1
|
Zhang X, Leng J, Lv L, Song D, Lv X. Advances in the mechanistic understanding, biological consequences, and measurement of DNA adducts induced by tobacco smoke and e-cigarette aerosol: A review. Int J Biol Macromol 2025; 306:141574. [PMID: 40023427 DOI: 10.1016/j.ijbiomac.2025.141574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
Components in tobacco smoke and electronic cigarette (e-cigarette) aerosol form adducts with DNA, which can cause DNA mutations and affect repair of DNA damage. Numerous studies have shown a strong association between inhaled smoke and lung cancer. The presence of DNA adducts can indicate chemical components of smoke. Therefore, DNA adducts are significant biomarkers of tobacco exposure that might predict lung disease status and serve as precursors to lung cancer, since they trigger DNA mutations and impair biological processes such as DNA replication and transcription. To date, no systematic review has compared tobacco smoke and e-cigarette aerosol in terms of the fate of DNA adducts. We reviewed recent studies comparing the formation of DNA adducts on exposure to components from conventional cigarette smoke versus e-cigarette aerosol. The aims of the review were threefold: (1) to summarize components of tobacco smoke and e-cigarette aerosol in relation to mechanisms for the formation of DNA adducts; (2) to highlight the biological consequences of exposure to tobacco smoke and e-cigarette aerosol; and (3) to summarize advances in understanding of the primary detection methods of DNA adducts in tobacco exposure studies. The findings of this review should benefit environmental toxicology studies of tobacco exposure.
Collapse
Affiliation(s)
- Xinyun Zhang
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jiapeng Leng
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| | - Ling Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Danjun Song
- First Clinical College of Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China
| | - Xiaodong Lv
- Comprehensive Exposure Research Center, School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
2
|
Fu KT, Wu DC, Chen HJC. Elevated hemoglobin adducts derived from crotonaldehyde in healthy smokers and oral cancer patients by nanoflow liquid chromatography tandem mass spectrometry☆. Chem Biol Interact 2025; 410:111435. [PMID: 39956258 DOI: 10.1016/j.cbi.2025.111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 02/18/2025]
Abstract
Hemoglobin adducts derived from reactive chemicals have been used as exposure biomarkers in vivo. We previously identified and quantified adducted peptides derived from acrolein in human hemoglobin after trypsin digestion. In this study, we characterized the Schiff base and Michael adducts of crotonaldehyde in human hemoglobin after NaBH4 reduction to the stable adducts with a respective mass increase of 54.0470 and 72.0575 Da, determined by high-resolution mass spectrometry. We developed a workflow based on nanoflow liquid chromatography nanoelectrospray ionization tandem mass spectrometry to simultaneously quantify 29 adducted peptides derived from acrolein and crotonaldehyde in one drop of blood from smoking oral cavity cancer patients, healthy smokers, and healthy nonsmokers. Levels of ten adducted peptides were significantly elevated in smokers, despite their cancer status, and the adduct levels correlate with the extent of cigarette smoking. Comparing the adduct levels at the same site, the Michael adduct of acrolein is much higher than that of crotonaldehyde. Multivariate analysis by orthogonal partial least squares discriminant analysis suggests that the Michel adducts of acrolein at α-Lys-7, α-His-50, β-Lys-17, and the Schiff base adduct of crotonaldehyde at β-Lys-59 are the predominate contributors. This is the first report on the structural characterization of human hemoglobin adducts of crotonaldehyde and the detection and quantification of these adducts in human subjects. Our results reveal that cigarette smoking plays a major role in forming these adducted peptides which might serve as potential biomarkers for exposure to acrolein and crotonaldehyde.
Collapse
Affiliation(s)
- Kai-Ting Fu
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chiayi, 62142, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan; Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 80756, Taiwan; Faculty of Medicine, Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chiayi, 62142, Taiwan; Center for Nano Bio-detection, National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia Yi, 62142, Taiwan.
| |
Collapse
|
3
|
Wang W, Zhu Y, Sang S. Optimization for Simultaneous Determination of a Panel of Advanced Glycation End Products as Biomarkers for Metabolic Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6970-6980. [PMID: 40063978 PMCID: PMC11926871 DOI: 10.1021/acs.jafc.4c11382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/25/2025] [Accepted: 03/01/2025] [Indexed: 03/20/2025]
Abstract
Both dietary and endogenous reactive carbonyl species, such as methylglyoxal (MGO) and glyoxal (GO), react with proteins to generate advanced glycation end products (AGEs), which contribute to metabolic diseases. However, accurately determining individual AGEs in biological samples remains challenging due to the lack of standardized methods. In this study, we optimized and detailed procedures for AGE digestion using enzyme cocktails and separation and detection via high-resolution LC-MS/MS. For the first time, we observed that enzyme backgrounds contained higher levels of methylglyoxal-derived hydroimidazolone 1 (MG-H1) and glucosepane than mouse plasma by 1.4-3 times (e.g., 1512.55 ± 18.89 nM in enzymes vs 496.95 ± 90.91 nM in plasma for MG-H1). Using this optimized method, we quantified fructosyl-lysine and nine AGEs in the plasma, kidneys, and urine of mice. MGO-derived AGEs increased significantly in the plasma and kidneys after MGO treatment. Additionally, both MGO- and GO-derived AGEs were elevated in high-fat-diet (HF)-fed mice compared to low-fat-diet (LF)-fed controls, with further increases in HF-fed mice supplemented with MGO (HFM). This optimized method provides accurate AGE quantification, enabling insights into their role as biomarkers for metabolic syndrome and advancing the understanding of dietary and metabolic contributions to AGE formation.
Collapse
Affiliation(s)
- Weixin Wang
- Laboratory for Functional Foods and
Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University,
North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Yingdong Zhu
- Laboratory for Functional Foods and
Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University,
North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and
Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University,
North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
4
|
Vijayraghavan S, Ruggiero A, Becker S, Mieczkowski P, Hanna GS, Hamann MT, Saini N. Methylglyoxal mutagenizes single-stranded DNA via Rev1-associated slippage and mispairing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643935. [PMID: 40166206 PMCID: PMC11956917 DOI: 10.1101/2025.03.18.643935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Methylglyoxal (MG) is a highly reactive aldehyde that is produced endogenously during metabolism and is derived from exogenous sources such as sugary food items and cigarette smoke. Unless detoxified by glyoxalases (Glo1 and Glo2), MG can readily react with all major biomolecules, including DNA and proteins, generating characteristic lesions and glycation-derived by- products. As a result, MG exposure has been linked to a variety of human diseases, including cancers. Prior studies show that MG can glycate DNA, preferentially on guanine residues, and cause DNA damage. However, the mutagenicity of MG is poorly understood in vivo. In the context of cancer, it is essential to comprehend the true contribution of MG to genome instability and global mutational burden. In the present study, we show that MG can robustly mutagenize induced single-stranded DNA (ssDNA) in yeast, within a guanine centered mutable motif. We demonstrate that genome-wide MG mutagenesis in ssDNA is greatly elevated throughout the genome in the absence of Glo1, and abrogated in the presence of the aldehyde quencher aminoguanidine. We uncovered strand slippage and mispairing as the predominant mechanism for generation of all MG-associated mutations, and demonstrate that the translesion polymerase Rev1 is necessary in this pathway. Finally, we find that the primary MG-associated mutation is enriched in a variety of sequenced tumor datasets. We discuss the genomic impact of methylglyoxal exposure in the context of mutagenesis, DNA damage, and carcinogenesis.
Collapse
|
5
|
Heywood J, Abele G, Langenbach B, Litvin S, Smallets S, Paustenbach D. Composition of e-cigarette aerosols: A review and risk assessment of selected compounds. J Appl Toxicol 2025; 45:364-386. [PMID: 39147402 DOI: 10.1002/jat.4683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The potential harms and benefits of e-cigarettes, or electronic nicotine delivery systems (ENDS), have received significant attention from public health and regulatory communities. Such products may provide a reduced risk means of nicotine delivery for combustible cigarette smokers while being inappropriately appealing to nicotine naive youth. Numerous authors have examined the chemical complexity of aerosols from various open- and closed-system ENDS. This body of literature is reviewed here, with the risks of ENDS aerosol exposure among users evaluated with a margin of exposure (MoE) approach for two non-carcinogens (methylglyoxal, butyraldehyde) and a cancer risk analysis for the carcinogen N-nitrosonornicotine (NNN). We identified 96 relevant papers, including 17, 13, and 5 reporting data for methylglyoxal, butyraldehyde, and NNN, respectively. Using low-end (minimum aerosol concentration, low ENDS use) and high-end (maximum aerosol concentration, high ENDS use) assumptions, estimated doses for methylglyoxal (1.78 × 10-3-135 μg/kg-bw/day) and butyraldehyde (1.9 × 10-4-66.54 μg/kg-bw/day) corresponded to MoEs of 227-17,200,000 and 271-280,000,000, respectively, using identified points of departure (PoDs). Doses of 9.90 × 10-6-1.99 × 10-4 μg/kg-bw/day NNN corresponded to 1.4-28 surplus cancers per 100,000 ENDS users, relative to a NNN-attributable surplus of 7440 per 100,000 cigarette smokers. It was concluded that methylglyoxal and butyraldehyde in ENDS aerosols, while not innocuous, did not present a significant risk of irritant effects among ENDS users. The carcinogenic risks of NNN in ENDS aerosols were reduced, but not eliminated, relative to concentrations reported in combustible cigarette smoke.
Collapse
Affiliation(s)
- Jonathan Heywood
- Paustenbach and Associates, Denver, Colorado, USA
- Insight Exposure & Risk Sciences Group, Boulder, Colorado, USA
| | | | | | | | | | | |
Collapse
|
6
|
Williams RT, Caspers-Brown A, Sultana CM, Lee C, Axson JL, Malfatti F, Zhou Y, Moore KA, Stevens N, Santander MV, Azam F, Prather KA, Pomeroy RS. Possible Missing Sources of Atmospheric Glyoxal Part I: Phospholipid Oxidation from Marine Algae. Metabolites 2024; 14:639. [PMID: 39590875 PMCID: PMC11596397 DOI: 10.3390/metabo14110639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Glyoxal has been implicated as a significant contributor to the formation of secondary organic aerosols, which play a key role in our ability to estimate the impact of aerosols on climate. Elevated concentrations of glyoxal over remote ocean waters suggests that there is an additional source, distinct from urban and forest environments, which has yet to be identified. Herein, we demonstrate that the ocean can serve as an appreciable source of glyoxal in the atmosphere due to microbiological activity. METHODS AND RESULTS Based on mass spectrometric analyses of nascent sea spray aerosols and the sea surface microlayer (SSML) of naturally occurring algal blooms, we provide evidence that during the algae death phase phospholipids become enriched in the SSML and undergo autoxidation thereby generating glyoxal as a degradation product. CONCLUSIONS We propose that the death phase of an algal bloom could serve as an important and currently missing source of glyoxal in the atmosphere.
Collapse
Affiliation(s)
- Renee T. Williams
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| | - Annika Caspers-Brown
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| | - Camille M. Sultana
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| | - Christopher Lee
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| | - Jessica L. Axson
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
- School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Francesca Malfatti
- National Institute of Oceanography and Experimental Geophysics, 34100 Trieste, Italy
- Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA 92093, USA;
| | - Yanyan Zhou
- Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA 92093, USA;
- State Key Laboratory of Marine Environmental Science, Key Laboratory of the MOE for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Kathryn A. Moore
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| | - Natalie Stevens
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| | - Mitchell V. Santander
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| | - Farooq Azam
- School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Kimberly A. Prather
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
- Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA 92093, USA;
| | - Robert S. Pomeroy
- Department of Chemistry and Biochemistry, University of California, La Jolla, San Diego, CA 92093, USA; (R.T.W.); (A.C.-B.)
| |
Collapse
|
7
|
Thomas LA, Hopkinson RJ. The biochemistry of the carcinogenic alcohol metabolite acetaldehyde. DNA Repair (Amst) 2024; 144:103782. [PMID: 39566398 DOI: 10.1016/j.dnarep.2024.103782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024]
Abstract
Acetaldehyde (AcH) is the first metabolite of ethanol and is proposed to be responsible for the genotoxic effects of alcohol consumption. As an electrophilic aldehyde, AcH can form multiple adducts with DNA and other biomolecules, leading to function-altering and potentially toxic and carcinogenic effects. In this review, we describe sources of AcH in humans, including AcH biosynthesis mechanisms, and outline the structures, properties and functions of AcH-derived adducts with biomolecules. We also describe human AcH detoxification mechanisms and discuss ongoing challenges in the field.
Collapse
Affiliation(s)
- Liam A Thomas
- Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, UK
| | - Richard J Hopkinson
- Institute of Structural and Chemical Biology, School of Chemistry, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
8
|
Liakoni E, Christen SE, Benowitz NL. E-cigarettes, synthetic nicotine, heated-tobacco and smokeless nicotine delivery products: the nicotine landscape beyond combustible cigarettes. Swiss Med Wkly 2024; 154:3583. [PMID: 39835719 DOI: 10.57187/s.3583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Cigarette smoking remains an enormous public health problem causing millions of preventable deaths annually worldwide. Although safe and efficient smoking cessation pharmacotherapies such as nicotine replacement products and the medications varenicline and bupropion are available, long-term abstinence rates remain low and new approaches to help smokers successfully quit smoking are needed. In recent years, electronic nicotine delivery systems such as e-cigarettes and heated-tobacco products, and novel smokeless nicotine delivery products like nicotine pouches have gained widespread popularity. These products can deliver nicotine without combustion of tobacco and might thus present an alternative to the currently available smoking cessation methods if they prove able to help smokers quit smoking conventional cigarettes while decreasing their exposure to toxicants. In this narrative review, we provide a summary of the characteristics of these novel nicotine delivery products and the available data regarding their efficacy as smoking cessation tools and safety profile with a focus on the current situation in Switzerland.
Collapse
Affiliation(s)
- Evangelia Liakoni
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Samuel E Christen
- Clinical Pharmacology and Toxicology, Department of General Internal Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Neal L Benowitz
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Debras C, Cordova R, Mayén AL, Maasen K, Knaze V, Eussen SJPM, Schalkwijk CG, Huybrechts I, Tjønneland A, Halkjær J, Katzke V, Bajracharya R, Schulze MB, Masala G, Pala V, Pasanisi F, Macciotta A, Petrova D, Castañeda J, Santiuste C, Amiano P, Moreno-Iribas C, Borné Y, Sonestedt E, Johansson I, Esberg A, Aglago EK, Jenab M, Freisling H. Dietary intake of dicarbonyl compounds and changes in body weight over time in a large cohort of European adults. Br J Nutr 2024; 131:1902-1914. [PMID: 38383991 DOI: 10.1017/s0007114524000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Dicarbonyl compounds are highly reactive precursors of advanced glycation end products (AGE), produced endogenously, present in certain foods and formed during food processing. AGE contribute to the development of adverse metabolic outcomes, but health effects of dietary dicarbonyls are largely unexplored. We investigated associations between three dietary dicarbonyl compounds, methylglyoxal (MGO), glyoxal (GO) and 3-deoxyglucosone (3-DG), and body weight changes in European adults. Dicarbonyl intakes were estimated using food composition database from 263 095 European Prospective Investigation into Cancer and Nutrition-Physical Activity, Nutrition, Alcohol, Cessation of Smoking, Eating Out of Home in Relation to Anthropometry participants with two body weight assessments (median follow-up time = 5·4 years). Associations between dicarbonyls and 5-year body-weight changes were estimated using mixed linear regression models. Stratified analyses by sex, age and baseline BMI were performed. Risk of becoming overweight/obese was assessed using multivariable-adjusted logistic regression. MGO intake was associated with 5-year body-weight gain of 0·089 kg (per 1-sd increase, 95 % CI 0·072, 0·107). 3-DG was inversely associated with body-weight change (-0·076 kg, -0·094, -0·058). No significant association was observed for GO (0·018 kg, -0·002, 0·037). In stratified analyses, GO was associated with body-weight gain among women and older participants (above median of 52·4 years). MGO was associated with higher body-weight gain among older participants. 3-DG was inversely associated with body-weight gain among younger and normal-weight participants. MGO was associated with a higher risk of becoming overweight/obese, while inverse associations were observed for 3-DG. No associations were observed for GO with overweight/obesity. Dietary dicarbonyls are inconsistently associated with body weight change among European adults. Further research is needed to clarify the role of these food components in overweight and obesity, their underlying mechanisms and potential public health implications.
Collapse
Affiliation(s)
- Charlotte Debras
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Reynalda Cordova
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Ana-Lucia Mayén
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Kim Maasen
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Viktoria Knaze
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Simone J P M Eussen
- Department of Epidemiology, CARIM School for Cardiovascular Diseases/CAPHRI School for Public Health and Primary Care, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Inge Huybrechts
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jytte Halkjær
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Verena Katzke
- Department of Cancer Epidemiology, German Cancer research Center (DKFZ), Heidelberg, Germany
| | - Rashmita Bajracharya
- Department of Cancer Epidemiology, German Cancer research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Valeria Pala
- Epidemiology and Prevention Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Fabrizio Pasanisi
- Department of Clinical Medicine and Surgery School of Medicine, Federico II University, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Alessandra Macciotta
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Dafina Petrova
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029Madrid, Spain
| | - Jazmin Castañeda
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Carmen Santiuste
- Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, 2013 San Sebastian, Spain; Biodonostia Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, 20014 San Sebastián, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Conchi Moreno-Iribas
- Instituto de Salud Pública y Laboral de Navarra, 31003 Pamplona, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain; Navarra Institute for Health Research (IdiSNA), 31008Pamplona, Spain
| | - Yan Borné
- Nutrition Epidemiology, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Emily Sonestedt
- Nutrition Epidemiology, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Anders Esberg
- Department of Odontology, Umeå University, Umeå, Sweden
| | - Elom Kouassivi Aglago
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Heinz Freisling
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
10
|
Merritt N, Urquhart C, Burcham P. Role of reactive carbonyls and superoxide radicals in protein damage by cigarette smoke extracts: Comparison of Heat-not-Burn e-cigarettes to conventional cigarettes. Chem Biol Interact 2024; 395:111008. [PMID: 38636791 DOI: 10.1016/j.cbi.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Oxidative protein damage involving carbonylation of respiratory tract proteins typically accompanies exposure to tobacco smoke. Such damage can arise via multiple mechanisms, including direct amino acid oxidation by reactive oxygen species or protein adduction by electrophilic aldehydes. This study investigated the relative importance of these pathways during exposure of a model protein to fresh cigarette emission extracts. Briefly, protein carbonyl adducts were estimated in bovine serum albumin following incubation in buffered solutions with whole cigarette emissions extracts prepared from either a single 1R6F research cigarette or a single "Heat-not-Burn" e-cigarette. Although both extracts caused concentration-dependent protein carbonylation, conventional cigarette extracts produced higher adduct yields than e-cigarette extracts. Superoxide radical generation by conventional and e-cigarette emissions was assessed by monitoring nitro blue tetrazolium reduction and was considerably lower in extracts made from "Heat-Not-Burn" e-cigarettes. The superoxide dismutase/catalase mimic EUK-134 strongly suppressed radical production by whole smoke extracts from conventional cigarettes, however, it did not diminish protein carbonyl adduction when incubating smoke extracts with the model protein. In contrast, edaravone, a neuroprotective drug with strong carbonyl-trapping properties, strongly suppressed protein damage without inhibiting superoxide formation. Although these findings require extension to appropriate cell-based and in vivo systems, they suggest reactive aldehydes in tobacco smoke make greater contributions to oxidative protein damage than smoke phase radicals.
Collapse
Affiliation(s)
- Nicholas Merritt
- Division of Pharmacology and Toxicology, School of Biomedical Sciences, Australia
| | - Cameron Urquhart
- Division of Pharmacology and Toxicology, School of Biomedical Sciences, Australia
| | - Philip Burcham
- Division of Pharmacology and Toxicology, School of Biomedical Sciences, Australia; Division of Pharmacy, School of Allied Health, The University of Western Australia, Crawley, WA 6009, Australia.
| |
Collapse
|
11
|
Sant'Anna MB, Kimura LF, Vieira WF, Zambelli VO, Novaes LS, Hösch NG, Picolo G. Environmental factors and their impact on chronic pain development and maintenance. Phys Life Rev 2024; 48:176-197. [PMID: 38320380 DOI: 10.1016/j.plrev.2024.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
It is more than recognized and accepted that the environment affects the physiological responses of all living things, from bacteria to superior vertebrates, constituting an important factor in the evolution of all species. Environmental influences range from natural processes such as sunlight, seasons of the year, and rest to complex processes like stress and other mood disorders, infections, and air pollution, being all of them influenced by how each creature deals with them. In this chapter, it will be discussed how some of the environmental elements affect directly or indirectly neuropathic pain, a type of chronic pain caused by a lesion or disease of the somatosensory nervous system. For that, it was considered the edge of knowledge in translational research, thus including data from human and experimental animals as well as the applicability of such findings.
Collapse
Affiliation(s)
| | - Louise Faggionato Kimura
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Willians Fernando Vieira
- Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | | | - Leonardo Santana Novaes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
12
|
Zhang J, Wang H, Chen H, Liu Y, Wang A, Hou H, Hu Q. Acetaldehyde induces similar cytotoxic and genotoxic risks in BEAS-2B cells and HHSteCs: involvement of differential regulation of MAPK/ERK and PI3K/AKT pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79423-79436. [PMID: 37284951 DOI: 10.1007/s11356-023-27508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 05/04/2023] [Indexed: 06/08/2023]
Abstract
Long-term use of alcohol and cigarettes is associated with millions of deaths each year, directly or indirectly. The carcinogen acetaldehyde is both a metabolite of alcohol and the most abundant carbonyl compound in cigarette smoke, and co-exposure of them is usual and primarily leads to liver and lung injury, respectively. However, few studies have explored the synchronic risk of acetaldehyde on the liver and lung. Here, we investigated the toxic effects and related mechanisms of acetaldehyde based on normal hepatocytes and lung cells. The results showed that acetaldehyde caused significant dose-dependent increases of cytotoxicity, ROS level, DNA adduct level, DNA single/double-strand breakage, and chromosomal damage in BEAS-2B cells and HHSteCs, with similar effects at the same doses. The gene and protein expression and phosphorylation of p38MAPK, ERK, PI3K, and AKT, key proteins of MAPK/ERK and PI3K/AKT pathways regulating cell survival and tumorigenesis, were significantly upregulated on BEAS-2B cells, while only protein expression and phosphorylation of ERK were upregulated significantly, the other three decreased in HHSteCs. When either the inhibitor of the four key proteins was co-treated with acetaldehyde, cell viabilities were almost unchanged in BEAS-2B cells and HHSteCs. Thus, acetaldehyde could synchronically induce similar toxic effects in BEAS-2B cells and HHSteCs, and MAPK/ERK and PI3K/AKT pathways seem to be involved in different regulatory mechanisms.
Collapse
Affiliation(s)
- Jingni Zhang
- University of Science and Technology of China, 230026, Hefei, China
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China
| | - Yong Liu
- University of Science and Technology of China, 230026, Hefei, China
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - An Wang
- University of Science and Technology of China, 230026, Hefei, China
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China
- Beijing Life Science Academy, Beijing, 102200, China
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China
| | - Qingyuan Hu
- University of Science and Technology of China, 230026, Hefei, China.
- China National Tobacco Quality Supervision & Test Center, Zhengzhou, 450001, China.
- Key Laboratory of Tobacco Biological Effects, Zhengzhou, 450001, China.
- Beijing Life Science Academy, Beijing, 102200, China.
- Key Labortory of Tobacco Biological Effects and Biosynthesis, Beijing, 102200, China.
| |
Collapse
|
13
|
Chen HJC. Mass Spectrometry Analysis of DNA and Protein Adducts as Biomarkers in Human Exposure to Cigarette Smoking: Acrolein as an Example. Chem Res Toxicol 2023; 36:132-140. [PMID: 36626705 DOI: 10.1021/acs.chemrestox.2c00354] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Acrolein is a major component in cigarette smoke and a product of endogenous lipid peroxidation. It is difficult to distinguish human exposure to acrolein from exogenous sources versus endogenous causes, as components in cigarette smoke can stimulate lipid peroxidation in vivo. Therefore, analysis of acrolein-induced DNA and protein adducts by the highly accurate, sensitive, and specific mass spectrometry-based methods is vital to estimate the degree of damage by this IARC Group 2A carcinogen. This Perspective reviews the analyses of acrolein-induced DNA and protein adducts in humans by mass spectrometry focusing on samples accessible for biomonitoring, including DNA from leukocytes and oral cells and abundant proteins from blood, i.e., hemoglobin and serum albumin.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi 62142, Taiwan
| |
Collapse
|
14
|
Mendelsohn CP, Hall W, Borland R, Wodak A, Beaglehole R, Benowitz NL, Britton J, Bullen C, Etter JF, McNeill A, Rigotti NA. A critique of the Australian National Health and Medical Research Council CEO statement on electronic cigarettes. Addiction 2023; 118:1184-1192. [PMID: 36808672 DOI: 10.1111/add.16143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023]
Abstract
This paper critically analyses a statement by Australia's National Health and Medical Research Council (NHMRC) on e-cigarettes in May 2022 that will be used to guide national policy. We reviewed the evidence and the conclusions drawn in the NHMRC Statement. In our view, the Statement is not a balanced reflection of the benefits and risks of vaping because it exaggerates the risks of vaping and fails to compare them to the far greater risks of smoking; it uncritically accepts evidence of harms from e-cigarettes while adopting a highly sceptical attitude towards evidence of their benefits; it incorrectly claims that the association between adolescent vaping and subsequent smoking is causal; and it understates the evidence of the benefits of e-cigarettes in assisting smokers to quit. The Statement dismisses the evidence that vaping is probably already having a positive net public health effect and misapplies the precautionary principle. Several sources of evidence supporting our assessment were published after the NHMRC Statement's publication and are also referenced. The NHMRC Statement on e-cigarettes does not present a balanced assessment of the available scientific literature and fails to meet the standard expected of a leading national scientific body.
Collapse
Affiliation(s)
| | - Wayne Hall
- National Centre for Youth Substance Use Research, The University of Queensland, St Lucia, Queensland, Australia
| | - Ron Borland
- Melbourne Centre for Behaviour Change, School of Psychological Sciences, The University of Melbourne, Victoria, Australia
| | - Alex Wodak
- Emeritus Consultant, Alcohol and Drug Service, St Vincents' Hospital, Sydney, Australia
| | | | - Neal L Benowitz
- Department of Medicine, University of California San Francisco, California, USA
| | - John Britton
- University of Nottingham, Nottingham, Nottinghamshire, UK
| | - Chris Bullen
- School of Population Health, The University of Auckland, Auckland, New Zealand
| | - Jean-François Etter
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ann McNeill
- National Addiction Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Nancy A Rigotti
- Harvard Medical School, Director, Tobacco Research and Treatment Center, Massachusetts General Hospital, Massachusetts, Boston, USA
| |
Collapse
|
15
|
Brasil FB, de Almeida FJS, Luckachaki MD, Dall'Oglio EL, de Oliveira MR. The C-glucosyl flavone isoorientin pretreatment attenuates the methylglyoxal-induced mitochondrial dysfunction in the human neuroblastoma SH-SY5Y cells: role for the AMPK-PI3K/Akt/Nrf2/γ-GCL/GSH axis. Metab Brain Dis 2023; 38:437-452. [PMID: 35316449 DOI: 10.1007/s11011-022-00966-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 01/25/2023]
Abstract
The reactive dicarbonyl methylglyoxal (MG) behaves as a pro-oxidant agent, causing redox dysfunction and cell death by different mechanisms in mammalian cells. MG is also a mitochondrial toxicant, impairing the oxidative phosphorylation (OXPHOS) system and leading to bioenergetics and redox collapses. MG induces glycation and exerts an important role in neurodegenerative and cardiovascular diseases. Isoorientin (ISO), a C-glucosyl flavone found in Aspalathus linearis, Fagopyrum esculentum, and Passiflora edulis, among others, is an antioxidant and anti-inflammatory molecule. ISO is a potent inducer of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), the master modulator of the redox environment in mammals. We investigated here whether ISO would prevent the mitochondria-related redox and bioenergetics impairments induced by MG in the human neuroblastoma SH-SY5Y cells. The cells were administrated with ISO at 20 μM for 18 h prior to the exposure to MG at 500 μM for further 24 h. It was observed that ISO efficiently prevented the mitochondrial impairments caused by MG. ISO upregulated the activity of the enzyme γ-glutamate-cysteine ligase (γ-GCL), consequently stimulating the synthesis of glutathione (GSH). The inhibition of γ-GCL, adenosine monophosphate-activated protein kinase (AMPK), and phosphoinositide 3-kinase/Akt (PI3K/Akt) suppressed the beneficial effects induced by ISO on the MG-challenged cells. Moreover, silencing of Nrf2 blocked the ISO-dependent γ-GCL and GSH upregulation and the effects on the mitochondria of the MG-challenged cells. Then, ISO caused mitochondrial protection by an AMPK-PI3K/Akt/Nrf2/γ-GCL/GSH-dependent manner in MG-administrated SH-SY5Y cells.
Collapse
Affiliation(s)
- Flávia Bittencourt Brasil
- Departamento de Ciências da Natureza, Campus Universitário de Rio das Ostras - Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Fhelipe Jolner Souza de Almeida
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Matheus Dargesso Luckachaki
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Evandro Luiz Dall'Oglio
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Marcos Roberto de Oliveira
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil.
| |
Collapse
|
16
|
Chen HJC, Cheng SW, Chen NY, Wu DC. Characterization and Quantification of Acrolein-Induced Modifications in Hemoglobin by Mass Spectrometry─Effect of Cigarette Smoking. Chem Res Toxicol 2022; 35:2260-2270. [PMID: 36367988 DOI: 10.1021/acs.chemrestox.2c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Exposure to acrolein, the smallest α, β-unsaturated aldehyde, in humans originates from cigarette smoking and other environmental sources, food cooking, and endogenous lipid peroxidation and metabolism. The protein modification caused by acrolein is associated with various diseases, including cancer, cardiovascular, and neurodegenerative diseases. In this study, acrolein-modified human hemoglobin was reduced by sodium borohydride. Thus, three types of modifications, that is, Schiff base, Michael addition, and formyl-dehydropiperidion adducts, were converted to the corresponding stable adducts, leading to mass increases of 40.0313, 58.0419, and 96.0575 Da, respectively. These stable acrolein-modified hemoglobin peptides were identified by nanoflow liquid chromatography coupled to a high-resolution nanoelectrospray ionization tandem mass spectrometry. Among the 26 different types and sites of modifications, 15 of them showed a dose-dependent increase with increasing concentrations of acrolein. To investigate the role of acrolein-induced modifications in smoking and oral cancer, the 15 dose-responsive acrolein-modified peptides, together with three ethylated peptides previously identified, were quantified in oral cancer patients, healthy smokers, and healthy nonsmokers. The results reveal that the relative extents of the Michael-type adduct at α-Lys-16, α-His-50, and β-Lys-59 are significantly higher in smokers (oral cancer and healthy) than in nonsmokers. Areas under the receiver operating characteristic curve of these peptides range from 0.7500 to 0.9375, indicating the ability to discriminate smokers from nonsmokers. Additionally, these acrolein-modified peptides correlate with three ethylated peptides at the N-termini of α- and β-globin, as well as β-His-77, and with the number of cigarettes smoked per day. Therefore, measuring the reduced Michael adducts at α-Lys-16, α-His-50, and β-Lys-59 of hemoglobin from one drop of blood by this sensitive and specific method may reflect the increase of acrolein exposure due to cigarette smoking.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Shu-Wei Cheng
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Nai-Ying Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung80708, Taiwan.,Faculty of Medicine, Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung80708, Taiwan
| |
Collapse
|
17
|
Chen HJC, Chen CY, Fang YH, Hung KW, Wu DC. Malondialdehyde-Induced Post-translational Modifications in Hemoglobin of Smokers by NanoLC-NSI/MS/MS Analysis. J Proteome Res 2022; 21:2947-2957. [PMID: 36375001 DOI: 10.1021/acs.jproteome.2c00442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malondialdehyde (MDA) is the most abundant α,β-unsaturated aldehyde generated from endogenous peroxidation of polyunsaturated fatty acids and is present in cigarette smoke. Post-translational modifications of blood hemoglobin can serve as biomarkers for exposure to chemicals. In this study, two types of MDA-induced modifications, the N-propenal and the dihydropyridine (DHP), were identified at multiple sites in human hemoglobin digest by the high-resolution mass spectrometry. The N-propenal and the DHP types of modification led to the increase of 54.0106 and 134.0368 amu, respectively, at the N-terminal and lysine residues. Among the 21 MDA-modified peptides, 14 with dose-response to MDA concentrations were simultaneously quantified in study subjects by the nanoflow liquid chromatography nanoelectrospray ionization tandem mass spectrometry under selected reaction monitoring (nanoLC-NSI-MS/MS-SRM) without prior enrichment. The results showed that the modifications of the N-propenal-type at α-Lys-11, α-Lys-16, α-Lys-61, β-Lys-8, and β-Lys-17, as well as the DHP-type at the α-N-terminal valine, are significantly higher in hemoglobin isolated from the blood of smokers than in nonsmoking individuals. This is the first report to identify and quantify multiple sites of MDA-induced modifications in human hemoglobin from peripheral blood. Our results suggest that the MDA-derived modifications on hemoglobin might represent valuable biomarkers for MDA-induced protein damage.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Chau-Yi Chen
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Ya-Hsuan Fang
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Kai-Wei Hung
- Department of Chemistry and Biochemistry and Center for Nano Bio-Detection (AIM-HI), National Chung Cheng University, 168 University Road, Ming-Hsiung, Chia-Yi62142, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung80756, Taiwan.,Faculty of Medicine, Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung807, Taiwan
| |
Collapse
|
18
|
Bellamri M, Walmsley SJ, Brown C, Brandt K, Konorev D, Day A, Wu CF, Wu MT, Turesky RJ. DNA Damage and Oxidative Stress of Tobacco Smoke Condensate in Human Bladder Epithelial Cells. Chem Res Toxicol 2022; 35:1863-1880. [PMID: 35877975 PMCID: PMC9665352 DOI: 10.1021/acs.chemrestox.2c00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Smoking is a major risk factor for bladder cancer (BC), with up to 50% of BC cases being attributed to smoking. There are 70 known carcinogens in tobacco smoke; however, the principal chemicals responsible for BC remain uncertain. The aromatic amines 4-aminobiphenyl (4-ABP) and 2-naphthylamine (2-NA) are implicated in BC pathogenesis of smokers on the basis of the elevated BC risk in factory workers exposed to these chemicals. However, 4-ABP and 2-NA only occur at several nanograms per cigarette and may be insufficient to induce BC. In contrast, other genotoxicants, including acrolein, occur at 1000-fold or higher levels in tobacco smoke. There is limited data on the toxicological effects of tobacco smoke in human bladder cells. We have assessed the cytotoxicity, oxidative stress, and DNA damage of tobacco smoke condensate (TSC) in human RT4 bladder cells. TSC was fractionated by liquid-liquid extraction into an acid-neutral fraction (NF), containing polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, phenols, and aldehydes, and a basic fraction (BF) containing aromatic amines, heterocyclic aromatic amines, and N-nitroso compounds. The TSC and NF induced a time- and concentration-dependent cytotoxicity associated with oxidative stress, lipid peroxide formation, glutathione (GSH) depletion, and apurinic/apyrimidinic (AP) site formation, while the BF showed weak effects. LC/MS-based metabolomic approaches showed that TSC and NF altered GSH biosynthesis pathways and induced more than 40 GSH conjugates. GSH conjugates of several hydroquinones were among the most abundant conjugates. RT4 cell treatment with synthetic hydroquinones and cresol mixtures at levels present in tobacco smoke accounted for most of the TSC-induced cytotoxicity and the AP sites formed. GSH conjugates of acrolein, methyl vinyl ketone, and crotonaldehyde levels also increased owing to TSC-induced oxidative stress. Thus, TSC is a potent toxicant and DNA-damaging agent, inducing deleterious effects in human bladder cells at concentrations of <1% of a cigarette in cell culture media.
Collapse
Affiliation(s)
- Madjda Bellamri
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Scott J. Walmsley
- Masonic Cancer Center, University of Minnesota, MN 55455
- Division of Biostatistics, Institute of Health Informatics, University of Minnesota, MN 55455
| | - Christina Brown
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Kyle Brandt
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Dmitri Konorev
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Abderrahman Day
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| | - Chia-Fang Wu
- Department of Environmental and Occupational Medicine, Kaohsiung Medical University, CS Building, 100 Shih-Chuan 1st Road, Kaohsiung, Taiwan
| | - Ming Tsang Wu
- Department of Environmental and Occupational Medicine, Kaohsiung Medical University, CS Building, 100 Shih-Chuan 1st Road, Kaohsiung, Taiwan
| | - Robert J. Turesky
- Masonic Cancer Center, University of Minnesota, MN 55455
- Department of Medicinal Chemistry, University of Minnesota, MN 55455
| |
Collapse
|
19
|
Bolling AK, Mallock N, Zervas E, Caillé-Garnier S, Mansuy T, Michel C, Pennings JLA, Schulz T, Schwarze PE, Solimini R, Tassin JP, Vardavas C, Merino M, Pauwels CGGM, van Nierop LE, Lambré C, Havermans A. Review of industry reports on EU priority tobacco additives part B: Methodological limitations. Tob Prev Cessat 2022; 8:28. [PMID: 35860505 PMCID: PMC9255286 DOI: 10.18332/tpc/150361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022]
Abstract
The Tobacco Products Directive (TPD) defines enhanced reporting obligations applying to 15 priority additives added to cigarettes and roll-your-own tobacco. A consortium of 12 international tobacco companies submitted 14 reports that were reviewed by an independent scientific body within the Joint Action on Tobacco Control (JATC). The reports were evaluated in accordance with the TPD with regard to their comprehensiveness, methodology and conclusions. Here we present their significant identified methodological limitations. The toxicological and chemical evaluation in the industry reports was mainly based on comparative testing, which lacks discriminative power for products with high toxicity and variability, like cigarettes. The literature reviews were biased, the comparative chemical studies did not assess previously identified pyrolysis products, the toxicological evaluation did not include the assessment of inhalation toxicity, and pyrolysis products were not assessed in terms of toxicity, including their genotoxic and carcinogenic potential. For both chemistry and toxicity testing, the statistical approach applied to test the difference between test and additive-free control cigarettes resulted in a high chance of false negatives. The clinical study for inhalation facilitation and nicotine uptake had limitations concerning study design and statistical analysis, while addictiveness was not assessed. Finally, the methodology used to assess characterizing flavors was flawed. In conclusion, there are significant limitations in the methodology applied by the industry. Therefore, the provided reports are of insufficient quality and are clearly not suitable to decide whether a priority additive should be banned in tobacco products according to the TPD.
Collapse
Affiliation(s)
| | - Nadja Mallock
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Efthimios Zervas
- Hellenic Thoracic Society, Athens, Greece
- Hellenic Open University, Athens, Greece
| | | | - Thibault Mansuy
- French Agency for Food, Environment and Occupational Health and Safety, France
| | - Cécile Michel
- French Agency for Food, Environment and Occupational Health and Safety, France
| | - Jeroen L. A. Pennings
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Thomas Schulz
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | | | | | - Miguel Merino
- Andalusian Agency for Agriculture and Fisheries, Valencia, Spain
| | - Charlotte G. G. M. Pauwels
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Lotte E. van Nierop
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Claude Lambré
- Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Anne Havermans
- Center for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| |
Collapse
|
20
|
Lipid Peroxidation Produces a Diverse Mixture of Saturated and Unsaturated Aldehydes in Exhaled Breath That Can Serve as Biomarkers of Lung Cancer-A Review. Metabolites 2022; 12:metabo12060561. [PMID: 35736492 PMCID: PMC9229171 DOI: 10.3390/metabo12060561] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
The peroxidation of unsaturated fatty acids is a widely recognized metabolic process that creates a complex mixture of volatile organic compounds including aldehydes. Elevated levels of reactive oxygen species in cancer cells promote random lipid peroxidation, which leads to a variety of aldehydes. In the case of lung cancer, many of these volatile aldehydes are exhaled and are of interest as potential markers of the disease. Relevant studies reporting aldehydes in the exhaled breath of lung cancer patients were collected for this review by searching the PubMed and SciFindern databases until 25 May 2022. Information on breath test results, including the biomarker collection, preconcentration, and quantification methods, was extracted and tabulated. Overall, 44 studies were included spanning a period of 34 years. The data show that, as a class, aldehydes are significantly elevated in the breath of lung cancer patients at all stages of the disease relative to healthy control subjects. The type of aldehyde detected and/or deemed to be a biomarker is highly dependent on the method of exhaled breath sampling and analysis. Unsaturated aldehydes, detected primarily when derivatized during preconcentration, are underrepresented as biomarkers given that they are also likely products of lipid peroxidation. Pentanal, hexanal, and heptanal were the most reported aldehydes in studies of exhaled breath from lung cancer patients.
Collapse
|
21
|
Ochoa CA, Nissen CG, Mosley DD, Bauer CD, Jordan DL, Bailey KL, Wyatt TA. Aldehyde Trapping by ADX-102 Is Protective against Cigarette Smoke and Alcohol Mediated Lung Cell Injury. Biomolecules 2022; 12:393. [PMID: 35327585 PMCID: PMC8946168 DOI: 10.3390/biom12030393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Most individuals diagnosed with alcohol use disorders smoke cigarettes. Large concentrations of malondialdehyde and acetaldehyde are found in lungs co-exposed to cigarette smoke and alcohol. Aldehydes directly injure lungs and form aldehyde protein adducts, impacting epithelial functions. Recently, 2-(3-Amino-6-chloroquinolin-2-yl)propan-2-ol (ADX-102) was developed as an aldehyde-trapping drug. We hypothesized that aldehyde-trapping compounds are protective against lung injury derived from cigarette smoke and alcohol co-exposure. To test this hypothesis, we pretreated mouse ciliated tracheal epithelial cells with 0-100 µM of ADX-102 followed by co-exposure to 5% cigarette smoke extract and 50 mM of ethanol. Pretreatment with ADX-102 dose-dependently protected against smoke and alcohol induced cilia-slowing, decreases in bronchial epithelial cell wound repair, decreases in epithelial monolayer resistance, and the formation of MAA adducts. ADX-102 concentrations up to 100 µM showed no cellular toxicity. As protein kinase C (PKC) activation is a known mechanism for slowing cilia and wound repair, we examined the effects of ADX-102 on smoke and alcohol induced PKC epsilon activity. ADX-102 prevented early (3 h) activation and late (24 h) autodownregulation of PKC epsilon in response to smoke and alcohol. These data suggest that reactive aldehydes generated from cigarette smoke and alcohol metabolism may be potential targets for therapeutic intervention to reduce lung injury.
Collapse
Affiliation(s)
- Carmen A. Ochoa
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
| | - Claire G. Nissen
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA;
| | - Deanna D. Mosley
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
| | - Christopher D. Bauer
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
| | - Destiny L. Jordan
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
| | - Kristina L. Bailey
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Todd A. Wyatt
- Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA; (C.A.O.); (D.D.M.); (C.D.B.); (D.L.J.); (K.L.B.)
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198-5910, USA;
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
22
|
Tsou HH, Tsai HC, Chu CT, Cheng HW, Liu CJ, Lee CH, Liu TY, Wang HT. Cigarette Smoke Containing Acrolein Upregulates EGFR Signaling Contributing to Oral Tumorigenesis In Vitro and In Vivo. Cancers (Basel) 2021; 13:cancers13143544. [PMID: 34298758 PMCID: PMC8307191 DOI: 10.3390/cancers13143544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 01/08/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) accounts for 80-90% of all intraoral malignant neoplasms. The single greatest risk factor for oral cancer is tobacco use, including cigarettes, cigars, chewing tobacco, and snuff. Aberrations of the epidermal growth factor receptor (EGFR) pathway features prominently in oral tumorigenesis and progression. It was shown that cigarette smoking (CS) is associated with worse prognosis in OSCC patients and overexpression of EGFR in tumor tissue. However, the mechanism by which cigarette smoking induced EGFR pathway activation remains to be fully elucidated. Acrolein, an IARC group 2A carcinogen, is a highly reactive aldehyde found in CS. Here we report that acrolein is capable of inducing tumorigenic transformation in normal human oral keratinocytes (NOK). The acrolein-transformed NOK cells showed EGFR copy number amplification, increased EGFR expression, and activation of downstream ERK and AKT signaling pathway. No p53 mutations were observed in acrolein-transformed NOK cells. Inhibiting EGFR pathway using an anti-EGFR antibody, cetuximab, inhibits tumor growth. Furthermore, by examining tissue sample from patients, we found an increased EGFR copy number was positively associated with acrolein-induced DNA damages in OSCC patients. Taken together, our results indicate that acrolein is important in tumorigenic transformation through amplification of EGFR and activating the downstream signaling pathway, contributing to oral carcinogenesis. This is the first study to provide molecular evidence showing that CS containing acrolein contributes to EGFR amplification in OSCC.
Collapse
Affiliation(s)
- Han-Hsing Tsou
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-H.T.); (T.-Y.L.)
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 112, Taiwan
- Kim Forest Enterprise Co., Ltd., Taipei 112, Taiwan
| | - Hong-Chieh Tsai
- Department of Neurosurgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- School of Traditional Chinese Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chiao-Ting Chu
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-T.C.); (H.-W.C.)
- Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Hsiao-Wei Cheng
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-T.C.); (H.-W.C.)
- Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Chung-Ji Liu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei 112, Taiwan;
- Department of Oral and Maxillofacial Surgery, Mackay Memorial Hospital, Taipei 112, Taiwan
| | - Chien-Hung Lee
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tsung-Yun Liu
- Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (H.-H.T.); (T.-Y.L.)
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei 112, Taiwan
| | - Hsiang-Tsui Wang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-T.C.); (H.-W.C.)
- Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: ; Tel.: +886-02-2826-7097
| |
Collapse
|
23
|
White AV, Wambui DW, Pokhrel LR. Risk assessment of inhaled diacetyl from electronic cigarette use among teens and adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145486. [PMID: 33770882 DOI: 10.1016/j.scitotenv.2021.145486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Diacetyl (C4H6O2) is a toxicant commonly found in electronic cigarettes (e-Cigs) as a flavoring component and an enhancer of e-juices. Lung injury in current and former workers in popcorn manufacturing suggests a possible association with diacetyl inhalation exposure. Although the number of e-Cig users continues to rise steadily among the teens and adults, the potential risk of pulmonary disease has not been characterized. A systematic review of the open literature identified bronchiolitis obliterans-a pathological inflammation resulting in fibrosis of the bronchioles leading to an irreversible limitation to airflow in lungs-as the primary outcome of diacetyl exposures. Following the deterministic United States National Research Council/Environmental Protection Agency's risk assessment framework, that consists of four key steps: hazard identification, dose-response assessment, exposure assessment and risk characterization, we estimated noncarcinogenic (systemic) risks using a Hazard Quotient (HQ) approach upon exposure to diacetyl among teens and adults who use e-Cigs. Based on the NIOSH Benchmark Dose (BMD; 0.0175 mg/kg-day) and modelled Average Daily Doses (ADDs; range 0.11-5.2 mg/kg-day), we estimated 12 different HQ values-a measure of non-carcinogenic risk for diacetyl inhalation exposures-all of which were greater than 1 (range 6.2875-297.1429), suggesting a significantly higher non-carcinogenic risk from diacetyl exposures among the teens and adults who use e-Cigs. These results underscore the need to regulate e-Cigs to protect teens and adults from diacetyl exposures and risk of developing lung injuries, including bronchiolitis obliterans.
Collapse
Affiliation(s)
- Avian V White
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA; Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, USA
| | - David W Wambui
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Lok R Pokhrel
- Department of Public Health, The Brody School of Medicine, East Carolina University, Greenville, NC, USA; Department of Health Education and Promotion, College of Health and Human Performance, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
24
|
Allam VSRR, Faiz A, Lam M, Rathnayake SNH, Ditz B, Pouwels SD, Brandsma C, Timens W, Hiemstra PS, Tew GW, Neighbors M, Grimbaldeston M, van den Berge M, Donnelly S, Phipps S, Bourke JE, Sukkar MB. RAGE and TLR4 differentially regulate airway hyperresponsiveness: Implications for COPD. Allergy 2021; 76:1123-1135. [PMID: 32799375 DOI: 10.1111/all.14563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The receptor for advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4) is implicated in COPD. Although these receptors share common ligands and signalling pathways, it is not known whether they act in concert to drive pathological processes in COPD. We examined the impact of RAGE and/or TLR4 gene deficiency in a mouse model of COPD and also determined whether expression of these receptors correlates with airway neutrophilia and airway hyperresponsiveness (AHR) in COPD patients. METHODS We measured airway inflammation and AHR in wild-type, RAGE-/- , TLR4-/- and TLR4-/- RAGE-/- mice following acute exposure to cigarette smoke (CS). We also examined the impact of smoking status on AGER (encodes RAGE) and TLR4 bronchial gene expression in patients with and without COPD. Finally, we determined whether expression of these receptors correlates with airway neutrophilia and AHR in COPD patients. RESULTS RAGE-/- mice were protected against CS-induced neutrophilia and AHR. In contrast, TLR4-/- mice were not protected against CS-induced neutrophilia and had more severe CS-induced AHR. TLR4-/- RAGE-/- mice were not protected against CS-induced neutrophilia but were partially protected against CS-induced mediator release and AHR. Current smoking was associated with significantly lower AGER and TLR4 expression irrespective of COPD status, possibly reflecting negative feedback regulation. However, consistent with preclinical findings, AGER expression correlated with higher sputum neutrophil counts and more severe AHR in COPD patients. TLR4 expression did not correlate with neutrophilic inflammation or AHR. CONCLUSIONS Inhibition of RAGE but not TLR4 signalling may protect against airway neutrophilia and AHR in COPD.
Collapse
Affiliation(s)
| | - Alen Faiz
- School of Life Sciences Faculty of Science The University of Technology Sydney Ultimo NSW Australia
- Department of Pulmonary Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Maggie Lam
- Biomedicine Discovery Institute and Department of Pharmacology School of Biomedical Sciences Monash University Melbourne Vic. Australia
| | - Senani N. H. Rathnayake
- School of Life Sciences Faculty of Science The University of Technology Sydney Ultimo NSW Australia
| | - Benedikt Ditz
- Department of Pulmonary Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Simon D. Pouwels
- Department of Pulmonary Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Corry‐Anke Brandsma
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Groningen Research Institute for Asthma and COPD University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology University of Groningen University Medical Center Groningen Groningen The Netherlands
- Groningen Research Institute for Asthma and COPD University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Pieter S. Hiemstra
- Department of Pulmonology Leiden University Medical Center Leiden The Netherlands
| | - Gaik W. Tew
- OMNI‐Biomarker Development, Genentech Inc South San Francisco CA USA
| | | | | | - Maarten van den Berge
- Department of Pulmonary Diseases University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Sheila Donnelly
- School of Life Sciences Faculty of Science The University of Technology Sydney Ultimo NSW Australia
| | - Simon Phipps
- QIMR Berghofer Medical Research Institute Herston Qld Australia
| | - Jane E. Bourke
- Biomedicine Discovery Institute and Department of Pharmacology School of Biomedical Sciences Monash University Melbourne Vic. Australia
| | - Maria B. Sukkar
- Graduate School of Health Faculty of Health The University of Technology Sydney Ultimo NSW Australia
| |
Collapse
|
25
|
de Souza ICC, Gobbo RCB, de Almeida FJS, Luckachaki MD, de Oliveira MR. Carnosic acid depends on glutathione to promote mitochondrial protection in methylglyoxal-exposed SH-SY5Y cells. Metab Brain Dis 2021; 36:471-481. [PMID: 33411218 DOI: 10.1007/s11011-020-00651-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/20/2020] [Indexed: 01/08/2023]
Abstract
Methylglyoxal (MG) is an endogenously produced toxicant that induces mitochondrial dysfunction leading to impaired redox biology homeostasis, bioenergetics collapse, and cell death in mammalian cells. However, MG toxicity is particularly relevant to neurons and glia given their chemical and metabolic characteristics. Here, we have investigated whether a pretreatment with carnosic acid (CA) would be able to promote mitochondrial protection in human neuroblastoma SH-SY5Y cells exposed to MG. We found that a pretreatment with CA at 1 μM for 12 h prevented the MG-induced lipid peroxidation and protein carbonylation and nitration in the membranes of mitochondria obtained from the SH-SY5Y cells. CA also prevented the MG-elicited Complexes I and V dysfunction, adenosine triphosphate (ATP) levels decline, and loss of mitochondrial membrane potential (MMP). Moreover, CA also reduced the mitochondrial production of the radical anion superoxide (O2-•) in the MG-challenged cells. We found that CA upregulated the synthesis of glutathione (GSH) by increasing the activity of the γ-glutamylcysteine ligase (γ-GCL). Inhibition of the GSH synthesis by buthionine sulfoximine (BSO) abolished the CA-induced mitochondrial protection. Besides, inhibition of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, as well as silencing of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), suppressed the CA-stimulated protection and the synthesis of GSH. Thus, CA promoted mitochondrial protection by a PI3K/Akt/Nrf2/γ-GCL/GSH axis in MG-treated SH-SY5Y cells.
Collapse
Affiliation(s)
- Izabel Cristina Custodio de Souza
- Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBIO), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Instituto de Biologia, Universidade Federal de Pelotas (UFPel), Av. Eliseu Maciel, 31, Pelotas, RS, CEP 96010-900, Brazil
| | - Rênata Cristina Bertolini Gobbo
- Grupo de Estudos em Terapia Mitocondrial, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 (Anexo), Porto Alegre, RS, CEP 90035-000, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fhelipe Jolner Souza de Almeida
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS, Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Matheus Dargesso Luckachaki
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Marcos Roberto de Oliveira
- Grupo de Estudos em Terapia Mitocondrial, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 (Anexo), Porto Alegre, RS, CEP 90035-000, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil.
| |
Collapse
|
26
|
Taotao M, Dingzhong W, Yihan Z, Shuo Z, Shihao S, Xiang L, Jianxun Z. Rapid Determination of Formaldehyde, Acetaldehyde and Acrolein in Electronic Cigarette Aerosols by Direct Mass Spectrometry with Evaluation of the Toxicity. ANAL LETT 2021. [DOI: 10.1080/00032719.2020.1764575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ma Taotao
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Wang Dingzhong
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Zhang Yihan
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Zhang Shuo
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Sun Shihao
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Li Xiang
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| | - Zhang Jianxun
- Zhengzhou Tobacco Research Institute, China National Tobacco Corporation, Zhengzhou, China
| |
Collapse
|
27
|
Association Study of Opioid Receptor Delta-Type 1 (OPRD1) Gene Variants with Nicotine Dependence in an Iranian Population. J Mol Neurosci 2021; 71:1301-1305. [PMID: 33506435 DOI: 10.1007/s12031-020-01757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Twins studies indicate that many individual factors are associated with genetic polymorphisms in tobacco use, dependence vulnerability, and the ability to quit smoking. Opioid receptor delta-type 1 (OPRD1) is one of the most important genes in the opioid pathway. Therefore, the current study aimed to investigate the association of variants located in the intron 1 of the OPRD1 gene, including rs2236857, rs2236855, and rs760589, with susceptibility to nicotine dependence among northern Iranians. DNA of 426 individuals, including 224 smokers and 202 healthy people, were extracted with the salting-out standard technique, qualified with Agarose gel, then quantified with Nanodrop, and finally genotyped by Amplification Refractory Mutation System (ARMS) PCR. All statistical analyses were performed by SNPAlyze version 8.1 and SPSS version 20. Results revealed no significant association of all three studied variants with the susceptibility to nicotine dependence in any models of inheritance. However, there were five haplotypes with an overall frequency higher than 0.05; no significant impact of any of them on nicotine dependence was observed. Altogether, rs2236857, rs2236855, and rs760589 were not associated with nicotine dependence among northern Iranians.
Collapse
|
28
|
Brasil FB, Gobbo RCB, de Almeida FJS, Luckachaki MD, Dos Santos Petry F, de Oliveira MR. The Isothiocyanate Sulforaphane Depends on the Nrf2/γ-GCL/GSH Axis to Prevent Mitochondrial Dysfunction in Cells Exposed to Methylglyoxal. Neurochem Res 2021; 46:740-754. [PMID: 33392911 DOI: 10.1007/s11064-020-03204-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Methylglyoxal (MG) is a reactive dicarbonyl presenting both endogenous (e.g. glycolysis) and exogenous (e.g. food cooking) sources. MG induces neurotoxicity, at least in part, by affecting mitochondrial function, including a decline in the oxidative phosphorylation (OXPHOS) system activity, bioenergetics failure, and redox disturbances. Sulforaphane (SFN) is an isothiocyanate found mainly in cruciferous vegetables and exerts antioxidant and anti-inflammatory effects in mammalian cells. SFN also decreases mitochondrial vulnerability to several chemical stressors. SFN is a potent activator of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which is a master regulator of the mammalian redox biology. Here, we have investigated whether and how SFN would be able to prevent the MG-induced mitochondrial collapse in the human neuroblastoma SH-SY5Y cells. The cells were exposed to SFN at 5 µM for 24 h prior to the administration of MG at 500 µM for additional 24 h. We found that SFN prevented the MG-induced OXPHOS dysfunction and mitochondrial redox impairment. SFN stimulated the activity of the enzyme γ-glutamylcysteine ligase (γ-GCL), leading to increased synthesis of glutathione (GSH). Inhibition of γ-GCL with buthionine sulfoximine (BSO) or silencing of Nrf2 using small interfering RNA (siRNA) against this transcription factor reduced the levels of GSH and abolished the mitochondrial protection promoted by SFN in the MG-treated cells. Thus, SFN protected mitochondria of the MG-challenged cells by a mechanism involving the Nrf2/γ-GCL/GSH axis.
Collapse
Affiliation(s)
- Flávia Bittencourt Brasil
- Departamento de Ciências da Natureza, Universidade Federal Fluminense (UFF), Campus Universitário de Rio das Ostras, Rio de Janeiro, Brazil
| | - Rênata Cristina Bertolini Gobbo
- Grupo de Estudos em Terapia Mitocondrial, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 (Anexo), Porto Alegre, RS, CEP 90035-000, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fhelipe Jolner Souza de Almeida
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil.,Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Matheus Dargesso Luckachaki
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil
| | - Fernanda Dos Santos Petry
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Marcos Roberto de Oliveira
- Grupo de Estudos em Terapia Mitocondrial, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 (Anexo), Porto Alegre, RS, CEP 90035-000, Brazil. .,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. .,Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, Cuiaba, MT, CEP 78060-900, Brazil.
| |
Collapse
|
29
|
Wetzel TJ, Wyatt TA. Dual Substance Use of Electronic Cigarettes and Alcohol. Front Physiol 2020; 11:593803. [PMID: 33224040 PMCID: PMC7667127 DOI: 10.3389/fphys.2020.593803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022] Open
Abstract
Electronic cigarettes (ECs) are a modern nicotine delivery system that rapidly grew in widespread use, particularly in younger populations. Given the long history of the comorbidity of alcohol and nicotine use, the rising prevalence of ECs raises the question as to their role in the consumption of alcohol. Of the numerous models of ECs available, JUUL is the most popular. This narrative review aims to determine current trends in literature regarding the relationship between EC and alcohol dual use, as well as hypothesize potential pathogenic tissue damage and summarize areas for future study, including second-hand vapor exposure and calling for standardization among studies. In summary, EC users are more likely to participate in hazardous drinking and are at higher risk for alcohol use disorder (AUD). We surmise the pathogenic damage of dual use may exhibit an additive effect, particularly in pathogen clearance from the lungs, increased inflammation and decreased immune response, physical damage to epithelial cells, and exacerbation of chronic obstructive pulmonary disease (COPD)-like illnesses. A better understanding of pathogenic damages is critical to understand the risks placed on dual users when exposed to respiratory pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Tanner J Wetzel
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, United States
| | - Todd A Wyatt
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, United States.,Pulmonary, Critical Care, and Sleep, University of Nebraska Medical Center, Omaha, NE, United States.,VA Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| |
Collapse
|
30
|
Takizawa M, Nakano M, Fukami T, Nakajima M. Decrease in ADAR1 expression by exposure to cigarette smoke enhances susceptibility to oxidative stress. Toxicol Lett 2020; 331:22-32. [PMID: 32439581 DOI: 10.1016/j.toxlet.2020.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, is the most frequent type of post-transcriptional nucleotide conversion in humans. It is known that innate abnormalities of A-to-I RNA editing are associated with the risk of certain diseases, such as amyotrophic lateral sclerosis. Extrinsic factors that modulate ADAR-mediated RNA editing remain to be clarified. In this study, we investigated the possibility that cigarette smoking may influence the expression of ADAR and that the changes may be biologically significant. Treatment of human lung adenocarcinoma A549 cells with cigarette smoke extract (CSE) induced a significant 50% decrease in ADAR1 protein levels. Since the decrease was counteracted by cotreatment with chloroquine, the CSE-dependent decrease in the ADAR1 protein levels may be due to the activation of autophagy. In addition to the in vitro study, we performed an in vivo study in mice and found a decrease in pulmonary Adar1 protein expression induced by cigarette smoking. Then, we investigated the biological significance of decreased ADAR1 expression. We found that knockdown of ADAR1 in A549 cells by siRNA resulted in an increase in the levels of protein carbonyl, a marker of oxidative stress. Moreover, knockdown of ADAR1 triggered a decrease in super oxide dismutase activity and heme oxygenase-1 expression, suggesting that ADAR1 plays a role to suppress oxidative stress. In conclusion, we show that ADAR1 expression is decreased by cigarette smoking and is a factor that contributes to the enhanced intracellular oxidative stress caused by cigarette smoking.
Collapse
Affiliation(s)
- Masashi Takizawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan; WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
31
|
Alamil H, Galanti L, Heutte N, Van Der Schueren M, Dagher Z, Lechevrel M. Genotoxicity of aldehyde mixtures: profile of exocyclic DNA-adducts as a biomarker of exposure to tobacco smoke. Toxicol Lett 2020; 331:57-64. [PMID: 32442718 DOI: 10.1016/j.toxlet.2020.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 01/14/2023]
Abstract
Electrophilic compounds present in humans, originating from endogenous processes or pollutant exposures, pose a risk to health though their reaction with nucleophilic sites in protein and DNA. Among this chemical class, aldehydes are mainly present in indoor air and they can also be produced by endogenous lipid peroxidation arising from oxidative stress. Known to be very reactive, aldehydes have the ability to form exocyclic adducts to DNA that, for the most if not repaired correctly, are mutagenic and by consequence potential agents involved in carcinogenesis. The aim of this work was to establish profiles of exocyclic DNA adducts induced by aldehyde mixtures, which could ultimately be considered as a genotoxic marker of endogenous and environmental aldehyde exposure. Adducts were quantified by an accurate, sensitive and validated ultra high performance liquid chromatography-electrospray ionization analytical method coupled to mass spectrometry in the tandem mode (UHPLC-ESI-MS/MS). We simultaneously measured nine exocyclic DNA adducts generated during the exposure in vitro of calf thymus DNA to different concentrations of each aldehyde along, as well as, to an equimolar mixture of these aldehydes. This approach has enabled us to establish dose-response relationships that allowed displaying the specific reactivity of aldehydes towards corresponding adducts formation. Profiles of these adducts determined in DNA of current smokers and non-smokers blood samples supported these findings. These first results are encouraging to explore genotoxicity induced by aldehyde mixtures and can furthermore be used as future reference for adductomic approaches.
Collapse
Affiliation(s)
- Héléna Alamil
- Normandie University, UNICAEN, ABTE EA4651, Caen, France; CCC François Baclesse, UNICANCER, Caen, France; L2GE, Microbiology-Tox/Ecotox Team, Faculty of Sciences, Lebanese University, Fanar, Lebanon.
| | | | - Natacha Heutte
- CCC François Baclesse, UNICANCER, Caen, France; Normandie University, UNIROUEN, CETAPS EA3832, Mont Saint Aignan, Cedex, France
| | | | - Zeina Dagher
- L2GE, Microbiology-Tox/Ecotox Team, Faculty of Sciences, Lebanese University, Fanar, Lebanon
| | - Mathilde Lechevrel
- Normandie University, UNICAEN, ABTE EA4651, Caen, France; CCC François Baclesse, UNICANCER, Caen, France.
| |
Collapse
|
32
|
Son Y, Weisel C, Wackowski O, Schwander S, Delnevo C, Meng Q. The Impact of Device Settings, Use Patterns, and Flavorings on Carbonyl Emissions from Electronic Cigarettes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E5650. [PMID: 32764435 PMCID: PMC7460324 DOI: 10.3390/ijerph17165650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022]
Abstract
Health impacts of electronic cigarette (e-cigarette) vaping are associated with the harmful chemicals emitted from e-cigarettes such as carbonyls. However, the levels of various carbonyl compounds under real-world vaping conditions have been understudied. This study evaluated the levels of carbonyl compounds (e.g., formaldehyde, acetaldehyde, glyoxal, and diacetyl, etc.) under various device settings (i.e., power output), vaping topographies, and e-liquid compositions (i.e., base liquid, flavor types). The results showed that e-vapor carbonyl levels were the highest under higher power outputs. The propylene glycol (PG)-based e-liquids generated higher formaldehyde and acetaldehyde than vegetable glycerin (VG)-based e-liquids. In addition, fruit flavored e-liquids (i.e., strawberry and dragon fruit) generated higher formaldehyde emissions than mint/menthol and creamy/sweet flavored e-liquids. While single-top coils formed 3.5-fold more formaldehyde per puff than conventional cigarette smoking, bottom coils generated 10-10,000 times less formaldehyde per puff. In general, increases in puff volume and longer puff durations generated significantly higher amounts of formaldehyde. While e-cigarettes emitted much lower levels of carbonyl compounds compared to conventional cigarettes, the presence of several toxic carbonyl compounds in e-cigarette vapor may still pose potential health risks for users without smoking history, including youth. Therefore, the public health administrations need to consider the vaping conditions which generated higher carbonyls, such as higher power output with PG e-liquid, when developing e-cigarette product standards.
Collapse
Affiliation(s)
- Yeongkwon Son
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA; (C.W.); (S.S.); (Q.M.)
| | - Clifford Weisel
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA; (C.W.); (S.S.); (Q.M.)
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Olivia Wackowski
- Center for Tobacco Studies, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA; (O.W.); (C.D.)
- Cancer Prevention & Control Research Program, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Stephan Schwander
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA; (C.W.); (S.S.); (Q.M.)
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
- Center for Tobacco Studies, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA; (O.W.); (C.D.)
- Department of Urban-Global Public Health, School of Public Health, Rutgers University, Newark, NJ 07102, USA
| | - Cristine Delnevo
- Center for Tobacco Studies, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA; (O.W.); (C.D.)
- Cancer Prevention & Control Research Program, Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Qingyu Meng
- Department of Environmental and Occupational Health, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA; (C.W.); (S.S.); (Q.M.)
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
- Center for Tobacco Studies, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA; (O.W.); (C.D.)
| |
Collapse
|
33
|
Melvin MS, Avery KC, Ballentine RM, Flora JW, Gardner W, Karles GD, Pithawalla YB, Smith DC, Ehman KD, Wagner KA. Formation of Diacetyl and Other α-Dicarbonyl Compounds during the Generation of E-Vapor Product Aerosols. ACS OMEGA 2020; 5:17565-17575. [PMID: 32715241 PMCID: PMC7377230 DOI: 10.1021/acsomega.0c02018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Exposure to diacetyl (DA) has been linked to the respiratory condition bronchiolitis obliterans. Previous research has demonstrated that DA and other α-dicarbonyl compounds can be detected in both the e-liquids and aerosols of e-vapor products (EVPs). While some EVP manufacturers may add these compounds as flavor ingredients, the primary objective of this work was to determine the potential for the formation of α-dicarbonyl compounds during the generation of aerosols from EVPs where no DA or other α-dicarbonyl compounds are added to the e-liquid. A novel ultraperformance liquid chromatography-mass spectrometry-based analytical method for the determination of DA, acetyl propionyl, glyoxal, and methylglyoxal was developed and validated. Next, eight commercially available cig-a-like-type EVPs were evaluated for α-dicarbonyl formation. Increased levels of α-dicarbonyls were observed in the aerosols of all evaluated EVPs compared to their respective e-liquids. Mechanistic studies were conducted using a model microwave reaction system to identify key reaction precursors for DA generated from propylene glycol (PG) and carbon-13-labeled glycerin (GLY). These studies, along with the corresponding retrosynthetic analysis, resulted in the proposed formation pathway where hydroxyacetone is generated from PG and/or GLY. Hydroxyacetone then participates in an aldol condensation with formaldehyde where formaldehyde can also be generated from PG and/or GLY; the resultant product then dehydrates to form DA. This proposed pathway was further investigated through in situ synthetic organic experiments within the model microwave reaction system. This work establishes that DA is formed in the aerosol generation process of the EVPs tested though at levels below toxicological concern.
Collapse
Affiliation(s)
- Matt S. Melvin
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, Virginia 23219, United States
| | - Karen C. Avery
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, Virginia 23219, United States
| | - Regina M. Ballentine
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, Virginia 23219, United States
| | - Jason W. Flora
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, Virginia 23219, United States
| | - William Gardner
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, Virginia 23219, United States
| | - Georgios D. Karles
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, Virginia 23219, United States
| | - Yezdi B. Pithawalla
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, Virginia 23219, United States
| | - Donna C. Smith
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, Virginia 23219, United States
| | - Kimberly D. Ehman
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, Virginia 23219, United States
| | - Karl A. Wagner
- Center for Research and Technology, Altria Client Services LLC, 601 East Jackson Street, Richmond, Virginia 23219, United States
| |
Collapse
|
34
|
Zhao Y, Zhu Y, Wang P, Sang S. Dietary Genistein Reduces Methylglyoxal and Advanced Glycation End Product Accumulation in Obese Mice Treated with High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7416-7424. [PMID: 32573222 DOI: 10.1021/acs.jafc.0c03286] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Our previous study has found that dietary genistein could ameliorate high-fat diet (HFD)-induced obesity and especially lower methylglyoxal (MGO) and advanced glycation end product (AGE) accumulation in healthy mice exposed to genistein and HFD. However, it is still unclear whether dietary genistein intervention has a similar beneficial effect in obese mice. In this study, the mice were induced with obesity after being fed a HFD for nine weeks before being administered with two doses of genistein, 0.1% (G 0.1) and 0.2% (G 0.2), in the HFD for additional 19 weeks. After 19 week treatment, genistein supplementation reduced body and liver weights, plasma and liver MGO levels, and kidney AGE levels in mice. Mechanistically, genistein upregulated the expressions of glyoxalase I and II and aldose reductase to detoxify MGO, and genistein and its microbial metabolites, dihydrogenistein and 6'-hydroxy-O-demethylangolensin, were able to trap endogenous MGO via formation of MGO conjugates. Taken together, our results provide novel insights into the antiobesity and antiglycation roles of dietary genistein in obese subjects.
Collapse
Affiliation(s)
- Yantao Zhao
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Yingdong Zhu
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Pei Wang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, 500 Laureate Way, Kannapolis, North Carolina 28081, United States
| |
Collapse
|
35
|
Son Y, Bhattarai C, Samburova V, Khlystov A. Carbonyls and Carbon Monoxide Emissions from Electronic Cigarettes Affected by Device Type and Use Patterns. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2767. [PMID: 32316435 PMCID: PMC7215697 DOI: 10.3390/ijerph17082767] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023]
Abstract
Dangerous levels of harmful chemicals in electronic cigarette (e-cigarette) aerosols were reported by several studies, but variability in e-cigarette design and use patterns, and a rapid development of new devices, such as JUUL, hamper efforts to develop standardized testing protocols and understand health risks associated with e-cigarette use. In this study, we investigated the relative importance of e-cigarette design, power output, liquid composition, puff topography on e-cigarette emissions of carbonyl compounds, carbon monoxide (CO), and nicotine. Four popular e-cigarette devices representing the most common e-cigarette types (e.g., cig-a-like, top-coil, 'mod', and 'pod') were tested. Under the tested vaping conditions, a top-coil device generated the highest amounts of formaldehyde and CO. A 'pod' type device (i.e., JUUL) emitted the highest amounts of nicotine, while generating the lowest levels of carbonyl and CO as compared to other tested e-cigarettes. Emissions increased nearly linearly with puff duration, while puff flow had a relatively small effect. Flavored e-liquids generated more carbonyls and CO than unflavored liquids. Carbonyl concentrations and CO in e-cigarette aerosols were found to be well correlated. While e-cigarettes emitted generally less CO and carbonyls than conventional cigarettes, daily carbonyl exposures from e-cigarette use could still exceed acute exposure limits, with the top-coil device potentially posing more harm than conventional cigarettes.
Collapse
Affiliation(s)
| | | | | | - Andrey Khlystov
- Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA; (Y.S.); (C.B.); (V.S.)
| |
Collapse
|
36
|
Sobczak A, Kośmider L, Koszowski B, Goniewicz MŁ. E-cigarettes and their impact on health: from pharmacology to clinical implications. Pol Arch Intern Med 2020; 130:668-675. [PMID: 32155137 DOI: 10.20452/pamw.15229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Worldwide, cigarette smoking is the major cause of premature mortality and diseases that can be prevented. Given that people continue smoking despite associated health risks, delivering nicotine without combustion should be considered a valuable and much less harmful way to reduce the public health burden caused by smoking. E‑cigarettes could play such a role if they were proven to be less harmful than combustible cigarettes. Although the number of clinical trials and human studies assessing the safety of e‑cigarettes is limited, numerous in vitro and in vivo studies reported on the potential harmful effects of the aerosol generated from e‑cigarettes. This article reviews the results of major clinical trials and laboratory studies with regard to cancer as well as cardiovascular and respiratory risk associated with the use of e‑cigarettes. Additionally, it also discusses the potential application of e‑cigarettes as smoking cessation tools. Most studies have indicated so far that e‑cigarettes are less harmful, but this applies only to smokers who completely switched to e‑cigarettes. In the opinion of the authors, good-quality research is crucial to establish the tolerance, safety, efficacy, and harm reduction potential of new technologies. Considering a significant role that physicians and other health providers play in helping smokers, there is an urgent need for evidence‑based guidelines and recommendations for clinical practitioners on potential benefits and risks of e‑cigarette use.
Collapse
Affiliation(s)
- Andrzej Sobczak
- Department of General and Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland.
| | - Leon Kośmider
- Department of General and Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | | | - Maciej Ł Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, New York, United States
| |
Collapse
|
37
|
Vas CA, Porter A, McAdam K. Acetoin is a precursor to diacetyl in e-cigarette liquids. Food Chem Toxicol 2019; 133:110727. [DOI: 10.1016/j.fct.2019.110727] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/27/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
|
38
|
Polosa R, O'Leary R, Tashkin D, Emma R, Caruso M. The effect of e-cigarette aerosol emissions on respiratory health: a narrative review. Expert Rev Respir Med 2019; 13:899-915. [PMID: 31375047 DOI: 10.1080/17476348.2019.1649146] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Due to the uptake in the use of e-cigarettes (ECs), evidence on their health effects is needed to inform health care and policy. Some regulators and health professionals have raised concerns that the respirable aerosols generated by ECs contain several constituents of potential toxicological and biological relevance to respiratory health. Areas covered: We critically assess published research on the respiratory system investigating the effects of ECs in preclinical models, clinical studies of people who switched to ECs from tobacco cigarettes, and population surveys. We assess the studies for the quality of their methodology and accuracy of their interpretation. To adequately assess the impact of EC use on human health, addressing common mistakes and developing robust and realistic methodological recommendations is an urgent priority. The findings of this review indicate that ECs under normal conditions of use demonstrate far fewer respiratory risks than combustible tobacco cigarettes. EC users and smokers considering ECs have the right to be informed about the relative risks of EC use, and to be made aware that findings of studies published by the media are not always reliable. Expert opinion: Growing evidence supports the relative safety of EC emission aerosols for the respiratory tract compared to tobacco smoke.
Collapse
Affiliation(s)
- Riccardo Polosa
- Centro per la Prevenzione e Cura del Tabagismo (CPCT), Azienda Ospedaliero-Universitaria "Policlinico-V. Emanuele", Università of Catania , Catania , Italy.,Center of Excellence for the acceleration of HArm Reduction (CoEHAR), University of Catania , Catania , Italy
| | - Renée O'Leary
- Canadian Institute for Substance Use Research , Victoria , Canada
| | - Donald Tashkin
- David Geffen School of Medicine at the University of California, Los Angeles (UCLA) , Los Angeles , CA , USA
| | - Rosalia Emma
- Dipartimento di Medicina Clinica e Sperimentale (MEDCLIN), University of Catania , Catania , Italy.,Dipartimento di Scienze biomediche e biotecnologiche (BIOMETEC), University of Catania , Catania , Italy
| | - Massimo Caruso
- Dipartimento di Medicina Clinica e Sperimentale (MEDCLIN), University of Catania , Catania , Italy.,Dipartimento di Scienze biomediche e biotecnologiche (BIOMETEC), University of Catania , Catania , Italy
| |
Collapse
|
39
|
Cancelada L, Sleiman M, Tang X, Russell ML, Montesinos VN, Litter MI, Gundel LA, Destaillats H. Heated Tobacco Products: Volatile Emissions and Their Predicted Impact on Indoor Air Quality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7866-7876. [PMID: 31150216 DOI: 10.1021/acs.est.9b02544] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study characterized emissions from IQOS, a heated tobacco product promoted as a less harmful alternative to cigarettes. Consumable tobacco plugs were analyzed by headspace GC/MS to assess the influence of heating temperature on the emission profile. Yields of major chemical constituents increased from 4.1 mg per unit at 180 °C to 6.2 mg at 200 °C, and 10.5 mg at 220 °C. The Health Canada Intense smoking regime was used to operate IQOS in an environmental chamber, quantifying 33 volatile organic compounds in mainstream and sidestream emissions. Aldehydes, nitrogenated species, and aromatic species were found, along with other harmful and potentially harmful compounds. Compared with combustion cigarettes, IQOS yields were in most cases 1-2 orders of magnitude lower. However, yields were closer to, and sometimes higher than electronic cigarettes. Predicted users' daily average intake of benzene, formaldehyde, acetaldehyde and acrolein were 39 μg, 32 μg, 2.2 mg and 71 μg, respectively. Indoor air concentrations were estimated for commonly encountered scenarios, with acrolein levels of concern (over 0.35 μg m-3) derived from IQOS used in homes and public spaces. Heated tobacco products are a weaker indoor pollution source than conventional cigarettes, but their impacts are neither negligible nor yet fully understood.
Collapse
Affiliation(s)
- Lucia Cancelada
- Indoor Environment Group , Lawrence Berkeley National Laboratory , 1 Cyclotron Road MS70-108B , Berkeley , California 94720 , United States
- División Química de la Remediación Ambiental , CNEA-CONICET , Avenida Gral. Paz 1499 , 1650 San Martín , Buenos Aires , Argentina
| | - Mohamad Sleiman
- Université Clermont Auvergne, CNRS, SIGMA Clermont , Institut de Chimie de Clermont Ferrand (ICCF) , F-63000 Clermont-Ferrand , France
| | - Xiaochen Tang
- Indoor Environment Group , Lawrence Berkeley National Laboratory , 1 Cyclotron Road MS70-108B , Berkeley , California 94720 , United States
| | - Marion L Russell
- Indoor Environment Group , Lawrence Berkeley National Laboratory , 1 Cyclotron Road MS70-108B , Berkeley , California 94720 , United States
| | - V Nahuel Montesinos
- División Química de la Remediación Ambiental , CNEA-CONICET , Avenida Gral. Paz 1499 , 1650 San Martín , Buenos Aires , Argentina
- Centro Tecnologías Químicas , FRBA-UTN , Medrano 951 , 1179 CABA , Argentina
| | - Marta I Litter
- División Química de la Remediación Ambiental , CNEA-CONICET , Avenida Gral. Paz 1499 , 1650 San Martín , Buenos Aires , Argentina
- Instituto de Investigación e Ingeniería Ambiental , Universidad de General San Martín , Campus Miguelete, Av. 25 de Mayo y Francia , 1650 San Martín , Buenos Aires , Argentina
| | - Lara A Gundel
- Indoor Environment Group , Lawrence Berkeley National Laboratory , 1 Cyclotron Road MS70-108B , Berkeley , California 94720 , United States
| | - Hugo Destaillats
- Indoor Environment Group , Lawrence Berkeley National Laboratory , 1 Cyclotron Road MS70-108B , Berkeley , California 94720 , United States
| |
Collapse
|
40
|
Zirak MR, Mehri S, Karimani A, Zeinali M, Hayes AW, Karimi G. Mechanisms behind the atherothrombotic effects of acrolein, a review. Food Chem Toxicol 2019; 129:38-53. [DOI: 10.1016/j.fct.2019.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
|
41
|
LoPachin RM, Geohagen BC, Nordstroem LU. Mechanisms of soft and hard electrophile toxicities. Toxicology 2019; 418:62-69. [PMID: 30826385 PMCID: PMC6494464 DOI: 10.1016/j.tox.2019.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/24/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
Abstract
Electron-deficient chemicals (electrophiles) react with compounds that have one or more unshared valence electron pairs (nucleophiles). The resulting covalent reactions between electrophiles and nucleophiles (e.g., Michael addition, SN2 reactions) are important, not only to Organic Chemistry, but also to the fields of Molecular Biology and Toxicology. Specifically, covalent bond formation is the operational basis of many critically important cellular processes; e.g., enzyme function, neurotransmitter release, and membrane-vesicle fusion. Given this context it is understandable that these reactions are also relevant to Toxicology, since a significant number of xenobiotic chemicals are toxic electrophiles that can react with endogenous nucleophilic residues. Therefore, the purpose of this Review is to discuss electrophile-nucleophile chemistry as it pertains to cell injury and resulting organ toxicity. Our discussion will involve an introduction to the Hard and Soft, Acids and Bases (HSAB) theory of Pearson. The HSAB concept provides a framework for calculation of quantum chemical parameters that classify the electrophile and nucleophile covalent components according to their respective electronic nature (softness/hardness) and reactivity (electrophilicity/nucleophilicity). The calculated quantum indices in conjunction with corroborative in vivo, in chemico (cell free) and in vitro research can offer an illuminating approach to mechanistic discovery. Accordingly, we will provide examples that demonstrate how this approach has been used to discern mechanisms and sites of electrophile action.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx NY 10467, United States.
| | - Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx NY 10467, United States
| | - Lars U Nordstroem
- The Chemical Synthesis & Biology Core Facility, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
42
|
Chen HJC, Teng YC. Stability of glyoxal- and methylglyoxal-modified hemoglobin on dried blood spot cards as analyzed by nanoflow liquid chromatography tandem mass spectrometry. J Food Drug Anal 2019; 27:526-530. [PMID: 30987724 PMCID: PMC9296192 DOI: 10.1016/j.jfda.2018.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
Blood sampling by the dried blood spot (DBS) technique has become commonly applied in newborn screening. It is often used for analysis of small molecules, such as metabolites. Recently, DBS sampling has been applied for quantification of post-translational protein modifications. Glyoxal and methylglyoxal are two simple oxoaldehydes released from glycated proteins in the Maillard reaction. They are widely distributed in the environment (e.g. cigarette smoke) and found in foods and beverages. Glyoxal and methylglyoxal are shown to react with biomolecules including DNA and proteins. In this laboratory, we previously identified the sites of modification by these two oxoaldehydes in human hemoglobin and found that the extents of modification at certain sites of lysine and arginine residues are significantly higher in type 2 diabetes mellitus patients than in nondiabetic individuals. In this study, we examine the stability of these modifications of hemoglobin stored on DBS cards at room temperature or 4 °C in the ambient air. After hemoglobin was extracted from the DBS cards, it was digested by trypsin and analyzed by nanoflow liquid chromatography coupled with nanospray ionization tandem mass spectrometry. The results show that the extents of all these PTMs are stable within 14 and 21 days when stored on DBS at room temperature and at 4 °C, respectively. Extraction of globin from DBS cards is mostly advantageous for hemolytic blood samples. This assay is sensitive as only a quarter of a DBS card containing ca. 12 μL of blood is required. Thus, it is practically useful to measure the extents of glyoxal- and methylglyoxal-induced hemoglobin modifications from DBS cards.
Collapse
|
43
|
Ogunwale MA, Knipp RJ, Evrard CN, Thompson LM, Nantz MH, Fu XA. The Influence of β-Ammonium Substitution on the Reaction Kinetics of Aminooxy Condensations with Aldehydes and Ketones. Chemphyschem 2019; 20:815-822. [PMID: 30725495 DOI: 10.1002/cphc.201801143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/05/2019] [Indexed: 11/06/2022]
Abstract
The click-chemistry capture of volatile aldehydes and ketones by ammonium aminooxy compounds has proven to be an efficient means of analyzing the carbonyl subset in complex mixtures, such as exhaled breath or environmental air. In this work, we examine the carbonyl condensation reaction kinetics of three aminooxy compounds with varying β-ammonium ion substitution using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). We determined the activation energies for the reactions of the aminooxy compounds ATM, ADMH and AMAH with a panel of ketones and aldehydes that included acrolein and crotonaldehyde. The measurements indicate that the activation energies for the oximation reactions are quite low, less than 75 kJ mol-1 . ADMH is observed to react the fastest with the carbonyls studied. We postulate this result may be attributed to the ADMH ammonium proton effecting a Brønsted-Lowry acid-catalyzed elimination of water during the rate-determining step of oxime ether formation. A theoretical study of oxime ether formation is presented to explain the enhanced reactivity of ADMH relative to the tetraalkylammonium analog ATM.
Collapse
Affiliation(s)
- Mumiye A Ogunwale
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| | - Ralph J Knipp
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| | - Clint N Evrard
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| | - Lee M Thompson
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| | - Michael H Nantz
- Department of Chemistry, University of Louisville, Louisville, KY 40208, USA
| | - Xiao-An Fu
- Department of Chemical Engineering, University of Louisville, Louisville, KY 40208, USA
| |
Collapse
|
44
|
Bals R, Boyd J, Esposito S, Foronjy R, Hiemstra PS, Jiménez-Ruiz CA, Katsaounou P, Lindberg A, Metz C, Schober W, Spira A, Blasi F. Electronic cigarettes: a task force report from the European Respiratory Society. Eur Respir J 2019; 53:13993003.01151-2018. [PMID: 30464018 DOI: 10.1183/13993003.01151-2018] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/09/2018] [Indexed: 01/10/2023]
Abstract
There is a marked increase in the development and use of electronic nicotine delivery systems or electronic cigarettes (ECIGs). This statement covers electronic cigarettes (ECIGs), defined as "electrical devices that generate an aerosol from a liquid" and thus excludes devices that contain tobacco. Database searches identified published articles that were used to summarise the current knowledge on the epidemiology of ECIG use; their ingredients and accompanied health effects; second-hand exposure; use of ECIGs for smoking cessation; behavioural aspects of ECIGs and social impact; in vitro and animal studies; and user perspectives.ECIG aerosol contains potentially toxic chemicals. As compared to conventional cigarettes, these are fewer and generally in lower concentrations. Second-hand exposures to ECIG chemicals may represent a potential risk, especially to vulnerable populations. There is not enough scientific evidence to support ECIGs as an aid to smoking cessation due to a lack of controlled trials, including those that compare ECIGs with licenced stop-smoking treatments. So far, there are conflicting data that use of ECIGs results in a renormalisation of smoking behaviour or for the gateway hypothesis. Experiments in cell cultures and animal studies show that ECIGs can have multiple negative effects. The long-term effects of ECIG use are unknown, and there is therefore no evidence that ECIGs are safer than tobacco in the long term. Based on current knowledge, negative health effects cannot be ruled out.
Collapse
Affiliation(s)
- Robert Bals
- Dept of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| | | | - Susanna Esposito
- Pediatric Clinic, Dept of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Robert Foronjy
- Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, New York, NY, USA
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Paraskevi Katsaounou
- 1st ICU Evangelismos Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - Anne Lindberg
- Dept of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Carlos Metz
- Dept of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| | - Wolfgang Schober
- Bavarian Health and Food Safety Authority, Dept of Chemical Safety and Toxicology, Munich, Germany
| | - Avrum Spira
- Boston University School of Medicine, Boston, MA, USA
| | - Francesco Blasi
- Dept of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
45
|
Beckett EM, Cyrs WD, Abelmann A, Monnot AD, Gaffney SH, Finley BL. Derivation of an occupational exposure limit for diacetyl using dose-response data from a chronic animal inhalation exposure study. J Appl Toxicol 2019; 39:688-701. [PMID: 30620996 DOI: 10.1002/jat.3757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/08/2022]
Abstract
Occupational exposure limits (OELs) have been previously proposed for diacetyl; however, most of these values are based on worker cohort studies that are known to have several limitations and confounders. In this analysis, an 8 hour time-weighted average (TWA) OEL for diacetyl was derived based on data from a chronic, 2 year animal inhalation study recently released by the US National Toxicology Program. In that study, complete histopathology was conducted on male and female mice and rats exposed to 0, 12.5, 25 or 50 ppm diacetyl. Several responses in the lower respiratory tract of rats (the more sensitive species) were chosen as the critical endpoints of interest. Benchmark concentration (BMC) modeling of these endpoints was used to estimate BMC values associated with a 10% extra risk (BMC10 ) and the associated 95% lower confidence bound (BMCL10 ), which were subsequently converted to human equivalent concentrations (HECs) using a computational fluid dynamics-physiologically based pharmacokinetic (CFD-PBPK) model to account for interspecies dosimetry differences. A composite uncertainty factor of 8.0 was applied to the human equivalent concentration values to yield 8 hour TWA OEL values with a range of 0.16-0.70 ppm. The recommended 8 hour TWA OEL for diacetyl vapor of 0.2 ppm, based on minimal severity of bronchiolar epithelial hyperplasia in the rat, is practical and health-protective.
Collapse
|
46
|
Chen HJC, Liu CT, Li YJ. Correlation between Glyoxal-Induced DNA Cross-Links and Hemoglobin Modifications in Human Blood Measured by Mass Spectrometry. Chem Res Toxicol 2018; 32:179-189. [PMID: 30507124 DOI: 10.1021/acs.chemrestox.8b00264] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glyoxal is an oxoaldehyde generated from the degradation of glucose-protein conjugates and from lipid peroxidation in foods and in vivo, and it is also present in the environment (e.g., cigarette smoke). The major endogenous source of glyoxal is glucose autoxidation, and the glyoxal concentrations in plasma are higher in diabetic patients than in nondiabetics. Glyoxal reacts with biomolecules forming covalently modified DNA and protein adducts. We previously developed sensitive and specific assays based on nanoflow liquid chromatography-nanospray ionization tandem mass spectrometry (nanoLC-NSI/MS/MS) for quantification of DNA cross-linked adducts (dG-gx-dC and dG-gx-dA) and for hemoglobin adducts derived from glyoxal. In this study, we isolated and analyzed both leukocyte DNA and hemoglobin from the blood of diabetic patients and compared the adduct levels with those from nondiabetic subjects using the modified assays. The results indicated that the extents of glyoxal-induced hemoglobin modifications on α-Lys-11, α-Arg-92, β-Lys-17, and β-Lys-66 were statistically higher in diabetic patients than nondiabetics and they correlated with HbA1c significantly. Moreover, the levels of dG-gx-dC in leukocyte DNA correlated positively with the extents of globin modification at α-Lys-11 and β-Lys-17, while levels of dG-gx-dA correlated with those at α-Lys-11 and α-Arg-92 in nonsmoking subjects. Comparing the levels and the correlation coefficients of these hemoglobin and DNA adducts including or excluding smokers, it appears that smoking is not a major contributor to glyoxal-induced adduction of hemoglobin and leukocyte DNA. To the best of our knowledge, this is one of the few reports of positive correlation between DNA and protein adducts of the same compound (glyoxal) in the blood from the same subjects. Because of the high abundance of hemoglobin in blood, the results indicate that quantification of glyoxal-modified peptides in hemoglobin might serve as a dosimetry for glyoxal and a practical surrogate biomarker for assessing glyoxal-induced DNA damage and its prevention.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry , National Chung Cheng University , 168 University Road , Ming-Hsiung, Chia-Yi 62142 , Taiwan
| | - Chun-Ting Liu
- Department of Chemistry and Biochemistry , National Chung Cheng University , 168 University Road , Ming-Hsiung, Chia-Yi 62142 , Taiwan
| | - Yi-Jou Li
- Department of Chemistry and Biochemistry , National Chung Cheng University , 168 University Road , Ming-Hsiung, Chia-Yi 62142 , Taiwan
| |
Collapse
|
47
|
Manna S, Waring A, Papanicolaou A, Hall NE, Bozinovski S, Dunne EM, Satzke C. The transcriptomic response of Streptococcus pneumoniae following exposure to cigarette smoke extract. Sci Rep 2018; 8:15716. [PMID: 30356075 PMCID: PMC6200755 DOI: 10.1038/s41598-018-34103-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/11/2018] [Indexed: 11/09/2022] Open
Abstract
Exposure to cigarette smoke is a risk factor for respiratory diseases. Although most research has focused on its effects on the host, cigarette smoke can also directly affect respiratory pathogens, in some cases enhancing virulence. Streptococcus pneumoniae (the pneumococcus) is a leading cause of community-acquired pneumonia worldwide, however data on the effects of cigarette smoke on the pneumococcus are sparse. Using RNA-seq, we show that pneumococci exposed to cigarette smoke extract in a concentrated acute exposure in vitro model initiate a 'survival' transcriptional response including the upregulation of detoxification enzymes, efflux pumps and osmoregulator transporters, as well as the downregulation of fatty acid and D-alanyl lipoteichoic acid biosynthesis genes. Except for the downregulation of the pneumolysin gene, there were no changes in the expression of major virulence factors following exposure to cigarette smoke. Compared to unexposed pneumococci, smoke-exposed pneumococci did not exhibit any changes in viability, adherence, hydrophobicity or cell lysis susceptibility. In this study, we demonstrate that pneumococci adapt to acute noxious cigarette smoke exposure by inducing a gene expression signature that allows the bacteria to resist its harmful effects.
Collapse
Affiliation(s)
- Sam Manna
- Pneumococcal Research, Murdoch Children's Research Institute, Infection and Immunity, Parkville, 3052, Australia.
| | - Alicia Waring
- Pneumococcal Research, Murdoch Children's Research Institute, Infection and Immunity, Parkville, 3052, Australia
| | - Angelica Papanicolaou
- Chronic Infectious and Inflammatory Disease Programme, School of Health & Biomedical Sciences, RMIT University, Bundoora, 3083, Australia
| | - Nathan E Hall
- Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Steven Bozinovski
- Chronic Infectious and Inflammatory Disease Programme, School of Health & Biomedical Sciences, RMIT University, Bundoora, 3083, Australia
| | - Eileen M Dunne
- Pneumococcal Research, Murdoch Children's Research Institute, Infection and Immunity, Parkville, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, 3052, Australia
| | - Catherine Satzke
- Pneumococcal Research, Murdoch Children's Research Institute, Infection and Immunity, Parkville, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, 3052, Australia.,Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, 3010, Australia
| |
Collapse
|
48
|
Cao Q, Liu L, Yang H, Cai Y, Li W, Liu G, Lee PW, Tang Y. In silico estimation of chemical aquatic toxicity on crustaceans using chemical category methods. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1234-1243. [PMID: 30069560 DOI: 10.1039/c8em00220g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
With industrial development and eventual commercial use, environmental chemicals through accidental spills and effluents appear more frequently in aquatic ecosystems and may produce an enormous effect on water, soil, wildlife and human health. Therefore, aquatic toxicity becomes an increasingly important endpoint in the evaluation of the environmental impact of chemicals. In this study, based on ECOTOX database, a large data set containing 824 diverse compounds with experimental 48 h EC50 values on crustaceans was compiled. A series of in silico models were then developed using six machine learning methods combined with seven types of molecular fingerprints. Performance of these models was measured by an external validation set, involving 246 molecules. The best model proposed is MACCS fingerprint and SVM algorithm with high accuracy of 0.87 for external validation set. Additionally, we proposed five structural alerts identified by information gain and substructure frequency analysis for mechanistic interpretation. The models and structural alerts can provide critical information and useful tools for a priori evaluation of chemical aquatic toxicity in environmental hazard assessment.
Collapse
Affiliation(s)
- Qianqian Cao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Weng MW, Lee HW, Park SH, Hu Y, Wang HT, Chen LC, Rom WN, Huang WC, Lepor H, Wu XR, Yang CS, Tang MS. Aldehydes are the predominant forces inducing DNA damage and inhibiting DNA repair in tobacco smoke carcinogenesis. Proc Natl Acad Sci U S A 2018; 115:E6152-E6161. [PMID: 29915082 PMCID: PMC6142211 DOI: 10.1073/pnas.1804869115] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tobacco smoke (TS) contains numerous cancer-causing agents, with polycyclic aromatic hydrocarbons (PAHs) and nitrosamines being most frequently cited as the major TS human cancer agents. Many lines of evidence seriously question this conclusion. To resolve this issue, we determined DNA adducts induced by the three major TS carcinogens: benzo(a)pyrene (BP), 4-(methylnitrosamine)-1-(3-pyridyl)-1-butanoe (NNK), and aldehydes in humans and mice. In mice, TS induces abundant aldehyde-induced γ-hydroxy-propano-deoxyguanosine (γ-OH-PdG) and α-methyl-γ-OH-PdG adducts in the lung and bladder, but not in the heart and liver. TS does not induce the BP- and NNK-DNA adducts in lung, heart, liver, and bladder. TS also reduces DNA repair activity and the abundance of repair proteins, XPC and OGG1/2, in lung tissues. These TS effects were greatly reduced by diet with polyphenols. We found that γ-OH-PdG and α-methyl-γ-OH-PdG are the major adducts formed in tobacco smokers' buccal cells as well as the normal lung tissues of tobacco-smoking lung cancer patients, but not in lung tissues of nonsmokers. However, the levels of BP- and NNK-DNA adducts are the same in lung tissues of smokers and nonsmokers. We found that while BP and NNK can induce BPDE-dG and O6-methyl-dG adducts in human lung and bladder epithelial cells, these inductions can be inhibited by acrolein. Acrolein also can reduce DNA repair activity and repair proteins. We propose a TS carcinogenesis paradigm. Aldehydes are major TS carcinogens exerting dominant effect: Aldehydes induce mutagenic PdG adducts, impair DNA repair functions, and inhibit many procarcinogens in TS from becoming DNA-damaging agents.
Collapse
Affiliation(s)
- Mao-Wen Weng
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, NY 10987
| | - Hyun-Wook Lee
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, NY 10987
| | - Sung-Hyun Park
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, NY 10987
| | - Yu Hu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, NY 10987
| | - Hsing-Tsui Wang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, NY 10987
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, NY 10987
| | - William N Rom
- Department of Medicine, New York University School of Medicine, New York, NY 10016
| | - William C Huang
- Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Herbert Lepor
- Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine, New York, NY 10016
| | - Chung S Yang
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854-0789
| | - Moon-Shong Tang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, NY 10987;
| |
Collapse
|
50
|
Buratto R, Correia D, Parel M, Crenna M, Bilger M, Debrick A. Determination of eight carbonyl compounds in aerosols trapped in phosphate buffer saline solutions to support in vitro assessment studies. Talanta 2018; 184:42-49. [PMID: 29674064 DOI: 10.1016/j.talanta.2018.02.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 02/11/2018] [Accepted: 02/12/2018] [Indexed: 11/17/2022]
Abstract
When investigating the toxicological impact of aerosols using in vitro systems like cell cultures, it is essential to have a quantitative measurement of the chemicals that the cells are exposed to. Carbonyl compounds represent an important class of marker compounds for in vitro and in vivo exposure to different toxicological agents, including cigarette smoke (CS). A new LC-MS/MS method that quantifies eight of these analytes in aerosols trapped in phosphate-buffered saline solutions has been developed to measure exposure. During the method development phase, particular attention has been paid to the efficient derivatization of the target compounds in the trapped aerosols and to avoid the formation of poly-derivatized molecules, which could lead to inaccurate quantifications. The method has been successively validated using the accuracy profile procedure. Selectivity, detection limits, precision, and accuracy have been evaluated for Vitrocell®, Gas Vapor Phase (GVP), and Whole Smoke (WS) matrices of smoke generated by 3R4F cigarettes and aerosol generated by the Tobacco Heating System (THS) 2.2, a heat-not-burn tobacco product developed by Philip Morris International (Smith et al., 2016) [1]. Validation results confirmed that the established working ranges also allow the analysis of THS aerosols, where the concentrations of carbonyl compounds are substantially lower than those generated by 3R4F cigarettes. Moreover, data gathered on 3R4F aerosol samples trapped with DNPH in acetonitrile solutions have been compared to the quantification given by an in-house UHPLC-MS/MS and reference values from the literature.
Collapse
Affiliation(s)
- Roberto Buratto
- PMI R&D (Part of Philip Morris International Group of Companies), Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Daniela Correia
- PMI R&D (Part of Philip Morris International Group of Companies), Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Monique Parel
- PMI R&D (Part of Philip Morris International Group of Companies), Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Maude Crenna
- PMI R&D (Part of Philip Morris International Group of Companies), Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Mickaël Bilger
- PMI R&D (Part of Philip Morris International Group of Companies), Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Audrey Debrick
- PMI R&D (Part of Philip Morris International Group of Companies), Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|