, Qu CK, Han X, Klug CA, Bhatia R, Chen Y, Nimer SD, Zheng YG, Iancu-Rubin C, Jin J, Deng H, Krause DS, Xiang J, Verma A, Luo M, Zhao X. Methylation of dual-specificity phosphatase 4 controls cell differentiation. Cell Rep 2021; 36:109421. [PMID: 34320342 PMCID: PMC9110119 DOI: 10.1016/j.celrep.2021.109421] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/17/2021] [Accepted: 06/28/2021] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are inactivated by dual-specificity phosphatases (DUSPs), the activities of which are tightly regulated during cell differentiation. Using knockdown screening and single-cell transcriptional analysis, we demonstrate that DUSP4 is the phosphatase that specifically inactivates p38 kinase to promote megakaryocyte (Mk) differentiation. Mechanistically, PRMT1-mediated methylation of DUSP4 triggers its ubiquitinylation by an E3 ligase HUWE1. Interestingly, the mechanistic axis of the DUSP4 degradation and p38 activation is also associated with a transcriptional signature of immune activation in Mk cells. In the context of thrombocytopenia observed in myelodysplastic syndrome (MDS), we demonstrate that high levels of p38 MAPK and PRMT1 are associated with low platelet counts and adverse prognosis, while pharmacological inhibition of p38 MAPK or PRMT1 stimulates megakaryopoiesis. These findings provide mechanistic insights into the role of the PRMT1-DUSP4-p38 axis on Mk differentiation and present a strategy for treatment of thrombocytopenia associated with MDS.
Collapse
Affiliation(s)
- Hairui Su
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ming Jiang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Chamara Senevirathne
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Srinivas Aluri
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA
| | - Tuo Zhang
- Genomics and Epigenomics Core Facility, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Han Guo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Juliana Xavier-Ferrucio
- Department of Laboratory Medicine, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Shuiling Jin
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ngoc-Tung Tran
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Szu-Mam Liu
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chiao-Wang Sun
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yongxia Zhu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Qing Zhao
- Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yuling Chen
- Department of School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | - Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Cheng-Kui Qu
- Aflac Cancer and Blood Disorders Center, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Xiaosi Han
- Department of Neurology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Christopher A Klug
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ravi Bhatia
- Division of Hematology and Oncology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yabing Chen
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL 35294, USA; Veterans Affairs Birmingham Medical Center, Research Department, Birmingham, AL 35294, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146 USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Camelia Iancu-Rubin
- Department of Medicine, Hematology and Oncology Division, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Haiteng Deng
- Department of School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Diane S Krause
- Department of Laboratory Medicine, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jenny Xiang
- Genomics and Epigenomics Core Facility, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA
| | - Amit Verma
- Department of Oncology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY 10461, USA.
| | - Minkui Luo
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Program of Pharmacology, Weill Cornell Medical College of Cornell University, New York, NY 10021, USA.
| | - Xinyang Zhao
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
30
|
Ishchuk OP, Frost AT, Muñiz-Paredes F, Matsumoto S, Laforge N, Eriksson NL, Martínez JL, Petranovic D. Improved production of human hemoglobin in yeast by engineering hemoglobin degradation. Metab Eng 2021; 66:259-267. [PMID: 33984513 DOI: 10.1016/j.ymben.2021.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022]
Abstract
With the increasing demand for blood transfusions, the production of human hemoglobin (Hb) from sustainable sources is increasingly studied. Microbial production is an attractive option, as it may provide a cheap, safe, and reliable source of this protein. To increase the production of human hemoglobin by the yeast Saccharomyces cerevisiae, the degradation of Hb was reduced through several approaches. The deletion of the genes HMX1 (encoding heme oxygenase), VPS10 (encoding receptor for vacuolar proteases), PEP4 (encoding vacuolar proteinase A), ROX1 (encoding heme-dependent repressor of hypoxic genes) and the overexpression of the HEM3 (encoding porphobilinogen deaminase) and the AHSP (encoding human alpha-hemoglobin-stabilizing protein) genes - these changes reduced heme and Hb degradation and improved heme and Hb production. The reduced hemoglobin degradation was validated by a bilirubin biosensor. During glucose fermentation, the engineered strains produced 18% of intracellular Hb relative to the total yeast protein, which is the highest production of human hemoglobin reported in yeast. This increased hemoglobin production was accompanied with an increased oxygen consumption rate and an increased glycerol yield, which (we speculate) is the yeast's response to rebalance its NADH levels under conditions of oxygen limitation and increased protein-production.
Collapse
Affiliation(s)
- Olena P Ishchuk
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE41296, Gothenburg, Sweden.
| | - August T Frost
- Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Facundo Muñiz-Paredes
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Saki Matsumoto
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Nathalie Laforge
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE41296, Gothenburg, Sweden
| | - Nélida Leiva Eriksson
- Department of Chemistry, Division of Biotechnology, Lund University, 221 00, Lund, Sweden
| | - José L Martínez
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE41296, Gothenburg, Sweden; Department of Biotechnology and Biomedicine, Section for Synthetic Biology, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
| | - Dina Petranovic
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE41296, Gothenburg, Sweden; Novo Nordisk Foundation Centre for Biosustainability, Chalmers University of Technology, SE41296, Gothenburg, Sweden.
| |
Collapse
|
31
|
Vats A, Ho TC, Puc I, Chen YJ, Chang CH, Chien YW, Perng GC. Evidence that hematopoietic stem cells in human umbilical cord blood is infectable by dengue virus: proposing a vertical transmission candidate. Heliyon 2021; 7:e06785. [PMID: 33981874 PMCID: PMC8082560 DOI: 10.1016/j.heliyon.2021.e06785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/08/2020] [Accepted: 04/08/2021] [Indexed: 12/30/2022] Open
Abstract
Background Recent studies have shown that dengue virus (DENV) can efficiently infect bone marrow hematopoietic stem cells (HSCs) as well as the placenta of pregnant women. Although mother-to-infant vertical transmission of DENV through the placenta has been well documented, the evidence of cell-associated vertical transmission is still unknown. Whether DENV can infect umbilical cord blood (UCB) cells before reaching the fetus remains to be explored. Here, we proposed that human UCB cells were permissive to the DENV infection and DENV infected CD133+ and CD34+ HSCs are reservoir of the virus that could be reactivated upon re-culturing in suitable cells. Methods Human UCB cells were freshly obtained and subjected to DENV infection. Multicolor flow cytometry (MFCM) was used to demonstrate the phenotypes of the infected HSC populations. Immunofluorescence analysis (IFA) and T-distributed Stochastic Neighbor Embedding (t-SNE) were used to show the association of the DENV antigen, non-structural protein1 (NS1) with HSCs. Key findings UCB cells were highly permissive to DENV infection. DENV altered the phenotype of the infected HSC population, increased the expression of HSCs, and affected the balance of transcription factors (TFs, GATA1/2/3). IFA revealed the association of the DENV antigen, non-structural protein1 (NS1), with CD34+ and CD133+ cells. T-distributed Stochastic Neighbor Embedding (t-SNE) analysis revealed heterogeneity in the distribution of CD133+NS1+, and CD34+ NS1+ cells. DENV particles were recovered from CD133+ and CD34+ cells even when virus production in the supernatant was negligible. Significance We predict that infection of CD133+ and CD34+ cells in the UCB serve as reservoirs for the amplification of DENV in UCB prior to the virus reaching the fetus and facilitate vertical transmission.
Collapse
Affiliation(s)
- Amrita Vats
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chuan Ho
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Irwin Puc
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ju Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chiung-Hsin Chang
- Department of Obstetrics and Gynecology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wen Chien
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Guey-Chuen Perng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
32
|
Bush LM, Healy CP, Marvin JE, Deans TL. High-throughput enrichment and isolation of megakaryocyte progenitor cells from the mouse bone marrow. Sci Rep 2021; 11:8268. [PMID: 33859294 PMCID: PMC8050096 DOI: 10.1038/s41598-021-87681-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/17/2021] [Indexed: 11/17/2022] Open
Abstract
Megakaryocytes are a rare population of cells that develop in the bone marrow and function to produce platelets that circulate throughout the body and form clots to stop or prevent bleeding. A major challenge in studying megakaryocyte development, and the diseases that arise from their dysfunction, is the identification, classification, and enrichment of megakaryocyte progenitor cells that are produced during hematopoiesis. Here, we present a high throughput strategy for identifying and isolating megakaryocytes and their progenitor cells from a heterogeneous population of bone marrow samples. Specifically, we couple thrombopoietin (TPO) induction, image flow cytometry, and principal component analysis (PCA) to identify and enrich for megakaryocyte progenitor cells that are capable of self-renewal and directly differentiating into mature megakaryocytes. This enrichment strategy distinguishes megakaryocyte progenitors from other lineage-committed cells in a high throughput manner. Furthermore, by using image flow cytometry with PCA, we have identified a combination of markers and characteristics that can be used to isolate megakaryocyte progenitor cells using standard flow cytometry methods. Altogether, these techniques enable the high throughput enrichment and isolation of cells in the megakaryocyte lineage and have the potential to enable rapid disease identification and diagnoses ahead of severe disease progression.
Collapse
Affiliation(s)
- Lucas M Bush
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Connor P Healy
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - James E Marvin
- Flow Cytometry Core Facility, University of Utah Health Sciences Center, Salt Lake City, UT, 84112, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
33
|
Reed F, Larsuel ST, Mayday MY, Scanlon V, Krause DS. MRTFA: A critical protein in normal and malignant hematopoiesis and beyond. J Biol Chem 2021; 296:100543. [PMID: 33722605 PMCID: PMC8079280 DOI: 10.1016/j.jbc.2021.100543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/03/2022] Open
Abstract
Myocardin-related transcription factor A (MRTFA) is a coactivator of serum response factor, a transcription factor that participates in several critical cellular functions including cell growth and apoptosis. MRTFA couples transcriptional regulation to actin cytoskeleton dynamics, and the transcriptional targets of the MRTFA–serum response factor complex include genes encoding cytoskeletal proteins as well as immediate early genes. Previous work has shown that MRTFA promotes the differentiation of many cell types, including various types of muscle cells and hematopoietic cells, and MRTFA's interactions with other protein partners broaden its cellular roles. However, despite being first identified as part of the recurrent t(1;22) chromosomal translocation in acute megakaryoblastic leukemia, the mechanisms by which MRTFA functions in malignant hematopoiesis have yet to be defined. In this review, we provide an in-depth examination of the structure, regulation, and known functions of MRTFA with a focus on hematopoiesis. We conclude by identifying areas of study that merit further investigation.
Collapse
Affiliation(s)
- Fiona Reed
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shannon T Larsuel
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Madeline Y Mayday
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vanessa Scanlon
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Diane S Krause
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA; Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
34
|
Stem Cells an Overview. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
Kwon N, Thompson EN, Mayday MY, Scanlon V, Lu YC, Krause DS. Current understanding of human megakaryocytic-erythroid progenitors and their fate determinants. Curr Opin Hematol 2021; 28:28-35. [PMID: 33186151 PMCID: PMC7737300 DOI: 10.1097/moh.0000000000000625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW This review focuses on our current understanding of fate decisions in bipotent megakaryocyte-erythroid progenitors (MEPs). Although extensive research has been carried out over decades, our understanding of how MEP commit to the erythroid versus megakaryocyte fate remains unclear. RECENT FINDINGS We discuss the isolation of primary human MEP, and focus on gene expression patterns, epigenetics, transcription factors and extrinsic factors that have been implicated in MEP fate determination. We conclude with an overview of the open debates in the field of MEP biology. SUMMARY Understanding MEP fate is important because defects in megakaryocyte and erythrocyte development lead to disease states such as anaemia, thrombocytopenia and leukaemia. MEP also represent a model system for studying fundamental principles underlying cell fate decisions of bipotent and pluripotent progenitors, such that discoveries in MEP are broadly applicable to stem/progenitor cell biology.
Collapse
Affiliation(s)
- Nayoung Kwon
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Evrett N. Thompson
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Madeline Y. Mayday
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Vanessa Scanlon
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Laboratory Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Yi-Chien Lu
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| | - Diane S. Krause
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Pathology, Yale School of Medicine, 333 Cedar Street, New Haven, CT
- Department of Laboratory Medicine, Yale School of Medicine, 333 Cedar Street, New Haven, CT
| |
Collapse
|
36
|
Miao R, Lim VY, Kothapalli N, Ma Y, Fossati J, Zehentmeier S, Sun R, Pereira JP. Hematopoietic Stem Cell Niches and Signals Controlling Immune Cell Development and Maintenance of Immunological Memory. Front Immunol 2020; 11:600127. [PMID: 33324418 PMCID: PMC7726109 DOI: 10.3389/fimmu.2020.600127] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Studies over the last couple of decades have shown that hematopoietic stem cells (HSCs) are critically dependent on cytokines such as Stem Cell Factor and other signals provided by bone marrow niches comprising of mesenchymal stem and progenitor cells (MSPCs) and endothelial cells (ECs). Because of their critical roles in HSC maintenance the niches formed by MSPCs and ECs are commonly referred to as HSC niches. For the most part, the signals required for HSC maintenance act in a short-range manner, which imposes the necessity for directional and positional cues in order for HSCs to localize and be retained properly in stem cell niches. The chemokine CXCL12 and its Gαi protein coupled receptor CXCR4, besides promoting HSC quiescence directly, also play instrumental roles in enabling HSCs to access bone marrow stem cell niches. Recent studies have revealed, however, that HSC niches also provide a constellation of hematopoietic cytokines that are critical for the production of most, if not all, blood cell types. Some hematopoietic cytokines, namely IL-7 and IL-15 produced by HSC niches, are not only required for lymphopoiesis but are also essential for memory T cell maintenance. Consequently, hematopoietic progenitors and differentiated immune cells, such as memory T cell subsets, also depend on the CXCL12/CXCR4 axis for migration into bone marrow and interactions with MSPCs and ECs. Similarly, subsets of antibody-secreting plasma cells also reside in close association with CXCL12-producing MSPCs in the bone marrow and require the CXCR4/CXCL12 axis for survival and long-term maintenance. Collectively, these studies demonstrate a broad range of key physiological roles, spanning blood cell production and maintenance of immunological memory, that are orchestrated by stem cell niches through a common and simple mechanism: CXCL12/CXCR4-mediated cell recruitment followed by receipt of a maintenance and/or instructive signal. A fundamental flaw of this type of cellular organization is revealed by myeloid and lymphoid leukemias, which target stem cell niches and induce profound transcriptomic changes that result in reduced hematopoietic activity and altered mesenchymal cell differentiation.
Collapse
Affiliation(s)
- Runfeng Miao
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Vivian Y Lim
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Neeharika Kothapalli
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Yifan Ma
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Julia Fossati
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Sandra Zehentmeier
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Ruifeng Sun
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - João P Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
37
|
Severe ineffective erythropoiesis discriminates prognosis in myelodysplastic syndromes: analysis based on 776 patients from a single centre. Blood Cancer J 2020; 10:83. [PMID: 32801296 PMCID: PMC7429953 DOI: 10.1038/s41408-020-00349-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
The underlying mechanisms and clinical significance of ineffective erythropoiesis in myelodysplastic syndromes (MDS) remain to be fully defined. We conducted the ex vivo erythroid differentiation of megakaryocytic-erythroid progenitors (MEPs) from MDS patients and discovered that patient-derived erythroblasts exhibit precocity and premature aging phenotypes, partially by inducing the pro-aging genes, like ERCC1. Absolute reticulocyte count (ARC) was chosen as a biomarker to evaluate the severity of ineffective erythropoiesis in 776 MDS patients. We found that patients with severe ineffective erythropoiesis displaying lower ARC (<20 × 109/L), were more likely to harbor complex karyotypes and high-risk somatic mutations (p < 0.05). Lower ARCs are associated with shorter overall survival (OS) in univariate analysis (p < 0.001) and remain significant in multivariable analysis. Regardless of patients of lower-risk who received immunosuppressive therapy or higher-risk who received decitabine treatment, patients with lower ARC had shorter OS (p < 0.001). Whereas no difference in OS was found between patients receiving allo-hematopoietic stem cell transplantations (Allo-HSCT) (p = 0.525). Our study revealed that ineffective erythropoiesis in MDS may be partially caused by premature aging and apoptosis during erythroid differentiation. MDS patients with severe ineffective erythropoiesis have significant shorter OS treated with immunosuppressive or hypo-methylating agents, but may benefit from Allo-HSCT.
Collapse
|
38
|
Hughes MR, Canals Hernaez D, Cait J, Refaeli I, Lo BC, Roskelley CD, McNagny KM. A sticky wicket: Defining molecular functions for CD34 in hematopoietic cells. Exp Hematol 2020; 86:1-14. [PMID: 32422232 DOI: 10.1016/j.exphem.2020.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/05/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023]
Abstract
The CD34 cell surface antigen is widely expressed in tissues on cells with progenitor-like properties and on mature vascular endothelia. In adult human bone marrow, CD34 marks hematopoietic stem and progenitor cells (HSPCs) starting from the bulk of hematopoietic stem cells with long-term repopulating potential (LT-HSCs) throughout expansion and differentiation of oligopotent and unipotent progenitors. CD34 protein surface expression is typically lost as cells mature into terminal effectors. Because of this expression pattern of HSPCs, CD34 has had a central role in the evaluation or selection of donor graft tissue in HSC transplant (HSCT). Given its clinical importance, it is surprising that the biological functions of CD34 are still poorly understood. This enigma is due, in part, to CD34's context-specific role as both a pro-adhesive and anti-adhesive molecule and its potential functional redundancy with other sialomucins. Moreover, there are also critical differences in the regulation of CD34 expression on HSPCs in humans and experimental mice. In this review, we highlight some of the more well-defined functions of CD34 in HSPCs with a focus on proposed functions most relevant to HSCT biology.
Collapse
Affiliation(s)
- Michael R Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Diana Canals Hernaez
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jessica Cait
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Ido Refaeli
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Bernard C Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Calvin D Roskelley
- Life Sciences Institute, Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
39
|
Low iron promotes megakaryocytic commitment of megakaryocytic-erythroid progenitors in humans and mice. Blood 2020; 134:1547-1557. [PMID: 31439541 DOI: 10.1182/blood.2019002039] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 08/09/2019] [Indexed: 12/13/2022] Open
Abstract
The mechanisms underlying thrombocytosis in patients with iron deficiency anemia remain unknown. Here, we present findings that support the hypothesis that low iron biases the commitment of megakaryocytic (Mk)-erythroid progenitors (MEPs) toward the Mk lineage in both human and mouse. In MEPs of transmembrane serine protease 6 knockout (Tmprss6-/-) mice, which exhibit iron deficiency anemia and thrombocytosis, we observed a Mk bias, decreased labile iron, and decreased proliferation relative to wild-type (WT) MEPs. Bone marrow transplantation assays suggest that systemic iron deficiency, rather than a local role for Tmprss6-/- in hematopoietic cells, contributes to the MEP lineage commitment bias observed in Tmprss6-/- mice. Nontransgenic mice with acquired iron deficiency anemia also show thrombocytosis and Mk-biased MEPs. Gene expression analysis reveals that messenger RNAs encoding genes involved in metabolic, vascular endothelial growth factor, and extracellular signal-regulated kinase (ERK) pathways are enriched in Tmprss6-/- vs WT MEPs. Corroborating our findings from the murine models of iron deficiency anemia, primary human MEPs exhibit decreased proliferation and Mk-biased commitment after knockdown of transferrin receptor 2, a putative iron sensor. Signal transduction analyses reveal that both human and murine MEP have lower levels of phospho-ERK1/2 in iron-deficient conditions compared with controls. These data are consistent with a model in which low iron in the marrow environment affects MEP metabolism, attenuates ERK signaling, slows proliferation, and biases MEPs toward Mk lineage commitment.
Collapse
|
40
|
Hernández-Sánchez JM, Bastida JM, Alonso-López D, Benito R, González-Porras JR, De Las Rivas J, Hernández Rivas JM, Rodríguez-Vicente AE. Transcriptomic analysis of patients with immune thrombocytopenia treated with eltrombopag. Platelets 2019; 31:993-1000. [PMID: 31838946 DOI: 10.1080/09537104.2019.1702156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the last years, the use of thrombopoietin receptor agonists (TPO-RA), eltrombopag and romiplostim, has improved the management of immune thrombocytopenia (ITP). Moreover, eltrombopag is also active in patients with aplastic anemia and myelodysplastic syndrome. However, their mechanisms of action and signaling pathways still remain controversial. In order to gain insight into the mechanisms underlying eltrombopag therapy, a gene expression profile (GEP) analysis in patients treated with this drug was carried out. Fourteen patients with chronic ITP were studied by means of microarrays before and during eltrombopag treatment. Median age was 78 years (range, 35-87 years); median baseline platelet count was 14 × 109/L (range, 2-68 × 109/L). Ten patients responded to the therapy, two cases relapsed after an initial response and the remaining two were refractory to the therapy. Eltrombopag induced relevant changes in the hematopoiesis, platelet activation and degranulation, as well as in megakaryocyte differentiation, with overexpression of some transcription factors and the genes PPBP, ITGB3, ITGA2B, F13A1, F13A1, MYL9 and ITGA2B. In addition, GP1BA, PF4, ITGA2B, MYL9, HIST1H4H and HIST1H2BH, genes regulated by RUNX1 were also significantly enriched after eltrombopag therapy. Furthermore, in non-responder patients, an overexpression of Bcl-X gene and genes involved in erythropoiesis, such as SLC4A1 and SLC25A39, was also observed. To conclude, overexpression in genes involved in megakaryopoiesis, platelet adhesion, degranulation and aggregation was observed in patients treated with eltrombopag. Moreover, an important role regarding heme metabolism was also present in non-responder patients.
Collapse
Affiliation(s)
- Jesús María Hernández-Sánchez
- Department of Hematology, Hospital Universitario Salamanca , Salamanca, Spain.,IBSAL,IBMCC-Cancer Research Center, University of Salamanca , Salamanca, Spain
| | - José María Bastida
- Department of Hematology, Hospital Universitario Salamanca , Salamanca, Spain.,IBSAL,IBMCC-Cancer Research Center, University of Salamanca , Salamanca, Spain
| | - Diego Alonso-López
- Bioinformatics Unit, Cancer Research Center (CSIC-USAL) , Salamanca, Spain
| | - Rocío Benito
- Department of Hematology, Hospital Universitario Salamanca , Salamanca, Spain.,IBSAL,IBMCC-Cancer Research Center, University of Salamanca , Salamanca, Spain
| | - José Ramón González-Porras
- Department of Hematology, Hospital Universitario Salamanca , Salamanca, Spain.,IBSAL,IBMCC-Cancer Research Center, University of Salamanca , Salamanca, Spain
| | | | - Jesús María Hernández Rivas
- Department of Hematology, Hospital Universitario Salamanca , Salamanca, Spain.,IBSAL,IBMCC-Cancer Research Center, University of Salamanca , Salamanca, Spain
| | - Ana Eugenia Rodríguez-Vicente
- Department of Hematology, Hospital Universitario Salamanca , Salamanca, Spain.,IBSAL,IBMCC-Cancer Research Center, University of Salamanca , Salamanca, Spain
| |
Collapse
|
41
|
Lu YC, Sanada C, Xavier-Ferrucio J, Wang L, Zhang PX, Grimes HL, Venkatasubramanian M, Chetal K, Aronow B, Salomonis N, Krause DS. The Molecular Signature of Megakaryocyte-Erythroid Progenitors Reveals a Role for the Cell Cycle in Fate Specification. Cell Rep 2019; 25:2083-2093.e4. [PMID: 30463007 PMCID: PMC6336197 DOI: 10.1016/j.celrep.2018.10.084] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/14/2018] [Accepted: 10/24/2018] [Indexed: 12/25/2022] Open
Abstract
Megakaryocytic-erythroid progenitors (MEPs) give rise to the cells that produce red blood cells and platelets. Although the mechanisms underlying megakaryocytic (MK) and erythroid (E) maturation have been described, those controlling their specification from MEPs are unknown. Single-cell RNA sequencing of primary human MEPs, common myeloid progenitors (CMPs), megakaryocyte progenitors, and E progenitors revealed a distinct transitional MEP signature. Inferred regulatory transcription factors (TFs) were associated with differential expression of cell cycle regulators. Genetic manipulation of selected TFs validated their role in lineage specification and demonstrated coincident modulation of the cell cycle. Genetic and pharmacologic modulation demonstrated that cell cycle activation is sufficient to promote E versus MK specification. These findings, obtained from healthy human cells, lay a foundation to study the mechanisms underlying benign and malignant disease states of the megakaryocytic and E lineages. Bipotent megakaryocytic-erythroid progenitors (MEPs) produce megakaryocytic and erythroid cells. Using single-cell RNA sequencing of primary human MEPs and their upstream and downstream progenitors, Lu et al. show that MEPs are a unique transitional population. Functional and molecular studies show that MEP lineage fate is toggled by cell cycle speed.
Collapse
Affiliation(s)
- Yi-Chien Lu
- Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | - Chad Sanada
- Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Juliana Xavier-Ferrucio
- Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Lin Wang
- Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Ping-Xia Zhang
- Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA
| | - Meenakshi Venkatasubramanian
- Division of Biomedical Informatics, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Bruce Aronow
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH 45229, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Diane S Krause
- Department of Laboratory Medicine and Yale Stem Cell Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| |
Collapse
|
42
|
Soslau G. The role of the red blood cell and platelet in the evolution of mammalian and avian endothermy. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2019; 334:113-127. [DOI: 10.1002/jez.b.22922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/04/2019] [Accepted: 11/09/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular BiologyDrexel University College of MedicinePhiladelphia Pennsylvania
| |
Collapse
|
43
|
Noetzli LJ, French SL, Machlus KR. New Insights Into the Differentiation of Megakaryocytes From Hematopoietic Progenitors. Arterioscler Thromb Vasc Biol 2019; 39:1288-1300. [PMID: 31043076 PMCID: PMC6594866 DOI: 10.1161/atvbaha.119.312129] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023]
Abstract
Megakaryocytes are hematopoietic cells, which are responsible for the production of blood platelets. The traditional view of megakaryopoiesis describes the cellular journey from hematopoietic stem cells, through a hierarchical series of progenitor cells, ultimately to a mature megakaryocyte. Once mature, the megakaryocyte then undergoes a terminal maturation process involving multiple rounds of endomitosis and cytoplasmic restructuring to allow platelet formation. However, recent studies have begun to redefine this hierarchy and shed new light on alternative routes by which hematopoietic stem cells are differentiated into megakaryocytes. In particular, the origin of megakaryocytes, including the existence and hierarchy of megakaryocyte progenitors, has been redefined, as new studies are suggesting that hematopoietic stem cells originate as megakaryocyte-primed and can bypass traditional lineage checkpoints. Overall, it is becoming evident that megakaryopoiesis does not only occur as a stepwise process, but is dynamic and adaptive to biological needs. In this review, we will reexamine the canonical dogmas of megakaryopoiesis and provide an updated framework for interpreting the roles of traditional pathways in the context of new megakaryocyte biology. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Leila J Noetzli
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Shauna L French
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Kellie R Machlus
- Division of Hematology, Brigham and Women’s Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
44
|
French SL, Machlus KR. Tyrosyl-tRNA synthetase drives megakaryopoiesis independently of thrombopoietin signaling. J Thromb Haemost 2019; 17:564-566. [PMID: 30632668 DOI: 10.1111/jth.14361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 11/29/2022]
Affiliation(s)
- S L French
- Division of Hematology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - K R Machlus
- Division of Hematology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|