1
|
Amirkhosravi A, Mehrabani M, Fooladi S, Norouzmahani ME, Vasei S, Mir Y, Malekoladi Z, Faramarz S, Nematollahi MH, Mehrabani M. Rheum khorasanicum. Hydroalcoholic root extract induces cell death in human colorectal adenocarcinoma: An in vitro and in silico study. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:685-697. [PMID: 38408722 DOI: 10.1016/j.pharma.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Colorectal cancer (CRC) is the second greatest cause of cancer-related death in the world and chemotherapy, as an important part of CRC treatment, has some drawbacks, including systemic toxicity. Therefore, it is crucial to discover new and more effective CRC treatment plans. Rheum khorasanicum (R. khorasanicum) is a medicinal plant with high flavonoids, stilbenes, and anthraquinone contents, so it can be a potential source of antioxidants and can be used for therapeutic purposes and trigger apoptosis in cancer cells. In this study, we investigated the effects of hydroalcoholic root extract of R. khorasanicum treatment on inducing mitochondrial apoptosis of HT-29 and Caco-2 human colorectal adenocarcinoma cells. Firstly, the total phenolic and flavonoid content was determined. Then, the cytotoxic effects of R. khorasanicum on cells of three different types, including HT-29 and Caco-2 colon cancer cells as well as normal 3T3 cells were assessed using the MTT assay. To investigate the characteristics of cellular death, flow cytometry, and western blotting were performed. The results of this study indicated considerable phenolic (356.4±9.4 GAE/gDW) and flavonoid (934.55±17.1 QE/gDW) contents in R. khorasanicum. MTT assay's finding indicated that 100, 60, and 30μg/mL concentrations of R. khorasanicum reduce cell viability in HT-29 and Caco-2 cell lines significantly (P<0.05). It has been also revealed that R. khorasanicum extract induces apoptosis rather than necrosis in these cell lines. Moreover, Bcl-2 expression was significantly reduced in both HT-29 and Caco-2 cell lines, while Bax and cleaved caspase-3 expression soared considerably in the groups under R. khorasanicum treatment (P<0.05). In conclusion, our findings have suggested that high phenol and flavonoid contents of R. khorasanicum root extract possibly play an important role in cell cytotoxicity and apoptosis induction in HT-29 and Caco-2 colon cancer cells.
Collapse
Affiliation(s)
- Arian Amirkhosravi
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Mehrnaz Mehrabani
- Centre de recherche en physiologie, institut de neuropharmacologie, université des sciences médicales de Kerman, Kerman, Iran
| | - Saba Fooladi
- Yale Cardiovascular Research Center, section de médecine cardiovasculaire, département de médecine interne, Yale School of Medicine, New Haven, CT 06511, USA
| | - Mohammad-Erfan Norouzmahani
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Saeedeh Vasei
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran
| | - Yousof Mir
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Zahra Malekoladi
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Sanaz Faramarz
- Centre de recherche cellulaire et moléculaire appliquée, université des sciences médicales de Kerman, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran.
| | - Mitra Mehrabani
- Centre de recherche sur les plantes médicinales et la médecine traditionnelle, université des sciences médicales de Kerman, Kerman, Iran.
| |
Collapse
|
2
|
Yang CJ, Tan ZL, Yang JD, Hsu FT, Chiang CH. Fluoxetine inactivates STAT3/NF-κB signaling and promotes sensitivity to cisplatin in bladder cancer. Biomed Pharmacother 2023; 164:114962. [PMID: 37276643 DOI: 10.1016/j.biopha.2023.114962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023] Open
Abstract
Bladder cancer is known as one of the top ten most common cancer types worldwide and can be majorly divided into muscles invasive bladder cancer (MIBC) and non-muscles invasive type (NMIBC). However, the prognosis of BC remains poor under standard treatment including radical cystectomy or concurrent chemoradiotherapy. Numerous studies have reported that the prognosis of BC is associated with the activation of signal transducer and activator of transcription (STAT3) and nuclear factor kappa-B (NF-κB). Fluoxetine, a well-known anti-depressant, has been reported to against various type of cancers. However, it is unclear whether fluoxetine has the capacity to inhibit BC progression by targeting STAT3 and NF-κB-mediated signaling. Here, we used cell viability, apoptosis assay, wound healing assay, invasion/migration assay, Western blotting assay, immunofluorescence staining, as well as animal experiments, to elucidate the efficacy of fluoxetine on in vitro and in vivo BC models. We found that fluoxetine may induce cytotoxicity and intrinsic/extrinsic apoptosis in BC and enhance the potential of cisplatin. Fluoxetine promoted both caspase-dependent and caspase-independent apoptosis signaling by activating caspase-3, 8, 9, apoptosis-inducing factor (AIF), and EndG. Furthermore, fluoxetine suppressed invasion and migration ability and the expression of metastasis-associated genes. Fluoxetine was also found to inactivate the phosphorylation of STAT3 (Tyr705) and NF-κB (Ser536) and suppress the nuclear translocation of NF-κB. In MB49-bearing mice, fluoxetine effectively delayed the progression of BC without inducing general toxicity. In summary, the induction of apoptosis and the inhibition of invasion triggered by fluoxetine are associated with the inactivation of STAT3 and NF-κB.
Collapse
Affiliation(s)
- Che-Jui Yang
- Department of Urology, Show Chwan Memorial Hospital, Changhua, Taiwan, ROC; Division of Urology, Department of Surgery, Chang Bing Show-Chwan Memorial Hospital, Changhua, Taiwan, ROC
| | - Zhao-Lin Tan
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, ROC
| | - Jr-Di Yang
- Division of Urology, Department of Surgery, National Yang-Ming Chiao Tung University Hospital, Yilan, Taiwan, ROC
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan, ROC
| | - Chih-Hung Chiang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan, ROC; Department of Urology, Taipei Veterans General Hospital, Yuan-Shan Branch, Yi-Lan, Taiwan, ROC; Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, New Taipei City, Taiwan, ROC.
| |
Collapse
|
3
|
Li X, Lu Y, Wen P, Yuan Y, Xiao Z, Shi H, Feng E. Matrine restrains the development of colorectal cancer through regulating the AGRN/Wnt/β-catenin pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:809-819. [PMID: 36620879 DOI: 10.1002/tox.23730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/15/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Colorectal cancer is a common malignant digestive tract tumor. This study aimed to explore the biological role and potential underlying mechanism of matrine in colorectal cancer. METHODS The mRNA expression of AGRN was measured using RT-qPCR. Cell proliferation, migration, invasion and apoptosis were determined using CCK-8, EdU, transwell assays and flow cytometry, respectively. Xenograft tumor experiment was performed to explore the action of matrine and AGRN on tumor growth in colorectal cancer in vivo. Immunohistochemistry (IHC) assay was applied for AGRN, β-catenin, and c-Myc expression in the tumor tissues from mice. RESULTS Matrine dramatically repressed cell growth and reduced the level of AGRN in colorectal cancer cells. AGRN expression was boosted colorectal cancer tissues and cells. AGRN downregulation depressed cell proliferation, migration, invasion, and enhanced cell apoptosis in colorectal cancer cells. Moreover, matrine showed the anti-tumor effects on colorectal cancer cells via regulating AGRN expression. AGRN knockdown could inactivate the Wnt/β-catenin pathway in colorectal cancer cells. We found that AGRN downregulation exhibited the inhibition action in the progression of colorectal cancer by modulating the Wnt/β-catenin pathway. In addition, matrine could inhibit the activation of the Wnt/β-catenin pathway through regulating AGRN in colorectal cancer cells. Furthermore, xenograft tumor experiment revealed that matrine treatment or AGRN knockdown repressed the development of colorectal cancer via the Wnt/β-catenin pathway in vivo. CONCLUSION Matrine retarded colorectal cancer development by modulating AGRN to inactivate the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xianzhe Li
- Department of General Surgery, Nanshi Hospital, Nanyang, China
| | - Ye Lu
- Department of radiation oncology, The Fifth People's Hospital of Huai'an, Huai'an, China
| | - Penghao Wen
- Department of Medical Oncology, Nanshi Hospital, Nanyang, China
| | - Yan Yuan
- Department of Radiotherapy, Nanshi Hospital, Nanyang, China
| | - Zhenghong Xiao
- Department of Medical Oncology, Nanshi Hospital, Nanyang, China
| | - Hengwei Shi
- Department of General Surgery, Nanshi Hospital, Nanyang, China
| | - Eryan Feng
- Department of Neurosurgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, China
| |
Collapse
|
4
|
Liu Y, Tzang B, Yow J, Chiang Y, Huang C, Hsu T. Traditional Chinese medicine formula T33 inhibits the proliferation of human colorectal cancer cells by inducing autophagy. ENVIRONMENTAL TOXICOLOGY 2022; 37:1007-1017. [PMID: 34995006 PMCID: PMC9304163 DOI: 10.1002/tox.23460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/30/2021] [Accepted: 12/29/2021] [Indexed: 05/15/2023]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related death globally. Although surgery is still the major method for CRC therapy, the adoption of alternative treatments, such as traditional Chinese medicine (TCM), for CRC treatment is increasing. Our previous study has indicated the anti-breast cancer activity of T33 (a TCM formula). Interestingly, a major ingredient in T33, Baishao (Paeoniae Radix Alba), was reported to have antiproliferative effects on CRC cells. Therefore, this study further validated the influences of T33 on HT-29 and Caco2 cells both in vitro and in vivo. Viability and migration assays were performed to analyze the influences of T33 on proliferation and migratory activity of HT-29 and Caco2 cells. Immunofluorescence (IF) staining and immunoblotting were performed to confirm T33-induced autophagy in HT-29 and Caco2 cells. Xenograft HT-29 tumors were generated to test the effects of T33 in vivo. Significantly reduced survival and migratory activity were observed in both HT-29 and Caco2 cells treated with T33 along with apparently increased LC3-II protein. Significantly decreased p62/SQSTM1 protein, increased LC3-II/LC3-I ratio, and elevated amounts of Atg7, Atg5, and Beclin-1 proteins were detected in both HT-29 and Caco2 cells treated with T33. Moreover, the volume of xenograft HT-29 tumors was significantly lower in mice receiving 200 or 600 mg/kg T33 than in control-treated mice. These findings indicate that T33 exerts anti-CRC activity by inducing autophagy and suggest the potential of T33 for CRC treatment.
Collapse
Affiliation(s)
- Yu‐Te Liu
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Bor‐Show Tzang
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Biochemistry, School of MedicineChung Shan Medical UniversityTaichungTaiwan
- Immunology Research CenterChung Shan Medical UniversityTaichungTaiwan
- Department of Clinical LaboratoryChung Shan Medical University HospitalTaichungTaiwan
| | - JiaLe Yow
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Biochemistry, School of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Yi‐Hsuan Chiang
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
| | - Chih‐Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research CenterHualien Tzu Chi Hospital, Buddhist Tzu Chi Medical FoundationHualienTaiwan
- Graduate Institute of Biomedical SciencesChina Medical UniversityTaichungTaiwan
- Center of General Education, Buddhist Tzu Chi Medical FoundationTzu Chi University of Science and TechnologyHualienTaiwan
- Department of Medical Research, China Medical University HospitalChina Medical UniversityTaichungTaiwan
- Department of BiotechnologyAsia UniversityTaichungTaiwan
| | - Tsai‐Ching Hsu
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Immunology Research CenterChung Shan Medical UniversityTaichungTaiwan
- Department of Clinical LaboratoryChung Shan Medical University HospitalTaichungTaiwan
| |
Collapse
|
5
|
Zheng J, Zeng L, Tang M, Lin H, Pi C, Xu R, Cui X. Novel Ferrocene Derivatives Induce G0/G1 Cell Cycle Arrest and Apoptosis through the Mitochondrial Pathway in Human Hepatocellular Carcinoma. Int J Mol Sci 2021; 22:ijms22063097. [PMID: 33803555 PMCID: PMC8003055 DOI: 10.3390/ijms22063097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
In this study, detailed information on hepatocellular carcinoma (HCC) cells (HepG-2, SMMC-7721, and HuH-7) and normal human liver cell L02 treated by ferrocene derivatives (compounds 1, 2 and 3) is provided. The cell viability assay showed that compound 1 presented the most potent and selective anti-HCC activity. Further mechanism study indicated that the proliferation inhibition effect of compound 1 was associated with the cycle arrest at the G0/G1 phase and downregulation of cyclin D1/CDK4. Moreover, compound 1 could induce apoptosis in HCC cells by loss of mitochondrial membrane potential (ΔΨm), accumulation of reactive oxygen species (ROS), decrease in Bcl-2, increase in BAX and Bad, translocation of Cytochrome c, activation of Caspase-9, -3, and cleavage of PARP. These results indicated that compound 1 would be a promising candidate against HCC through G0/G1 cell cycle arrest-related proliferation inhibition and mitochondrial pathway-dependent apoptosis.
Collapse
Affiliation(s)
- Jianrong Zheng
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Medicine, Huaqiao University, Xiamen 361021, China; (J.Z.); (L.Z.); (H.L.); (R.X.)
| | - Liao Zeng
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Medicine, Huaqiao University, Xiamen 361021, China; (J.Z.); (L.Z.); (H.L.); (R.X.)
| | - Mingqing Tang
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Medicine, Huaqiao University, Xiamen 361021, China; (J.Z.); (L.Z.); (H.L.); (R.X.)
- Correspondence: (M.T.); (X.C.)
| | - Hongjun Lin
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Medicine, Huaqiao University, Xiamen 361021, China; (J.Z.); (L.Z.); (H.L.); (R.X.)
| | - Chao Pi
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China;
| | - Ruian Xu
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Medicine, Huaqiao University, Xiamen 361021, China; (J.Z.); (L.Z.); (H.L.); (R.X.)
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Medicine, Huaqiao University, Xiamen 361021, China; (J.Z.); (L.Z.); (H.L.); (R.X.)
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China;
- Correspondence: (M.T.); (X.C.)
| |
Collapse
|
6
|
Ethnobotanical Uses, Phytochemistry and Pharmacology of Different Rheum Species (Polygonaceae): A Review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:309-352. [PMID: 33861453 DOI: 10.1007/978-3-030-64872-5_22] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Today, there is an increased tendency to use herbal remedies. Rhubarb refers to several species of the genus Rheum L. in the Polygonaceae family. This species-rich genus is mainly distributed in Asian countries. Several medicinal effects have been attributed to the Rheum spp. in the traditional and modern medicine such as healing lungs, liver, kidney, womb and bladder diseases, cancer, diabetes, insect bites, relapsing fevers, diarrhea and constipation. Various in vitro, in vivo and clinical studies have investigated the therapeutic effect of extracts, fractions and pure compounds isolated from different species of this genus. Considering the positive findings, several pharmaceutical formulations containing rhubarb extract like capsules, drops, mouthwashes and different topical formulations are now present in the market. However, there are other traditional therapeutic effects of rhubarb that have not been studied yet and it is of great importance to perform confirmatory experiments or clinical investigations. The current review summarizes general information regarding botany, phytochemistry, ethnobotany and pharmacological aspects of Rheum spp. It is hoped that the present review could motivate subsequent research on the other medicinal properties of these plants that have been neglected until today.
Collapse
|
7
|
Kim SH, Yoo ES, Woo JS, Han SH, Lee JH, Jung SH, Kim HJ, Jung JY. Antitumor and apoptotic effects of quercetin on human melanoma cells involving JNK/P38 MAPK signaling activation. Eur J Pharmacol 2019; 860:172568. [DOI: 10.1016/j.ejphar.2019.172568] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
|
8
|
Chou HY, Chueh FS, Ma YS, Wu RSC, Liao CL, Chu YL, Fan MJ, Huang WW, Chung JG. Bufalin induced apoptosis in SCC‑4 human tongue cancer cells by decreasing Bcl‑2 and increasing Bax expression via the mitochondria‑dependent pathway. Mol Med Rep 2017; 16:7959-7966. [PMID: 28983595 PMCID: PMC5779878 DOI: 10.3892/mmr.2017.7651] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 07/17/2017] [Indexed: 11/09/2022] Open
Abstract
The aim of the present study was to investigate the cytotoxic effects of bufalin on SCC-4 human tongue cancer cells. Cell morphological changes and viability were examined using phase contrast microscopy and flow cytometry, respectively. The results indicated that bufalin induced morphological changes and reduced total viable cells. Apoptotic cell death was analyzed by DAPI staining and DNA gel electrophoresis; the results revealed that bufalin induced cell apoptosis. Levels of reactive oxygen species (ROS), Ca2+, nitric oxide (NO) and mitochondrial membrane potential (ΔΨm) were measured by flow cytometry, and bufalin was observed to increase Ca2+ and NO production, decrease the ΔΨm and reduce ROS production in SCC-4 cells. In addition, western blotting was performed to detect apoptosis-associated protein expression. The results demonstrated that bufalin reduced the expression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) and increased the expression of the pro-apoptotic protein, Bcl-2-associated X protein. However, bufalin treatment also increased the expression of other apoptosis-associated proteins such as apoptosis-inducing factor and endonuclease G in SCC-4 cells. Based on these findings, bufalin may induce apoptotic cell death via mitochondria-dependent pathways in human tongue cancer SCC-4 cells.
Collapse
Affiliation(s)
- Han-Yu Chou
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Yi-Shih Ma
- School of Chinese Medicine for Post‑Baccalaureate, I‑Shou University, Kaohsiung 84001, Taiwan, R.O.C
| | - Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung 40402, Taiwan, R.O.C
| | - Ching-Lung Liao
- College of Chinese Medicine, School of Post‑Baccalaureate Chinese Medicine, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Yung-Lin Chu
- Department of Food Science, International College, National Pingtung University of Science and Technology, Pingtung 912, Taiwan, R.O.C
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan, R.O.C
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| |
Collapse
|
9
|
Shang HS, Liu JY, Lu HF, Chiang HS, Lin CH, Chen A, Lin YF, Chung JG. Casticin induced apoptotic cell death and altered associated gene expression in human colon cancer colo 205 cells. ENVIRONMENTAL TOXICOLOGY 2017; 32:2041-2052. [PMID: 27862857 DOI: 10.1002/tox.22381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti-cancer characteristics. The anti-cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay was used to measure viable cell, cell cycle and sub-G1 phase, reactive oxygen species (ROS) and Ca2+ productions, level of mitochondria membrane potential (ΔΨm ) and caspase activity. Western blotting assay was used to detect expression of protein level associated with cell death. Casticin induced cell morphological changes, decreased cell viability and induced G2/M phase arrest in colo 205 cells. Casticin increased ROS production but decreased the levels of ΔΨm , and Ca2+ , increased caspase-3, -8, and -9 activities. The cDNA microarray indicated that some of the cell cycle associated genes were down-regulated such as cyclin-dependent kinase inhibitor 1A (CDKN1A) (p21, Cip1) and p21 protein (Cdc42/Rac)-activated kinase 3 (PAK3). TNF receptor-associated protein 1 (TRAP1), CREB1 (cAMP responsive element binding protein 1) and cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27, Kip1) genes were increased but matrix metallopeptidase 2 (MMP-2), toll-like receptor 4 (TLR4), PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, bet), and CaMK4 (calcium/calmodulin-dependent protein kinase IV) genes were inhibited. Results suggest that casticin induced cell apoptosis via the activation of the caspase- and/or mitochondria-dependent signaling cascade, the accumulation of ROS and altered associated gene expressions in colo 205 human colon cancer cells.
Collapse
Affiliation(s)
- Hung-Sheng Shang
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jia-You Liu
- Department of Clinical Pathology, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng-Hsin General Hospital, Taipei, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei city, Taiwan
| | - Han-Sun Chiang
- Graduate Institute of Basic Medicine, Fu-Jen Catholic University, New Taipei city, Taiwan
| | - Chia-Hain Lin
- Department of Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Ann Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
10
|
The Antigastric Cancer Activity of San Leng Powder Extract Induces Apoptosis in Balb/C Bearing-SGC-7901 Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1052125. [PMID: 28567097 PMCID: PMC5439070 DOI: 10.1155/2017/1052125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/13/2017] [Accepted: 03/22/2017] [Indexed: 11/25/2022]
Abstract
San Leng powder extract has been used as medicinal compound for the prevention and treatment of cancers. The antitumor activity of SLPE was determined by treating BALB/C mice harboring a human gastric cancer xenograft with SPLE for 17 days. Mice were also treated with fluorouracil (5-Fu, 25 mg/kg) or a combination of SLPE and 5-Fu. Our results indicate that the inhibition of tumor growth by SLPE might be due to a block in the cell cycle and the induction of apoptosis. These results suggest that SLPE might be useful in the treatment of gastric cancer.
Collapse
|
11
|
Yang ST, Huang AC, Tang NY, Liu HC, Liao CL, Ji BC, Chou YC, Yang MD, Lu HF, Chung JG. Bisdemethoxycurcumin-induced S phase arrest through the inhibition of cyclin A and E and induction of apoptosis via endoplasmic reticulum stress and mitochondria-dependent pathways in human lung cancer NCI H460 cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:1899-1908. [PMID: 26370218 DOI: 10.1002/tox.22191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/14/2015] [Accepted: 08/19/2015] [Indexed: 06/05/2023]
Abstract
Curcuminoids are the major natural phenolic compounds found in the rhizome of many Curcuma species. Curcuminoids consist of a mixture of curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). Although numerous studies have shown that curcumin induced cell apoptosis in many human cancer cells, however, mechanisms of BDMC-inhibited cell growth and -induced apoptosis in human lung cancer cells still remain unclear. Herein, we investigated the effect of BDMC on the cell death via the cell cycle arrest and induction of apoptosis in NCI H460 human lung cancer cells. Flow cytometry assay was used to measure viable cells, cell cycle distribution, the productions of reactive oxygen species (ROS) and Ca2+ , mitochondrial membrane potential (ΔΨm ) and caspase-3, -8 and -9 activity. DNA damage and condension were assayed by Comet assay and DAPI staining, respectively. Western blotting was used to measure the changes of cell cycle and apoptosis associated protein expressions. Results indicated that BDMC significantly induced cell death through induced S phase arrest and induced apoptosis. Moreover, DMC induced DNA damage and condension, increased ROS and Ca2+ productions and decreased the levels of ΔΨm and promoted activities caspase-3, -8, and -9. Western blotting results showed that BDMC inhibited Cdc25A, cyclin A and E for causing S phase arrest, furthermore, promoted the expression of AIF, Endo G and PARP and the levels of Fas ligand (Fas L) and Fas were also up-regulated. Results also indicated that BDMC increased ER stress associated protein expression such as GRP78, GADD153, IRE1α, IRE1β, ATF-6α, ATF-6β, and caspase-4. Taken together, we suggest that BDMC induced cell apoptosis through multiple signal pathways such as extrinsic, intrinsic and ES tress pathway. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1899-1908, 2016.
Collapse
Affiliation(s)
- Su-Tso Yang
- Department of Radiology, China Medical University Hospital, Taichung, 404, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - An-Cheng Huang
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan, 266, Taiwan
| | - Nou-Ying Tang
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Hsin-Chung Liu
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Bin-Chuan Ji
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 500, Taiwan
| | - Yu-Cheng Chou
- Division of Neurosurgical Oncology, Neurological Institute, Taichung Veterans General Hospital, Taichung, 407, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970, Taiwan
| | - Mei-Due Yang
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Hsu-Feng Lu
- Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, Taipei, Taiwan
- Departments of Clinical Pathology, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Wu Feng, Taichung, 404, Taiwan
| |
Collapse
|
12
|
Patathananone S, Thammasirirak S, Daduang J, Gung Chung J, Temsiripong Y, Daduang S. Inhibition of HeLa cells metastasis by bioactive compounds in crocodile (Crocodylus siamensis) white blood cells extract. ENVIRONMENTAL TOXICOLOGY 2016; 31:1329-1336. [PMID: 25855086 DOI: 10.1002/tox.22138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/19/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Matrix metalloproteinases (MMPs) play a key role in cancer progression, including cell invasion, metastasis, cell growth, apoptosis, angiogenesis, and cell adhesion. Thus, suppression of the MMPs activities is crucial for inhibiting cancer cells metastasis. Herein, bioactive agents from crocodile (Crocodylus siamensis) leukocyte extracts (WBCex) showed the anticancer activity with HeLa cells and inhibited the migration and invasion process by reducing gelatinases (MMP-2, MMP-9) activity and their protein levels. This mechanism is regulated via interfering Ras and p38 signal transduction. Moreover, disrupting VEGF and integrin-signaling cascade by bioactive agents are the predictable mechanisms that cause the decreasing of MMP-2 and MMP-9 activity. Hence, bioactive substances in WBCex may play the mode of action similar with MMPs inhibitor due to HeLa cell metastasis being suppressed in vitro. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1329-1336, 2016.
Collapse
Affiliation(s)
- Supawadee Patathananone
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sompong Thammasirirak
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jing Gung Chung
- Department of Biological Science and Technology, College of Life Science, China Medical University, Taichung, 404, Taiwan
| | | | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
13
|
Patathananone S, Thammasirirak S, Daduang J, Chung JG, Temsiripong Y, Daduang S. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:986-997. [PMID: 25691005 DOI: 10.1002/tox.22108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 12/12/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016.
Collapse
Affiliation(s)
- Supawadee Patathananone
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sompong Thammasirirak
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jureerut Daduang
- Department of Clinical Chemistry, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jing Gung Chung
- Department of Biological Science and Technology, College of Life Science, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 404, Taiwan
| | - Yosapong Temsiripong
- Sriracha Moda Co., Ltd. 383 Moo 4, Nongkham, Sriracha, Chonburi, 20110, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
14
|
Lin CC, Lee MH, Lin JH, Lin ML, Chueh FS, Yu CC, Lin JP, Chou YC, Hsu SC, Chung JG. Crude extract of Rheum palmatum L. Induces cell cycle arrest S phase and apoptosis through mitochondrial-dependent pathways in U-2 OS human osteosarcoma cells. ENVIRONMENTAL TOXICOLOGY 2016; 31:957-969. [PMID: 25689151 DOI: 10.1002/tox.22105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 06/04/2023]
Abstract
Cancer is the second cause of death in children. Osteosarcoma is the most common primary malignancy of solid bone cancer primarily affecting adolescents and young adults. In the Chinese population, the crude extract of Rheum palmatum L. (CERP) has been used for treating different diseases, including SARS, rheumatoid arthritis, coxsackievirus B3, and human colon cancer cell, pancreatic cancer. There are no reports on CERP and human osteosarcoma cells. The present study examined effects of CERP on cytotoxicity including cell cycle distribution and cell death (apoptosis) in U-2 OS human osteosarcoma cells. CERP significantly induced S phase arrest in U-2 OS cells in a dose-dependent. CERP produced DNA damage and DNA condensation. Other effects of CERP were stimulation of ROS and Ca(2+) , mitochondria impairment, and activation of caspase-3, -8, and -9. CERP increased the levels of Bax, Bak, Bad, cyclin B, Fas, PARP, GRP78, GADD153, AIF, Endo G, Calpain-2, p21, and p27, but decreased the levels of Bcl-2, BCL-X, XIAP, Akt, CDC25A, CDK2, Cyclin A, and Cyclin E of U-2 OS cells. It was also observed that CERP promoted the expression of AIF, Endo G, GADD153, and cytochrome c. These results indicate that CERP has anticancer effects in vitro and provide the foundation for in vivo studies of animal models of osteosarcoma. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 957-969, 2016.
Collapse
Affiliation(s)
- Chin-Chung Lin
- Department of Chinese Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Executive Yuan, Taichung, 420, Taiwan
- General Education Center, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Ming-Huei Lee
- General Education Center, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
- Department of Urology, Feng-Yuan Hospital, Ministry of Health and Welfare, Executive Yuan, Taichung, 420, Taiwan
| | - Ju-Hwa Lin
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Meng-Liang Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Fu-Shin Chueh
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Chien-Chih Yu
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Jing-Pin Lin
- School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Yu-Cheng Chou
- Division of Neurosurgical Oncology, Neurological Institute, Taichung Veterans General Hospital, Taichung, 407, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, 970, Taiwan
| | - Shu-Chun Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
15
|
Yoon SW, Jeong JS, Kim JH, Aggarwal BB. Cancer Prevention and Therapy: Integrating Traditional Korean Medicine Into Modern Cancer Care. Integr Cancer Ther 2013; 13:310-31. [PMID: 24282099 DOI: 10.1177/1534735413510023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In spite of billions of dollars spent on cancer research each year, overall cancer incidence and cancer survival has not changed significantly in the last half century. Instead, the recent projection from the World Health Organization suggests that global cancer incidence and death is expected to double within the next decade. This requires an "out of the box" thinking approach. While traditional medicine used for thousands of years is safe and affordable, its efficacy and mechanism of action are not fully reported. Demonstrating that traditional medicine is efficacious and how it works can provide a "bed to bench" and "bench to bed" back approach toward prevention and treatment of cancer. This current review is an attempt to describe the contributions of traditional Korean medicine (TKM) to modern medicine and, in particular, cancer treatment. TKM suggests that cancer is an outcome of an imbalance of body, mind, and spirit; thus, it requires a multimodal treatment approach that involves lifestyle modification, herbal prescription, acupuncture, moxibustion, traditional exercise, and meditation to restore the balance. Old wisdoms in combination with modern science can find a new way to deal with the "emperor of all maladies."
Collapse
Affiliation(s)
- Seong Woo Yoon
- Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital at Gangdong, Seoul, Republic of Korea
| | - Jong Soo Jeong
- Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital at Gangdong, Seoul, Republic of Korea
| | - Ji Hye Kim
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Bharat B Aggarwal
- The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|