1
|
Özerol BG, Selçuk EB, Gürel E, Üremiş MM, Gül M, Gül S, Bağ HGG, Özhan O, Türköz Y. Effect of perinatal nicotine exposure on oxidative stress and BDNF levels in the brain tissue of offspring rats: The protective role of Vitamin E. Tissue Cell 2025; 95:102881. [PMID: 40187005 DOI: 10.1016/j.tice.2025.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVE Nicotine, a well-known neurotoxin, induces oxidative stress in fetal tissues, leading to organ damage and fetal growth retardation. This study aims to evaluate oxidative stress parameters in the brain tissue of rat offspring exposed to perinatal nicotine and assess vitamin E's protective effects. METHODS Twenty-five pregnant rats were administered 10 mg/L of nicotine and 300 mg/L of Vitamin E in drinking water starting from the first day of gestation. On gestational day 21, some offspring were euthanized to form the prenatal group. The remaining litters were born naturally, and dams received treatments via drinking water during gestation and lactation (6 weeks). After the lactation period, the pups were weaned and directly treated for an additional 9 weeks, resulting in an overall treatment duration of 15 weeks. Brain tissues were analyzed for MDA, GSH, TOS, TAS, OSI, BDNF, Caspase-3 activity, and histopathological changes. RESULTS The nicotine-exposed pups exhibited significantly reduced crown-rump length, body mass, and brain mass compared to controls. Nicotine exposure decreased BDNF, GSH, and TAS levels and increased MDA, TOS, and OSI levels. Histopathologically, the nicotine prenatal group showed a significantly higher number of heterochromatic nuclei in brain tissue. Caspase-3 activity did not show a significant increase in nicotine groups compared to the control. Vitamin E supplementation mitigated nicotine-induced brain damage in some measured parameters. CONCLUSION Perinatal nicotine exposure induces oxidative damage in the brain tissue of rat offspring, while vitamin E exerts a protective antioxidant effect, preventing nicotine-induced neurotoxicity. Furthermore, the significant reduction in BDNF levels and the increase in heterochromatic nuclei in the nicotine-exposed groups highlight the detrimental impact of nicotine on neurodevelopment, which can be effectively mitigated by vitamin E supplementation.
Collapse
Affiliation(s)
- Beyza Güzide Özerol
- Department of Family Medicine, Faculty of Medicine, İnönü University, Malatya, Turkey.
| | - Engin Burak Selçuk
- Department of Family Medicine, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Elif Gürel
- Department of Medical Biochemistry, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Semir Gül
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | | | - Onural Özhan
- Department of Pharmacology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Yusuf Türköz
- Department of Medical Biochemistry, Faculty of Medicine, İnönü University, Malatya, Turkey
| |
Collapse
|
2
|
Nitric Oxide Linked to mGluR5 Upregulates BDNF Synthesis by Activating MMP2 in the Caudate and Putamen after Challenge Exposure to Nicotine in Rats. Int J Mol Sci 2022; 23:ijms231810950. [PMID: 36142895 PMCID: PMC9505196 DOI: 10.3390/ijms231810950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Nitric oxide (NO) linked to glutamate receptors in the caudate and putamen (CPu) regulates neuroadaptation after drug exposure. Matrix-metalloproteinase (MMP), a Ca2+-dependent zinc-containing endopeptidase, increases mature brain-derived neurotrophic factor (BDNF) synthesis after drug exposure in the brain. The present study determined that NO synthesis linked to metabotropic glutamate receptor subtype 5 (mGluR5) stimulation after challenge exposure to nicotine activates MMP, which upregulates BDNF synthesis in the CPu. Subcutaneous injection of challenge nicotine (1.0 mg/kg) after repeated injections of nicotine (1.0 mg/kg/day) for 14 days and 7 days of nicotine withdrawal increased MMP2 activity and BDNF expression in the CPu of rats. These increases were prevented by the bilateral intra-CPu infusion of the mGluR5 antagonist, MPEP (0.1 nmol/side), the IP3 receptor antagonist, xestospongin C (0.004 nmol/side) or the neuronal nitric oxide synthase (nNOS) and NO inhibitor, Nω-propyl (0.1 nmol/side) prior to the challenge nicotine. Furthermore, bilateral intra-CPu infusion of the MMP2 inhibitor, OA-Hy (1 nmol/side) prevented the challenge nicotine-induced increase in the expression of BDNF. These findings suggest that elevation of NO synthesis linked to mGluR5 potentiates BDNF synthesis via activation of MMP2 after challenge exposure to nicotine in the CPu of rats.
Collapse
|
3
|
Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod 2021; 105:644-666. [PMID: 34270696 PMCID: PMC8444709 DOI: 10.1093/biolre/ioab138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an ensemble of neurodevelopmental consequences in children and therefore constitutes a pressing public health concern. Adding to this burden, contemporary epidemiological and especially animal model research suggests that grandmaternal smoking is similarly associated with neurodevelopmental abnormalities in grandchildren, indicative of intergenerational transmission of the neurodevelopmental impacts of maternal smoking. Probing the mechanistic bases of neurodevelopmental anomalies in the children of maternal smokers and the intergenerational transmission thereof, emerging research intimates that epigenetic changes, namely DNA methylome perturbations, are key factors. Altogether, these findings warrant future research to fully elucidate the etiology of neurodevelopmental impairments in the children and grandchildren of maternal smokers and underscore the clear potential thereof to benefit public health by informing the development and implementation of preventative measures, prophylactics, and treatments. To this end, the present review aims to encapsulate the burgeoning evidence linking maternal smoking to intergenerational epigenetic inheritance of neurodevelopmental abnormalities, to identify the strengths and weaknesses thereof, and to highlight areas of emphasis for future human and animal model research therein.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| | - Li Yu
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
4
|
Sardar R, Hami J, Soleimani M, Joghataei MT, Shirazi R, Golab F, Namjoo Z, Zandieh Z. Maternal diabetes-induced alterations in the expression of brain-derived neurotrophic factor in the developing rat hippocampus. J Chem Neuroanat 2021; 114:101946. [PMID: 33745942 DOI: 10.1016/j.jchemneu.2021.101946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/19/2021] [Accepted: 03/04/2021] [Indexed: 01/06/2023]
Abstract
Maternal diabetes during pregnancy affects the development of hippocampus in the offspring. Brain-derived neurotrophic factor (BDNF) has received increasing attention for its role in regulating the survival and differentiation of neuronal cells in developing and adult brain. In the current study, we evaluated the effects of maternal diabetes and insulin treatment on expression and distribution pattern of BDNF in the hippocampus of neonatal rats at the first two postnatal weeks. We found no differences in hippocampal expression of BDNF between diabetics with normal control or insulin treated neonatal rats at postnatal day (P0) (P > 0.05 each). Nevertheless, there was a marked BDNF downregulation in both sides' hippocampi of male/female diabetic group in two-week-old offspring (P ≤ 0.05 each). Furthermore, the numerical density of BDNF+ cells was significantly reduced in the right/left dentate gyrus (DG) of male and female newborns born to diabetic animals at all studied postnatal days (P ≤ 0.05 each). In addition, a lower number of reactive cells have shown in the all hippocampal subareas in the diabetic pups at P14 (P ≤ 0.05 each). Our results have demonstrated that the insulin-treatment improves some of the negative impacts of diabetes on the expression of hippocampal BDNF in the newborns. We conclude that diabetes in pregnancy bilaterally disrupts the expression of BDNF in the hippocampus of the both male and female newborns at early postnatal days. In addition, good glycemic control by insulin in the most cases is sufficient to prevent the alterations in expression of BDNF protein in developing hippocampus.
Collapse
Affiliation(s)
- Reza Sardar
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Hami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran; Institute for Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Mansoureh Soleimani
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Taghi Joghataei
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Namjoo
- Department of Anatomical Science, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zahra Zandieh
- Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Science, Tehran, Iran.
| |
Collapse
|
5
|
Polli FS, Scharff MB, Ipsen TH, Aznar S, Kohlmeier KA, Andreasen JT. Prenatal nicotine exposure in mice induces sex-dependent anxiety-like behavior, cognitive deficits, hyperactivity, and changes in the expression of glutamate receptor associated-genes in the prefrontal cortex. Pharmacol Biochem Behav 2020; 195:172951. [PMID: 32439454 DOI: 10.1016/j.pbb.2020.172951] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Abstract
In rodents, prenatal nicotine exposure (PNE) has been associated with increased risk for development of cognitive and emotional disturbances, but the findings are somewhat conflicting. Lack of behavioral alterations following PNE could be due to the variety of methods available for nicotine delivery, exposure time and species used, with inbred strains being mostly employed. Such differences suggest the need to investigate the behavioral phenotype in each PNE model available if we are to find models with enhanced translational value. In this study, we assessed sex-dependent effects of PNE on ADHD-related behaviors and on the levels of mRNA coding for glutamate receptor subunits within the prefrontal cortex in the outbred NMRI mice exposed to nicotine via maternal drinking water during gestation. Cotinine levels were assessed in newborn pups. Behaviors related to anxiety, compulsivity, working memory, and locomotion were evaluated in both sexes of young adult offspring using the elevated zero maze, marble burying, spontaneous alternation behavior, and locomotor activity tests. Expression of mRNA coding for different glutamate receptors subunits within the prefrontal cortex (PFC) was measured using RT-qPCR. Cotinine levels in the serum of newborns confirmed fetal nicotine exposure. Both male and female offspring showed ADHD-like behaviors, such as deficit in the SAB test and hyperactivity. In addition, PNE male mice displayed anxiety- and compulsive-like behaviors, effects that were absent in female offspring. Finally, PNE reduced the mRNA expression of GluN1-, GluN2B-, and mGluR2-related genes within the PFC of male offspring, whereas it reduced the expression of mRNA coding for GluA2 subunit in female mice. PNE in NMRI mice induced sex-dependent behavioral changes, which parallels clinical findings following maternal cigarette smoke exposure. Alterations detected in PFC mRNA glutamate receptor proteins could contribute to the abnormal behavioral responses observed, but other signaling pathways or brain regions are likely involved in the behavioral susceptibility of PNE individuals.
Collapse
Affiliation(s)
- Filip S Polli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Malthe B Scharff
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Theis H Ipsen
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Susana Aznar
- Research Laboratory for Stereology and Neuroscience, Bispebjerg Hospital, Copenhagen 2400, Denmark
| | - Kristi A Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jesper T Andreasen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 2100, Denmark.
| |
Collapse
|
6
|
Effect of electronic cigarette aerosol exposure during gestation and lactation on learning and memory of adult male offspring rats. Physiol Behav 2020; 221:112911. [PMID: 32289318 DOI: 10.1016/j.physbeh.2020.112911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/14/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Electronic cigarette (ECIG) use has increased worldwide, including among pregnant and breastfeeding women. In this study, we examined the effect of ECIG aerosol exposure during gestation and lactation on learning and memory of adult male offspring rats. METHODS Rats were exposed to either fresh air or ECIG aerosol for one hour daily during gestational period as well as days 4-21 of lactation. Male offspring were followed through 19 weeks and then spatial learning and memory were tested by radial arm water maze (RAWM). The hippocampus was examined for biomarkers of harm, including oxidative stress, superoxide dismutase, catalase, glutathione peroxidase and thiobarbituric acid reactive substances and brain derived neurotrophic factor (BDNF). RESULTS Relative to exposure to fresh air, exposure to ECIG aerosol during gestation/lactation impaired long-term memory in adult offspring (P < 0.05). This impairment was associated with increased activity of superoxide dismutase in the hippocampus (P < 0.05). BDNF and the other tested oxidative stress biomarkers were not affected by ECIG aerosol exposure (p > 0.05). CONCLUSIONS In conclusion, ECIG aerosol exposure during gestation and lactation impaired long-term memory and increased the activity of superoxide dismutase in the hippocampus of offspring adult rats. These results support the development of strategies to enhance ECIG cessation during pregnancy and breastfeeding.
Collapse
|
7
|
Buck JM, O'Neill HC, Stitzel JA. Developmental nicotine exposure engenders intergenerational downregulation and aberrant posttranslational modification of cardinal epigenetic factors in the frontal cortices, striata, and hippocampi of adolescent mice. Epigenetics Chromatin 2020; 13:13. [PMID: 32138755 PMCID: PMC7059320 DOI: 10.1186/s13072-020-00332-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Maternal smoking of traditional or electronic cigarettes during pregnancy, which constitutes developmental nicotine exposure (DNE), heightens the risk of neurodevelopmental disorders including ADHD, autism, and schizophrenia in children. Modeling the intergenerationally transmissible impacts of smoking during pregnancy, we previously demonstrated that both the first- and second-generation adolescent offspring of nicotine-exposed female mice exhibit enhanced nicotine preference, hyperactivity and risk-taking behaviors, aberrant rhythmicity of home cage activity, nicotinic acetylcholine receptor and dopamine transporter dysfunction, impaired furin-mediated proBDNF proteolysis, hypocorticosteronemia-related glucocorticoid receptor hypoactivity, and global DNA hypomethylation in the frontal cortices and striata. This ensemble of multigenerational DNE-induced behavioral, neuropharmacological, neurotrophic, neuroendocrine, and DNA methylomic anomalies recapitulates the pathosymptomatology of neurodevelopmental disorders such as ADHD, autism, and schizophrenia. Further probing the epigenetic bases of DNE-induced multigenerational phenotypic aberrations, the present study examined the expression and phosphorylation of key epigenetic factors via an array of immunoblot experiments. RESULTS Data indicate that DNE confers intergenerational deficits in corticostriatal DNA methyltransferase 3A (DNMT3A) expression accompanied by downregulation of methyl-CpG-binding protein 2 (MeCP2) and histone deacetylase 2 (HDAC2) in the frontal cortices and hippocampi, while the expression of ten-eleven translocase methylcytosine dioxygenase 2 (TET2) is unaltered. Moreover, DNE evokes multigenerational abnormalities in HDAC2 (Ser394) but not MeCP2 (Ser421) phosphorylation in the frontal cortices, striata, and hippocampi. CONCLUSIONS In light of the extensive gene regulatory roles of DNMT3A, MeCP2, and HDAC2, the findings of this study that DNE elicits downregulation and aberrant posttranslational modification of these factors in both first- and second-generation DNE mice suggest that epigenetic perturbations may constitute a mechanistic hub for the intergenerational transmission of DNE-induced neurodevelopmental disorder-like phenotypes.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA.
- Department of Integrative Physiology, University of Colorado, Boulder, USA.
| | - Heidi C O'Neill
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, 1480 30th Street, Boulder, CO, 80309-0447, USA
- Department of Integrative Physiology, University of Colorado, Boulder, USA
| |
Collapse
|
8
|
Polli FS, Kohlmeier KA. Prenatal Nicotine Exposure in Rodents: Why Are There So Many Variations in Behavioral Outcomes? Nicotine Tob Res 2019; 22:1694-1710. [DOI: 10.1093/ntr/ntz196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/05/2019] [Indexed: 01/01/2023]
Abstract
Abstract
Introduction
The World Health Organization (WHO) reported that smoking cessation rates among women have stagnated in the past decade and estimates that hundreds of millions of women will be smokers in the next decade. Social, environmental, and biological conditions render women more susceptible to nicotine addiction, imposing additional challenges to quit smoking during gestation, which is likely why more than 8% of pregnancies in Europe are associated with smoking. In epidemiological investigations, individuals born from gestational exposure to smoking exhibit a higher risk of development of attention-deficit/hyperactive disorder (ADHD) and liability to drug dependence. Among other teratogenic compounds present in tobacco smoke, nicotine actions during neuronal development could contribute to the observed outcomes as nicotine misleads signaling among progenitor cells during brain development. Several experimental approaches have been developed to address the consequences of prenatal nicotine exposure (PNE) to the brain and behavior but, after four decades of studies, inconsistent data have been reported and the lack of consensus in the field has compromised the hypothesis that gestational nicotine exposure participates in cognitive and emotional behavioral deficits.
Aims
In this review, we discuss the most commonly used PNE models with focus on their advantages and disadvantages, their relative validity, and how the different technical approaches could play a role in the disparate outcomes.
Results
We propose methodological considerations, which could improve the translational significance of the PNE models.
Conclusions
Such alterations might be helpful in reconciling experimental findings, as well as leading to development of treatment targets for maladaptive behaviors in those prenatally exposed.
Implications
In this article, we have reviewed the advantages and disadvantages of different variables of the commonly used experimental models of PNE. We discuss how variations in the nicotine administration methods, the timing of nicotine exposure, nicotine doses, and species employed could contribute to the disparate findings in outcomes for PNE offspring, both in behavior and neuronal changes. In addition, recent findings suggest consideration of epigenetic effects extending across generations. Finally, we have suggested improvements in the available PNE models that could contribute to the enhancement of their validity, which could assist in the reconciliation of experimental findings.
Collapse
Affiliation(s)
- Filip Souza Polli
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristi Anne Kohlmeier
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Buck JM, O'Neill HC, Stitzel JA. Developmental nicotine exposure elicits multigenerational disequilibria in proBDNF proteolysis and glucocorticoid signaling in the frontal cortices, striata, and hippocampi of adolescent mice. Biochem Pharmacol 2019; 168:438-451. [PMID: 31404529 DOI: 10.1016/j.bcp.2019.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/07/2019] [Indexed: 01/03/2023]
Abstract
Maternal smoking of conventional or vapor cigarettes during pregnancy, a form of developmental nicotine exposure (DNE), enhances the risk of neurodevelopmental disorders such as ADHD, autism, and schizophrenia in children. Modeling the multigenerational effects of smoking during pregnancy and nursing in the first- (F1) and second- (F2) generation adolescent offspring of oral nicotine-treated female C57BL/6J mice, we have previously reported that DNE precipitates intergenerational transmission of nicotine preference, hyperactivity and impulsivity-like behaviors, altered rhythmicity of home cage activity, corticostriatal nicotinic acetylcholine receptor and dopamine transporter dysfunction, and corticostriatal global DNA methylome deficits. In aggregate, these DNE-evoked behavioral, neuropharmacological, and epigenomic anomalies mirror fundamental etiological aspects of neurodevelopmental disorders including ADHD, autism, and schizophrenia. Expanding this line of research, the current study profiled the multigenerational neurotrophic and neuroendocrine consequences of DNE. Results reveal impaired proBDNF proteolysis as indicated by proBDNF-BDNF imbalance, downregulation of the proBDNF processing enzyme furin, atypical glucocorticoid receptor (GR) activity as implied by decreased relative nuclear GR localization, and deficient basal plasma corticosterone (CORT) levels in adolescent DNE offspring and grandoffspring. Collectively, these data recapitulate the BDNF deficits and HPA axis dysregulation characteristic of neurodevelopmental disorders such as ADHD, autism, and schizophrenia as well as the children of maternal smokers. Notably, as BDNF is a quintessential mediator of neurodevelopment, our prior findings of multigenerational DNE-induced behavioral and neuropharmacological abnormalities may stem from neurodevelopmental insults conferred by the proBDNF-BDNF imbalance detected in DNE mice. Similarly, our findings of multigenerational GR hypoactivity may contribute to the increased risk-taking behaviors and aberrant circadian rhythmicity of home cage activity that we previously documented in first- and second-generation DNE mice.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States; Department of Integrative Physiology, University of Colorado, Boulder, United States.
| | - Heidi C O'Neill
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado, Boulder, United States; Department of Integrative Physiology, University of Colorado, Boulder, United States
| |
Collapse
|
10
|
Badanavalu MP, Srivatsan M. Nicotine is neuroprotective to neonatal neurons of sympathetic ganglion in rat. Auton Neurosci 2018; 216:25-32. [PMID: 30206032 DOI: 10.1016/j.autneu.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/13/2018] [Accepted: 08/31/2018] [Indexed: 01/04/2023]
Abstract
Sympathetic neurons of SCG are dependent on availability of nerve growth factor (NGF) for their survival. SCG neurons express nicotinic receptors (nAChR) whose expression levels are modulated by nicotine. Nicotine exerts multiple effects on neurons, including neuroprotection, through nAChR binding. Although sympathetic neurons express robust levels of nAChR, a possible neuroprotective role for nicotine in these neurons is not well-understood. Therefore we determined the effect of nicotine exposure on survival of SCG neurons during NGF withdrawal in a well-established cell culture system. NGF was withdrawn in rat neonatal SCG neuron cultures which were then treated with either 10 μM nicotine alone or with nAChR antagonists 0.1 μM α-bungarotoxin (antagonist for α7 subunit bearing nAChR) and 10 μM mecamylamine (non-specific antagonist for ganglionic nAChR) for 48 h. Apoptotic death was determined by TUNEL staining. Cell survival was also determined by MTS assay. Western blot analysis of ERK1/2 was also performed. Our results showed that exposure to 10 μM nicotine significantly reduced apoptotic cell death in SCG neurons resulting from NGF withdrawal as shown by fewer TUNEL positive cells. The MTS assay results also revealed that 10 μM nicotine concentration significantly increased cell survival thus indicating neuroprotective effect of nicotine against cell death resulting from NGF withdrawal. Nicotinic receptor antagonists (bungarotoxin & mecamylamine) attenuated the effect of nicotine's action of neuroprotection. Western blot analysis showed an increased expression of ERK1/2 in nicotine treated cultures suggesting nicotine provided neuroprotection in SCG neurons by increasing the expression of ERK1/2 through nicotinic receptor dependent mechanisms.
Collapse
Affiliation(s)
- Mahadevappa P Badanavalu
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, United States
| | - Malathi Srivatsan
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, United States.
| |
Collapse
|
11
|
Brain‐derived neutrophic factor in adolescents smoking waterpipe: The Irbid TRY. Int J Dev Neurosci 2018; 67:14-18. [DOI: 10.1016/j.ijdevneu.2018.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 12/11/2022] Open
|
12
|
Machaalani R, Chen H. Brain derived neurotrophic factor (BDNF), its tyrosine kinase receptor B (TrkB) and nicotine. Neurotoxicology 2018; 65:186-195. [DOI: 10.1016/j.neuro.2018.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 02/07/2023]
|
13
|
Ghassabian A, Sundaram R, Chahal N, McLain AC, Bell E, Lawrence DA, Yeung EH. Determinants of neonatal brain-derived neurotrophic factor and association with child development. Dev Psychopathol 2017; 29:1499-1511. [PMID: 28462726 PMCID: PMC6201316 DOI: 10.1017/s0954579417000414] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Using a population-based birth cohort in upstate New York (2008-2010), we examined the determinants of brain-derived neurotrophic factor (BDNF) measured in newborn dried blood spots (n = 2,637). We also examined the association between neonatal BDNF and children's development. The cohort was initially designed to examine the influence of infertility treatment on child development but found no impact. Mothers rated children's development in five domains repeatedly through age 3 years. Socioeconomic and maternal lifestyle determinants of BDNF were examined using multivariable linear regression models. Generalized linear mixed models estimated odds ratios for neonatal BDNF in relation to failing a developmental domain. Smoking and drinking in pregnancy, nulliparity, non-White ethnicity/race, and prepregnancy obesity were associated with lower neonatal BDNF. Neonatal BDNF was not associated with failure for developmental domains; however, there was an interaction between BDNF and preterm birth. In preterm infants, a higher BDNF was associated with lower odds of failing any developmental domains, after adjusting for confounders and infertility treatment. This result was particularly significant for failure in communication. Our findings suggest that BDNF levels in neonates may be impacted by maternal lifestyle characteristics. More specifically, lower neonatal BDNF might be an early marker of aberrant neurodevelopment in preterm infants.
Collapse
|
14
|
Lacy RT, Brown RW, Morgan AJ, Mactutus CF, Harrod SB. Intravenous Prenatal Nicotine Exposure Alters METH-Induced Hyperactivity, Conditioned Hyperactivity, and BDNF in Adult Rat Offspring. Dev Neurosci 2016; 38:171-185. [PMID: 27287203 DOI: 10.1159/000446563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
In the USA, approximately 15% of women smoke tobacco cigarettes during pregnancy. In utero tobacco smoke exposure produces somatic growth deficits like intrauterine growth restriction and low birth weight in offspring, but it can also negatively influence neurodevelopmental outcomes in later stages of life, such as an increased incidence of obesity and drug abuse. Animal models demonstrate that prenatal nicotine (PN) alters the development of the mesocorticolimbic system, which is important for organizing goal-directed behavior. In the present study, we determined whether intravenous (IV) PN altered the initiation and/or expression of methamphetamine (METH)-induced locomotor sensitization as a measure of mesocorticolimbic function in adult rat offspring. We also determined whether PN and/or METH exposure altered protein levels of BDNF (brain-derived neurotrophic factor) in the nucleus accumbens, the dorsal striatum, and the prefrontal cortex of adult offspring. BDNF was of interest because of its role in the development and maintenance of the mesocorticolimbic pathway and its ability to modulate neural processes that contribute to drug abuse, such as sensitization of the dopamine system. Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline, 3×/day on gestational days 8-21. Testing was conducted when offspring reached adulthood (around postnatal day 90). Following 3 once daily habituation sessions the animals received a saline injection and baseline locomotor activity was measured. PN and prenatal saline (PS)-exposed offspring then received 10 once daily injections of METH (0.3 mg/kg) to induce locomotor sensitization. The animals received a METH injection (0.3 mg/kg) to assess the expression of sensitization following a 14-day period of no injections. A day later, all animals were injected with saline and conditioned hyperactivity was assessed. Brain tissue was harvested 24 h later. PN animals habituated more slowly to the activity chambers compared to PS controls. PN rats treated with METH showed significant enhancement of locomotor behavior compared to PS rats following acute and repeated injections; however, PN did not produce differential initiation or expression of behavioral sensitization. METH produced conditioned hyperactivity, and PN rats exhibited a greater conditioned response of hyperactivity relative to controls. PN and METH exposure produced changes in BDNF protein levels in all three regions, and complex interactions were observed between these two factors. Logistic regression revealed that BDNF protein levels, throughout the mesocorticolimbic system, significantly predicted the difference in the conditioned hyperactive response of the animals: both correlations were significant, but the predicted relationship between BDNF and context-elicited activity was stronger in the PN (r = 0.67) compared to the PS rats (r = 0.42). These findings indicate that low-dose PN exposure produces long-term changes in activity and enhanced sensitivity to the locomotor effects of METH. The enhanced METH-induced contextual conditioning shown by the PN animals suggests that offspring of in utero tobacco smoke exposure have greater susceptibility to learn about drug-related conditional stimuli, such as the context. The PN-induced alterations in mesocorticolimbic BDNF protein lend further support for the hypothesis that maternal smoking during pregnancy produces alterations in neuronal plasticity that contribute to drug abuse vulnerability. The current findings demonstrate that these changes are persistent into adulthood.
Collapse
Affiliation(s)
- Ryan T Lacy
- Behavioral Neuroscience Program, Department of Psychology, University of South Carolina, Columbia, S.C., USA
| | | | | | | | | |
Collapse
|
15
|
Kanlikilicer P, Zhang D, Dragomir A, Akay YM, Akay M. Gene expression profiling of midbrain dopamine neurons upon gestational nicotine exposure. Med Biol Eng Comput 2016; 55:467-482. [PMID: 27255453 DOI: 10.1007/s11517-016-1531-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 05/18/2016] [Indexed: 12/11/2022]
Abstract
Maternal smoking during pregnancy is associated with low birth weight, increased risk of stillbirth, conduct disorder, attention-deficit/hyperactivity disorder and neurocognitive deficits. Ventral tegmental area dopamine (DA) neurons in the mesocorticolimbic pathway were suggested to play a critical role in these pathological mechanisms induced by nicotine. Nicotine-mediated changes in genetic expression during pregnancy are of great interest for current researchers. We used patch clamp methods to identify and harvest DA and non-DA neurons separately and assayed them using oligonucleotide arrays to elucidate the alterations in gene expressions in these cells upon gestational nicotine exposure. Microarray analysis identified a set of 135 genes as significantly differentially expressed between DA and non-DA neurons. Some of the genes were found to be related to neurological disease pathways, such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Significantly up-/down-regulated genes found in DA neurons were mostly related to G-protein-coupled protein receptor signaling and developmental processes. These alterations in gene expressions may explain, partially at least, the possible pathological mechanisms for the diseases induced by maternal smoking.
Collapse
Affiliation(s)
- Pınar Kanlikilicer
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA
| | - Die Zhang
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA
| | - Andrei Dragomir
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA
| | - Yasemin M Akay
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA
| | - Metin Akay
- Department of Biomedical Engineering, University of Houston, SERC Building, 3605 Cullen Blvd, Houston, TX, 77204, USA.
| |
Collapse
|
16
|
Poon K, Leibowitz SF. Consumption of Substances of Abuse during Pregnancy Increases Consumption in Offspring: Possible Underlying Mechanisms. Front Nutr 2016; 3:11. [PMID: 27148536 PMCID: PMC4837147 DOI: 10.3389/fnut.2016.00011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/04/2016] [Indexed: 12/16/2022] Open
Abstract
Correlative human observational studies on substances of abuse have been highly dependent on the use of rodent models to determine the neuronal and molecular mechanisms that control behavioral outcomes. This is particularly true for gestational exposure to non-illicit substances of abuse, such as excessive dietary fat, ethanol, and nicotine, which are commonly consumed in our society. Exposure to these substances during the prenatal period has been shown in offspring to increase their intake of these substances, induce other behavioral changes, and affect neurochemical systems in several brain areas that are known to control behavior. More importantly, emerging studies are linking the function of the immune system to these neurochemicals and ingestion of these abused substances. This review article will summarize the prenatal rodent models used to study developmental changes in offspring caused by prenatal exposure to dietary fat, ethanol, or nicotine. We will discuss the various techniques used for the administration of these substances into rodents and summarize the published outcomes induced by prenatal exposure to these substances. Finally, this review will cover some of the recent evidence for the role of immune factors in causing these behavioral and neuronal changes.
Collapse
Affiliation(s)
- Kinning Poon
- Laboratory of Behavioral Neurobiology, The Rockefeller University , New York, NY , USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University , New York, NY , USA
| |
Collapse
|
17
|
Cannabinoid CB2 Receptor Mediates Nicotine-Induced Anti-Inflammation in N9 Microglial Cells Exposed to β Amyloid via Protein Kinase C. Mediators Inflamm 2016; 2016:4854378. [PMID: 26884647 PMCID: PMC4738711 DOI: 10.1155/2016/4854378] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 12/07/2015] [Accepted: 12/16/2015] [Indexed: 01/08/2023] Open
Abstract
Background. Reducing β amyloid- (Aβ-) induced microglial activation is considered to be effective in treating Alzheimer's disease (AD). Nicotine attenuates Aβ-induced microglial activation; the mechanism, however, is still elusive. Microglia could be activated into classic activated state (M1 state) or alternative activated state (M2 state); the former is cytotoxic and the latter is neurotrophic. In this investigation, we hypothesized that nicotine attenuates Aβ-induced microglial activation by shifting microglial M1 to M2 state, and cannabinoid CB2 receptor and protein kinase C mediate the process. Methods. We used Aβ1–42 to activate N9 microglial cells and observed nicotine-induced effects on microglial M1 and M2 biomarkers by using western blot, immunocytochemistry, and enzyme-linked immunosorbent assay (ELISA). Results. We found that nicotine reduced the levels of M1 state markers, including inducible nitric oxide synthase (iNOS) expression and tumor necrosis factor α (TNF-α) and interleukin- (IL-) 6 releases; meanwhile, it increased the levels of M2 state markers, including arginase-1 (Arg-1) expression and brain-derived neurotrophic factor (BDNF) release, in the Aβ-stimulated microglia. Coadministration of cannabinoid CB2 receptor antagonist or protein kinase C (PKC) inhibitor partially abolished the nicotine-induced effects. Conclusion. These findings indicated that cannabinoid CB2 receptor mediates nicotine-induced anti-inflammation in microglia exposed to Aβ via PKC.
Collapse
|
18
|
Lacy RT, Morgan AJ, Harrod SB. IV prenatal nicotine exposure increases the reinforcing efficacy of methamphetamine in adult rat offspring. Drug Alcohol Depend 2014; 141:92-8. [PMID: 24925022 PMCID: PMC4103028 DOI: 10.1016/j.drugalcdep.2014.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Maternal smoking during pregnancy is correlated with increased substance use in offspring. Research using rodent models shows that gestational nicotine exposure produces enduring alterations in the neurodevelopment of motivational systems, and that rats prenatally treated with nicotine have altered motivation for drug reinforcement on fixed-ratio (FR) schedules of reinforcement. OBJECTIVE The present study investigated methamphetamine (METH) self-administration in adult offspring prenatally exposed to intravenous (IV) nicotine or saline using a progressive-ratio (PR) schedule of reinforcement. METHODS Pregnant rats were administered IV prenatal saline (PS) or nicotine (PN; 0.05mg/kg/infusion), 3×/day during gestational days 8-21. At postnatal day 70, offspring acquired a lever-press response for sucrose (26%, w/v; FR1-3). Rats were trained with METH (0.05mg/kg/infusion), and following stable FR responding, animals were tested using a progressive-ratio (PR) schedule for three different doses of METH (0.005, 0.025, and 0.05mg/kg/infusion). RESULTS METH infusion, active lever presses, and the ratio breakpoint are reported. PN-exposed animals exhibited more METH-maintained responding than PS controls, according to a dose×prenatal treatment interaction (e.g., infusions). PN rats self-administered more METH infusions between the range of 0.025 and 0.05, but not for the 0.005mg/kg/infusion dose. CONCLUSIONS IV PN-exposure produced enhanced motivation to self-administer METH. These findings indicate that pregnant women who smoke tobacco may impart neurobiological changes in offspring's motivational systems that render them increasingly vulnerable to drug abuse during adulthood.
Collapse
|
19
|
Yochum C, Doherty-Lyon S, Hoffman C, Hossain MM, Zelikoff JT, Richardson JR. Prenatal cigarette smoke exposure causes hyperactivity and aggressive behavior: role of altered catecholamines and BDNF. Exp Neurol 2014; 254:145-52. [PMID: 24486851 DOI: 10.1016/j.expneurol.2014.01.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/16/2014] [Accepted: 01/18/2014] [Indexed: 01/04/2023]
Abstract
Smoking during pregnancy is associated with a variety of untoward effects on the offspring. However, recent epidemiological studies have brought into question whether the association between neurobehavioral deficits and maternal smoking is causal. We utilized an animal model of maternal smoking to determine the effects of prenatal cigarette smoke (CS) exposure on neurobehavioral development. Pregnant mice were exposed to either filtered air or mainstream CS from gestation day (GD) 4 to parturition for 4h/d and 5d/wk, with each exposure producing maternal plasma concentration of cotinine equivalent to smoking <1 pack of cigarettes per day (25ng/ml plasma cotinine level). Pups were weaned at postnatal day (PND) 21 and behavior was assessed at 4weeks of age and again at 4-6months of age. Male, but not female, offspring of CS-exposed dams demonstrated a significant increase in locomotor activity during adolescence and adulthood that was ameliorated by methylphenidate treatment. Additionally, male offspring exhibited increased aggression, as evidenced by decreased latency to attack and number of attacks in a resident-intruder task. These behavioral abnormalities were accompanied by a significant decrease in striatal and cortical dopamine and serotonin and a significant reduction in brain-derived neurotrophic factor (BDNF) mRNA and protein. Taken in concert, these data demonstrate that prenatal exposure to CS produces behavioral alterations in mice that are similar to those observed in epidemiological studies linking maternal smoking to neurodevelopmental disorders. Further, these data also suggest a role for monaminergic and BDNF alterations in these effects.
Collapse
Affiliation(s)
- Carrie Yochum
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Shannon Doherty-Lyon
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Carol Hoffman
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Muhammad M Hossain
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Judith T Zelikoff
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA.
| | - Jason R Richardson
- Environmental and Occupational Health Sciences Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
20
|
Li CY, Zhao LM, Shi XW, Zhang JD. Lobeline shows protective effects against MPTP-induced dopaminergic neuron death and attenuates behavior deficits in animals. Exp Ther Med 2013; 7:375-378. [PMID: 24396408 PMCID: PMC3881066 DOI: 10.3892/etm.2013.1413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/24/2013] [Indexed: 11/06/2022] Open
Abstract
We previously demonstrated that lobeline effectively inhibited dopamine transporter (DAT)-mediated dopamine (DA) transportation. Therefore, the present study aimed to investigate whether lobeline shows protective effects against neurotoxin-induced cell death in vivo. Mice were administered 30 mg/kg 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) and treated with 80 mg/kg L-dopa, 10 mg/kg GBR12935 or 1 or 3 mg/kg lobeline, respectively, via injection. Rotarod and swim tests as well as tyrosine hydroxylase (TH) immunohistochemistry were carried out to evaluate the effects of these drugs. Compared with L-DA and GBR12935, lobeline (3 mg/kg administered via intraperitoneal injection) on behavior and dopaminergic neurons. Compared with L-DA and GBR12935, lobeline (3 mg/kg injected subcutaneously) significantly reduced MPTP induced locomotive deficits detected in behavioral tests. In addition, TH immunostaining showed that lobeline (3 mg/kg) markedly decreased the neurotoxin-induced immunoreactivity loss in the substantia nigra and striatum. Lobeline may be useful in the protection of dopaminergic neurons and may alleviate the symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Chao-Yue Li
- Department of Neurosurgery, Henan Province People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Li-Ming Zhao
- Department of Neurosurgery, Henan Province People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Xi-Wen Shi
- Department of Neurosurgery, Henan Province People's Hospital, Zhengzhou, Henan 450003, P.R. China
| | - Jia-Dong Zhang
- Department of Neurosurgery, Henan Province People's Hospital, Zhengzhou, Henan 450003, P.R. China
| |
Collapse
|
21
|
Prenatal exposure to nicotine stimulates neurogenesis of orexigenic peptide-expressing neurons in hypothalamus and amygdala. J Neurosci 2013; 33:13600-11. [PMID: 23966683 DOI: 10.1523/jneurosci.5835-12.2013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Animal and clinical studies show that gestational exposure to nicotine increases the propensity of offspring to consume nicotine, but the precise mechanism mediating this behavioral phenomenon is unclear. The present study in Sprague Dawley rats examined the possibility that the orexigenic peptide systems, enkephalin (ENK) and orexin (OX), which are stimulated by nicotine in adult animals and promote consummatory behavior, may be similarly responsive to nicotine's stimulatory effect in utero while having long-term behavioral consequences. The results demonstrated that nicotine exposure during gestation at low doses (0.75 or 1.5 mg/kg/d) significantly increased mRNA levels and density of neurons that express ENK in the hypothalamic paraventricular nucleus and central nucleus of the amygdala, OX, and another orexigenic peptide, melanin-concentrating hormone, in the perifornical lateral hypothalamus in preweanling offspring. These effects persisted in the absence of nicotine, at least until puberty. Colabeling of the cell proliferation marker BrdU with the neuronal marker NeuN and peptides revealed a marked stimulatory effect of prenatal nicotine on neurogenesis, but not gliogenesis, and also on the number of newly generated neurons expressing ENK, OX, or melanin-concentrating hormone. During adolescence, offspring also exhibited significant behavioral changes, increased consumption of nicotine and other substances of abuse, ethanol and a fat-rich diet, with no changes in chow and water intake or body weight. These findings reveal a marked sensitivity during gestation of the orexigenic peptide neurons to low nicotine doses that may increase the offspring's propensity to overconsume substances of abuse during adolescence.
Collapse
|
22
|
Intravenous prenatal nicotine exposure increases orexin expression in the lateral hypothalamus and orexin innervation of the ventral tegmental area in adult male rats. Drug Alcohol Depend 2013; 132:562-70. [PMID: 23664126 PMCID: PMC3770778 DOI: 10.1016/j.drugalcdep.2013.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/19/2013] [Accepted: 04/02/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND Approximately 18% of pregnant women continue to smoke tobacco cigarettes throughout pregnancy. Offspring exposed to tobacco smoke in utero exhibit a higher incidence of drug use in later stages of development relative to non-exposed children. Animal models indicate that prenatal nicotine (PN) exposure alone alters the development of the mesocorticolimbic dopamine (DA) system, which, in part, organizes motivated behavior and reward. The orexin/hypocretin neuropeptide system, which originates in the lateral hypothalamus (LH), projects to key areas of the mesocorticolimbic DA pathway. Previous research suggests that orexin exerts a major influence on motivation and reward. METHODS The present experiments determined if intravenous (IV) PN exposure alters (1) the expression of orexin neurons and melanin-concentrating hormone (MCH; positive control) in the LH; and (2) orexin projections from the LH onto DA neurons in the ventral tegmental area (VTA). Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline 3×/day during gestational days 8-21. Tissues from adult male offspring (∼130 days) were examined using immunohistochemistry. RESULTS Relative to controls, offspring of IV PN exposure showed (1) increased numbers of orexin neurons in the LH, and no changes in the expression of MCH; and (2) increased orexin appositions on DA cells in the VTA. CONCLUSION The findings indicate that the influence of PN exposure is enduring, and suggests that the PN-induced modification of orexin expression on mesolimbic circuitry may contribute to the reported changes in motivated behaviors related to food and drug reward observed in offspring prenatally exposed to nicotine.
Collapse
|
23
|
Lacy RT, Hord LL, Morgan AJ, Harrod SB. Intravenous gestational nicotine exposure results in increased motivation for sucrose reward in adult rat offspring. Drug Alcohol Depend 2012; 124:299-306. [PMID: 22377090 PMCID: PMC3648845 DOI: 10.1016/j.drugalcdep.2012.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prenatal tobacco smoke exposure is associated with alterations in motivated behavior in offspring, such as increased consumption of highly palatable foods and abused drugs. Animal models show that gestational nicotine (GN) exposure mediates changes in responding for sucrose and drug reward. METHODS A novel, intermittent low-dose intravenous (IV) exposure model was used to administer nicotine (0.05 mg/kg/injection) or saline 3×/day to rats on gestational days 8-21. Two experiments investigated the effect of IV GN on (1) the habituation of spontaneous locomotor activity and on (2) sucrose reinforced responding in offspring. For the operant experiments, animals acquired fixed-ratio (FR-3) responding for sucrose, 26% (w/v), and were tested on varying concentrations (0, 3, 10, 30, and 56%; Latin-square) according to a FR-3, and then a progressive-ratio (PR) schedule. Male and female adult offspring were used. RESULTS IV GN did not alter birth or growth weight, or the number of pups born. No between-group differences in habituation to spontaneous locomotor activity were observed. FR testing produced an inverted U-shaped response curve, and rats showed peak responding for 10% sucrose reinforcement. Neither gestation nor sex affected responding, suggesting equivalent sensitivity to varying sucrose concentrations. PR testing revealed that GN rats showed greater motivation for sucrose reinforcement relative to controls. CONCLUSIONS A low-dose, IV GN exposure model resulted in increased motivation to respond for sucrose reinforcement in adult offspring. This suggests that using a low number of cigarettes throughout pregnancy will result in increased motivation for highly palatable foods in adult, and perhaps, adolescent offspring.
Collapse
Affiliation(s)
| | | | | | - Steven B. Harrod
- Correspondence: Steven B. Harrod, Department of Psychology, Program in Behavioral Neuroscience, University of South Carolina, 1512 Pendleton St., Columbia, SC. 29208, Fax: 803.777.9558,
| |
Collapse
|
24
|
Harrod SB, Lacy RT, Morgan AJ. Offspring of Prenatal IV Nicotine Exposure Exhibit Increased Sensitivity to the Reinforcing Effects of Methamphetamine. Front Pharmacol 2012; 3:116. [PMID: 22719728 PMCID: PMC3376423 DOI: 10.3389/fphar.2012.00116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/30/2012] [Indexed: 12/23/2022] Open
Abstract
Maternal smoking during pregnancy is associated with increased substance abuse in offspring. Preclinical research shows that in utero exposure to nicotine, the primary psychoactive compound in tobacco smoke, influences the neurodevelopment of reward systems and alters motivated behavior in offspring. The present study determined if prenatal nicotine (PN) exposure altered the sensitivity to the reinforcing and aversive effects of methamphetamine (METH) in offspring using a low dose, intravenous (IV) exposure method. Pregnant dams were administered nicotine (0.05 mg/kg/injection) or prenatal saline (PS) 3×/day on gestational days 8–21, and adult offspring were tested using METH self-administration (experiment 1) or METH-induced conditioned taste aversion (CTA; experiment 2) procedures. For METH self-administration, animals were trained to respond for IV METH (0.05 mg/kg/infusion; fixed-ratio 3) and they were tested on varying doses of the reinforcer (0.0005–1.0 mg/kg/infusion). For METH CTA, rats received three saccharin and METH pairings (0, 0.3, or 0.5 mg/kg, sc) followed by 14 daily extinction trials. Experiment 1: PN and PS animals exhibited inverted U-shaped dose-response curves; however, the PN animal’s curve was shifted to the left, suggesting PN animals were more sensitive to the reinforcing effects of METH. Experiment 2: METH CTA was acquired in a dose-dependent manner and the factor of PN exposure was not related to the acquisition or extinction of METH-induced CTA. There were no sex differences in either experiment. These results indicate that IV PN-exposed adult offspring exhibited increased sensitivity to IV METH. This suggests that PN exposure, via maternal smoking, will alter the reinforcing effects of METH during later stages of development, and furthermore, will influence substance use vulnerability in adult human offspring.
Collapse
Affiliation(s)
- Steven B Harrod
- Behavioral Neuroscience Program, Department of Psychology, University of South Carolina Columbia, SC, USA
| | | | | |
Collapse
|