1
|
Djamgoz MBA. Stemness of Cancer: A Study of Triple-negative Breast Cancer From a Neuroscience Perspective. Stem Cell Rev Rep 2025; 21:337-350. [PMID: 39531198 PMCID: PMC11872763 DOI: 10.1007/s12015-024-10809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Stemness, giving cancer cells massive plasticity enabling them to survive in dynamic (e.g. hypoxic) environments and become resistant to treatment, especially chemotherapy, is an important property of aggressive tumours. Here, we review some essentials of cancer stemness focusing on triple-negative breast cancer (TNBC), the most aggressive form of all breast cancers. TNBC cells express a range of genes and mechanisms associated with stemness, including the fundamental four "Yamanaka factors". Most of the evidence concerns the transcription factor / oncogene c-Myc and an interesting case is the expression of the neonatal splice variant of voltage-gated sodium channel subtype Nav1.5. On the whole, measures that reduce the stemness make cancer cells less aggressive, reducing their invasive/metastatic potential and increasing/restoring their chemosensitivity. Such measures include gene silencing techniques, epigenetic therapies as well as novel approaches like optogenetics aiming to modulate the plasma membrane voltage. Indeed, simply hyperpolarizing their membrane potential can make stem cells differentiate. Finally, we give an overview of the clinical aspects and exploitation of cancer/TNBC stemness, including diagnostics and therapeutics. In particular, personalised mRNA-based therapies and mechanistically meaningful combinations are promising and the emerging discipline of 'cancer neuroscience' is providing novel insights to both fundamental issues and clinical applications.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
2
|
Baines O, Sha R, Kalla M, Holmes AP, Efimov IR, Pavlovic D, O’Shea C. Optical mapping and optogenetics in cardiac electrophysiology research and therapy: a state-of-the-art review. Europace 2024; 26:euae017. [PMID: 38227822 PMCID: PMC10847904 DOI: 10.1093/europace/euae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/07/2023] [Accepted: 01/12/2024] [Indexed: 01/18/2024] Open
Abstract
State-of-the-art innovations in optical cardiac electrophysiology are significantly enhancing cardiac research. A potential leap into patient care is now on the horizon. Optical mapping, using fluorescent probes and high-speed cameras, offers detailed insights into cardiac activity and arrhythmias by analysing electrical signals, calcium dynamics, and metabolism. Optogenetics utilizes light-sensitive ion channels and pumps to realize contactless, cell-selective cardiac actuation for modelling arrhythmia, restoring sinus rhythm, and probing complex cell-cell interactions. The merging of optogenetics and optical mapping techniques for 'all-optical' electrophysiology marks a significant step forward. This combination allows for the contactless actuation and sensing of cardiac electrophysiology, offering unprecedented spatial-temporal resolution and control. Recent studies have performed all-optical imaging ex vivo and achieved reliable optogenetic pacing in vivo, narrowing the gap for clinical use. Progress in optical electrophysiology continues at pace. Advances in motion tracking methods are removing the necessity of motion uncoupling, a key limitation of optical mapping. Innovations in optoelectronics, including miniaturized, biocompatible illumination and circuitry, are enabling the creation of implantable cardiac pacemakers and defibrillators with optoelectrical closed-loop systems. Computational modelling and machine learning are emerging as pivotal tools in enhancing optical techniques, offering new avenues for analysing complex data and optimizing therapeutic strategies. However, key challenges remain including opsin delivery, real-time data processing, longevity, and chronic effects of optoelectronic devices. This review provides a comprehensive overview of recent advances in optical mapping and optogenetics and outlines the promising future of optics in reshaping cardiac electrophysiology and therapeutic strategies.
Collapse
Affiliation(s)
- Olivia Baines
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Rina Sha
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Manish Kalla
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Andrew P Holmes
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Igor R Efimov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Medicine, Division of Cardiology, Northwestern University, Evanston, IL, USA
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| | - Christopher O’Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental Science, University of Birmingham, Edgbastion, Wolfson Drive, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Altahini S, Arnoux I, Stroh A. Optogenetics 2.0: challenges and solutions towards a quantitative probing of neural circuits. Biol Chem 2024; 405:43-54. [PMID: 37650383 DOI: 10.1515/hsz-2023-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/02/2023] [Indexed: 09/01/2023]
Abstract
To exploit the full potential of optogenetics, we need to titrate and tailor optogenetic methods to emulate naturalistic circuit function. For that, the following prerequisites need to be met: first, we need to target opsin expression not only to genetically defined neurons per se, but to specifically target a functional node. Second, we need to assess the scope of optogenetic modulation, i.e. the fraction of optogenetically modulated neurons. Third, we need to integrate optogenetic control in a closed loop setting. Fourth, we need to further safe and stable gene expression and light delivery to bring optogenetics to the clinics. Here, we review these concepts for the human and rodent brain.
Collapse
Affiliation(s)
- Saleh Altahini
- Leibniz Institute for Resilience Research, D-55122 Mainz, Germany
| | - Isabelle Arnoux
- Cerebral Physiopathology Laboratory, Center for Interdisciplinary Research in Biology, College de France, Centre national de la recherche scientifique, Institut national de la santé et de la recherche médicale, Université PSL, F-75005 Paris, France
| | - Albrecht Stroh
- Leibniz Institute for Resilience Research, D-55122 Mainz, Germany
- Institute of Pathophysiology, University Medical Center Mainz, D-55128 Mainz, Germany
| |
Collapse
|
4
|
Velikic G, Maric DM, Maric DL, Supic G, Puletic M, Dulic O, Vojvodic D. Harnessing the Stem Cell Niche in Regenerative Medicine: Innovative Avenue to Combat Neurodegenerative Diseases. Int J Mol Sci 2024; 25:993. [PMID: 38256066 PMCID: PMC10816024 DOI: 10.3390/ijms25020993] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Regenerative medicine harnesses the body's innate capacity for self-repair to restore malfunctioning tissues and organs. Stem cell therapies represent a key regenerative strategy, but to effectively harness their potential necessitates a nuanced understanding of the stem cell niche. This specialized microenvironment regulates critical stem cell behaviors including quiescence, activation, differentiation, and homing. Emerging research reveals that dysfunction within endogenous neural stem cell niches contributes to neurodegenerative pathologies and impedes regeneration. Strategies such as modifying signaling pathways, or epigenetic interventions to restore niche homeostasis and signaling, hold promise for revitalizing neurogenesis and neural repair in diseases like Alzheimer's and Parkinson's. Comparative studies of highly regenerative species provide evolutionary clues into niche-mediated renewal mechanisms. Leveraging endogenous bioelectric cues and crosstalk between gut, brain, and vascular niches further illuminates promising therapeutic opportunities. Emerging techniques like single-cell transcriptomics, organoids, microfluidics, artificial intelligence, in silico modeling, and transdifferentiation will continue to unravel niche complexity. By providing a comprehensive synthesis integrating diverse views on niche components, developmental transitions, and dynamics, this review unveils new layers of complexity integral to niche behavior and function, which unveil novel prospects to modulate niche function and provide revolutionary treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Gordana Velikic
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Hajim School of Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Dusan M. Maric
- Department for Research and Development, Clinic Orto MD-Parks Dr. Dragi Hospital, 21000 Novi Sad, Serbia
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Dusica L. Maric
- Department of Anatomy, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Gordana Supic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Miljan Puletic
- Faculty of Stomatology Pancevo, University Business Academy, 26000 Pancevo, Serbia;
| | - Oliver Dulic
- Department of Surgery, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Danilo Vojvodic
- Institute for Medical Research, Military Medical Academy, 11000 Belgrade, Serbia; (G.S.); (D.V.)
- Medical Faculty of Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| |
Collapse
|
5
|
Guntnur RT, Muzzio N, Gomez A, Macias S, Galindo A, Ponce A, Romero G. On-Demand Chemomagnetic Modulation of Striatal Neurons Facilitated by Hybrid Magnetic Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2204732. [PMID: 36339020 PMCID: PMC9635318 DOI: 10.1002/adfm.202204732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Minimally invasive manipulation of cell signaling is critical in basic neuroscience research and in developing therapies for neurological disorders. Here, we describe a wireless chemomagnetic neuromodulation platform for the on-demand control of primary striatal neurons that relies on nanoscale heating events. Iron oxide magnetic nanoparticles (MNPs) are functionally coated with thermoresponsive poly (oligo (ethylene glycol) methyl ether methacrylate) (POEGMA) brushes loaded with dopamine. Dopamine loaded MNPs-POEGMA are co-cultured with primary striatal neurons. When alternating magnetinec fields (AMF) are applied, MNPs undergo hysteresis power loss and dissipate heat. The local heat produced by MNPs initiates a thermodynamic phase transition on POEGMA brushes resulting in polymer collapse and dopamine release. AMF-triggered dopamine release enhances the response of dopamine ion channels expressed on the cell membranes enhancing the activity of ~50% of striatal neurons subjected to the treatment. Chemomagnetic actuation on dopamine receptors is confirmed by blocking D1 and D2 receptors. The reversible thermodynamic phase transition of POEGMA brushes allow the on-demand release of dopamine in multiple microdoses. AMF-triggered dopamine release from MNPs-POEGMA causes no cell cytotoxicity nor promotes cell ROS production. This research represents a fundamental step forward for the chemomagnetic control of neural activity using hybrid magnetic nanomaterials with tailored physical properties.
Collapse
Affiliation(s)
- Rohini Thevi Guntnur
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio; San Antonio, TX 78249, USA
| | - Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio; San Antonio, TX 78249, USA
| | - Amanda Gomez
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio; San Antonio, TX 78249, USA
| | - Sean Macias
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio; San Antonio, TX 78249, USA
| | - Arturo Galindo
- Department of Physics and Astronomy, The University of Texas at San Antonio; San Antonio, TX 78249, USA
| | - Arturo Ponce
- Department of Physics and Astronomy, The University of Texas at San Antonio; San Antonio, TX 78249, USA
| | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio; San Antonio, TX 78249, USA
| |
Collapse
|
6
|
Schmieder F, Habibey R, Striebel J, Büttner L, Czarske J, Busskamp V. Tracking connectivity maps in human stem cell-derived neuronal networks by holographic optogenetics. Life Sci Alliance 2022; 5:5/7/e202101268. [PMID: 35418473 PMCID: PMC9008225 DOI: 10.26508/lsa.202101268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Holographic optogenetic stimulation of human iPSC–derived neuronal networks was exploited to map precise functional connectivity motifs and their long-term dynamics during network development. Neuronal networks derived from human induced pluripotent stem cells have been exploited widely for modeling neuronal circuits, neurological diseases, and drug screening. As these networks require extended culturing periods to functionally mature in vitro, most studies are based on immature networks. To obtain insights on long-term functional features, we improved a glia–neuron co-culture protocol within multi-electrode arrays, facilitating continuous assessment of electrical features in weekly intervals. By full-field optogenetic stimulation, we detected an earlier onset of neuronal firing and burst activity compared with spontaneous activity. Full-field stimulation enhanced the number of active neurons and their firing rates. Compared with full-field stimulation, which evoked synchronized activity across all neurons, holographic stimulation of individual neurons resulted in local activity. Single-cell holographic stimulation facilitated to trace propagating evoked activities of 400 individually stimulated neurons per multi-electrode array. Thereby, we revealed precise functional neuronal connectivity motifs. Holographic stimulation data over time showed increasing connection numbers and strength with culture age. This holographic stimulation setup has the potential to establish a profound functional testbed for in-depth analysis of human-induced pluripotent stem cell-derived neuronal networks.
Collapse
Affiliation(s)
- Felix Schmieder
- Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, TU Dresden, Dresden, Germany
| | - Rouhollah Habibey
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| | - Johannes Striebel
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| | - Lars Büttner
- Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, TU Dresden, Dresden, Germany
| | - Jürgen Czarske
- Laboratory of Measurement and Sensor System Technique, Faculty of Electrical and Computer Engineering, TU Dresden, Dresden, Germany .,Competence Center for Biomedical Computational Laser Systems (BIOLAS), TU Dresden, Dresden, Germany.,Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.,Institute of Applied Physics, School of Science, TU Dresden, Dresden, Germany
| | - Volker Busskamp
- Department of Ophthalmology, Universitäts-Augenklinik Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Shams Najafabadi H, Sadeghi M, Zibaii MI, Soheili ZS, Samiee S, Ghasemi P, Hosseini M, Gholami Pourbadie H, Ahmadieh H, Taghizadeh S, Ranaei Pirmardan E. Optogenetic control of neural differentiation in Opto-mGluR6 engineered retinal pigment epithelial cell line and mesenchymal stem cells. J Cell Biochem 2021; 122:851-869. [PMID: 33847009 DOI: 10.1002/jcb.29918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 11/11/2022]
Abstract
In retinal degenerative disorders, when neural retinal cells are damaged, cell transplantation is one of the most promising therapeutic approaches. Optogenetic technology plays an essential role in the neural differentiation of stem cells via membrane depolarization. This study explored the efficacy of blue light stimulation in neuroretinal differentiation of Opto-mGluR6-engineered mouse retinal pigment epithelium (mRPE) and bone marrow mesenchymal stem cells (BMSCs). mRPE and BMSCs were selected for optogenetic study due to their capability to differentiate into retinal-specific neurons. BMSCs were isolated and phenotypically characterized by the expression of mesenchymal stem cell-specific markers, CD44 (99%) and CD105 (98.8%). mRPE culture identity was confirmed by expression of RPE-specific marker, RPE65, and epithelial cell marker, ZO-1. mRPE cells and BMSCs were transduced with AAV-MCS-IRES-EGFP-Opto-mGluR6 viral vector and stimulated for 5 days with blue light (470 nm). RNA and protein expression of Opto-mGluR6 were verified. Optogenetic stimulation-induced elevated intracellular Ca2+ levels in mRPE- and BMS-treated cells. Significant increase in cell growth rate and G1/S phase transition were detected in mRPE- and BMSCs-treated cultures. Pou4f1, Dlx2, Eomes, Barlh2, Neurod2, Neurod6, Rorb, Rxrg, Nr2f2, Ascl1, Hes5, and Sox8 were overexpressed in treated BMSCs and Barlh2, Rorb, and Sox8 were overexpressed in treated mRPE cells. Expression of Rho, Thy1, OPN1MW, Recoverin, and CRABP, as retinal-specific neuron markers, in mRPE and BMS cell cultures were demonstrated. Differentiation of ganglion, amacrine, photoreceptor cells, and bipolar and Muller precursors were determined in BMSCs-treated culture and were compared with mRPE. mRPE cells represented more abundant terminal Muller glial differentiation compared with BMSCs. Our results also demonstrated that optical stimulation increased the intracellular Ca2+ level and proliferation and differentiation of Opto-mGluR6-engineered BMSCs. It seems that optogenetic stimulation of mRPE- and BMSCs-engineered cells would be a potential therapeutic approach for retinal degenerative disorders.
Collapse
Affiliation(s)
- Hoda Shams Najafabadi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Sadeghi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad I Zibaii
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Zahra-Soheila Soheili
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Shahram Samiee
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Pouria Ghasemi
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hosseini
- Laser & Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | | | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Taghizadeh
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-imaging Laboratory, Brigham & Women's Hospital, Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Asano T, Teh DBL, Yawo H. Application of Optogenetics for Muscle Cells and Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:359-375. [PMID: 33398826 DOI: 10.1007/978-981-15-8763-4_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This chapter describes the current progress of basic research, and potential therapeutic applications primarily focused on the optical manipulation of muscle cells and neural stem cells using microbial rhodopsin as a light-sensitive molecule. Since the contractions of skeletal, cardiac, and smooth muscle cells are mainly regulated through their membrane potential, several studies have been demonstrated to up- or downregulate the muscle contraction directly or indirectly using optogenetic actuators or silencers with defined stimulation patterns and intensities. Light-dependent oscillation of membrane potential also facilitates the maturation of myocytes with the development of T tubules and sarcomere structures, tandem arrays of minimum contractile units consists of contractile proteins and cytoskeletal proteins. Optogenetics has been applied to various stem cells and multipotent/pluripotent cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) to generate light-sensitive neurons and to facilitate neuroscience. The chronic optical stimulation of the channelrhodopsin-expressing neural stem cells facilitates their neural differentiation. There are potential therapeutic applications of optogenetics in cardiac pacemaking, muscle regeneration/maintenance, locomotion recovery for the treatment of muscle paralysis due to motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Optogenetics would also facilitate maturation, network integration of grafted neurons, and improve the microenvironment around them when applied to stem cells.
Collapse
Affiliation(s)
- Toshifumi Asano
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Daniel Boon Loong Teh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiromu Yawo
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan.
| |
Collapse
|
9
|
Optogenetic Modulation of Neural Progenitor Cells Improves Neuroregenerative Potential. Int J Mol Sci 2020; 22:ijms22010365. [PMID: 33396468 PMCID: PMC7794764 DOI: 10.3390/ijms22010365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/31/2022] Open
Abstract
Neural progenitor cell (NPC) transplantation possesses enormous potential for the treatment of disorders and injuries of the central nervous system, including the replacement of lost cells or the repair of host neural circuity after spinal cord injury (SCI). Importantly, cell-based therapies in this context still require improvements such as increased cell survival and host circuit integration, and we propose the implementation of optogenetics as a solution. Blue-light stimulation of NPCs engineered to ectopically express the excitatory light-sensitive protein channelrhodopsin-2 (ChR2-NPCs) prompted an influx of cations and a subsequent increase in proliferation and differentiation into oligodendrocytes and neurons and the polarization of astrocytes from a pro-inflammatory phenotype to a pro-regenerative/anti-inflammatory phenotype. Moreover, neurons derived from blue-light-stimulated ChR2-NPCs exhibited both increased branching and axon length and improved axon growth in the presence of axonal inhibitory drugs such as lysophosphatidic acid or chondroitin sulfate proteoglycan. Our results highlight the enormous potential of optogenetically stimulated NPCs as a means to increase neuroregeneration and improve cell therapy outcomes for enhancing better engraftments and cell identity upon transplantation in conditions such as SCI.
Collapse
|
10
|
Cheffer A, Flitsch LJ, Krutenko T, Röderer P, Sokhranyaeva L, Iefremova V, Hajo M, Peitz M, Schwarz MK, Brüstle O. Human stem cell-based models for studying autism spectrum disorder-related neuronal dysfunction. Mol Autism 2020; 11:99. [PMID: 33308283 PMCID: PMC7733257 DOI: 10.1186/s13229-020-00383-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The controlled differentiation of pluripotent stem cells (PSCs) into neurons and glia offers a unique opportunity to study early stages of human central nervous system development under controlled conditions in vitro. With the advent of cell reprogramming and the possibility to generate induced pluripotent stem cells (iPSCs) from any individual in a scalable manner, these studies can be extended to a disease- and patient-specific level. Autism spectrum disorder (ASD) is considered a neurodevelopmental disorder, with substantial evidence pointing to early alterations in neurogenesis and network formation as key pathogenic drivers. For that reason, ASD represents an ideal candidate for stem cell-based disease modeling. Here, we provide a concise review on recent advances in the field of human iPSC-based modeling of syndromic and non-syndromic forms of ASD, with a particular focus on studies addressing neuronal dysfunction and altered connectivity. We further discuss recent efforts to translate stem cell-based disease modeling to 3D via brain organoid and cell transplantation approaches, which enable the investigation of disease mechanisms in a tissue-like context. Finally, we describe advanced tools facilitating the assessment of altered neuronal function, comment on the relevance of iPSC-based models for the assessment of pharmaceutical therapies and outline potential future routes in stem cell-based ASD research.
Collapse
Affiliation(s)
- Arquimedes Cheffer
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Lea Jessica Flitsch
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Tamara Krutenko
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Pascal Röderer
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Liubov Sokhranyaeva
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Vira Iefremova
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Mohamad Hajo
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, Germany
| | - Martin Karl Schwarz
- Life & Brain GmbH, Platform Cellomics, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Venusberg-Campus 1, Building 76, 53127, Bonn, Germany.
| |
Collapse
|
11
|
Ultraflexible organic light-emitting diodes for optogenetic nerve stimulation. Proc Natl Acad Sci U S A 2020; 117:21138-21146. [PMID: 32817422 DOI: 10.1073/pnas.2007395117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Organic electronic devices implemented on flexible thin films are attracting increased attention for biomedical applications because they possess extraordinary conformity to curved surfaces. A neuronal device equipped with an organic light-emitting diode (OLED), used in combination with animals that are genetically engineered to include a light-gated ion channel, would enable cell type-specific stimulation to neurons as well as conformal contact to brain tissue and peripheral soft tissue. This potential application of the OLEDs requires strong luminescence, well over the neuronal excitation threshold in addition to flexibility. Compatibility with neuroimaging techniques such as MRI provides a method to investigate the evoked activities in the whole brain. Here, we developed an ultrathin, flexible, MRI-compatible OLED device and demonstrated the activation of channelrhodopsin-2-expressing neurons in animals. Optical stimulation from the OLED attached to nerve fibers induced contractions in the innervated muscles. Mechanical damage to the tissues was significantly reduced because of the flexibility. Owing to the MRI compatibility, neuronal activities induced by direct optical stimulation of the brain were visualized using MRI. The OLED provides an optical interface for modulating the activity of soft neuronal tissues.
Collapse
|
12
|
Niyazi M, Zibaii MI, Chavoshinezhad S, Hamidabadi HG, Dargahi L, Bojnordi MN, Alizadeh R, Heravi M, Karimi H, Hosseini M, Sadeghi Malvajerdi E, Seyednazari M. Neurogenic differentiation of human dental pulp stem cells by optogenetics stimulation. J Chem Neuroanat 2020; 109:101821. [PMID: 32512152 DOI: 10.1016/j.jchemneu.2020.101821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 05/09/2020] [Accepted: 06/01/2020] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Human dental pulp stem cells (hDPSCs), a promising source for autologous transplantation in regenerative medicine, have been shown to be able to differentiate into neural precursors. Optogenetics is considered as an advanced biological technique in neuroscience which is able to control the activity of genetically modified stem cells by light. The purpose of this study is to investigate the neurogenic differentiation of hDPSCs following optogenetic stimulation. METHODS The hDPSCs were isolated by mechanical enzymatic digestion from an impacted third molar and cultured in DMEM/F12. The cells were infected with lentiviruses carrying CaMKIIa-hChR2 (H134R). Opsin-expressing hDPSCs were plated at the density of 5 × 104 cells/well in 6-well plates and optical stimulation was conducted with blue light (470 nm) pulsing at 15 Hz, 90 % Duty Cycle and 10 mW power for 10 s every 90 minutes, 6 times a day for 5 days. Two control groups including non-opsin-expressing hDPSCs and opsin-expressing hDPSCs with no optical stimulation were also included in the study. A day after last light stimulation, the viability of cells was analyzed by the MTT assay and the morphological changes were examined by phase contrast microscopy. The expression of Nestin, Microtubule-Associated protein 2 (MAP2) and Doublecortin (DCX) were examined by immunocytochemistry. RESULTS Human DPSCs expressed the reporter gene, mCherry, 72 hours after lentiviral infection. The result of MTT assay revealed a significant more viability in optical stimulated opsin-expressing hDPSCs as compared with two control groups. Moreover, optical stimulation increased the expression of Nestin, Doublecortin and MAP2 along with morphological changes from spindle shape to neuron-like shape. CONCLUSION Optogenetics stimulation through depolarizing the hDPSCs can increase the cells viability and/or proliferation and also promote the differentiation toward neuron-like cells.
Collapse
Affiliation(s)
- Mahsa Niyazi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | | | - Sara Chavoshinezhad
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hatef Ghasemi Hamidabadi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Nazm Bojnordi
- Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetic Research Center, Department of Anatomy & Cell Biology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rafieh Alizadeh
- ENT and Head & Neck Research Center and Department, The Five Senses Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mansooreh Heravi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedieh Karimi
- Laser and Plasma Research Institute-Shahid Beheshti University, Tehran, Iran
| | - Mohammad Hosseini
- Laser and Plasma Research Institute-Shahid Beheshti University, Tehran, Iran
| | | | | |
Collapse
|
13
|
Rosenberg N, Gendelman R, Noofi N. Photobiomodulation of human osteoblast-like cells in vitro by low-intensity-pulsed LED light. FEBS Open Bio 2020; 10:1276-1287. [PMID: 32392363 PMCID: PMC7327916 DOI: 10.1002/2211-5463.12877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Visible light irradiation is an emerging area in regenerative medicine research. We hypothesized that low‐intensity‐pulsed LED light irradiance may exert photobiomodulatory effects on cultured osteoblast‐like cells. To test this hypothesis, we investigated cell proliferation and markers of cell maturation and metabolic activity following pulsed LED irradiance. Monolayer explant cultures of human osteoblast‐like cells were exposed four times in 24‐h intervals to 2 min of pulsed white LED irradiance of 2.4–2.5 mW·cm−2 and its different spectra of 0.2–0.5 mW·cm−2 (frequency range of 10–40 Hz). Cell proliferation was estimated from microscopic cell counting and cell death by lactate dehydrogenase activity in culture media (measured by a colorimetric method). The early markers of osteoblast maturation and metabolic activity, that is, cellular alkaline phosphatase activity and osteocalcin content, were measured using a colorimetric method and ELISA, respectively. Irradiance of 40 Hz caused the highest increase in cell number (P < 0.01). Osteocalcin content in cells decreased following 40 Hz and 10 Hz irradiance (P < 0.05). The 40 Hz blue range irradiance (diffuse transmittance 420–580 nm, maximal cell irradiance 0.5 mW·cm−2) caused a decrease in alkaline phosphatase cellular activity (P < 0.001) and an increase in media osteocalcin content (P < 0.05). The 40 Hz green range (diffuse transmittance 560–650 nm, maximal cell irradiance 0.4 mW·cm−2) irradiance caused an increase in the number of cells and in cell death. In summary, pulsed (40 Hz) white light irradiance has photomodulatory effects, with its green range spectrum affecting cell proliferation and cell death, and its blue range spectrum affecting cellular maturation and metabolism. The results indicate a low‐intensity threshold of photobiomodulation of osteoblast‐like cells in vitro.
Collapse
Affiliation(s)
- Nahum Rosenberg
- Laboratory of Musculoskeletal Research, Rambam Health Care Campus and Ruth & Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Raya Gendelman
- Laboratory of Musculoskeletal Research, Rambam Health Care Campus and Ruth & Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Nesreen Noofi
- Laboratory of Musculoskeletal Research, Rambam Health Care Campus and Ruth & Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
Ryu J, Vincent PFY, Ziogas NK, Xu L, Sadeghpour S, Curtin J, Alexandris AS, Stewart N, Sima R, du Lac S, Glowatzki E, Koliatsos VE. Optogenetically transduced human ES cell-derived neural progenitors and their neuronal progenies: Phenotypic characterization and responses to optical stimulation. PLoS One 2019; 14:e0224846. [PMID: 31710637 PMCID: PMC6844486 DOI: 10.1371/journal.pone.0224846] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/22/2019] [Indexed: 02/04/2023] Open
Abstract
Optogenetically engineered human neural progenitors (hNPs) are viewed as promising tools in regenerative neuroscience because they allow the testing of the ability of hNPs to integrate within nervous system of an appropriate host not only structurally, but also functionally based on the responses of their differentiated progenies to light. Here, we transduced H9 embryonic stem cell-derived hNPs with a lentivirus harboring human channelrhodopsin (hChR2) and differentiated them into a forebrain lineage. We extensively characterized the fate and optogenetic functionality of hChR2-hNPs in vitro with electrophysiology and immunocytochemistry. We also explored whether the in vivo phenotype of ChR2-hNPs conforms to in vitro observations by grafting them into the frontal neocortex of rodents and analyzing their survival and neuronal differentiation. Human ChR2-hNPs acquired neuronal phenotypes (TUJ1, MAP2, SMI-312, and synapsin 1 immunoreactivity) in vitro after an average of 70 days of coculturing with CD1 astrocytes and progressively displayed both inhibitory and excitatory neurotransmitter signatures by immunocytochemistry and whole-cell patch clamp recording. Three months after transplantation into motor cortex of naïve or injured mice, 60–70% of hChR2-hNPs at the transplantation site expressed TUJ1 and had neuronal cytologies, whereas 60% of cells also expressed ChR2. Transplant-derived neurons extended axons through major commissural and descending tracts and issued synaptophysin+ terminals in the claustrum, endopiriform area, and corresponding insular and piriform cortices. There was no apparent difference in engraftment, differentiation, or connectivity patterns between injured and sham subjects. Same trends were observed in a second rodent host, i.e. rat, where we employed longer survival times and found that the majority of grafted hChR2-hNPs differentiated into GABAergic neurons that established dense terminal fields and innervated mostly dendritic profiles in host cortical neurons. In physiological experiments, human ChR2+ neurons in culture generated spontaneous action potentials (APs) 100–170 days into differentiation and their firing activity was consistently driven by optical stimulation. Stimulation generated glutamatergic and GABAergic postsynaptic activity in neighboring ChR2- cells, evidence that hChR2-hNP-derived neurons had established functional synaptic connections with other neurons in culture. Light stimulation of hChR2-hNP transplants in vivo generated complicated results, in part because of the variable response of the transplants themselves. Our findings show that we can successfully derive hNPs with optogenetic properties that are fully transferrable to their differentiated neuronal progenies. We also show that these progenies have substantial neurotransmitter plasticity in vitro, whereas in vivo they mostly differentiate into inhibitory GABAergic neurons. Furthermore, neurons derived from hNPs have the capacity of establishing functional synapses with postsynaptic neurons in vitro, but this outcome is technically challenging to explore in vivo. We propose that optogenetically endowed hNPs hold great promise as tools to explore de novo circuit formation in the brain and, in the future, perhaps launch a new generation of neuromodulatory therapies.
Collapse
Affiliation(s)
- Jiwon Ryu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Philippe F. Y. Vincent
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nikolaos K. Ziogas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Leyan Xu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shirin Sadeghpour
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - John Curtin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Athanasios S. Alexandris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Nicholas Stewart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard Sima
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sascha du Lac
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elisabeth Glowatzki
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
15
|
Stroh A, Kressel J, Coras R, Dreyer AY, Fröhlich W, Förschler A, Lobsien D, Blümcke I, Zoubaa S, Schlegel J, Zimmer C, Boltze J. A Safe and Effective Magnetic Labeling Protocol for MRI-Based Tracking of Human Adult Neural Stem Cells. Front Neurosci 2019; 13:1092. [PMID: 31680827 PMCID: PMC6797601 DOI: 10.3389/fnins.2019.01092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 01/09/2023] Open
Abstract
Magnetic resonance imaging (MRI) provides a unique tool for in vivo visualization and tracking of stem cells in the brain. This is of particular importance when assessing safety of experimental cell treatments in the preclinical or clinical setup. Yet, specific imaging requires an efficient and non-perturbing cellular magnetic labeling which precludes adverse effects of the tag, e.g., the impact of iron-oxide-nanoparticles on the critical differentiation and integration processes of the respective stem cell population investigated. In this study we investigated the effects of very small superparamagnetic iron oxide particle (VSOP) labeling on viability, stemness, and neuronal differentiation potential of primary human adult neural stem cells (haNSCs). Cytoplasmic VSOP incorporation massively reduced the transverse relaxation time T2, an important parameter determining MR contrast. Cells retained cytoplasmic label for at least a month, indicating stable incorporation, a necessity for long-term imaging. Using a clinical 3T MRI, 1 × 103 haNSCs were visualized upon injection in a gel phantom, but detection limit was much lower (5 × 104 cells) in layer phantoms and using an imaging protocol feasible in a clinical scenario. Transcriptional analysis and fluorescence immunocytochemistry did not reveal a detrimental impact of VSOP labeling on important parameters of cellular physiology with cellular viability, stemness and neuronal differentiation potential remaining unaffected. This represents a pivotal prerequisite with respect to clinical application of this method.
Collapse
Affiliation(s)
- Albrecht Stroh
- Institute for Pathophysiology, Mainz University, Mainz, Germany.,German Resilience Center, Mainz, Germany
| | - Jenny Kressel
- Department of Neuroradiology, Technical University Munich, Munich, Germany.,Helmholtz Center Munich, Institute for Biological and Medical Imaging, Munich, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Antje Y Dreyer
- Translational Center for Regenerative Medicine, Fraunhofer Institute for Cell Therapy and Immunology, University of Leipzig, Leipzig, Germany
| | - Wenke Fröhlich
- Translational Center for Regenerative Medicine, Fraunhofer Institute for Cell Therapy and Immunology, University of Leipzig, Leipzig, Germany
| | - Annette Förschler
- Department of Neuroradiology, Technical University Munich, Munich, Germany
| | - Donald Lobsien
- Department of Neuroradiology, University Hospital Leipzig, Leipzig, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Saida Zoubaa
- Division of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Jürgen Schlegel
- Division of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Neuroradiology, Technical University Munich, Munich, Germany
| | - Johannes Boltze
- Translational Center for Regenerative Medicine, Fraunhofer Institute for Cell Therapy and Immunology, University of Leipzig, Leipzig, Germany.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
16
|
Driving Neurogenesis in Neural Stem Cells with High Sensitivity Optogenetics. Neuromolecular Med 2019; 22:139-149. [PMID: 31595404 DOI: 10.1007/s12017-019-08573-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/21/2019] [Indexed: 01/15/2023]
Abstract
Optogenetic stimulation of neural stem cells (NSCs) enables their activity-dependent photo-modulation. This provides a spatio-temporal tool for studying activity-dependent neurogenesis and for regulating the differentiation of the transplanted NSCs. Currently, this is mainly driven by viral transfection of channelrhodopsin-2 (ChR2) gene, which requires high irradiance and complex in vivo/vitro stimulation systems. Additionally, despite the extensive application of optogenetics in neuroscience, the transcriptome-level changes induced by optogenetic stimulation of NSCs have not been elucidated yet. Here, we made transformed NSCs (SFO-NSCs) stably expressing one of the step-function opsin (SFO)-variants of chimeric channelrhodopsins, ChRFR(C167A), which is more sensitive to blue light than native ChR2, via a non-viral transfection system using piggyBac transposon. We set up a simple low-irradiance optical stimulation (OS)-incubation system that induced c-fos mRNA expression, which is activity-dependent, in differentiating SFO-NSCs. More neuron-like SFO-NCSs, which had more elongated axons, were differentiated with daily OS than control cells without OS. This was accompanied by positive/negative changes in the transcriptome involved in axonal remodeling, synaptic plasticity, and microenvironment modulation with the up-regulation of several genes involved in the Ca2+-related functions. Our approach could be applied for stem cell transplantation studies in tissue with two strengths: lower carcinogenicity and less irradiance needed for tissue penetration.
Collapse
|
17
|
Wang S, Du L, Peng GH. Optogenetic stimulation inhibits the self-renewal of mouse embryonic stem cells. Cell Biosci 2019; 9:73. [PMID: 31497278 PMCID: PMC6719367 DOI: 10.1186/s13578-019-0335-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022] Open
Abstract
Modulation of the embryonic stem cell state is beneficial for elucidating the innate mechanisms of development and regenerative medicine. Ion flux plays important roles in modulating the transition between stemness and differentiation in mouse embryonic stem cells (mESCs). Optogenetics is a novel tool for manipulating ion flux. To investigate the impact of optical stimulation on embryonic stem cells, optogenetically engineered V6.5 mESCs were used to measure the depolarization mediated by ChR2 on the proliferation, self-renewal, and differentiation of mESCs. Blue light stimulation significantly inhibited ChR2-GFP-V6.5 ESC proliferation and disrupted the cell cycle progression, reducing the proportion of cells in the S phase. Interestingly, optical stimulation could inhibit ChR2-GFP-V6.5 ESC self-renewal and trigger differentiation by activating the extracellular regulated protein kinase (ERK) signaling pathway. Our data suggest that membrane potential changes play pivotal roles in regulating the proliferation, self-renewal and initiation of differentiation of mESCs.
Collapse
Affiliation(s)
- Shaojun Wang
- 1Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing, 100853 China.,2Department of Ophthalmology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071 China.,3Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lu Du
- 1Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing, 100853 China
| | - Guang-Hua Peng
- 1Department of Ophthalmology, General Hospital of Chinese People's Liberation Army, Beijing, 100853 China.,3Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
18
|
Yuan M, Wang Y, Qin YX. Engineered nanomedicine for neuroregeneration: light emitting diode-mediated superparamagnetic iron oxide-gold core-shell nanoparticles functionalized by nerve growth factor. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102052. [PMID: 31349088 DOI: 10.1016/j.nano.2019.102052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/04/2019] [Accepted: 06/14/2019] [Indexed: 01/01/2023]
Abstract
This paper reports nerve growth factor functionalized superparamagnetic iron oxide-gold core-shell nanoparticles (NGF-SPIO-Au NPs), an engineered nanomedicine for non-invasive neuron regeneration when irradiated by a low-intensity light-emitting diode (LED). NGF-SPIO-Au NPs of 20 μg/ml, were tested on PC-12 neuron-like cells, irradiated by LEDs (525 nm, 1.09, 1.44, and 1.90 mW/cm2). A remarkable Ca2+ influx was detected in differentiated PC-12 cells treated with NPs, irradiated by LED of 1.90 and 1.44 mW/cm2 with great cell viability (>84%) and proliferations. The strong heat generated through their plasmonic surface upon LED irradiation on NGF-SPIO-Au NPs was observed. For cells treated with LED (1.90 mW/cm2) and NGF-SPIO-Au NPs, a dramatic enhancement of neuronal differentiation (83%) and neurite outgrowth (51%) was found, and the upregulation of both the neural differentiation specific marker (β3-tubulin) and the cell adhesive molecule (integrin β1) was observed by the reverse transcription-polymerase chain reaction and western blot analysis.
Collapse
Affiliation(s)
- Muzhaozi Yuan
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX.
| | - Ya Wang
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX.
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY.
| |
Collapse
|
19
|
Lee SY, George JH, Nagel DA, Ye H, Kueberuwa G, Seymour LW. Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters. J Tissue Eng Regen Med 2019; 13:369-384. [PMID: 30550638 PMCID: PMC6492196 DOI: 10.1002/term.2786] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 09/04/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023]
Abstract
Development of an optogenetically controllable human neural network model in three-dimensional (3D) cultures can provide an investigative system that is more physiologically relevant and better able to mimic aspects of human brain function. Light-sensitive neurons were generated by transducing channelrhodopsin-2 (ChR2) into human induced pluripotent stem cell (hiPSC) derived neural progenitor cells (Axol) using lentiviruses and cell-type specific promoters. A mixed population of human iPSC-derived cortical neurons, astrocytes and progenitor cells were obtained (Axol-ChR2) upon neural differentiation. Pan-neuronal promoter synapsin-1 (SYN1) and excitatory neuron-specific promoter calcium-calmodulin kinase II (CaMKII) were used to drive reporter gene expression in order to assess the differentiation status of the targeted cells. Expression of ChR2 and characterisation of subpopulations in differentiated Axol-ChR2 cells were evaluated using flow cytometry and immunofluorescent staining. These cells were transferred from 2D culture to 3D alginate hydrogel functionalised with arginine-glycine-aspartate (RGD) and small molecules (Y-27632). Improved RGD-alginate hydrogel was physically characterised and assessed for cell viability to serve as a generic 3D culture system for human pluripotent stem cells (hPSCs) and neuronal cells. Prior to cell encapsulation, neural network activities of Axol-ChR2 cells and primary neurons were investigated using calcium imaging. Results demonstrate that functional activities were successfully achieved through expression of ChR2- by both the CaMKII and SYN1 promoters. The RGD-alginate hydrogel system supports the growth of differentiated Axol-ChR2 cells whilst allowing detection of ChR2 expression upon light stimulation. This allows precise and non-invasive control of human neural networks in 3D.
Collapse
Affiliation(s)
- Si-Yuen Lee
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK.,Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - Julian H George
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - David A Nagel
- School of Life and Health Sciences, University of Aston, Birmingham, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - Gray Kueberuwa
- Department of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Leonard W Seymour
- Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Albers F, Wachsmuth L, van Alst TM, Faber C. Multimodal Functional Neuroimaging by Simultaneous BOLD fMRI and Fiber-Optic Calcium Recordings and Optogenetic Control. Mol Imaging Biol 2019; 20:171-182. [PMID: 29027094 DOI: 10.1007/s11307-017-1130-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent developments of optogenetic tools and fluorescence-based calcium recording techniques enable the manipulation and monitoring of neural circuits on a cellular level. Non-invasive imaging of brain networks, however, requires the application of methods such as blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI), which is commonly used for functional neuroimaging. While BOLD fMRI provides brain-wide non-invasive reading of the hemodynamic response, it is only an indirect measure of neural activity. Direct observation of neural responses requires electrophysiological or optical methods. The latter can be combined with optogenetic control of neuronal circuits and are MRI compatible. Yet, simultaneous optical recordings are still limited to fiber-optic-based approaches. Here, we review the integration of optical recordings and optogenetic manipulation into fMRI experiments. As a practical example, we describe how BOLD fMRI in a 9.4-T small animal MR scanner can be combined with in vivo fiber-optic calcium recordings and optogenetic control in a multimodal setup. We present simultaneous BOLD fMRI and calcium recordings under optogenetic control in rat. We outline details about MR coil configuration, choice, and usage of opsins and chemically and genetically encoded calcium sensors, fiber implantation, appropriate light power for stimulation, and calcium signal detection, to provide a glimpse into challenges and opportunities of this multimodal molecular neuroimaging approach.
Collapse
Affiliation(s)
- Franziska Albers
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | | | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
21
|
Babaee A, Nematollahi-Mahani SN, Shojaei M, Dehghani-Soltani S, Ezzatabadipour M. Effects of polarized and non-polarized red-light irradiation on proliferation of human Wharton's jelly-derived mesenchymal cells. Biochem Biophys Res Commun 2018; 504:871-877. [PMID: 30219226 DOI: 10.1016/j.bbrc.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 09/02/2018] [Indexed: 02/08/2023]
Abstract
Light emitting diode (LED) irradiation has recently been introduced as an encouraging strategy for promotion of cell proliferation. Human umbilical cord Wharton's jelly-derived mesenchymal (hUCM) cells are among the most available mesenchymal cells with a promising application in regenerative medicine. The aim of the present study was to examine the effect of polarized (PL) and non-polarized (NPL) red-light emitted by LED on various proliferation properties of hUCM cells. Cell proliferation was assessed 48 h after irradiation of hUCM cells by different energy densities. Cell density increased to a significant level both in PL and NPL irradiation at 0.954 J/cm2 following WST-1 assay. Staining of irradiated and non-irradiated cells with Hoechst after 3 and 6 days revealed an increased proliferation rate in irradiated cells, but the non-irradiated cells proliferated more than irradiated cells at day 9 of cultivation. Similar results were obtained in trypan blue assay. Scratch repair test for 18 h with an interval of 6 h did not reveal a significant difference between irradiated and non-irradiated cells. In addition, CFU-F assay in PL irradiated cells was higher than control when 500 cells/plate was cultivated. Totally, this study revealed that hUCM cells could be induced to achieve higher number of cells by PL and NPL red-light irradiation after 48 h.
Collapse
Affiliation(s)
- Abdolreza Babaee
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | | | - Samereh Dehghani-Soltani
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Massood Ezzatabadipour
- Anatomical Sciences Department, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
22
|
Graphene Microelectrode Arrays for Electrical and Optical Measurements of Human Stem Cell-Derived Cardiomyocytes. Cell Mol Bioeng 2018; 11:407-418. [PMID: 31719891 DOI: 10.1007/s12195-018-0525-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Introduction Cell-cell communication plays a pivotal role in biological systems' coordination and function. Electrical properties have been linked to specification and differentiation of stem cells into targeted progeny, such as neurons and cardiomyocytes. Currently, there is a critical need in developing new ways to complement fluorescent indicators, such as Ca2+-sensitive dyes, for direct electrophysiological measurements of cells and tissue. Here, we report a unique transparent and biocompatible graphene-based electrical platform that enables electrical and optical investigation of human embryonic stem cell-derived cardiomyocytes' (hESC-CMs) intracellular processes and intercellular communication. Methods Graphene, a honeycomb sp2 hybridized two-dimensional carbon lattice, was synthesized using low pressure chemical vapor deposition system, and was tested for biocompatibility. Au and graphene microelectrode arrays (MEAs) were fabricated using well-established microfabrication methods. Au and graphene MEAs were interfaced with hESC-CMs to perform both optical and electrical recordings. Results Optical imaging and Raman spectroscopy confirmed the presence of monolayer graphene. Viability assay showed biocompatibility of graphene. Electrochemical characterization proved graphene's functional activity. Nitric acid treatment further enhanced the electrochemical properties of graphene. Graphene electrodes' transparency enabled both optical and electrical recordings from hESC-CMs. Graphene MEA detected changes in beating frequency and field potential duration upon β-adrenergic receptor agonist treatment. Conclusion The transparent graphene platform enables the investigation of both intracellular and intercellular communication processes and will create new avenues for bidirectional communication (sensing and stimulation) with electrically active tissues and will set the ground for investigations reported diseases such as Alzheimer, Parkinson's disease and arrhythmias.
Collapse
|
23
|
Köhidi T, Jády AG, Markó K, Papp N, Andrási T, Környei Z, Madarász E. Differentiation-Dependent Motility-Responses of Developing Neural Progenitors to Optogenetic Stimulation. Front Cell Neurosci 2017; 11:401. [PMID: 29311832 PMCID: PMC5742229 DOI: 10.3389/fncel.2017.00401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/01/2017] [Indexed: 01/06/2023] Open
Abstract
During neural tissue genesis, neural stem/progenitor cells are exposed to bioelectric stimuli well before synaptogenesis and neural circuit formation. Fluctuations in the electrochemical potential in the vicinity of developing cells influence the genesis, migration and maturation of neuronal precursors. The complexity of the in vivo environment and the coexistence of various progenitor populations hinder the understanding of the significance of ionic/bioelectric stimuli in the early phases of neuronal differentiation. Using optogenetic stimulation, we investigated the in vitro motility responses of radial glia-like neural stem/progenitor populations to ionic stimuli. Radial glia-like neural stem cells were isolated from CAGloxpStoploxpChR2(H134)-eYFP transgenic mouse embryos. After transfection with Cre-recombinase, ChR2(channelrhodopsin-2)-expressing and non-expressing cells were separated by eYFP fluorescence. Expression of light-gated ion channels were checked by patch clamp and fluorescence intensity assays. Neurogenesis by ChR2-expressing and non-expressing cells was induced by withdrawal of EGF from the medium. Cells in different (stem cell, migrating progenitor and maturing precursor) stages of development were illuminated with laser light (λ = 488 nm; 1.3 mW/mm2; 300 ms) in every 5 min for 12 h. The displacement of the cells was analyzed on images taken at the end of each light pulse. Results demonstrated that the migratory activity decreased with the advancement of neuronal differentiation regardless of stimulation. Light-sensitive cells, however, responded on a differentiation-dependent way. In non-differentiated ChR2-expressing stem cell populations, the motility did not change significantly in response to light-stimulation. The displacement activity of migrating progenitors was enhanced, while the motility of differentiating neuronal precursors was markedly reduced by illumination.
Collapse
Affiliation(s)
- Tímea Köhidi
- Laboratory of Cellular and Developmental Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Attila G Jády
- Laboratory of Cellular and Developmental Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Károly Markó
- Adult Stem Cell Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Noémi Papp
- Laboratory of Cellular and Developmental Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Tibor Andrási
- Lendület Laboratory of Network Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsuzsanna Környei
- Laboratory of Cellular and Developmental Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.,Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Emília Madarász
- Laboratory of Cellular and Developmental Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
24
|
Zhao X, Xu L, Sun M, Ma W, Wu X, Xu C, Kuang H. Tuning the interactions between chiral plasmonic films and living cells. Nat Commun 2017; 8:2007. [PMID: 29222410 PMCID: PMC5722823 DOI: 10.1038/s41467-017-02268-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Designing chiral materials to manipulate the biological activities of cells has been an important area not only in chemistry and material science, but also in cell biology and biomedicine. Here, we introduce monolayer plasmonic chiral Au nanoparticle (NP) films modified with L- or D-penicillamine (Pen) to be developed for cell growth, differentiation, and retrieval. The monolayer films display high chiroptical activity, with circular dichroism values of 3.5 mdeg at 550 nm and 26.8 mdeg at 775 nm. The L-Pen-NP films accelerate cell proliferation, whereas the D -Pen-NP films have the opposite effect. Remote irradiation with light is chosen to noninvasively collect the cells. The results demonstrate that left circularly polarized light improves the efficiency of cell detachment up to 91.2% for L-Pen-NP films. These findings will facilitate the development of cell culture in biomedical application and help to understand natural homochirality.
Collapse
Affiliation(s)
- Xueli Zhao
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Ma
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiaoling Wu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
- International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
25
|
On-demand optogenetic activation of human stem-cell-derived neurons. Sci Rep 2017; 7:14450. [PMID: 29089561 PMCID: PMC5663899 DOI: 10.1038/s41598-017-14827-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/16/2017] [Indexed: 12/12/2022] Open
Abstract
The widespread application of human stem-cell-derived neurons for functional studies is impeded by complicated differentiation protocols, immaturity, and deficient optogene expression as stem cells frequently lose transgene expression over time. Here we report a simple but precise Cre-loxP-based strategy for generating conditional, and thereby stable, optogenetic human stem-cell lines. These cells can be easily and efficiently differentiated into functional neurons, and optogene expression can be triggered by administering Cre protein to the cultures. This conditional expression system may be applied to stem-cell-derived neurons whenever timed transgene expression could help to overcome silencing at the stem-cell level.
Collapse
|
26
|
Yang K, Oh JY, Lee JS, Jin Y, Chang GE, Chae SS, Cheong E, Baik HK, Cho SW. Photoactive Poly(3-hexylthiophene) Nanoweb for Optoelectrical Stimulation to Enhance Neurogenesis of Human Stem Cells. Theranostics 2017; 7:4591-4604. [PMID: 29158847 PMCID: PMC5695151 DOI: 10.7150/thno.20169] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022] Open
Abstract
Optoelectrical manipulation has recently gained attention for cellular engineering; however, few material platforms can be used to efficiently regulate stem cell behaviors via optoelectrical stimulation. In this study, we developed nanoweb substrates composed of photoactive polymer poly(3-hexylthiophene) (P3HT) to enhance the neurogenesis of human fetal neural stem cells (hfNSCs) through photo-induced electrical stimulation. METHODS The photoactive nanoweb substrates were fabricated by self-assembled one-dimensional (1D) P3HT nanostructures (nanofibrils and nanorods). The hfNSCs cultured on the P3HT nanoweb substrates were optically stimulated with a green light (539 nm) and then differentiation of hfNSCs on the substrates with light stimulation was examined. The utility of the nanoweb substrates for optogenetic application was tested with photo-responsive hfNSCs engineered by polymer nanoparticle-mediated transfection of an engineered chimeric opsin variant (C1V1)-encoding gene. RESULTS The nanoweb substrates provided not only topographical stimulation for activating focal adhesion signaling of hfNSCs, but also generated optoelectrical stimulation via photochemical and charge-transfer reactions upon exposure to 539 nm wavelength light, leading to significantly enhanced neuronal differentiation of hfNSCs. The optoelectrically stimulated hfNSCs exhibited mature neuronal phenotypes with highly extended neurite formation and functional neuron-like electrophysiological features of sodium currents and action potentials. Optoelectrical stimulation with 539 nm light simultaneously activated both C1V1-modified hfNSCs and nanoweb substrates, which upregulated the expression and activation of voltage-gated ion channels in hfNSCs and further increased the effect of photoactive substrates on neuronal differentiation of hfNSCs. CONCLUSION The photoactive nanoweb substrates developed in this study may serve as platforms for producing stem cell therapeutics with enhanced neurogenesis and neuromodulation via optoelectrical control of stem cells.
Collapse
|
27
|
Wei L, Wei ZZ, Jiang MQ, Mohamad O, Yu SP. Stem cell transplantation therapy for multifaceted therapeutic benefits after stroke. Prog Neurobiol 2017; 157:49-78. [PMID: 28322920 PMCID: PMC5603356 DOI: 10.1016/j.pneurobio.2017.03.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 03/05/2017] [Indexed: 02/06/2023]
Abstract
One of the exciting advances in modern medicine and life science is cell-based neurovascular regeneration of damaged brain tissues and repair of neuronal structures. The progress in stem cell biology and creation of adult induced pluripotent stem (iPS) cells has significantly improved basic and pre-clinical research in disease mechanisms and generated enthusiasm for potential applications in the treatment of central nervous system (CNS) diseases including stroke. Endogenous neural stem cells and cultured stem cells are capable of self-renewal and give rise to virtually all types of cells essential for the makeup of neuronal structures. Meanwhile, stem cells and neural progenitor cells are well-known for their potential for trophic support after transplantation into the ischemic brain. Thus, stem cell-based therapies provide an attractive future for protecting and repairing damaged brain tissues after injury and in various disease states. Moreover, basic research on naïve and differentiated stem cells including iPS cells has markedly improved our understanding of cellular and molecular mechanisms of neurological disorders, and provides a platform for the discovery of novel drug targets. The latest advances indicate that combinatorial approaches using cell based therapy with additional treatments such as protective reagents, preconditioning strategies and rehabilitation therapy can significantly improve therapeutic benefits. In this review, we will discuss the characteristics of cell therapy in different ischemic models and the application of stem cells and progenitor cells as regenerative medicine for the treatment of stroke.
Collapse
Affiliation(s)
- Ling Wei
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Z Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Osama Mohamad
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan Ping Yu
- Laboratories of Stem Cell Biology and Regenerative Medicine, Department of Neurology, Experimental Research Center and Neurological Disease Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
28
|
Dehghani-Soltani S, Shojaee M, Jalalkamali M, Babaee A, Nematollahi-Mahani SN. Effects of light emitting diode irradiation on neural differentiation of human umbilical cord-derived mesenchymal cells. Sci Rep 2017; 7:9976. [PMID: 28855704 PMCID: PMC5577274 DOI: 10.1038/s41598-017-10655-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/04/2017] [Indexed: 12/15/2022] Open
Abstract
Recently, light emitting diodes (LEDs) have been introduced as a potential physical factor for proliferation and differentiation of various stem cells. Among the mesenchymal stem cells human umbilical cord matrix-derived mesenchymal (hUCM) cells are easily propagated in the laboratory and their low immunogenicity make them more appropriate for regenerative medicine procedures. We aimed at this study to evaluate the effect of red and green light emitted from LED on the neural lineage differentiation of hUCM cells in the presence or absence of retinoic acid (RA). Harvested hUCM cells exhibited mesenchymal and stemness properties. Irradiation of these cells by green and red LED with or without RA pre-treatment successfully differentiated them into neural lineage when the morphology of the induced cells, gene expression pattern (nestin, β-tubulin III and Olig2) and protein synthesis (anti-nestin, anti-β-tubulin III, anti-GFAP and anti-O4 antibodies) was evaluated. These data point for the first time to the fact that LED irradiation and optogenetic technology may be applied for neural differentiation and neuronal repair in regenerative medicine.
Collapse
Affiliation(s)
- Samereh Dehghani-Soltani
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahshid Jalalkamali
- Semiconductors Group, Photonics Research Center, Graduate University of Advanced Technology, Kerman, Iran
| | - Abdolreza Babaee
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | |
Collapse
|
29
|
Patel M, Moon HJ, Hong JH, Jeong B. Chiro-Optical Modulation for NURR1 Production from Stem Cells. ACS Chem Neurosci 2017; 8:1455-1458. [PMID: 28452458 DOI: 10.1021/acschemneuro.7b00136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nuclear receptor related 1 (NURR1) is an essential protein for maintenance of dopaminergic neurons in adult midbrain of which deficiency leads to Parkinson's disease. To enhance the NURR1 production of neural cells, various approaches are under investigation. Here we report that NURR1 is highly expressed in stem cells by exposure to an L-polarized blue light emitting diode (LED). Compared to stem cells cultured in the absence of a LED, under polarized green and red LEDs, the stem cells exposed to a polarized blue LED significantly enhanced neuronal biomarkers such as neurofilament M (NFM) and neuron specific enolase (NSE) at both mRNA and protein levels. In particular, NURR1 was selectively enhanced by the stem cells exposed to the L-polarized blue LED. Stem cells exposed to the L-polarized blue LED increased mitochondrial ATP and intracellular calcium ions, which support neuronal differentiation of the stem cells. This study suggests that chiro-optical treatments by using polarized light with a specific wavelength can be used for engineering of stem cells with enhanced specific biochemicals, which may open a new method for a specific disease.
Collapse
Affiliation(s)
- Madhumita Patel
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760 Korea
| | - Hyo Jung Moon
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760 Korea
| | - Ja Hye Hong
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760 Korea
| | - Byeongmoon Jeong
- Department of Chemistry and
Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760 Korea
| |
Collapse
|
30
|
Levin M, Pezzulo G, Finkelstein JM. Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form. Annu Rev Biomed Eng 2017; 19:353-387. [PMID: 28633567 PMCID: PMC10478168 DOI: 10.1146/annurev-bioeng-071114-040647] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Living systems exhibit remarkable abilities to self-assemble, regenerate, and remodel complex shapes. How cellular networks construct and repair specific anatomical outcomes is an open question at the heart of the next-generation science of bioengineering. Developmental bioelectricity is an exciting emerging discipline that exploits endogenous bioelectric signaling among many cell types to regulate pattern formation. We provide a brief overview of this field, review recent data in which bioelectricity is used to control patterning in a range of model systems, and describe the molecular tools being used to probe the role of bioelectrics in the dynamic control of complex anatomy. We suggest that quantitative strategies recently developed to infer semantic content and information processing from ionic activity in the brain might provide important clues to cracking the bioelectric code. Gaining control of the mechanisms by which large-scale shape is regulated in vivo will drive transformative advances in bioengineering, regenerative medicine, and synthetic morphology, and could be used to therapeutically address birth defects, traumatic injury, and cancer.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Tufts University, Medford, Massachusetts 02155-4243;
- Allen Discovery Center, Tufts University, Medford, Massachusetts 02155;
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome 00185, Italy;
| | | |
Collapse
|
31
|
Kraft A, Jubal ER, von Laer R, Döring C, Rocha A, Grebbin M, Zenke M, Kettenmann H, Stroh A, Momma S. Astrocytic Calcium Waves Signal Brain Injury to Neural Stem and Progenitor Cells. Stem Cell Reports 2017; 8:701-714. [PMID: 28216142 PMCID: PMC5355570 DOI: 10.1016/j.stemcr.2017.01.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 01/28/2023] Open
Abstract
Brain injuries, such as stroke or trauma, induce neural stem cells in the subventricular zone (SVZ) to a neurogenic response. Very little is known about the molecular cues that signal tissue damage, even over large distances, to the SVZ. Based on our analysis of gene expression patterns in the SVZ, 48 hr after an ischemic lesion caused by middle cerebral artery occlusion, we hypothesized that the presence of an injury might be transmitted by an astrocytic traveling calcium wave rather than by diffusible factors or hypoxia. Using a newly established in vitro system we show that calcium waves induced in an astrocytic monolayer spread to neural stem and progenitor cells and increase their self-renewal as well as migratory behavior. These changes are due to an upregulation of the Notch signaling pathway. This introduces the concept of propagating astrocytic calcium waves transmitting brain injury signals over long distances. gene profiling after MCAO suggests a role of calcium-binding proteins Novel in vitro system to study the effects of astrocytic calcium waves on NSPCs Astrocytic calcium waves enhance self-renewal and migration capacity of NSPCs The Notch signaling pathway mediates effects of elevated calcium levels on NSPCs
Collapse
Affiliation(s)
- Anna Kraft
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School Frankfurt, 60528 Frankfurt, Germany
| | - Eduardo Rosales Jubal
- Focus Program Translational Neuroscience (FTN) and Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; Faculty of Psychology, Diego Portales University, Santiago, Chile
| | - Ruth von Laer
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School Frankfurt, 60528 Frankfurt, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Frankfurt University Medical School, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 60528 Frankfurt, Germany
| | - Adriana Rocha
- Cellular Neuroscience, Max Delbrück Centre for Molecular Medicine (MDC) in the Helmholtz Society, 13092 Berlin, Germany
| | - Moyo Grebbin
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School Frankfurt, 60528 Frankfurt, Germany
| | - Martin Zenke
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Helmut Kettenmann
- Cellular Neuroscience, Max Delbrück Centre for Molecular Medicine (MDC) in the Helmholtz Society, 13092 Berlin, Germany
| | - Albrecht Stroh
- Focus Program Translational Neuroscience (FTN) and Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Stefan Momma
- Institute of Neurology (Edinger Institute), Frankfurt University Medical School Frankfurt, 60528 Frankfurt, Germany.
| |
Collapse
|
32
|
Torregrosa T, Koppes RA. Bioelectric Medicine and Devices for the Treatment of Spinal Cord Injury. Cells Tissues Organs 2016; 202:6-22. [PMID: 27701161 DOI: 10.1159/000446698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
Recovery of motor control is paramount for patients living with paralysis following spinal cord injury (SCI). While a cure or regenerative intervention remains on the horizon for the treatment of SCI, a number of neuroprosthetic devices have been employed to treat and mitigate the symptoms of paralysis associated with injuries to the spinal column and associated comorbidities. The recent success of epidural stimulation to restore voluntary motor function in the lower limbs of a small cohort of patients has breathed new life into the promise of electric-based medicine. Recently, a number of new organic and inorganic electronic devices have been developed for brain-computer interfaces to bypass the injury, for neurorehabilitation, bladder and bowel control, and the restoration of motor or sensory control. Herein, we discuss the recent advances in neuroprosthetic devices for treating SCI and highlight future design needs for closed-loop device systems.
Collapse
|
33
|
Adams DS, Uzel SGM, Akagi J, Wlodkowic D, Andreeva V, Yelick PC, Devitt-Lee A, Pare JF, Levin M. Bioelectric signalling via potassium channels: a mechanism for craniofacial dysmorphogenesis in KCNJ2-associated Andersen-Tawil Syndrome. J Physiol 2016; 594:3245-70. [PMID: 26864374 PMCID: PMC4908029 DOI: 10.1113/jp271930] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Xenopus laevis craniofacial development is a good system for the study of Andersen-Tawil Syndrome (ATS)-associated craniofacial anomalies (CFAs) because (1) Kcnj2 is expressed in the nascent face; (2) molecular-genetic and biophysical techniques are available for the study of ion-dependent signalling during craniofacial morphogenesis; (3) as in humans, expression of variant Kcnj2 forms in embryos causes a muscle phenotype; and (4) variant forms of Kcnj2 found in human patients, when injected into frog embryos, cause CFAs in the same cell lineages. Forced expression of WT or variant Kcnj2 changes the normal pattern of Vmem (resting potential) regionalization found in the ectoderm of neurulating embryos, and changes the normal pattern of expression of ten different genetic regulators of craniofacial development, including markers of cranial neural crest and of placodes. Expression of other potassium channels and two different light-activated channels, all of which have an effect on Vmem , causes CFAs like those induced by injection of Kcnj2 variants. In contrast, expression of Slc9A (NHE3), an electroneutral ion channel, and of GlyR, an inactive Cl(-) channel, do not cause CFAs, demonstrating that correct craniofacial development depends on a pattern of bioelectric states, not on ion- or channel-specific signalling. Using optogenetics to control both the location and the timing of ion flux in developing embryos, we show that affecting Vmem of the ectoderm and no other cell layers is sufficient to cause CFAs, but only during early neurula stages. Changes in Vmem induced late in neurulation do not affect craniofacial development. We interpret these data as strong evidence, consistent with our hypothesis, that ATS-associated CFAs are caused by the effect of variant Kcnj2 on the Vmem of ectodermal cells of the developing face. We predict that the critical time is early during neurulation, and the critical cells are the ectodermal cranial neural crest and placode lineages. This points to the potential utility of extant, ion flux-modifying drugs as treatments to prevent CFAs associated with channelopathies such as ATS. ABSTRACT Variants in potassium channel KCNJ2 cause Andersen-Tawil Syndrome (ATS); the induced craniofacial anomalies (CFAs) are entirely unexplained. We show that KCNJ2 is expressed in Xenopus and mouse during the earliest stages of craniofacial development. Misexpression in Xenopus of KCNJ2 carrying ATS-associated mutations causes CFAs in the same structures affected in humans, changes the normal pattern of membrane voltage potential regionalization in the developing face and disrupts expression of important craniofacial patterning genes, revealing the endogenous control of craniofacial patterning by bioelectric cell states. By altering cells' resting potentials using other ion translocators, we show that a change in ectodermal voltage, not tied to a specific protein or ion, is sufficient to cause CFAs. By adapting optogenetics for use in non-neural cells in embryos, we show that developmentally patterned K(+) flux is required for correct regionalization of the resting potentials and for establishment of endogenous early gene expression domains in the anterior ectoderm, and that variants in KCNJ2 disrupt this regionalization, leading to the CFAs seen in ATS patients.
Collapse
Affiliation(s)
- Dany Spencer Adams
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Sebastien G M Uzel
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jin Akagi
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Donald Wlodkowic
- School of Applied Sciences, RMIT University, Melbourne, Australia
| | - Viktoria Andreeva
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Pamela Crotty Yelick
- Department of Orthodontics, Division of Craniofacial and Molecular Genetics, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Adrian Devitt-Lee
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Jean-Francois Pare
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology and Tufts Centre for Regenerative and Developmental Biology, Tufts University, 200 Boston Avenue, Medford, MA, 02155, USA
| |
Collapse
|
34
|
Pongrac IM, Pavičić I, Milić M, Brkić Ahmed L, Babič M, Horák D, Vinković Vrček I, Gajović S. Oxidative stress response in neural stem cells exposed to different superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2016; 11:1701-15. [PMID: 27217748 PMCID: PMC4853020 DOI: 10.2147/ijn.s102730] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biocompatibility, safety, and risk assessments of superparamagnetic iron oxide nanoparticles (SPIONs) are of the highest priority in researching their application in biomedicine. One improvement in the biological properties of SPIONs may be achieved by different functionalization and surface modifications. This study aims to investigate how a different surface functionalization of SPIONs – uncoated, coated with d-mannose, or coated with poly-l-lysine – affects biocompatibility. We sought to investigate murine neural stem cells (NSCs) as important model system for regenerative medicine. To reveal the possible mechanism of toxicity of SPIONs on NSCs, levels of reactive oxygen species, intracellular glutathione, mitochondrial membrane potential, cell-membrane potential, DNA damage, and activities of SOD and GPx were examined. Even in cases where reactive oxygen species levels were significantly lowered in NSCs exposed to SPIONs, we found depleted intracellular glutathione levels, altered activities of SOD and GPx, hyperpolarization of the mitochondrial membrane, dissipated cell-membrane potential, and increased DNA damage, irrespective of the surface coating applied for SPION stabilization. Although surface coating should prevent the toxic effects of SPIONs, our results showed that all of the tested SPION types affected the NSCs similarly, indicating that mitochondrial homeostasis is their major cellular target. Despite the claimed biomedical benefits of SPIONs, the refined determination of their effects on various cellular functions presented in this work highlights the need for further safety evaluations. This investigation helps to fill the knowledge gaps on the criteria that should be considered in evaluating the biocompatibility and safety of novel nanoparticles.
Collapse
Affiliation(s)
- Igor M Pongrac
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Lada Brkić Ahmed
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Michal Babič
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | - Srećko Gajović
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
35
|
Hao B, Webb SE, Miller AL, Yue J. The role of Ca(2+) signaling on the self-renewal and neural differentiation of embryonic stem cells (ESCs). Cell Calcium 2016; 59:67-74. [PMID: 26973143 DOI: 10.1016/j.ceca.2016.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/05/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Embryonic stem cells (ESCs) are promising resources for both scientific research and clinical regenerative medicine. With regards to the latter, ESCs are especially useful for treating several neurodegenerative disorders. Two significant characteristics of ESCs, which make them so valuable, are their capacity for self-renewal and their pluripotency, both of which are regulated by the integration of various signaling pathways. Intracellular Ca(2+) signaling is involved in several of these pathways. It is known to be precisely controlled by different Ca(2+) channels and pumps, which play an important role in a variety of cellular activities, including proliferation, differentiation and apoptosis. Here, we provide a review of the recent work conducted to investigate the function of Ca(2+) signaling in the self-renewal and the neural differentiation of ESCs. Specifically, we describe the role of intracellular Ca(2+) mobilization mediated by RyRs (ryanodine receptors); by cADPR (cyclic adenosine 5'-diphosphate ribose) and CD38 (cluster of differentiation 38/cADPR hydrolase); and by NAADP (nicotinic acid adenine dinucleotide phosphate) and TPC2 (two pore channel 2). We also discuss the Ca(2+) influx mediated by SOCs (store-operated Ca(2+) channels), TRPCs (transient receptor potential cation channels) and LTCC (L-type Ca(2+) channels) in the pluripotent ESCs as well as in neural differentiation of ESCs. Moreover, we describe the integration of Ca(2+) signaling in the other signaling pathways that are known to regulate the fate of ESCs.
Collapse
Affiliation(s)
- Baixia Hao
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, China
| | - Jianbo Yue
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
36
|
Shining Light on the Sprout of Life: Optogenetics Applications in Stem Cell Research and Therapy. J Membr Biol 2016; 249:215-20. [DOI: 10.1007/s00232-016-9883-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/18/2016] [Indexed: 12/21/2022]
|
37
|
Schmid F, Wachsmuth L, Albers F, Schwalm M, Stroh A, Faber C. True and apparent optogenetic BOLD fMRI signals. Magn Reson Med 2016; 77:126-136. [PMID: 26778283 DOI: 10.1002/mrm.26095] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/29/2015] [Accepted: 11/25/2015] [Indexed: 01/06/2023]
Abstract
PURPOSE Optogenetic fMRI (ofMRI) is a novel tool in neurophysiology and neuroimaging. The method is prone to light-induced artifacts, two of which were investigated in this study. METHODS ofMRI was performed in rats using two excitatory opsins (ChR2 and C1V1TT ) virally transduced in somatosensory cortex or thalamus. Heat-induced apparent BOLD activation at the site of the optical fiber and stimulation light-induced activation of the visual pathways were investigated, and control experiments for these two artifacts were established. RESULTS Specific optogenetic BOLD activation was observed with both opsins, accompanied by BOLD in the visual pathways. Unspecific heat-induced BOLD was ruled out by a control experiment employing low-level constant illumination in addition to pulsed optogenetic stimulation. Activation of the visual pathways was confirmed to be physiological by direct visual stimulation of the eyes and was suppressed by additional low-level constant light to the eyes. Light inside the brain was identified as one source of the BOLD signal observed in the visual pathways. CONCLUSION ofMRI is a method of tremendous potential, but unspecific activations in fMRI not caused by the activation of opsins must be avoided or recognized as such. The control experiments presented here allow for validating the specificity of optogenetic stimulation. Magn Reson Med 77:126-136, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Florian Schmid
- Department of Clinical Radiology, University Hospital Münster, 48149, Münster, Germany
| | - Lydia Wachsmuth
- Department of Clinical Radiology, University Hospital Münster, 48149, Münster, Germany
| | - Franziska Albers
- Department of Clinical Radiology, University Hospital Münster, 48149, Münster, Germany
| | - Miriam Schwalm
- Focus Program Translational Neurosciences & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Albrecht Stroh
- Focus Program Translational Neurosciences & Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, 48149, Münster, Germany
| |
Collapse
|
38
|
Song C, Knöpfel T. Optogenetics enlightens neuroscience drug discovery. Nat Rev Drug Discov 2015; 15:97-109. [DOI: 10.1038/nrd.2015.15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
39
|
Abstract
Among the many forms of brain plasticity, changes in synaptic strength and changes in synapse number are particularly prominent. However, evidence for neurotransmitter respecification or switching has been accumulating steadily, both in the developing nervous system and in the adult brain, with observations of transmitter addition, loss, or replacement of one transmitter with another. Natural stimuli can drive these changes in transmitter identity, with matching changes in postsynaptic transmitter receptors. Strikingly, they often convert the synapse from excitatory to inhibitory or vice versa, providing a basis for changes in behavior in those cases in which it has been examined. Progress has been made in identifying the factors that induce transmitter switching and in understanding the molecular mechanisms by which it is achieved. There are many intriguing questions to be addressed.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences & Kavli Institute for Brain and Mind, UCSD, La Jolla, CA 92093, USA.
| |
Collapse
|
40
|
Levin M. Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo. Mol Biol Cell 2015; 25:3835-50. [PMID: 25425556 PMCID: PMC4244194 DOI: 10.1091/mbc.e13-12-0708] [Citation(s) in RCA: 252] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In addition to biochemical gradients and transcriptional networks, cell behavior is regulated by endogenous bioelectrical cues originating in the activity of ion channels and pumps, operating in a wide variety of cell types. Instructive signals mediated by changes in resting potential control proliferation, differentiation, cell shape, and apoptosis of stem, progenitor, and somatic cells. Of importance, however, cells are regulated not only by their own Vmem but also by the Vmem of their neighbors, forming networks via electrical synapses known as gap junctions. Spatiotemporal changes in Vmem distribution among nonneural somatic tissues regulate pattern formation and serve as signals that trigger limb regeneration, induce eye formation, set polarity of whole-body anatomical axes, and orchestrate craniofacial patterning. New tools for tracking and functionally altering Vmem gradients in vivo have identified novel roles for bioelectrical signaling and revealed the molecular pathways by which Vmem changes are transduced into cascades of downstream gene expression. Because channels and gap junctions are gated posttranslationally, bioelectrical networks have their own characteristic dynamics that do not reduce to molecular profiling of channel expression (although they couple functionally to transcriptional networks). The recent data provide an exciting opportunity to crack the bioelectric code, and learn to program cellular activity at the level of organs, not only cell types. The understanding of how patterning information is encoded in bioelectrical networks, which may require concepts from computational neuroscience, will have transformative implications for embryogenesis, regeneration, cancer, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155-4243
| |
Collapse
|
41
|
Zhao H, Steiger A, Nohner M, Ye H. Specific Intensity Direct Current (DC) Electric Field Improves Neural Stem Cell Migration and Enhances Differentiation towards βIII-Tubulin+ Neurons. PLoS One 2015; 10:e0129625. [PMID: 26068466 PMCID: PMC4466259 DOI: 10.1371/journal.pone.0129625] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 05/11/2015] [Indexed: 01/21/2023] Open
Abstract
Control of stem cell migration and differentiation is vital for efficient stem cell therapy. Literature reporting electric field–guided migration and differentiation is emerging. However, it is unknown if a field that causes cell migration is also capable of guiding cell differentiation—and the mechanisms for these processes remain unclear. Here, we report that a 115 V/m direct current (DC) electric field can induce directional migration of neural precursor cells (NPCs). Whole cell patching revealed that the cell membrane depolarized in the electric field, and buffering of extracellular calcium via EGTA prevented cell migration under these conditions. Immunocytochemical staining indicated that the same electric intensity could also be used to enhance differentiation and increase the percentage of cell differentiation into neurons, but not astrocytes and oligodendrocytes. The results indicate that DC electric field of this specific intensity is capable of promoting cell directional migration and orchestrating functional differentiation, suggestively mediated by calcium influx during DC field exposure.
Collapse
Affiliation(s)
- Huiping Zhao
- Departments of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Amanda Steiger
- Departments of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Mitch Nohner
- Departments of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
| | - Hui Ye
- Departments of Biology, Loyola University Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
42
|
Emel'yanov AN, Kir'yanova VV. [The application of stem cells, visible and infrared light in regenerative medicine. Part 1]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOĬ FIZICHESKOĬ KULTURY 2015; 92:51-62. [PMID: 25876436 DOI: 10.17116/kurort2015151-62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The present article was designed to overview the experimental studies of visible and infrared light irradiation of human and animal stem cells (SC) in vitro and in vivo for the evaluation of its photobiomodulatory effects. The results will be used to elaborate substantiation for the choice of the parameters of SC light irradiation and to develop recommendations for the application of this method in regenerative medicine (RM). BACKGROUND The clinical application of light irradiation is a matter of contrsy, in the first place due to the difficulties encountered in the rational choice of irradiation parameters. The theoretical substantiation of such choice remains a stumbling block too despite the long history of photoghromotherapy. There is thus far no reliable theoretical basis for the adequate choice of such irradiation parameters as power density, radiation dose, and exposure time. The experiences with the light application for the purpose of regenerative medicine have never been summarized. RESULTS The present review encompasses 78 articles selected for the basic analysis that report the studies with the use of a variety of SC types. The analysis has demonstrated that clinical investigations into the influence of light on the stem cells are still in their infancy. It was shown that the irradiation parameters need to be chosen taking into consideration the type of the stem cells. Different authors report the achievement of the maximum SC proliferation and differentiation rates at energy densities as high as 50 mW/sq.cm, small radiation doses (around 1 J/sq.cm) and exposure time (on the order of seconds). CONCLUSION The general conclusion for Parts 1 and II of this communication will be presented in the next issue of this journal (number 2, 2015).
Collapse
Affiliation(s)
- A N Emel'yanov
- GBOU VPO 'Severo-Zapadnyj gosudarstvennyj meditsinskij universitet im. I.I. Mechnikova' Minzdrava Rossii, ul. Kirochnaja, 41, Sankt-Peterburg, Rossijskaja Federatsija, 191015
| | - V V Kir'yanova
- GBOU VPO 'Severo-Zapadnyj gosudarstvennyj meditsinskij universitet im. I.I. Mechnikova' Minzdrava Rossii, ul. Kirochnaja, 41, Sankt-Peterburg, Rossijskaja Federatsija, 191015
| |
Collapse
|
43
|
Emelyanov AN, Kiryanova VV. Photomodulation of proliferation and differentiation of stem cells by the visible and infrared light. Photomed Laser Surg 2015; 33:164-74. [PMID: 25692649 DOI: 10.1089/pho.2014.3830] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The aim of this article is to review experimental studies of visible and infrared light irradiation of human and animal stem cells (SCs) in vitro and in vivo to assess photobiomodulation effects on their proliferation and differentiation. BACKGROUND DATA The clinical application of light irradiation remains controversial, primarily because of the complexity of the rational choice of irradiation parameters. In laboratories, the theoretical justification underlying the choice of irradiation parameters also remains a challenge. METHODS A systematic review was completed of original research articles that investigated the effects of light irradiation on human and animal SCs in vitro and in vivo (to June 2014). Relevant articles were sourced from PubMed and MEDLINE(®). The search terms were laser (light) therapy (irradiation), stem cells, and phototherapy, stem cells. RESULTS The analysis revealed the importance of cell type when choosing the cell irradiation parameters. The influence of wavelength on the SC proliferation rate seemed to be nonsignificant. The high values of increased proliferation or differentiation were obtained using high power density, low energy density, and short exposure time. SC exposure to light without inducers did not lead to their differentiation. The maximum differentiation was achieved using irradiation parameters different from the ones needed to achieve the maximum proliferation of the same cells. CONCLUSIONS Increased power density and reduced energy density were needed to increase the SC response. Based on the analysis, we have presented a graph of the cell response to generalized photostimulus, and introduced the concepts of "photostress" and "photoshock" to describe the stages of this response.
Collapse
Affiliation(s)
- Artem Nikolaevich Emelyanov
- 1 Laboratory of High Laser and Magnetic Technology, North-Western State Medical University , St. Petersburg, Russia
| | | |
Collapse
|
44
|
Su CTE, Yoon SI, Marcy G, Chin EWM, Augustine GJ, Goh ELK. An optogenetic approach for assessing formation of neuronal connections in a co-culture system. J Vis Exp 2015:e52408. [PMID: 25742527 PMCID: PMC4354644 DOI: 10.3791/52408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here we describe a protocol to generate a co-culture consisting of 2 different neuronal populations. Induced pluripotent stem cells (iPSCs) are reprogrammed from human fibroblasts using episomal vectors. Colonies of iPSCs can be observed 30 days after initiation of fibroblast reprogramming. Pluripotent colonies are manually picked and grown in neural induction medium to permit differentiation into neural progenitor cells (NPCs). iPSCs rapidly convert into neuroepithelial cells within 1 week and retain the capability to self-renew when maintained at a high culture density. Primary mouse NPCs are differentiated into astrocytes by exposure to a serum-containing medium for 7 days and form a monolayer upon which embryonic day 18 (E18) rat cortical neurons (transfected with channelrhodopsin-2 (ChR2)) are added. Human NPCs tagged with the fluorescent protein, tandem dimer Tomato (tdTomato), are then seeded onto the astrocyte/cortical neuron culture the following day and allowed to differentiate for 28 to 35 days. We demonstrate that this system forms synaptic connections between iPSC-derived neurons and cortical neurons, evident from an increase in the frequency of synaptic currents upon photostimulation of the cortical neurons. This co-culture system provides a novel platform for evaluating the ability of iPSC-derived neurons to create synaptic connections with other neuronal populations.
Collapse
Affiliation(s)
- Colin T E Su
- Neuroscience & Behavioral Disorders, Duke-NUS Graduate Medical School
| | - Su-In Yoon
- Lee Kong Chian School of Medicine, Nanyang Technological University
| | - Guillaume Marcy
- Neuroscience & Behavioral Disorders, Duke-NUS Graduate Medical School
| | - Eunice W M Chin
- Neuroscience & Behavioral Disorders, Duke-NUS Graduate Medical School
| | | | - Eyleen L K Goh
- Neuroscience & Behavioral Disorders, Duke-NUS Graduate Medical School;
| |
Collapse
|
45
|
Levin M. Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration. J Physiol 2015; 592:2295-305. [PMID: 24882814 DOI: 10.1113/jphysiol.2014.271940] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pattern formation, as occurs during embryogenesis or regeneration, is the crucial link between genotype and the functions upon which selection operates. Even cancer and aging can be seen as challenges to the continuous physiological processes that orchestrate individual cell activities toward the anatomical needs of an organism. Thus, the origin and maintenance of complex biological shape is a fundamental question for cell, developmental, and evolutionary biology, as well as for biomedicine. It has long been recognized that slow bioelectrical gradients can control cell behaviors and morphogenesis. Here, I review recent molecular data that implicate endogenous spatio-temporal patterns of resting potentials among non-excitable cells as instructive cues in embryogenesis, regeneration, and cancer. Functional data have implicated gradients of resting potential in processes such as limb regeneration, eye induction, craniofacial patterning, and head-tail polarity, as well as in metastatic transformation and tumorigenesis. The genome is tightly linked to bioelectric signaling, via ion channel proteins that shape the gradients, downstream genes whose transcription is regulated by voltage, and transduction machinery that converts changes in bioelectric state to second-messenger cascades. However, the data clearly indicate that bioelectric signaling is an autonomous layer of control not reducible to a biochemical or genetic account of cell state. The real-time dynamics of bioelectric communication among cells are not fully captured by transcriptomic or proteomic analyses, and the necessary-and-sufficient triggers for specific changes in growth and form can be physiological states, while the underlying gene loci are free to diverge. The next steps in this exciting new field include the development of novel conceptual tools for understanding the anatomical semantics encoded in non-neural bioelectrical networks, and of improved biophysical tools for reading and writing electrical state information into somatic tissues. Cracking the bioelectric code will have transformative implications for developmental biology, regenerative medicine, and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
46
|
Duffy BA, Weitz AJ, Lee JH. In vivo imaging of transplanted stem cells in the central nervous system. Curr Opin Genet Dev 2014; 28:83-8. [PMID: 25461455 DOI: 10.1016/j.gde.2014.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/14/2014] [Indexed: 12/11/2022]
Abstract
In vivo imaging is increasingly being utilized in studies investigating stem cell-based treatments for neurological disorders. Direct labeling is used in preclinical and clinical studies to track the fate of transplanted cells. To further determine cell viability, experimental studies are able to take advantage of reporter gene technologies. Structural and functional brain imaging can also be used alongside cell imaging as biomarkers of treatment efficacy. Furthermore, it is possible that new imaging techniques could be used to monitor functional integration of stem cell-derived cells with the host nervous system. In this review, we examine recent developments in these areas and identify promising directions for future research at the interface of stem cell therapies and neuroimaging.
Collapse
Affiliation(s)
- Ben A Duffy
- Department of Neurology & Neurological Sciences, Stanford University, CA 94305, USA
| | - Andrew J Weitz
- Department of Bioengineering, Stanford University, CA 94305, USA
| | - Jin Hyung Lee
- Department of Neurology & Neurological Sciences, Stanford University, CA 94305, USA; Department of Bioengineering, Stanford University, CA 94305, USA; Department of Neurosurgery, Stanford University, CA 94305, USA; Department of Electrical Engineering, Stanford University, CA 94305, USA.
| |
Collapse
|
47
|
How to control proteins with light in living systems. Nat Chem Biol 2014; 10:533-41. [DOI: 10.1038/nchembio.1534] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/21/2014] [Indexed: 11/08/2022]
|
48
|
Abstract
Microglia, macrophage-like cells in the CNS, are multi-functional cells; they play an important role in removal of dead cells or their remnants by phagocytosis in the CNS degeneration as well as are one of important cells in the CNS cytokine network. They are thought to be originated from mesoderm, and to be similar cells to other tissue-resident macrophages. As macrophages, activated microglia have been shown to remove potentially deleterious debris and promote tissue repair by secreting neurotrophic factors at the neuronal injury sites, however, they can release potentially cytotoxic substances in vitro, and at least so-called fully activated form of microglia which are observed at the injury site in AIDS dementia is neurotoxic. These suggest that some factor(s) may contribute to change microglial phenotype from protective to toxic, but the detail is not clear. Recently we generated channelrhodopsin-mutant protein expressing microglia, Ra2_GR and 6-3_GR. Channelrhodopsin is an ion channel activated by light irradiation. Intracellular sodium ion increased by light irradiation in both Ra2_GR and 6-3_GR accompanied by increase of mRNA expression such as pro-inflammatory cytokines, chemokines and iNOS. This technique can control microglial activation, therefore, it may provide a new strategy for repair/regeneration of neural and oligodendrocytic damages.
Collapse
Affiliation(s)
- Makoto Sawada
- Research Institute of Environmental Medicine, Nagoya University
| |
Collapse
|
49
|
Effect of Optogenetic Stimulus on the Proliferation and Cell Cycle Progression of Neural Stem Cells. J Membr Biol 2014; 247:493-500. [DOI: 10.1007/s00232-014-9659-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 03/17/2014] [Indexed: 12/29/2022]
|
50
|
Sidor MM, McClung CA. Timing matters: using optogenetics to chronically manipulate neural circuitry and rhythms. Front Behav Neurosci 2014; 8:41. [PMID: 24592222 PMCID: PMC3924037 DOI: 10.3389/fnbeh.2014.00041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/27/2014] [Indexed: 11/19/2022] Open
Abstract
The ability to probe defined neural circuits with both the spatial and temporal resolution imparted by optogenetics has transformed the field of neuroscience. Although much attention has been paid to the advantages of manipulating neural activity at millisecond timescales in order to elicit time-locked neural responses, little consideration has been given to the manipulation of circuit activity at physiologically relevant times of day, across multiple days. Nearly all biological events are governed by the circadian clock and exhibit 24 h rhythms in activity. Indeed, neural circuit activity itself exhibits a daily rhythm with distinct temporal peaks in activity occurring at specific times of the day. Therefore, experimentally probing circuit function within and across physiologically relevant time windows (minutes to hours) in behaving animals is fundamental to understanding the function of any one particular circuit within the intact brain. Furthermore, understanding how circuit function changes with repeated manipulation is important for modeling the circuit-wide disruptions that occur with chronic disease states. Here, we review recent advances in optogenetic technology that allow for chronic, temporally specific, control of circuit activity and provide examples of chronic optogenetic paradigms that have been utilized in the search for the neural circuit basis of behaviors relevant to human neuropsychiatric disease.
Collapse
Affiliation(s)
- Michelle M Sidor
- Department of Psychiatry, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine Pittsburgh, PA, USA
| |
Collapse
|