1
|
Chiejina CO, Ikeh IM, Enebe FA, Aguzie IO, Ajima MNO, Ali D, Kumar G, Nwani CD. Effects of haloperidol on peripheral erythrocytes and brain neurotransmitter levels of juvenile African Sharptooth Catfish Clarias gariepinus. JOURNAL OF AQUATIC ANIMAL HEALTH 2023; 35:238-247. [PMID: 37501608 DOI: 10.1002/aah.10195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVE The study investigated the effects of haloperidol on peripheral erythrocytes and brain neurotransmitter levels of juvenile African Sharptooth Catfish Clarias gariepinus. METHODS Juveniles were exposed to different concentrations of haloperidol (0.12, 0.24, and 0.48 mg/L) for 15 days and subsequently withdrawn from the drug for 5 days. Blood samples from the fish on days 1, 5, 10, and 15 and after the 5-day withdrawal period were analyzed for mutagenic changes, after which the fish were sacrificed. The brain was sampled for serotonergic and dopaminergic analyses. RESULT There was formation of micronuclei in the peripheral fish blood, which increased as the duration and concentrations of the drug increased. The drug significantly reduced the serotonin activity but increased dopamine activity. Some of the studied parameters, however, recovered from the effects of the drug after the 5-day withdrawal period. CONCLUSION Haloperidol is toxic to fish, and its use in the environment should be guarded to avoid adverse impacts on nontarget species like fish.
Collapse
Affiliation(s)
- Chike Obinna Chiejina
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | | | - Florence A Enebe
- Department of Applied Biology, Ebonyi State University, Abakaliki, Nigeria
| | - Ifeanyi Oscar Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | | | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, Vienna, Austria
| | | |
Collapse
|
2
|
Sharma K, Koundal S, Chadha P, Saini HS. Assessment of textile industry effluent (untreated and microbially treated) induced genotoxic, haematological, biochemical, histopathological and ultrastructural alterations in fresh water fish Channa punctata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112086-112103. [PMID: 37824055 DOI: 10.1007/s11356-023-30057-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
The unregulated expulsion of untreated textile water into water bodies is a major hazard to aquatic ecosystems. The present investigation was contrived to estimate the impact of textile dye bath effluent (untreated and microbially treated) on fish Channa punctata. Untreated effluent-exposed fish showed extremely altered behaviour (air gulping, erratic and speedy movements, increased opercular activity) and morphology (deposition of dyes on skin and scales, high pigmentation, mucus exudation). Significantly increased micronuclei (1.61-, 1.28-, 1.38-fold) and aberrant cell frequency (1.37-, 1.45-, 1.28-fold) was observed in untreated group as compared to treated group after 15, 30, and 45 days of exposure. Tail length, % tail intensity, tail moment and olive tail moment were also enhanced in all the exposed tissues. However, maximum damage was noticed in gill tissues showing 1.19-, 1.37-, 1.34- and 1.50-fold increased TL, %TI, TM and OTM in untreated group as compared to treated group after 45 days of exposure. On comparing untreated and treated groups, increased blood parameters and significantly reduced white blood cell count (WBC) were noticed in treated group. Significantly enhanced alterations in biochemical parameters were also analysed in untreated group. Reduced alterations in enzymological levels of fishes exposed to treated effluent indicate lesser toxic nature of the degraded metabolites of dye. Histological analysis in fishes exposed to untreated effluent showed several deformities in liver (necrosis, congestion, fusion of cells and melanomacrophage infiltration) and gill tissues (necrosis, bending of lamellae and severe aneurysm). Scanning electron microscopy (SEM) analysis further reaffirmed the pathologies observed in histological analysis. Fewer structural alterations were noticed in treated effluent fishes. The results concluded that untreated effluent inflicted toxicity potential on morphology as well as physiological defects in fish, and the severity increased with increasing duration of exposure, whereas reduction in toxicity in microbially treated groups can be analysed for aquacultural purposes owing to their lesser toxic nature.
Collapse
Affiliation(s)
- Khushboo Sharma
- Cytogenetics Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Satish Koundal
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005, India
| | - Pooja Chadha
- Cytogenetics Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, India.
| | | |
Collapse
|
3
|
Khan S, Qamar Z, Khan A, Waqas M, Nawab J, Khisroon M, Khan A. Genotoxic effects of polycyclic aromatic hydrocarbons (PAHs) present in vehicle-wash wastewater on grass carp (Ctenopharyngodon idella) and freshwater mussels (Anodonta cygnea). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121513. [PMID: 37030598 DOI: 10.1016/j.envpol.2023.121513] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Vehicle-wash wastewater (VWW) contains high levels of various petrochemicals such as polycyclic aromatic hydrocarbons (PAHs), a carcinogenic category of organic substances. However, the genotoxic effects of PAHs present in VWW remain largely unknown. We explored the genotoxic effects of PAHs present in VWW on fish grass carp (Ctenopharyngodon idella) and freshwater mussels (Anodonta cygnea). Fish and freshwater mussels were divided into control and exposed groups, the prior groups were treated at weekly intervals with clean water, and the latter with Σ16PAHs contaminated VWW for up to four weeks. The samples of blood from fish and haemolymph from freshwater mussels were collected and analyzed using the comet assay technique. Results exhibited that in control fish and freshwater mussel groups the genotoxicity decreased with every week passing following the order of W1 > W2 > W3 > W4, ranging from 8.33 ± 3.06 to 25.3 ± 4.62 and from 46.0 ± 6.93 to 7.67 ± 3.79, respectively. The exposed fish and freshwater mussel groups indicated an increase in genotoxicity with increasing week intervals with an order of W4 > W3 > W2 > W1, ranging from 55.7 ± 11.9 to 128.3 ± 10.0 and from 112.7 ± 8.50 to 183.3 ± 10.1, respectively. The genotoxic effect of Σ16PAHs on fish was comparatively lower than on freshwater mussels. This study elucidates that VWW is highly genotoxic and should be treated before discharging into aquatic ecosystems.
Collapse
Affiliation(s)
- Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan; Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan.
| | - Zahir Qamar
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan
| | - Ajmal Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan; Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhammad Waqas
- Department of Environmental Sciences, University of Peshawar, Peshawar, 25120, Pakistan; Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Javed Nawab
- Department of Environmental Sciences, Kohat University of Science and Technology, Kohat, Pakistan
| | - Muhmmmad Khisroon
- Department of Zoology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Ajmal Khan
- Department of Zoology, University of Peshawar, Peshawar, 25120, Pakistan
| |
Collapse
|
4
|
Jiménez-Bambague EM, Madera-Parra CA, Machuca-Martinez F. The occurrence of emerging compounds in real urban wastewater before and after the COVID-19 pandemic in Cali, Colombia. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 33:100457. [PMID: 37020893 PMCID: PMC9998129 DOI: 10.1016/j.coesh.2023.100457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 06/05/2023]
Abstract
The COVID-19 pandemic is considered one of the most significant global disasters in the last years. The rapid increase in infections, deaths, treatment, and the vaccination process has resulted in the excessive use of pharmaceuticals that have entered the environment as micropollutants. Considering the prior information about the presence of pharmaceuticals found in the wastewater of Cali, Colombia, which was collected from 2015 to 2022. The data monitored after the COVID-19 pandemic showed an increase in the concentration of analgesics and anti-inflammatory drugs of up to 91%. This increase was associated with the consumption of pharmaceuticals for mild symptoms, such as fever and pain. Moreover, the increase in concentration of pharmaceuticals poses a highly ecological threat, which was up to 14 times higher than that reported before of COVID-19 pandemic. These results showed that the COVID-19 had not only impacted human health but also had an effect on environmental health.
Collapse
|
5
|
Barreto A, Santos J, Capitão A, Eusébio R, Pinheiro Damasceno É, Luísa Machado A, Rocha LS, Calisto V, Amorim MJB, Maria VL. Assessment of diphenhydramine toxicity - Is its mode of action conserved between human and zebrafish? ENVIRONMENT INTERNATIONAL 2022; 164:107263. [PMID: 35504231 DOI: 10.1016/j.envint.2022.107263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The main aim of the study is to evaluate the effects of the pharmaceutical diphenhydramine (DPH) on embryo-larvae Danio rerio across distinct levels of organization - individual and subcellular - and correlate those effects with the DPH mode of action (MoA) assessed by in silico analysis. An embryos heartbeat rate reduction was observed at 10 mg/L DPH, but 0.001 to 10 mg/L did not significantly affect the zebrafish survival, hatching and morphology. Larvae swimming distance decreased (hypoactivity) at 1 and 10 mg/L DPH. Moreover, the straightforward movements decrease and the increase in the zigzag movements or movements with direction changes, shown an erratic swimming behavior. Energy budgets decreased for lipid (0.01 mg/L DPH) and carbohydrate (10 mg/L DPH) contents. Cholinesterase (neural function) and glutathione S-transferase (Phase II biotransformation/antioxidant processes) increased their activities at 10 mg/L DPH, where a decrease in the total glutathione content (antioxidant system) was observed. DNA damage was found at 0.01 and 10 mg/L DPH. However, a DNA repair occurred after subsequent 72 h in clean media. The in silico study revealed a relevant conservation between human and zebrafish DPH target molecules. These data provide a valuable ecotoxicological information about the DPH effects and MoA to non-target organisms.
Collapse
Affiliation(s)
- Angela Barreto
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Capitão
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rodrigo Eusébio
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Ana Luísa Machado
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luciana S Rocha
- Department of Chemistry & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Department of Chemistry & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L Maria
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Mezzelani M, Regoli F. The Biological Effects of Pharmaceuticals in the Marine Environment. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:105-128. [PMID: 34425054 DOI: 10.1146/annurev-marine-040821-075606] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Environmental pharmaceuticals represent a threat of emerging concern for marine ecosystems. Widely distributed and bioaccumulated, these contaminants could provoke adverse effects on aquatic organisms through modes of action like those reported for target species. In contrast to pharmacological uses, organisms in field conditions are exposed to complex mixtures of compounds with similar, different, or even opposing therapeutic effects. This review summarizes current knowledge of the main cellular pathways modulated by the most common classes of environmental pharmaceuticals occurring in marine ecosystems and accumulated by nontarget species-including nonsteroidal anti-inflammatory drugs, psychiatric drugs, cardiovascular and lipid regulator agents, steroidal hormones, and antibiotics-and describes an intricate network of possible interactions with both synergistic and antagonistic effects on the same cellular targets and metabolic pathways. This complexity reveals the intrinsic limits of the single-chemical approach to predict the long-term consequences and future impact of pharmaceuticals at organismal, population, and community levels.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; ,
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; ,
- Fano Marine Center, 61032 Fano, Italy
| |
Collapse
|
7
|
Ping S, Lin W, Liu A, Gao Z, Lin H, Ren Y. Ultraviolet photolysis of four typical cardiovascular drugs: mechanisms, influencing factors, degradation pathways, and toxicity trends. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60663-60675. [PMID: 34164790 DOI: 10.1007/s11356-021-15000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The cardiovascular drugs (CDDs), such as metoprolol (MET), atenolol (ATE), bezafibrate (BZB), and atorvastatin (ATO), have been frequently detected in the water environment. They can cause potential threats to the ecological environment and human health due to their "pseudo-persistence" effect. In this study, the photolysis kinetics, degradation mechanisms, by-products, influencing factors, and acute toxicity of these four typical CDDs under polychromatic ultraviolet irradiation (200-400 nm) were investigated. The results showed that the photolysis of ATE, BZB, MET, and ATO all followed pseudo-first-order kinetics, and their average photon quantum yields of the wavelength studied were 0.14×10-2, 0.33×10-3, 0.78×10-4, and 0.24×10-4 mol einstein-1, respectively. Singlet oxygen (1O2), hydroxyl radical (·OH), and the triplet-excited state of the cardiovascular drug (3CDD*) were all involved in the photolysis while 1O2 was the dominator. The effects of NO3-, Cl-, HCO3-, and humic acid (HA) on the photolysis were the combination of light-shielding, quenching, and excitation of reactive species. Seven, four, four, and nine photolysis products of ATO, BZB, ATE, and MET were identified, respectively, and their possible degradation pathways were proposed. The acute toxicity of ATE was basically unchanged during photolysis; however, ATO, BZB, and MET toxicity all increased due to the generation of ketonization and hydroxylation products.
Collapse
Affiliation(s)
- Senwen Ping
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Wenting Lin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Anchen Liu
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Zhihan Gao
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Han Lin
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.
- The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China.
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Bhanot R, Hundal SS. Assessment of cytotoxicity in gills of fish Labeo rohita reared in untreated and treated sewage water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59306-59316. [PMID: 32914301 DOI: 10.1007/s11356-020-10619-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The unregulated discharge of untreated municipal sewage water to the natural water bodies is a major threat to the aquatic ecosystems. In the present study, the fingerlings of Labeo rohita were exposed to treated sewage water and 1/10th of LC50 and 1/20th of LC50 of untreated sewage water (UT) obtained from sewage water treatment plant, Ludhiana, India. After determining 96-h LC50 value of UT, fingerlings were divided into four groups: control, treated, 1/10th of LC50 UT and 1/20th of LC50 UT and exposed for a period of 2 months. Our study revealed that 1/10th LC50 UT and 1/20th LC50 UT groups had significant reduction in body weight, total body length, standard body length and gills somatic index in comparison with the control and treated groups. Histopathological alterations in cellular structure of gills such as ruptured primary lamellae, broken secondary lamellae, distorted chloride cells and goblet cells, missing lamellae and disintegrated lamellar epithelium were also observed in 1/10th LC50 UT and 1/20th LC50 UT groups. A significantly high frequency of micronucleated (MN) cells was observed in 1/10th LC50 UT and 1/20th LC50 UT groups along with the presence of binucleated cells (BN), elongated nuclei (EN) and nuclear buds in gill cells. Genotoxic nature of UT was further confirmed from significantly high values of genetic damage index (GDI) and percentage (%) DNA damage in gill cells of fingerlings exposed to sub-lethal concentrations of UT. The study concluded that untreated sewage water has potential to induce anatomical and physiological defects in gills cells and the severity of toxicity increases with the increase in duration of exposure.
Collapse
Affiliation(s)
- Reetu Bhanot
- Department of Zoology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | | |
Collapse
|
9
|
Reis EO, Santos LVS, Lange LC. Prioritization and environmental risk assessment of pharmaceuticals mixtures from Brazilian surface waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117803. [PMID: 34329042 DOI: 10.1016/j.envpol.2021.117803] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/12/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The present study provides an environmental risk assessment of the pharmaceutical mixtures detected in Brazilian surface waters, based on Toxic Units and Risk Quotients. Furthermore, the applicability of a previously proposed prioritization methodology was evaluated. The pharmaceuticals were classified according to their properties (occurrence, persistence, bioaccumulation, and toxicity) and the contribution of the prioritized compounds to the mixture risk was determined. The mixture risk quotients, based on acute and chronic toxicity data, often exceed 1, demonstrating a potential risk for the environment. While algae were most affected by acute effects, fish were the most sensitive organism to sublethal effects. The lipid regulator atorvastatin was the main driver for the mixture risk. Despite their lower occurrence, the antibiotics norfloxacin and enrofloxacin were critical compounds for the algae group. The prioritized pharmaceuticals contributed to more than 75% of the mixture risk in most of cases, indicating the applicability of prioritization approaches for risk management.
Collapse
Affiliation(s)
- Eduarda O Reis
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Federal Institute of Education, Science and Technology of South of Minas Gerais -IFSULDEMINAS, Inconfidentes, Minas, Gerais, Brazil.
| | - Lucilaine V S Santos
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Department of Chemical Engineering, Pontifical Catholic University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Liséte C Lange
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
10
|
Cooper R, David A, Kudoh T, Tyler CR. Seasonal variation in oestrogenic potency and biological effects of wastewater treatment works effluents assessed using ERE-GFP transgenic zebrafish embryo-larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105864. [PMID: 34118774 DOI: 10.1016/j.aquatox.2021.105864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Effluents from wastewater treatment works (WwTW) exhibit both temporal and spatial variation in oestrogenicity, however few studies have attempted to quantify how this variation affects biological responses in fish. Here we used an oestrogen-responsive green fluorescent protein (ERE-GFP) transgenic zebrafish (Danio rerio) to quantify oestrogenic activity and health effects for exposure to three different WwTW effluents. Endpoints measured included survival/hatching rate, GFP induction (measured in target tissues or gfp mRNA induction in whole embryos) and vtg mRNA induction in whole embryos. Exposure to one of the study effluents (at 100%), resulted in some mortality, and exposure to all three effluents (at 50% and 100%) caused decreases in hatching rates. Higher levels of vtg mRNA corresponded with higher levels of steroidal oestrogens in the different effluents, with lowest-observed-effect concentrations (LOECs) between 31 ng/L and 39 ng/L oestradiol equivalents (EEQs). Tissue patterns of GFP expression for all three WwTWs effluents reflected the known targets for steroidal oestrogens and for some other oestrogenic chemicals likely present in those effluents (i.e. nonylphenol or bisphenolic compounds). GFP induction was similarly responsive to vtg mRNA induction (a well-established biomarker for oestrogen exposure). We thus demonstrate the ERE-GFP transgenic zebrafish as an effective model for monitoring the oestrogenic potency and health effects for exposure to complex mixtures of chemicals contained within WwTW effluents.
Collapse
Affiliation(s)
- Ruth Cooper
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Arthur David
- School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom; Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, University of Rennes, F-35000 Rennes, France
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
11
|
Nagaraj A, Wilson SA, Vaidyanathan L. Anti-Obesity Properties of Calocybe Indica in Zebra fishes with Short-Term High-Fat Diet Induction. BIOMEDICAL AND PHARMACOLOGY JOURNAL 2021; 14:411-423. [DOI: 10.13005/bpj/2141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Obesity, a disease involved with complex health problems, is indicated by increased BMI, triglyceride and cholesterol levels. Obese individuals are found to be highly susceptible to develop non-alcoholic fatty liver disease,cardiovascular diseases, and also type 2 diabetes mellitus. Synthetic drugs used for treating obesity have been found to be associated with side effects such as anxiety,sleeplessness,hypertension, and drug addiction. Research on natural productspossessing therapeutic biological activitieshasdiscoveredtheir potential to minimize or even completely eliminate such side effects. Medicinal properties ofCalocybe indica include antidiabetic, hypertensive, anticancer, anti-inflammatory, antibacterial, and hepatoprotective effects; however, its anti-obesity activity is obscure.In this study, the anti-obesity effects of Calocybe indicawere investigated using a diet-induced obese Zebrafish modeland compared with standard drug Atorvastatin.Results show that 200µg of C. indica was able to effectively bring down triglyceride levels (12.5± 0 mg/ml; normal control 12.7 ± 0.7 mg/ml), cholesterol (210± 15.9 mg; normal control =70.4± 0)and HMG COA Reductase levels (0.9± 0.03; normal = 1.2 ± 0.01). Excessive fat accumulation in the liver (steatohepatitis) reduced after treatment with C. indica to a greater extent than by treatment with standard drug Atorvastatin. 100 µg of C. indica was found to be optimum in decreasing the levels of the liver enzymes, AST (177.1±5.7 IU/L; normal control =177.7±43.02 IU/l), ALT (365.5±2.9 IU/L; normal control= 355.5±34.4 IU/l), and ALP (2.3±1.1μmoles of phenol liberated/mg of protein/min; normal control = 0.7±1.2 μmoles of phenol liberated/mg of protein/min).Whole-body Oil Red O staining of the zebrafishes showed that with increasing concentration of C. indica, the accumulation of triglycerides and lipids decreased.
Collapse
Affiliation(s)
- Anushree Nagaraj
- Department of Biomedical Sciences, Sri Ramachandra Institue of Higher Education and Research, Porur, Chennai- 600116, India
| | - Sarah Andrea Wilson
- Department of Biomedical Sciences, Sri Ramachandra Institue of Higher Education and Research, Porur, Chennai- 600116, India
| | - Lalitha Vaidyanathan
- Department of Biomedical Sciences, Sri Ramachandra Institue of Higher Education and Research, Porur, Chennai- 600116, India
| |
Collapse
|
12
|
Silva DDS, Gonçalves B, Rodrigues CC, Dias FC, Trigueiro NSDS, Moreira IS, de Melo E Silva D, Sabóia-Morais SMT, Gomes T, Rocha TL. A multibiomarker approach in the caged neotropical fish to assess the environment health in a river of central Brazilian Cerrado. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141632. [PMID: 32889457 DOI: 10.1016/j.scitotenv.2020.141632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Water safety is a world-wide concern and several efforts have been made in order to ensure the conservation of aquatic ecosystems. Water quality monitoring must be performed with an integrated approach using biomonitor organisms allied to water parameters. Nonetheless, very few studies have focused on biomarker responses in neotropical fish, especially in the freshwater ecosystem of Brazilian Cerrado savanna. In present study, the active biomonitoring of the João Leite river (central Brazilian Cerrado river) was performed through the evaluation of biomarker responses in caged Astyanax lacustris in combination with land use classification and analysis of water parameters. Caged fish were exposed for seven days at four sites along the river and two control groups were kept in a tank under controlled conditions. Results showed that pasture was the predominant land use in the João Leite river basin (54.07%), followed by natural vegetation (34.92%) and other kind of land use (11.01%). Water analyses showed metal concentrations (Mn and Fe) above the maximum allowed by Brazilian regulation, with particularly higher concentrations at Site 2 (near to pasture area). Biomarker responses did not show significant differences for somatic and mutagenic biomarkers between sites. However, the comet assay showed high DNA damage at Sites 2 and 3, indicating genotoxic effects in caged fish at pasture areas. Histopathological analysis showed highest frequency of leukocyte infiltration in liver of fish from Site 2, confirming the ecotoxic effects on A. lacustris in streams impacted by grazing activities. DNA damage and leukocyte infiltration in fish hepatic tissues were sensitive biomarkers in the neotropical fish A. lacustris to assess the environment health of the Cerrado river. These results showed the importance of using a multibiomarker approach in environmental risk assessment, especially in areas more at risk from anthropogenic pollution.
Collapse
Affiliation(s)
- Douglas Dos Santos Silva
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Bruno Gonçalves
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Cândido Carvalho Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Nicholas Silvestre de Souza Trigueiro
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Izabella Soares Moreira
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil
| | - Daniela de Melo E Silva
- Laboratory of Mutagenesis, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Simone Maria Teixeira Sabóia-Morais
- Laboratory of Cellular Behaviour, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiania, Goiás, Brazil.
| |
Collapse
|
13
|
Jiménez-Bambague EM, Madera-Parra CA, Ortiz-Escobar AC, Morales-Acosta PA, Peña-Salamanca EJ, Machuca-Martínez F. High-rate algal pond for removal of pharmaceutical compounds from urban domestic wastewater under tropical conditions. Case study: Santiago de Cali, Colombia. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1031-1043. [PMID: 33055394 DOI: 10.2166/wst.2020.362] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study evaluated the capacity of a pilot-scale high-rate algal pond (HRAP) to remove pharmaceutical compounds (PCs) from domestic wastewater in the city of Santiago de Cali, Colombia. The compounds analyzed included antiepileptics, hypolipidemic drugs, tranquilizers and analgesics, and anti-inflammatory drugs. The HRAP operated under a continuous water flow of 0.2 m3d-1 and a 3-day hydraulic retention time (HRT). Removal efficiencies were high (>70%) for fenofibric acid, ibuprofen, and paracetamol; medium (30-70%) for gabapentin, lamotrigine, fenofibrate, gemfibrozil, diclofenac, ketoprofen, naproxen, and pentoxifylline; and low (<30%) for carbamazepine and its metabolite 10,11-Dihidro-10,11-dihidroxicarbamazepine (CBZ-Diol). The findings herein are similar to other studies, but were obtained with a shorter HRT. These results show that tropical environmental conditions favor photodegradation and contribute to the development of microalgae and the biodegradation process. Twenty microalgae species were identified, with the phylum Chlorophyta as the most abundant, particularly due to its natural introduction. The removal of the PCs also reflected a percentage reduction (>50%) in the ecological hazard posed by most of the compounds, although it is important to note that the hazard from gemfibrozil and ibuprofen remained high even after treatment, indicating the need for complementary treatment.
Collapse
Affiliation(s)
| | - Carlos A Madera-Parra
- Escuela EIDENAR-Facultad de Ingeniería, Universidad del Valle, Cali, Colombia E-mail:
| | - Aura C Ortiz-Escobar
- Escuela EIDENAR-Facultad de Ingeniería, Universidad del Valle, Cali, Colombia E-mail:
| | - Paola A Morales-Acosta
- Escuela de Ciencias Básicas-Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Colombia
| | - Enrique J Peña-Salamanca
- Escuela de Ciencias Básicas-Facultad de Ciencias Naturales y Exactas, Universidad del Valle, Cali, Colombia
| | | |
Collapse
|
14
|
Zhang K, Zhao Y, Fent K. Cardiovascular drugs and lipid regulating agents in surface waters at global scale: Occurrence, ecotoxicity and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138770. [PMID: 32361434 DOI: 10.1016/j.scitotenv.2020.138770] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Cardiovascular drugs and lipid regulating agents have emerged as major groups of environmental contaminants over the past decades. However, knowledge about their occurrence in freshwaters and their ecotoxicity is still limited. Here, we critically summarize the presence of 82 cardiovascular drugs and lipid regulating agents at a global-scale and represent their effects on aquatic organisms. Only about 71% of these pharmaceuticals in use have been analyzed for their residues in aquatic ecosystems and only about 24% for their effects. When detected in surface waters, they occurred at concentrations of dozens to hundreds of ng/L. In wastewaters, they reached up to several μg/L. Effects of cardiovascular drugs and lipid regulating agents have been extensively studied in fish and a few in invertebrates, such as Daphnia magna and mussels. These pharmaceuticals affect cardiac physiology, lipid metabolism, growth and reproduction. Besides, effects on spermatogenesis and neurobehavior are observed. Environmental risks are associated with beta-blockers propranolol, metoprolol, and lipid lowering agents bezafibrate and atorvastatin, where adverse effects (biochemical and transcriptional) occurred partially at surface water concentrations. In some cases, reproductive effects occurred at environmentally relevant concentrations. This review summarizes the state of the art on the occurrence of cardiovascular drugs and lipid regulating agents at a global-scale and highlights their risks to fish. Further research is needed to include more subtle changes on heart function and to explore non-investigated drugs. Their occurrence in freshwaters and impact on a diverse array of aquatic organisms are particularly needed to fully assess their environmental hazards and risks.
Collapse
Affiliation(s)
- Kun Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yanbin Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Hofackerstrasse 30, CH-4132 Muttenz, Switzerland
| |
Collapse
|
15
|
Silveira CR, Varela Junior AS, Corcini CD, Soares SL, Anciuti AN, Kütter MT, Martínez PE. Effects of Bisphenol A on redox balance in red blood and sperm cells and spermatic quality in zebrafish Danio rerio. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:913-922. [PMID: 31396792 DOI: 10.1007/s10646-019-02091-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol-A (BPA) is a potential endocrine disruptor besides being associated with oxidative damage in several vertebrate classes. In the present study we investigated oxidative effects in erythrocytes and sperm cells as well as spermatic quality in Danio rerio exposed to 14 days at BPA concentrations of 2, 10 and 100 μg/L. Organelles structure, reactive species of oxygen (ROS) and lipoperoxidation (LPO) on erythrocytes and sperm cells were measured by flow cytometry and spermatic parameters were analyzed by the computer-assisted sperm analysis (CASA) system. For both cell types, when compared with control BPA treatment induced a significant increase in ROS and LPO production causing the membrane fluidity disorder, loss of membrane integrity and mitochondrial functionality. Furthermore, it was found a significant increase in DNA fragmentation in erythrocytes of zebrafish BPA exposed. Regarding the spermatic quality, results showed lower sperm motility in animals exposed to BPA, and alterations on velocity parameters of spermatozoa. Thus, the present study concludes that BPA affects the oxidative balance of both cell types, and that can directly affects the reproductive success of the adult Danio rerio. The sensitivity of erythrocytes to oxidative damage induced by BPA was similar to sperm cells, indicating a potential use of blood cells as indicators of oxidative damage present in fish sperm.
Collapse
Affiliation(s)
- C R Silveira
- Reprodução Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - A S Varela Junior
- Reprodução Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - C D Corcini
- Reprodução Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - S L Soares
- Reprodução Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - A N Anciuti
- Reprodução Animal, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - M T Kütter
- Reprodução Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil
| | - P E Martínez
- Reprodução Animal Comparada, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brazil.
| |
Collapse
|
16
|
Ajima MNO, Pandey PK, Kumar K, Poojary N, Gora AH. Verapamil caused biochemical alteration, DNA damage, and expression of hepatic stress-related gene biomarkers in Nile tilapia, Oreochromis niloticus. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s00580-019-03041-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Gajski G, Žegura B, Ladeira C, Novak M, Sramkova M, Pourrut B, Del Bo' C, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales - (Part 2 Vertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:130-164. [PMID: 31416573 DOI: 10.1016/j.mrrev.2019.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
The comet assay has become one of the methods of choice for the evaluation and measurement of DNA damage. It is sensitive, quick to perform and relatively affordable for the evaluation of DNA damage and repair at the level of individual cells. The comet assay can be applied to virtually any cell type derived from different organs and tissues. Even though the comet assay is predominantly used on human cells, the application of the assay for the evaluation of DNA damage in yeast, plant and animal cells is also quite high, especially in terms of biomonitoring. The present extensive overview on the usage of the comet assay in animal models will cover both terrestrial and water environments. The first part of the review was focused on studies describing the comet assay applied in invertebrates. The second part of the review, (Part 2) will discuss the application of the comet assay in vertebrates covering cyclostomata, fishes, amphibians, reptiles, birds and mammals, in addition to chordates that are regarded as a transitional form towards vertebrates. Besides numerous vertebrate species, the assay is also performed on a range of cells, which includes blood, liver, kidney, brain, gill, bone marrow and sperm cells. These cells are readily used for the evaluation of a wide spectrum of genotoxic agents both in vitro and in vivo. Moreover, the use of vertebrate models and their role in environmental biomonitoring will also be discussed as well as the comparison of the use of the comet assay in vertebrate and human models in line with ethical principles. Although the comet assay in vertebrates is most commonly used in laboratory animals such as mice, rats and lately zebrafish, this paper will only briefly review its use regarding laboratory animal models and rather give special emphasis to the increasing usage of the assay in domestic and wildlife animals as well as in various ecotoxicological studies.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Carina Ladeira
- H&TRC - Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal; Centro de Investigação e Estudos em Saúde de Publica, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Monika Sramkova
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bertrand Pourrut
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Cristian Del Bo'
- DeFENS-Division of Human Nutrition, University of Milan, Milan, Italy
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Solange Costa
- Environmental Health Department, National Health Institute Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry-MILK, NILU - Norwegian Institute for Air Research, Kjeller, Norway
| | - Gunnar Brunborg
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway
| | - Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Almeida AR, Jesus F, Henriques JF, Andrade TS, Barreto Â, Koba O, Giang PT, Soares AMVM, Oliveira M, Domingues I. The role of humic acids on gemfibrozil toxicity to zebrafish embryos. CHEMOSPHERE 2019; 220:556-564. [PMID: 30597363 DOI: 10.1016/j.chemosphere.2018.12.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Climate change is expected to alter the dynamics of water masses, with consequent changes in water quality parameters such as dissolved organic carbon (DOC) concentration. DOC levels play a critical role in the fate of organic chemicals, influencing their bioavailability and toxicity to aquatic organisms. This study aimed to evaluate the effects of DOC, particularly humic acids (HA), in the toxicity of gemfibrozil (GEM) - a human pharmaceutical frequently detected in surface waters. Lethal and sublethal effects (genotoxic, biochemical and behavioural alterations) were evaluated in zebrafish embryos exposed to several concentrations of GEM and three HA levels, in a full factorial design. HA significantly increased GEM LC50 values, mainly in the first 72 h of exposure, showing a protective effect. At sublethal levels, however, such protection was not observed since HA per se elicited adverse effects. At a biochemical level, individual exposure to HA (20 mg/L) elicited significant decreases in cholinesterase and glutathione S-transferase activities. Regarding behaviour, effects of individual exposure to HA appear to surpass the GEM effects, reducing the total distance moved by larvae. Both GEM and HA significantly increased DNA damage. Hence, this study demonstrated that abiotic factors, namely HA, should be considered in the assessment of pharmaceuticals toxicity. Moreover, it showed that lethality may not be enough to characterize combined effects since different patterns of response may occur at different levels of biological organization. Testing sublethal relevant endpoints is thus recommended to achieve a robust risk assessment in realistic scenarios.
Collapse
Affiliation(s)
- Ana Rita Almeida
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Fátima Jesus
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Jorge F Henriques
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Thayres S Andrade
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ângela Barreto
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Olga Koba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Pham Thai Giang
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany 389 25, Czech Republic
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
19
|
Cantwell MG, Katz DR, Sullivan JC, Shapley D, Lipscomb J, Epstein J, Juhl AR, Knudson C, O'Mullan GD. Spatial patterns of pharmaceuticals and wastewater tracers in the Hudson River Estuary. WATER RESEARCH 2018; 137:335-343. [PMID: 29571111 PMCID: PMC6582947 DOI: 10.1016/j.watres.2017.12.044] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 05/05/2023]
Abstract
The widespread use of pharmaceuticals by human populations results in their sustained discharge to surface waters via wastewater treatment plants (WWTPs). In this study, 16 highly prescribed pharmaceuticals were quantified along a 250 km transect of the Hudson River Estuary and New York Harbor to describe their sources and spatial patterns. Sampling was conducted over two dry weather periods in May and July 2016, at 72 sites which included mid-channel and nearshore sites, as well as locations influenced by tributaries and WWTP outfalls. The detection frequency of the study pharmaceuticals was almost identical between the May and July sampling periods at 55% and 52%, respectively. Six pharmaceuticals were measurable at 92% or more of the sites during both sampling periods, illustrating their ubiquitous presence throughout the study area. Individual pharmaceutical concentrations were highly variable spatially, ranging from non-detect to 3810 ng/L during the study. Major factors controlling concentrations were proximity and magnitude of WWTP discharges, inputs from tributaries and tidal mixing. Two compounds, sucralose and caffeine, were evaluated as tracers to identify wastewater sources and assess pharmaceutical behavior. Sucralose was useful in identifying wastewater inputs to the river and concentrations showed excellent correlations with numerous pharmaceuticals in the study. Caffeine-sucralose ratios showed potential in identifying discharges of untreated wastewater occurring during a combined sewage overflow event. Many of the study pharmaceuticals were present throughout the Hudson River Estuary as a consequence of sustained wastewater discharge. Whereas some concentrations were above published effects levels, a more complete risk assessment is needed to understand the potential for ecological impacts due to pharmaceuticals in the Hudson River Estuary.
Collapse
Affiliation(s)
- Mark G Cantwell
- U.S. Environmental Protection Agency, Office of Research and Development, 27 Tarzwell Drive, Narragansett, RI 02882, USA.
| | - David R Katz
- U.S. Environmental Protection Agency, Office of Research and Development, 27 Tarzwell Drive, Narragansett, RI 02882, USA
| | | | - Daniel Shapley
- Riverkeeper Inc., 20 Secor Road, Ossining, NY 10562, USA
| | - John Lipscomb
- Riverkeeper Inc., 20 Secor Road, Ossining, NY 10562, USA
| | | | - Andrew R Juhl
- Lamont Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, USA
| | - Carol Knudson
- Lamont Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, USA
| | - Gregory D O'Mullan
- School of Earth and Environmental Sciences, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA
| |
Collapse
|
20
|
Sachett A, Bevilaqua F, Chitolina R, Garbinato C, Gasparetto H, Dal Magro J, Conterato GM, Siebel AM. Ractopamine hydrochloride induces behavioral alterations and oxidative status imbalance in zebrafish. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:194-201. [PMID: 29405861 DOI: 10.1080/15287394.2018.1434848] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The occurrence of ractopamine (RAC) hydrochloride in water bodies is of significant concern due to its ecological impacts and toxicity to humans. RAC hydrochloride is a β-adrenergic agonist drug used as a feed additive to (1) improve feed efficiency, (2) rate of weight gain, and (3) increase carcass leanness in animals raised for their meat. This drug is excreted by animals in urine and introduced into the environment affecting nontarget organisms including fish. In wastewater released from farms, RAC concentrations were detected from 0.124 µg/L to 30.1 µg/L, and in levels ranging from 1.3 × 10-5 to 5.4 × 10-4 μg/L in watersheds. The aim of this study was to examine the effects of exposure to RAC at 0.1, 0.2, 0.85, 8.5, or 85 µg/L dissolved in water on behavior and oxidative status in adult zebrafish. At 0.85 µg/L, RAC treatment increased exploratory behavior of zebrafish; while at 8.5 µg/L, decreased locomotor and exploratory activities were noted. With respect to oxidative stress biomarkers, results showed that RAC at 0.2 µg/L induced lipid peroxidation and elevated total thiol content in zebrafish brain. All drug tested concentrations produced a fall in nonprotein thiol content. Finally, RAC at 0.85, 8.5, or 85 µg/L increased catalase enzyme activity. Our results demonstrated that the exposure to RAC induced behavioral alterations and oxidative stress in zebrafish.
Collapse
Affiliation(s)
- Adrieli Sachett
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Fernanda Bevilaqua
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Rafael Chitolina
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Cristiane Garbinato
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Henrique Gasparetto
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Jacir Dal Magro
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| | - Greicy M Conterato
- b Programa de Pós-Graduação em Ecossistemas Agrícolas e Naturais , Universidade Federal de Santa Catarina, Campus de Curitibanos , Curitibanos , SC , Brazil
- c Programa de Pós-Graduação em Farmácia, UFSC , Campus Reitor João David Ferreira Lima , Florianópolis , SC , Brazil
| | - Anna M Siebel
- a Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais , Universidade Comunitária da Região de Chapecó , Chapecó , SC , Brazil
| |
Collapse
|
21
|
Barreto A, Luis L, Soares A, Paíga P, Santos L, Delerue-Matos C, Hylland K, Loureiro S, Oliveira M. Genotoxicity of gemfibrozil in the gilthead seabream ( Sparus aurata ). MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 821:36-42. [DOI: 10.1016/j.mrgentox.2017.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 01/26/2023]
|
22
|
Mohd Zanuri NB, Bentley MG, Caldwell GS. Assessing the impact of diclofenac, ibuprofen and sildenafil citrate (Viagra ®) on the fertilisation biology of broadcast spawning marine invertebrates. MARINE ENVIRONMENTAL RESEARCH 2017; 127:126-136. [PMID: 28410750 DOI: 10.1016/j.marenvres.2017.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 05/22/2023]
Abstract
Exposure to synthetic chemicals is a key environmental challenge faced by aquatic organisms. The time and dose effects of the pharmaceuticals diclofenac, ibuprofen, and sildenafil citrate on sperm motility and successful fertilisation are studied using the echinoderms, Asterias rubens and Psammechinus miliaris, and the polychaete worm Arenicola marina, all important components of the marine benthos. Motility was reduced for all species when exposed to diclofenac concentrations ≥0.1 μg/L. Exposure to ≥1.0 μg/L of ibuprofen affected only P. miliaris gametes and fertilisation success of A. marina. A. rubens and P. miliaris sperm increased in both percentage motility and swimming velocity when exposed to sildenafil citrate at concentrations ≥18 and ≥ 50 ng/L, respectively. Pre-incubation of sperm with sildenafil citrate significantly increased fertilisation success in A. rubens and P. miliaris but not in A. marina. Pre-incubated A. rubens oocytes fertilised successfully in ibuprofen. According to EU Directive 93/67/EEC, diclofenac is classified as a very toxic substance to gametes of A. rubens, P. miliaris, and A. marina (EC50 = 100-1000 μg/L) while ibuprofen is classified as very toxic to gametes of P. miliaris but non-toxic to gametes of A. marina (EC50 > 10,000 μg/L). The present study indicates that diclofenac exposure may have negative impacts on invertebrate reproductive success, whereas ibuprofen potentially may compromise P. miliaris reproduction. This study provides a valuable insight into the mechanisms that allow marine invertebrates to survive and reproduce in contaminated and changing habitats.
Collapse
Affiliation(s)
- Norlaila Binti Mohd Zanuri
- School of Marine Science and Technology, Newcastle University, Ridley Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK
| | - Matthew G Bentley
- School of Marine Science and Technology, Newcastle University, Ridley Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK
| | - Gary S Caldwell
- School of Marine Science and Technology, Newcastle University, Ridley Building, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
23
|
Toolaram AP, Menz J, Rastogi T, Leder C, Kümmerer K, Schneider M. Hazard screening of photo-transformation products from pharmaceuticals: Application to selective β 1-blockers atenolol and metoprolol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:1769-1780. [PMID: 27939084 DOI: 10.1016/j.scitotenv.2016.10.242] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 06/06/2023]
Abstract
The identification of toxic components in cocktail mixtures of pollutants, their metabolites and transformation products (TPs) generated from environmental and treatment processes remains an arduous task. This study expanded in this area by applying a combination of chemical analytics, a battery of in vitro bioassays and an in silico "testing battery" to UV photolysis mixtures of active pharmaceutical ingredients. The objectives were to understand the toxic nature of the mixtures and to prioritize photo-TPs for risk analysis. The selective β1-blockers Atenolol (ATL) and Metoprolol (MTL) that are ubiquitous in the aquatic environment were used as an example. The photolysis mixtures were cytotoxic to Vibrio fischeri and mammalian cells but not mutagenic in the Ames test or genotoxic in the in vitro micronucleus and umu tests. Potentially hazardous TPs were proposed by relating the observed effects to the kinetics of TP occurrence and applying in silico toxicity predictions for individual photo-TPs. This model study was done to identify principal mechanisms rather than accurately simulating environmental transformation processes. Several photo-TPs were proposed to present a greater hazard than the selected β-blockers and therefore fate and toxicity assessments may be required to determine their environmental relevance.
Collapse
Affiliation(s)
- Anju Priya Toolaram
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Germany..
| | - Jakob Menz
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Germany..
| | - Tushar Rastogi
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Germany..
| | - Christoph Leder
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Germany..
| | - Klaus Kümmerer
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Germany..
| | - Mandy Schneider
- Sustainable Chemistry and Material Resources, Institute of Sustainable and Environmental Chemistry, Faculty of Sustainability, Leuphana University of Lüneburg, Germany..
| |
Collapse
|
24
|
Teles M, Fierro-Castro C, Na-Phatthalung P, Tvarijonaviciute A, Soares AMVM, Tort L, Oliveira M. Evaluation of gemfibrozil effects on a marine fish (Sparus aurata) combining gene expression with conventional endocrine and biochemical endpoints. JOURNAL OF HAZARDOUS MATERIALS 2016; 318:600-607. [PMID: 27474849 DOI: 10.1016/j.jhazmat.2016.07.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
The information on the potential hazardous effects of gemfibrozil (GEM) on marine fish is extremely scarce. In the current study, molecular, endocrine and biochemical parameters were assessed in Sparus aurata after 96h waterborne exposure to a GEM concentration range. Hepatic mRNA levels of target genes known to be regulated via peroxisome proliferator-activated receptor α (pparα) in mammals, such as apolipoprotein AI (apoa1) and lipoprotein (lpl) were significantly increased, without a concomitant activation of the ppar pathways. GEM (15μgL(-1)) induced an upregulation in mRNA levels of interleukin 1β (il1β), tumour necrosis factor-α (tnfα) and caspase 3 (casp3), suggesting an activation of proinflammatory processes in S. aurata liver. However, mRNA levels of genes related with the antioxidant defence system and cell-tissue repair were unaltered under the tested experimental conditions. Higher levels of GEM induced a cortisol rise, an indication that it is recognized as a stressor by S. aurata. Cortisol levels and the mRNA levels of il1β, tnfα and casp3 may be suggested as potential biomarkers of GEM effects in marine fish.
Collapse
Affiliation(s)
- M Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| | - C Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - P Na-Phatthalung
- Department of Microbiology and Excellent Research Laboratory on Natural Products, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - A Tvarijonaviciute
- Department of Medicine and Animal Surgery, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - A M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - L Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - M Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
25
|
Baurand PE, Capelli N, de Vaufleury A. Genotoxicity assessment of pesticides on terrestrial snail embryos by analysis of random amplified polymorphic DNA profiles. JOURNAL OF HAZARDOUS MATERIALS 2015; 298:320-7. [PMID: 26160746 DOI: 10.1016/j.jhazmat.2015.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 03/30/2015] [Accepted: 05/29/2015] [Indexed: 06/04/2023]
Abstract
The study explores the relevance of coupling Random Amplified Polymorphic DNA (RAPD) and a High-Resolution capillary electrophoresis System (HRS) method for assessing the genotoxic potential of the wide variety commercial formulations of pesticides. Using this technique, the genotoxic potential of a glyphosate-based herbicide (Roundup Flash(®) (RU)) and two fungicide formulations based on tebuconazole and copper (Corail(®) and Bordeaux mixture (BM), respectively) was evaluated on terrestrial snail embryos. Clutches of Cantareus aspersus were exposed during their entire embryonic development to a range of concentration around the EC50 values (based on hatching success) for each compound tested. Three primers were used for the RAPD amplifications of pesticides samples. RAPD-HRS revealed concentration-dependent modifications in profiles generated with the three primers in RU(®)-exposed embryos from 30 mg/L glyphosate. For Corail(®)-exposed embryos, only two of the three primers were able to show alterations in profiles from 0.05 mg/L tebuconazole. For BM-exposed embryos, no signs of genotoxicity were observed. All changes observed in amplification profiles have been detected at concentrations lower than the recommended doses for vineyard field applications. Our study demonstrates the efficiency of coupling RAPD and HRS to efficiently screen the effect of pesticide formulations on DNA.
Collapse
Affiliation(s)
- Pierre-Emmanuel Baurand
- Chrono-Environment, UMR 6249 University of Bourgogne Franche-Comté/CNRS, 16 Route de Gray, 25030 Besançon Cedex, France.
| | - Nicolas Capelli
- Chrono-Environment, UMR 6249 University of Bourgogne Franche-Comté/CNRS, 16 Route de Gray, 25030 Besançon Cedex, France
| | - Annette de Vaufleury
- Chrono-Environment, UMR 6249 University of Bourgogne Franche-Comté/CNRS, 16 Route de Gray, 25030 Besançon Cedex, France; Department of Health Safety Environment, Avenue Des Rives du Lac, BP179, 70003 Vesoul Cedex, France
| |
Collapse
|
26
|
Nigro M, Bernardeschi M, Costagliola D, Della Torre C, Frenzilli G, Guidi P, Lucchesi P, Mottola F, Santonastaso M, Scarcelli V, Monaci F, Corsi I, Stingo V, Rocco L. n-TiO2 and CdCl2 co-exposure to titanium dioxide nanoparticles and cadmium: Genomic, DNA and chromosomal damage evaluation in the marine fish European sea bass (Dicentrarchus labrax). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 168:72-77. [PMID: 26448269 DOI: 10.1016/j.aquatox.2015.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Due to the large production and growing use of titanium dioxide nanoparticles (n-TiO2), their release in the marine environment and their potential interaction with existing toxic contaminants represent a growing concern for biota. Different end-points of genotoxicity were investigated in the European sea bass Dicentrarchus labrax exposed to n-TiO2 (1mgL(-1)) either alone and combined with CdCl2 (0.1mgL(-1)) for 7 days. DNA primary damage (comet assay), apoptotic cells (diffusion assay), occurrence of micronuclei and nuclear abnormalities (cytome assay) were assessed in peripheral erythrocytes and genomic stability (random amplified polymorphism DNA-PCR, RAPD assay) in muscle tissue. Results showed that genome template stability was reduced after CdCl2 and n-TiO2 exposure. Exposure to n-TiO2 alone was responsible for chromosomal alteration but ineffective in terms of DNA damage; while the opposite was observed in CdCl2 exposed specimens. Co-exposure apparently prevents the chromosomal damage and leads to a partial recovery of the genome template stability.
Collapse
Affiliation(s)
- M Nigro
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - M Bernardeschi
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - D Costagliola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - C Della Torre
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - G Frenzilli
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy.
| | - P Guidi
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - P Lucchesi
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - F Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - M Santonastaso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - V Scarcelli
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - F Monaci
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - I Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - V Stingo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - L Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| |
Collapse
|
27
|
Rocco L, Santonastaso M, Nigro M, Mottola F, Costagliola D, Bernardeschi M, Guidi P, Lucchesi P, Scarcelli V, Corsi I, Stingo V, Frenzilli G. Genomic and chromosomal damage in the marine mussel Mytilus galloprovincialis: Effects of the combined exposure to titanium dioxide nanoparticles and cadmium chloride. MARINE ENVIRONMENTAL RESEARCH 2015; 111:144-148. [PMID: 26392349 DOI: 10.1016/j.marenvres.2015.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) continuously released into waters, may cause harmful effects to marine organisms and their potential interaction with conventional toxic contaminants represents a growing concern for biota. We investigated the genotoxic potential of nanosized titanium dioxide (n-TiO2) (100 μg L(-1)) alone and in combination with CdCl2 (100 μg L(-1)) in Mytilus galloprovincialis after 4 days of in vivo exposure. RAPD-PCR technique and Micronucleus test were used to study genotoxicity. The results showed genome template stability (GTS) being markedly reduced after single exposure to n-TiO2 and CdCl2. Otherwise, co-exposure resulted in a milder reduction of GTS. Exposure to n-TiO2 was responsible for a significant increase of micronucleated cell frequency in gill tissue, while no chromosomal damage was observed after CdCl2 exposure as well as after combined exposure to both substances.
Collapse
Affiliation(s)
- L Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy.
| | - M Santonastaso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - M Nigro
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - F Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - D Costagliola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - M Bernardeschi
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - P Guidi
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - P Lucchesi
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - V Scarcelli
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - I Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - V Stingo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - G Frenzilli
- Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| |
Collapse
|
28
|
Šrut M, Štambuk A, Bourdineaud JP, Klobučar GIV. Zebrafish genome instability after exposure to model genotoxicants. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:887-902. [PMID: 25702168 DOI: 10.1007/s10646-015-1432-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Sublethal exposure to environmental genotoxicants may impact genome integrity in affected organisms. It is therefore necessary to develop tools to measure the extent and longevity of genotoxicant-induced DNA damage, and choose appropriate model organisms for biomonitoring. To this end, markers of DNA damage were measured in zebrafish larvae and adults following exposure to model genotoxicants (benzo[a]pyrene and ethyl methanesulfonate). Specifically, we assessed primary DNA damage and the existence of potentially persistent genomic alterations through application of the comet assay, quantitative random amplified polymorphic DNA (qRAPD) and amplified fragment length polymorphism (AFLP) assays. Furthermore, expression of genes involved in DNA repair, oxidative stress response and xenobiotic metabolism was evaluated as well. Additionally, the AFLP method was applied to adult specimens 1 year after larval exposure to the genotoxicants to evaluate the longevity of the observed DNA alterations. Large numbers of DNA alterations were detected in larval DNA using the comet assay, qRAPD and AFLP, demonstrating that zebrafish larvae are a sensitive model for revealing genotoxic effects. Furthermore, some of these genomic alterations persisted into adulthood, indicating the formation of stable genomic modifications. qRAPD and AFLP methods proved to be highly sensitive to genotoxic effects, even in cases when the comet assay indicated a lack of significant damage. These results thus support the use of zebrafish larvae as a sensitive model for monitoring the impact of genotoxic insult and give evidence of the longevity of genomic modifications induced by genotoxic agents.
Collapse
Affiliation(s)
- Maja Šrut
- Department of Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia,
| | | | | | | |
Collapse
|
29
|
Ali D, Ali H, Alarifi S, Kumar S, Serajuddin M, Mashih AP, Ahmed M, Khan M, Adil SF, Shaik MR, Ansari AA. Impairment of DNA in a freshwater gastropod (Lymnea luteola L.) after exposure to titanium dioxide nanoparticles. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 68:543-552. [PMID: 25661047 DOI: 10.1007/s00244-015-0132-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/19/2015] [Indexed: 06/04/2023]
Abstract
The apoptotic and genotoxic potential of titanium dioxide nanoparticles (TiO2NPs) were evaluated in hemocyte cells of freshwater snail Lymnea luteola L. Before evaluation of the toxic potential, mean size of the TiO2NPs was determined using a transmission electron microscopy and dynamic light scattering. In this study, L. luteola were exposed to different concentrations of TiO2NPs (28, 56, and 84 μg/ml) over 96 h. Induction of oxidative stress in hemolymph was observed by a decrease in reduced glutathione and glutathione-S-transferase levels at different concentration of TiO2NPs and, in contrast, an increase in malondialdehyde and reactive oxygen species levels. Catalase activity was decreased at lower concentrations but increased at greater concentration of TiO2NPs. The extent of DNA fragmentation occurring in L. luteola due to ecotoxic impact TiO2NPs was further substantiated by alkaline single-cell gel electrophoresis assay and expressed in terms of % tail DNA and olive tail moment. The alkaline single-cell gel electrophoresis assay for L. luteola clearly shown relatively greater DNA damage at the highest concentration of TiO2NPs.The results indicate that the interaction of TiO2NPs with snail influences toxicity, which is mediated by oxidative stress according dose and in a time-dependent manner. The results of this study showed the importance of a multibiomarker approach for assessing the injurious effects of TiO2NPs to freshwater snail L. luteola, which may be vulnerable due to the continuous discharge of TiO2NPs into the aquatic ecosystems. The measurement of DNA integrity in L. luteola thus provides an early warning signal of contamination of the aquatic ecosystem by TiO2NPs.
Collapse
Affiliation(s)
- Daoud Ali
- Department of Zoology, College of Science, King Saud University, BOX 2455, Riyadh, 11451, Saudi Arabia,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gupta AK, Ahmad I, Ahmad M. Genotoxicity of refinery waste assessed by some DNA damage tests. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:250-256. [PMID: 24836934 DOI: 10.1016/j.ecoenv.2014.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/25/2014] [Accepted: 03/27/2014] [Indexed: 06/03/2023]
Abstract
Refinery waste effluent is well known to contain polycyclic aromatic hydrocarbons, phenols and heavy metals as potentially genotoxic substances. The aim of the present study was to assess the genotoxic potential of Mathura refinery wastewater (MRWW) by various in vitro tests including the single cell gel electrophoresis, plasmid nicking assay and S1 nuclease assay. Treatment of human lymphocytes to different MRWW concentrations (0.15×, 0.3×, 0.5× and 0.78×) caused the formation of comets of which the mean tail lengths increased proportionately and differed significantly from those of unexposed controls. The toxic effect of MRWW on DNA was also studied by plasmid nicking assay and S1 nuclease assay. Strand breaks formation in the MRWW treated pBR322 plasmid confirmed its genotoxic effect. Moreover, a dose dependent increase in cleavage of calf thymus DNA in S1 nuclease assay was also suggestive of the DNA damaging potential of MRWW. A higher level of ROS generation in the test water sample was recorded which might be contributing to its genotoxicity. Interaction between the constituents of MRWW and calf thymus DNA was also ascertained by UV-visible spectroscopy.
Collapse
Affiliation(s)
- Amit Kumar Gupta
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Irshad Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Masood Ahmad
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
31
|
Rocco L, Santonastaso M, Mottola F, Costagliola D, Suero T, Pacifico S, Stingo V. Genotoxicity assessment of TiO2 nanoparticles in the teleost Danio rerio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 113:223-230. [PMID: 25506637 DOI: 10.1016/j.ecoenv.2014.12.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/05/2014] [Accepted: 12/07/2014] [Indexed: 06/04/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs), widely used in paints, pharmaceutical preparations and in many consumer products, have been shown to induce cytotoxicity, genotoxicity and carcinogenic responses both in vitro and in vivo. Numerous studies have shown the potential impact of nanoparticles on a series of aquatic organisms and their toxicity has been linked to their dissolution, surface properties and size. In vitro studies have raised concerns about the toxicity of TiO2 NPs, but there are very limited data on ecotoxicity to aquatic life. This in vivo study aimed to describe the genotoxicity of TiO2 NPs in the zebrafish Danio rerio. After 2 weeks of adaptation, groups of zebrafish were exposed to TiO2 NPs (1 and 10μg/L) for 5, 7, 14, 21 and 28 days. The genotoxic potential of TiO2 NPs was assessed by the Comet assay, the Diffusion assay and RAPD-PCR technique. The use of multi-biomarkers has become an important aspect of ecotoxicology to evaluate environmental quality through a wide panel of biological responses triggered by contaminants. The highest genotoxic effect was observed at the maximum concentrations of nanoparticles (10μg/L) with all three tests at 14 and 21 days of exposure. The results suggests the presence of mechanisms that can reduce the n-TiO2 genotoxicity. Future studies are necessary to analyze the DNA repairing capacity in zebrafish cells and so verify the role of the antioxidant defence system in modulating the response to exposure to n-TiO2 in fish.
Collapse
Affiliation(s)
- Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy.
| | - Marianna Santonastaso
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Domenico Costagliola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Teresa Suero
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| | - Vincenzo Stingo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, Caserta, Italy
| |
Collapse
|
32
|
Šrut M, Bourdineaud JP, Štambuk A, Klobučar GIV. Genomic and gene expression responses to genotoxic stress in PAC2 zebrafish embryonic cell line. J Appl Toxicol 2015; 35:1381-9. [DOI: 10.1002/jat.3113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 12/08/2014] [Accepted: 12/08/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Maja Šrut
- Department of Zoology, Faculty of Science; University of Zagreb; Rooseveltov trg 6 10000 Zagreb Croatia
| | - Jean-Paul Bourdineaud
- Arcachon Marine Station, CNRS, UMR EPOC 5805; University of Bordeaux; Place du Docteur Peyneau 33120 Arcachon France
| | - Anamaria Štambuk
- Department of Zoology, Faculty of Science; University of Zagreb; Rooseveltov trg 6 10000 Zagreb Croatia
| | - Göran I. V. Klobučar
- Department of Zoology, Faculty of Science; University of Zagreb; Rooseveltov trg 6 10000 Zagreb Croatia
| |
Collapse
|
33
|
Torre CD, Buonocore F, Frenzilli G, Corsolini S, Brunelli A, Guidi P, Kocan A, Mariottini M, Mottola F, Nigro M, Pozo K, Randelli E, Vannuccini ML, Picchietti S, Santonastaso M, Scarcelli V, Focardi S, Marcomini A, Rocco L, Scapigliati G, Corsi I. Influence of titanium dioxide nanoparticles on 2,3,7,8-tetrachlorodibenzo-p-dioxin bioconcentration and toxicity in the marine fish European sea bass (Dicentrarchus labrax). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 196:185-193. [PMID: 25463713 DOI: 10.1016/j.envpol.2014.09.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 06/04/2023]
Abstract
The present study investigated the influence of nano-TiO(2) (1 mg L(-1)) on 2,3,7,8-tetrachlorodibenzo-p-dioxin(2,3,7,8-TCDD) (46 pg L(-1)) bioconcentration and toxicity in the European sea bass (Dicentrarchus labrax) during 7 days in vivo exposure. A multimarkers approach was applied in different organs: detoxification in liver; innate immunity and pro-inflammatory response and adaptive immunity in gills and spleen; genotoxicity in peripheral erythrocytes and muscle. Bioconcentration of 2,3,7,8-TCDD in presence of nano-TiO2 was investigated in liver, skin and muscle as well as interaction between nano-TiO2 and organic pollutants in artificial sea water (ASW). Nano-TiO2 negatively influenced immune response induced by 2,3,7,8-TCDD in spleen but not in gills and reduced the DNA damage induced by 2,3,7,8-TCDD in erythrocytes. nano-TiO2 did not interfere with 2,3,7,8-TCDD detoxification and bioconcentration according to the observed no interaction of the nano-TiO2 with organic pollutants in ASW.
Collapse
Affiliation(s)
- Camilla Della Torre
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kumar A, Kesari VP, Alok AK, Kazim SN, Khan PK. Assessment of arsenic-induced DNA damage in goldfish by a polymerase chain reaction-based technique using random amplified polymorphic DNA markers. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:630-638. [PMID: 24965481 DOI: 10.1007/s00244-014-0051-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
Arsenic is a groundwater contaminant of global concern. It is a potent human carcinogen, and its marked genotoxic effects have been reported in several human and animal studies. The present work investigates the applicability of the random amplified polymorphic DNA (RAPD) assay to study the DNA-damaging effects of arsenic at low-level exposure in goldfish Carassius auratus. Four experimental groups of fish, A, B, C and D, were exposed to 0, 10, 50, and 1,000 µg L(-1) of arsenic, respectively, in aquaria water for 15 consecutive days. Genomic DNA extraction was followed by RAPD-polymerase chain reaction amplification for each fish separately. One arbitrary decamer primer (PUZ-19) of 33 primers used appeared as the most informative and was capable of exhibiting marked alterations in RAPD profiles between arsenic-exposed and unexposed (control) samples. Different sets of 11 loci were amplified in various experimental groups with four clear polymorphic bands by the primer PUZ-19. The X and XIII amplification loci, which were prominent in the unexposed group, failed to appear in the arsenic-exposed groups. In contrast, the I and XI RAPD bands appeared as new amplification loci in all of the exposed groups. Such alterations in genomic DNA, however, did not exhibit a clear dose-dependent tendency. The RAPD assay, because of its efficacy to unmask alterations in genomic DNA induced by arsenic at low exposure level of 10 µg L(-1), appears to be a sensitive and potential tool for detecting arsenic genotoxicity.
Collapse
Affiliation(s)
- Amod Kumar
- Toxicogenetics Laboratory, Department of Zoology, Patna University, Patna, 800 005, India
| | | | | | | | | |
Collapse
|
35
|
Canesi L, Frenzilli G, Balbi T, Bernardeschi M, Ciacci C, Corsolini S, Della Torre C, Fabbri R, Faleri C, Focardi S, Guidi P, Kočan A, Marcomini A, Mariottini M, Nigro M, Pozo-Gallardo K, Rocco L, Scarcelli V, Smerilli A, Corsi I. Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 153:53-65. [PMID: 24342350 DOI: 10.1016/j.aquatox.2013.11.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/24/2013] [Accepted: 11/02/2013] [Indexed: 06/03/2023]
Abstract
Despite the growing concern over the potential biological impact of nanoparticles (NPs) in the aquatic environment, little is known about their interactions with other pollutants. The bivalve Mytilus sp, largely utilized as a sentinel for marine contamination, has been shown to represent a significant target for different types of NP, including n-TiO2, one of the most widespread in use. In this work, the possible interactive effects of n-TiO2 and 2,3,7,8-TCDD, chosen as models of NP and organic contaminant, respectively, were investigated in Mytilus galloprovincialis. In vitro experiments with n-TiO2 and TCDD, alone and in combination, were carried out in different conditions (concentrations and times of exposure), depending on the target (hemocytes, gill cells and biopsies) and the endpoint measured. Mussels were also exposed in vivo to n-TiO2 (100 μg L(-1)) or to TCDD (0.25 μg L(-1)), alone and in combination, for 96 h. A wide range of biomarkers, from molecular to tissue level, were measured: lysosomal membrane stability and phagocytosis in hemocytes, ATP-binding cassette efflux transporters in gills (gene transcription and efflux activity), several biomarkers of genotoxicity in gill and digestive cells (DNA damage, random amplified polymorphic DNA-RAPD changes), lysosomal biomarkers and transcription of selected genes in the digestive gland. The results demonstrate that n-TiO2 and TCDD can exert synergistic or antagonistic effects, depending on experimental condition, cell/tissue and type of measured response. Some of these interactions may result from a significant increase in TCDD accumulation in whole mussel organisms in the presence of n-TiO2, indicating a Trojan horse effect. The results represent the most extensive data obtained so far on the sub-lethal effects of NPs and organic contaminants in aquatic organisms. Moreover, these data extend the knowledge on the molecular and cellular targets of NPs in bivalves.
Collapse
Affiliation(s)
- Laura Canesi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Genova, Italy
| | - Giada Frenzilli
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy.
| | - Teresa Balbi
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Genova, Italy
| | | | - Caterina Ciacci
- Dipartimento di Scienze della Terra, della Vita e dell'Ambiente-DiSTeVA, Università "Carlo Bo" di Urbino, Urbino, Italy
| | - Simonetta Corsolini
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, via Mattioli 4, Siena, Italy
| | - Camilla Della Torre
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, via Mattioli 4, Siena, Italy
| | - Rita Fabbri
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Genova, Italy
| | - Claudia Faleri
- Dipartimento di Scienze della Vita, Università di Siena, via Mattioli 4, Siena, Italy
| | - Silvano Focardi
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, via Mattioli 4, Siena, Italy
| | - Patrizia Guidi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Anton Kočan
- Research Center for Toxic Compounds in the Environment (Recetox), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Antonio Marcomini
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università "Ca' Foscari" di Venezia, Venezia, Italy
| | - Michela Mariottini
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, via Mattioli 4, Siena, Italy
| | - Marco Nigro
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Karla Pozo-Gallardo
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, via Mattioli 4, Siena, Italy; Research Center for Toxic Compounds in the Environment (Recetox), Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lucia Rocco
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche (DiSTABiF), Seconda Università di Napoli, Via Vivaldi 43, Caserta, Italy
| | - Vittoria Scarcelli
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Pisa, Italy
| | - Arianna Smerilli
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, DISTAV, Università di Genova, Genova, Italy
| | - Ilaria Corsi
- Dipartimento di Scienze Fisiche, della Terra e dell'Ambiente, Università di Siena, via Mattioli 4, Siena, Italy
| |
Collapse
|
36
|
Sunjog K, Kolarević S, Kračun-Kolarević M, Gačić Z, Skorić S, Ðikanović V, Lenhardt M, Vuković-Gačić B. Variability in DNA damage of chub (Squalius cephalus L.) blood, gill and liver cells during the annual cycle. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:967-974. [PMID: 24709324 DOI: 10.1016/j.etap.2014.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/14/2014] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
In this work the genotoxic potential of water in three localities in Serbia, which differ by the nature and degree of pollution, was determined in tissues of European chub (Squalius cephalus L.) on monthly basis over the 2011/2012 year season using the alkaline comet assay. Specimen samples of chub were taken from Special Nature Reserve "Uvac", as control site, and Pestan and Beljanica Rivers, as polluted sites at Kolubara basin, surrounded with coal mines. Three tissues, blood, gills and liver were used for assessing the level of DNA damage. Analysis was done by software (Comet Assay IV). The control site at Reserve "Uvac" showed the lowest DNA damage values for all three tissues compared to Pestan and Beljanica. Blood has the lowest level of DNA damage in comparison with liver and gills. Decreased damage for all three tissues was observed at summer, while during the spring and autumn damage increased.
Collapse
Affiliation(s)
- K Sunjog
- Department of Natural Resources and Environmental Sciences, Institute for Multidisciplinary Research, Kneza Višeslava 1, University of Belgrade, Belgrade, Serbia
| | - S Kolarević
- Center for Genotoxicology and Ecogenotoxicology, Chair of Microbiology, Faculty of Biology, Studenski Trg 16, University of Belgrade, Belgrade, Serbia
| | - M Kračun-Kolarević
- Institute for Biological Research "Siniša Stanković", Despota Stefana 142, University of Belgrade, Belgrade, Serbia
| | - Z Gačić
- Department of Natural Resources and Environmental Sciences, Institute for Multidisciplinary Research, Kneza Višeslava 1, University of Belgrade, Belgrade, Serbia
| | - S Skorić
- Department of Natural Resources and Environmental Sciences, Institute for Multidisciplinary Research, Kneza Višeslava 1, University of Belgrade, Belgrade, Serbia
| | - V Ðikanović
- Institute for Biological Research "Siniša Stanković", Despota Stefana 142, University of Belgrade, Belgrade, Serbia
| | - M Lenhardt
- Department of Natural Resources and Environmental Sciences, Institute for Multidisciplinary Research, Kneza Višeslava 1, University of Belgrade, Belgrade, Serbia.
| | - B Vuković-Gačić
- Center for Genotoxicology and Ecogenotoxicology, Chair of Microbiology, Faculty of Biology, Studenski Trg 16, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
37
|
Chakravarthy S, Sadagopan S, Nair A, Sukumaran SK. Zebrafish as anIn VivoHigh-Throughput Model for Genotoxicity. Zebrafish 2014; 11:154-66. [DOI: 10.1089/zeb.2013.0924] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
| | - Sathish Sadagopan
- Discovery Biology, Anthem Biosciences Private Limited, Bangalore, India
| | - Ayyappan Nair
- Discovery Biology, Anthem Biosciences Private Limited, Bangalore, India
| | | |
Collapse
|
38
|
Temussi F, DellaGreca M, Pistillo P, Previtera L, Zarrelli A, Criscuolo E, Lavorgna M, Russo C, Isidori M. Sildenafil and tadalafil in simulated chlorination conditions: ecotoxicity of drugs and their derivatives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:366-373. [PMID: 23820010 DOI: 10.1016/j.scitotenv.2013.05.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 06/02/2023]
Abstract
Chlorination experiments on two drugs (sildenafil and tadalafil) were performed mimicking the conditions of a typical wastewater treatment process. The main transformation products were isolated by chromatographic techniques (Thin Layer Chromatography (TLC), Column Chromatography (CC), High Performance Liquid Chromatography (HPLC)) and fully characterized employing Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) analyses. The environmental effects of the parent compounds and transformation products were evaluated using an overall toxicity approach that considered aquatic acute and chronic toxicity on Brachionus calyciflorus and Ceriodaphnia dubia as well as mutagenesis and genotoxicity on bacterial strains. The results revealed that both parent drugs did not show high acute and chronic toxicity for the organisms utilized in the bioassays while, chronic exposure to chlorine derivatives caused inhibition of growth population on rotifers and crustaceans. A mutagenic potential was found for all the compounds investigated.
Collapse
Affiliation(s)
- Fabio Temussi
- UdR Napoli 4 INCA, Dipartimento di Scienze Chimiche, Complesso Universitario di Monte Sant'Angelo, Università Federico II, Via Cintia, I-80126 Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Baurand PE, de Vaufleury A, Scheifler R, Capelli N. Coupling of random amplified polymorphic DNA profiles analysis and high resolution capillary electrophoresis system for the assessment of chemical genotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9505-9513. [PMID: 23927493 DOI: 10.1021/es4021519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cadmium (Cd) can be toxic to terrestrial snails, but few data are available about its genotoxic effects on early life stages (ELS). The aim of this study was to investigate the genotoxic potential of Cd in embryos of Helix aspersa using a new approach that couples Random Amplified Polymorphic DNA (RAPD) and a high-resolution capillary electrophoresis system (HRS). Clutches of H. aspersa were exposed to Cd solutions (2, 4, and 6 mg/L) from the beginning of their embryonic development. In addition to a dose-dependent effect of Cd on hatching rate, DNA fragmentation was observed in embryos that were exposed to 6 mg Cd/L. The analysis of RAPD products with HRS showed differences between the profiles of exposed and nonexposed embryos, starting at 2 mg Cd/L. In comparison to the profiles of the control samples, all profiles from the exposed snails exhibited an additional 270 bp DNA fragment and lacked a 450 bp DNA fragment. These profile modifications are related to the genotoxic effect of Cd on the ELS of H. aspersa . Our study demonstrates the efficacy of coupling RAPD and HRS for a rapid and efficient screening of the effects of chemicals on DNA.
Collapse
Affiliation(s)
- Pierre-Emmanuel Baurand
- Chrono-Environment, UMR 6249, University of Franche-Comté/CNRS , Place Leclerc, 25000 Besançon, France
| | | | | | | |
Collapse
|
40
|
Rocco L, Valentino IV, Scapigliati G, Stingo V. RAPD-PCR analysis for molecular characterization and genotoxic studies of a new marine fish cell line derived from Dicentrarchus labrax. Cytotechnology 2013; 66:383-93. [PMID: 23839298 DOI: 10.1007/s10616-013-9586-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 05/08/2013] [Indexed: 12/17/2022] Open
Abstract
Continuous cell lines could provide an important tool for studying epidemiology, toxicology, cellular physiology and the host-pathogen interactions. Random amplified polymorphic deoxyribonucleic acid analysis by PCR (RAPD-PCR) was used for the molecular characterization of Dicentrarchus labrax embryonic cells (DLEC) as a possible tool to detect DNA alterations in environmental genotoxic studies. We studied the DNA pattern of the DLEC fish cell line, a fibroblast-like cell line derived from European sea bass. From a total of 15 primers only six showed good discriminatory power for the amplification process on DNA samples collected from cells by three different methods (organic extraction, salting-out method and chelating agent extraction). The results obtained show that the cell line chosen for this study could be used as a possible tool for the detection of potential genotoxicity of numerous chemical compounds.
Collapse
Affiliation(s)
- L Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technology, Second University of Naples, Caserta, Italy,
| | | | | | | |
Collapse
|