1
|
Parada-Cruz B, Aztatzi-Aguilar OG, Ramírez-Martínez G, Jacobo-Estrada TL, Cárdenas-González M, Escamilla-Rivera V, Martínez-Olivas MA, Narváez-Morales J, Ávila-Rojas SH, Álvarez-Salas LM, Barbier O. Inflammation- and cancer-related microRNAs in rat renal cortex after subchronic exposure to fluoride. Chem Biol Interact 2023; 379:110519. [PMID: 37121298 DOI: 10.1016/j.cbi.2023.110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The proximal tubule is a target of subchronic exposure to fluoride (F) in the kidney. Early markers are used to classify kidney damage, stage, and prognosis. MicroRNAs (miRNAs) are small sequences of non-coding single-stranded RNA that regulate gene expression and play an essential role in developing many pathologies, including renal diseases. This study aimed to evaluate the expression of Cytokine-Chemokine molecules (IL-1α/1β/4/6/10, INF-γ, MIP-1α, MCP-1, RANTES, and TGF β1/2/3) and inflammation-related miRNAs to evidence the possible renal mechanisms involved in subchronic exposure to F. Total protein and miRNAs were obtained from the renal cortex of male Wistar rats exposed to 0, 15 and 50 mg NaF/L through drinking water during 40 and 80 days. In addition, cytokines-chemokines were analyzed by multiplexing assay, and a panel of 77 sequences of inflammatory-related miRNAs was analyzed by qPCR. The results show that cytokines-chemokines expression was concentration- and time-dependent with F, where the 50 mg NaF/L were the main altered groups. The miRNAs expression resulted in statistically significant differences in thirty-four miRNAs in the 50 mg NaF/L groups at 40 and 80 days. Furthermore, a molecular interaction network analysis was performed. The relevant pathways modified by subchronic exposure to fluoride were related to extracellular matrix-receptor interaction, Mucin type O-glycan biosynthesis, Gap junction, and miRNAs involved with renal cell carcinoma. Thus, F-induced cytokines-chemokines suggest subchronic inflammation; detecting miRNAs related to cancer and proliferation indicates a transition from renal epithelium to pathologic tissue after fluoride exposure.
Collapse
Affiliation(s)
- Benjamín Parada-Cruz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Octavio Gamaliel Aztatzi-Aguilar
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Gustavo Ramírez-Martínez
- Departamento de Toxicología y Medicina Ambiental, Laboratorio de inmunología y genética. Inst. Nac. de Enf. Resp, Ismael Cosío Villegas, Calz. de Tlalpan 4502, Belisario Domínguez Secc 16, Tlalpan, 14080, Ciudad de México, CDMX, Mexico.
| | - Tania Libertad Jacobo-Estrada
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, Col. Barrio la Laguna Ticomán, CP 07340, Ciudad de México, CDMX, Mexico.
| | - Mariana Cárdenas-González
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, 200 Longwood Ave, Boston, MA, 02115, USA.
| | - Vicente Escamilla-Rivera
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico; Department of Otolaryngology-Head & Neck Surgery, University of Arizona, Tucson, AZ, 85724, USA.
| | - Martha Adriana Martínez-Olivas
- Departamento de Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Juana Narváez-Morales
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Sabino Hazael Ávila-Rojas
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Luis Marat Álvarez-Salas
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360, Ciudad de México, CDMX, Mexico.
| |
Collapse
|
2
|
Resveratrol thyro-protective role in fluorosis rat model (histo-morphometric, biochemical and ultrastructural study). Tissue Cell 2023; 80:101986. [PMID: 36470120 DOI: 10.1016/j.tice.2022.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thyroid gland affection by Fluorosis is documented in a number of previous studies. Resveratrol is a natural compound of plant origin. Its protective role was demonstrated previously in mice and rats against fluoride-induced hepatotoxicity and neurotoxicity. AIM to detect the thyro-protective role of Resveratrol in sodium fluoride rat model. MATERIAL AND METHODS Forty adult male albino rats were distributed equally into: Group I (control): given 5 ml distilled water; Group II (Resveratrol): received 30 mg/kg Resveratrol; Group III (Sodium fluoride): given 10 mg/kg of Sodium Fluoride dissolved in 2.5 ml distilled water; Group IV (Sodium fluoride + Resveratrol): received 10 mg/kg of Sodium Fluoride and 30 mg/kg of Resveratrol. All doses were administered once daily by intra-gastric intubation. By the end of the experiment, rats were sedated by intra-peritoneal injection of Sodium thiopental; blood samples were collected, and thyroid lobes were dissected then processed for examination. RESULTS In the control and Resveratrol groups, there were multiple variable follicles filled with homogenous eosinophilic colloid and lined with flat to cuboidal thyrocytes. Large pale-staining Para follicular cells. In the Sodium fluoride - treated group there were multiple dark stained nuclei of shrunken and exfoliated cells, areas of exudate and multiple layered follicular cells with high activity of Para follicular cells immuno-histochemically. Sodium fluoride+ Resveratrol - treated group appeared with almost preserved control appearance. Findings were confirmed using morphometric and electron microscopic studies. CONCLUSION Resveratrol supplementation with sodium fluoride restored almost all damaged appearance and functions of the thyroid cells to normal values. Further studies are necessary to examine the extended effect of Resveratrol with increased dosage or time of treatment.
Collapse
|
3
|
Nagendra AH, Najar MA, Bose B, Shenoy PS. High concentration of sodium fluoride in drinking water induce hypertrophy versus atrophy in mouse skeletal muscle via modulation of sarcomeric proteins. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128654. [PMID: 35286933 DOI: 10.1016/j.jhazmat.2022.128654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Fluoride at high doses is a well-known toxic agent for the musculoskeletal system, primarily in bone and cartilage cells. Research on fluoride toxicity concerning particularly on the skeletal muscle is scanty. We hypothesized that during skeletal fluorosis, along with bone, muscle is also affected, so we have evaluated the effects of Sodium fluoride (NaF) on mouse skeletal muscles. Sodium fluoride (80 ppm) was administered to 5-week-old C57BL6 mice drinking water for 15 and 60 days, respectively. We carried out histology, primary culture, molecular and proteomic analysis of fluoride administered mouse skeletal muscles. Results indicated an increase in the muscle mass (hypertrophy) in vivo and myotubes ex vivo by activating the IGF1/PI3/Akt/mTOR signalling pathway due to short term NaF exposure. The long-term exposure of mice to NaF caused loss of muscle proteins leading to muscle atrophy due to activation of the ubiquitin-proteasome pathway. Differentially expressed proteins were characterized and mapped using a proteomic approach. Moreover, the factors responsible for protein synthesis and PI3/Akt/mTOR pathway were upregulated, leading to muscle hypertrophy during the short term NaF exposure. Long term exposure to NaF resulted in down-regulation of metabolic pathways. Elevated myostatin resulted in the up-regulation of the muscle-specific E3 ligases-MuRF1, promoting the ubiquitination and proteasome-mediated degradation of critical sarcomeric proteins.
Collapse
Affiliation(s)
- Apoorva H Nagendra
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India
| | - Mohd Altaf Najar
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bipasha Bose
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - P Sudheer Shenoy
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| |
Collapse
|
4
|
Ouyang Z, Yang B, Yi J, Zhu S, Lu S, Liu Y, Li Y, Li Y, Mehmood K, Hussain R, Ijaz M, Guo J, Tang Z, Li Y, Zhang H. Exposure to Fluoride induces apoptosis in liver of ducks by regulating Cyt-C/Caspase 3/9 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112662. [PMID: 34411823 DOI: 10.1016/j.ecoenv.2021.112662] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Fluorine being a well-known and essential element for normal physiological functions of tissues of different organisms is frequently used for growth and development of body. The mechanisms of adverse and injurious impacts of fluoride are not clear and still are under debate. Therefore, this study was executed to ascertain the potential mechanisms of sodium fluoride in liver tissues of ducks. For this purpose, a total of 14 ducks were randomly divided and kept in two groups including control group and sodium fluoride treated group. The ducks in control group were fed with normal diet while the ducks in other group were exposed to sodium fluoride (750 mg/kg) for 28 days. The results showed that exposure to sodium fluoride induced deleterious effects in different liver tissues of ducks. The results indicated that mRNA levels of Cas-3, Cas-9, p53, Apaf-1, Bax and Cyt-c were increased in treated ducks with significantly higher mRNA level of Cas-9 and lower levels of the mRNA level of Bcl-2 as compared to untreated control group (P < 0.01). The results showed that protein expression levels of Bax and p53 were increased while protein expression level of Bcl-2 was reduced in treated ducks. No difference was observed in protein expression level of Cas-3 between treated and untreated ducks. The results of this study suggest that sodium fluoride damages the normal structure of liver and induces abnormal process of apoptosis in hepatocyte, which provide a new idea for elucidating the mechanisms of sodium fluoride induced hepatotoxicity in ducks.
Collapse
Affiliation(s)
- Zhuanxu Ouyang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Bijing Yang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jiangnan Yi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Shanshan Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Suge Lu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yingwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yangwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuanliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Khalid Mehmood
- Department of Clinical Medicine and Surgery, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Riaz Hussain
- Department of Pathology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Ijaz
- Department of Veterinary Medicine, University of Veterinary and Animal Sciences Lahore, 54000, Pakistan
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Santesso MR, Oliveira FA, Tokuhara CK, Oliveira GSN, Levy FM, Antonio LS, Buzalaf MAR, Oliveira RC. Fluoride effects on cell viability and ENaC expression in kidney epithelial cells. Toxicol Mech Methods 2021; 31:566-571. [PMID: 34151709 DOI: 10.1080/15376516.2021.1938325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Fluoride (F) at micromolar (µM) concentrations induces apoptosis in several cell lines. Moreover, proteomic studies have shown major changes in the profile of proteins involved in signal transduction. These effects may negatively affect ion transport in the kidneys. The activity of epithelial sodium channels (ENaCs) is a limiting factor for sodium and water resorption in the kidneys, which is essential for the maintenance of the electrolyte balance and homeostasis of the body. Here we investigated the effects of F, at different concentrations (10, 40, 100, 200, and 400 μM), on the viability of renal epithelial cells (M-1), and ENaC expression. We showed that sodium fluoride (NaF) reduces cell viability in a concentration-dependent manner (p < 0.05) up to a 96-h time-point when compared to control. Sodium fluoride at moderate concentrations (100 and 200 μM), upregulated the ENaC subunit genes Scnn1a and Scnn1g, but not Scnn1b. Sodium fluoride downregulated all three ENaC subunit genes at a higher concentration of 400 μM (p < 0.05). Immunofluorescence analysis showed that Scnn1a and Scnn1g expression was decreased within 24 h of NaF treatment. After 48 h, NaF (400 μM) increased the expression of Scnn1a but not Scnn1g. However, NaF decreased the expression of Scnn1g at all studied concentrations. We conclude that F, at µM concentrations, modulates the expression of ENaC subunit genes, which is likely to significantly affect molecular signaling in kidney epithelial cells.
Collapse
Affiliation(s)
- Mariana R Santesso
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Flávia A Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil.,Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Cintia K Tokuhara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Gabriela S N Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Flávia M Levy
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Lígia S Antonio
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Marília A R Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| | - Rodrigo C Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo, Bauru, Brazil
| |
Collapse
|
6
|
Li M, Zhao Y, Tian X, Liu P, Xie J, Dong N, Feng J, Gao Y, Fan Y, Qiu Y, Tian F, Yan X. Fluoride Exposure and Blood Pressure: a Systematic Review and Meta-Analysis. Biol Trace Elem Res 2021; 199:925-934. [PMID: 32602052 DOI: 10.1007/s12011-020-02232-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/31/2020] [Indexed: 12/07/2022]
Abstract
Fluoride exposure may cause changes in blood pressure, but this conclusion is controversial. Therefore, this meta-analysis aims to investigate the potential relationship between fluoride exposure and blood pressure or hypertension. PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), WANFANG MED ONLINE, and Chinese Scientific Journals Full-Text Databases (VIP) were searched; in addition, two related studies were added manually. In total, 7 observational studies were identified, the pooled odds ratios (ORs) for hypertension between high and reference fluoride exposure groups were calculated, and the pooled standardized weighted mean difference (SMD) of systolic blood pressure (SBP) and diastolic blood pressure (DBP) was estimated using an inverse-variance weighted random-effects model; next, sensitivity analysis and subgroup analysis were used to assess potential sources of heterogeneity; furthermore, publication bias was assessed using the Begg and Egger test. In brief, there were no statistical differences between exposure groups and control groups in terms of blood pressure or hypertension when all included studies considered. However, subgroup analysis indicated that blood pressure will rise with the increase of fluoride exposure concentrations in endemic fluorosis areas. The corresponding pooled SMD estimates were 0.31 (95% CI 0.11, 0.51) and 0.27 (95% CI 0.11, 0.43) for SBP and DBP. Funnel plots suggested no asymmetry. Our findings support the possibility of a positive correlation between fluoride exposure and blood pressure in endemic fluorosis areas. Additional evidence is needed to assess the dose-response relationship between fluoride exposure and blood pressure.
Collapse
Affiliation(s)
- Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jiaxin Xie
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Nisha Dong
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Feng
- Shanxi Key Laboratory of Experimental Animal and Human Disease Animal Models, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ye Fan
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
7
|
Miao L, Gong Y, Li H, Xie C, Xu Q, Dong X, Elwan HAM, Zou X. Alterations in cecal microbiota and intestinal barrier function of laying hens fed on fluoride supplemented diets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110372. [PMID: 32114238 DOI: 10.1016/j.ecoenv.2020.110372] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
The objective of this study was to investigate the effects of fluorine at levels of 31, 431, 1237 mg/kg feed on cecum microbe, short-chain fatty acids (SCFAs) and intestinal barrier function of laying hens. The results showed that the intestinal morphology and ultrastructure were damaged by dietary high F intake. The mRNA expression levels of zonula occludens-1, zonula occludens-2, claudin-1, and claudin-4 were decreased in jejunum and ileum. However, the concentrations of serum diamine oxidase, and D-lactic acid and intestinal contents of interleukin 1 beta, interleukin 6, and Tumor necrosis factor-alpha were increased. Consistent with this, dietary high F intake altered the cecum microbiota, with increasing the concentration of pathogens, such as Proteobacteria and Escherichia-Shigella, as well as, decreasing the contents of beneficial bacteria, such as Lactobacillus, and expectedly, reduced the SCFAs concentrations. In conclusion, the actual results confirmed that (1) high dietary F intake could damage the intestinal structure and function, with impaired intestinal barrier and intestinal inflammation, and (2) destroy the cecum microbial homeostasis, and decrease the concentrations of SCFAs, which aggravate the incidence of intestinal inflammation in laying hens.
Collapse
Affiliation(s)
- Liping Miao
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Yujie Gong
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Huaiyu Li
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Chao Xie
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Qianqian Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Xinyang Dong
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Hamada A M Elwan
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China; Animal and Poultry Production Department, Faculty of Agriculture, Minia University, 61519, El-Minya, Egypt
| | - Xiaoting Zou
- Key Laboratory of Animal Nutrition and Feed Science in East China, College of Animal Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
8
|
Dietary High Sodium Fluoride Impairs Digestion and Absorption Ability, Mucosal Immunity, and Alters Cecum Microbial Community of Laying Hens. Animals (Basel) 2020; 10:ani10020179. [PMID: 31973036 PMCID: PMC7070338 DOI: 10.3390/ani10020179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
(1) Background: This study was conducted to investigate the effects of dietary fluoride (F) on tissue retention, digestive enzymes activities, mucosal immunity, and cecum microbial community of laying hens. (2) Methods: Total of 288 37-week-old Hy-Line Gray laying hens with similar laying rate (85.16% ± 3.87%) were adapted to the basal diets for ten days, and then allocated into three groups at random (n = 9, 6, 6 replicates/group). The concentrations of F in the diets were 31.19 (the control group, CON), 431.38 (F400, low-F group) and 1237.16 mg/kg (F1200, high-F group), respectively. The trial lasted for 59 days. (3) Results: Results suggested that F residuals in duodenum responded to dietary F concentrations positively. The activities of amylase, maltase and lactase were decreased in high-F group, compared with those in the control group. The mRNA expression levels of jejunum and ileum secretory immunoglobulin A (sIgA) and Mucin 2, and sIgA concentrations were decreased inhigh-F group, than those in the control group. The observed operational taxonomic units (OTUs) of laying hens in high-F group were higher than the CON and low-F groups, and the bacterial structure was different from the other two groups. The Lactobacillus was higher in the control group, while Gammaproteobacteria, Escherichia-Shigella, Streptococcaceae, and Enterobacteriaceae were higher in the high-F group. (4) Conclusions: The actual results confirmed that dietary high F intake increased the F residuals in duodenum, and reduced the digestion and absorption of nutrients and immunity via decreasing the activities of digestive enzymes, impairing intestine mucosal immunity, and disturbing the cecum microbial homeostasis of laying hens.
Collapse
|
9
|
Wang HW, Zhu SQ, Liu J, Miao CY, Zhang Y, Zhou BH. Fluoride-induced renal dysfunction via respiratory chain complex abnormal expression and fusion elevation in mice. CHEMOSPHERE 2020; 238:124607. [PMID: 31524603 DOI: 10.1016/j.chemosphere.2019.124607] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
A fluoride exposure mouse model is established to evaluate the relationship between mitochondrial respiratory chain complexes and renal dysfunction. Morphological changes in kidney tissues were observed. Renal function and cell proliferation in the kidneys were evaluated. The expression of mitochondrial fusion protein including mitofusin-1 (Mfn1) and optic atrophy 1 (OPA1), and mitochondrial respiratory chain complex subunits, including NDUFV2, SDHA, CYC1 and COX Ⅳ, were detected via real-time polymerase chain reaction, immunohistochemistry staining and Western blot, respectively. Results showed that the structures of renal tubule, renal glomerulus and renal papilla were seriously damaged. Renal function was impaired, and cell proliferation was remarkably inhibited by excessive fluoride in kidney. The mRNA and protein expression levels of Mfn1, OPA1, NDUFV2, CYC1 and COX Ⅳ were significantly increased after excessive fluoride exposure. However, the mRNA and protein expression of SDHA significantly decreased. Overall, our findings revealed that excessive fluoride can damage kidney structure, inhibit renal cell proliferation, interfere with the expression of mitochondrial respiratory chain complexes and elevate mitochondrial fusion. Consequently, renal function disorder occurred.
Collapse
Affiliation(s)
- Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Shi-Quan Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Cheng-Yi Miao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Yan Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
10
|
Shenoy PS, Sen U, Kapoor S, Ranade AV, Chowdhury CR, Bose B. Sodium fluoride induced skeletal muscle changes: Degradation of proteins and signaling mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:534-548. [PMID: 30384060 DOI: 10.1016/j.envpol.2018.10.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Fluoride is a well-known compound for its usefulness in healing dental caries. Similarly, fluoride is also known for its toxicity to various tissues in animals and humans. It causes skeletal fluorosis leading to osteoporosis of the bones. We hypothesized that when bones are affected by fluoride, the skeletal muscles are also likely to be affected by underlying molecular events involving myogenic differentiation. Murine myoblasts C2C12 were cultured in differentiation media with or without NaF (1 ppm-5 ppm) for four days. The effects of NaF on myoblasts and myotubes when exposed to low (1.5 ppm) and high concentration (5 ppm) were assessed based on the proliferation, alteration in gene expression, ROS production, and production of inflammatory cytokines. Changes based on morphology, multinucleated myotube formation, expression of MyHC1 and signaling pathways were also investigated. Concentrations of NaF tested had no effects on cell viability. NaF at low concentration (1.5 ppm) caused myoblast proliferation and when subjected to myogenic differentiation it induced hypertrophy of the myotubes by activating the IGF-1/AKT pathway. NaF at higher concentration (5 ppm), significantly inhibited myotube formation, increased skeletal muscle catabolism, generated reactive oxygen species (ROS) and inflammatory cytokines (TNF-α and IL-6) in C2C12 cells. NaF also enhanced the production of muscle atrophy-related genes, myostatin, and atrogin-1. The data suggest that NaF at low concentration can be used as muscle enhancing factor (hypertrophy), and at higher concentration, it accelerates skeletal muscle atrophy by activating the ubiquitin-proteosome pathway.
Collapse
Affiliation(s)
- P Sudheer Shenoy
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India.
| | - Utsav Sen
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India
| | - Saketh Kapoor
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India
| | - Anu V Ranade
- College of Medicine, University of Sharjah, United Arab Emirates
| | - Chitta R Chowdhury
- Department of Oral Biology & Genomic Studies, A.B.Shetty Memorial Institute of Dental Sciences, Nitte University, Mangalore, 575018, Karnataka, India; School of Health and Life Sciences, Biomedical and Environmental Health Group, De Montfort University, Leicester, United Kingdom
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
11
|
Sun Z, Li S, Guo Z, Li R, Wang J, Niu R, Wang J. Effects of Fluoride on SOD and CAT in Testis and Epididymis of Mice. Biol Trace Elem Res 2018; 184:148-153. [PMID: 28990137 DOI: 10.1007/s12011-017-1181-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/01/2017] [Indexed: 12/11/2022]
Abstract
Oxidative damage has been implicated to be one of main mechanisms by which fluoride (F) induces toxic effects. Previous studies reported that F destroyed the epididymal structure of mouse and rabbit. Epididymis is the important place for sperm maturation. However, little is known about the effect of F on the oxidative stress status of epididymis. Therefore, the aim of the present study was to explore the changes in the activities and transcriptional levels of CuZn superoxide dismutase (CuZn-SOD, SOD1) and catalase (CAT), as well as the ultrastructure, in testis and epididymis of mice administrated with F. Sixty health Kunming mice were randomly divided into four groups. With one group untreated as controls, the others were treated with 25, 50, and 100 mg NaF/L in drinking water. After 10 weeks administration, mitochondrial ultrastructural changes in testis and epididymis were observed, including the incomplete membrane and the dissolved or disappeared cristae. Compared to the control group, the activities of both SOD1 and CAT in testis and epididymis were significantly reduced by 50 or 100 mg NaF exposure. In addition, the mRNA expressions of testicular SOD1 and CAT were also decreased significantly in 100 mg NaF/L group, while the SOD1 and CAT mRNA expressions in epididymides were significantly reduced in all F treatment groups. The above results suggest that in the presence of F, similar to testis, epididymis also loses the balance between oxidative stress and antioxidative defense, and perhaps more sensitive to F.
Collapse
Affiliation(s)
- Zilong Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China.
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Taigu, Shanxi, China.
| | - Sujuan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Zhenzhen Guo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Rui Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Jixiang Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Ruiyan Niu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Taigu, Shanxi, China
| | - Jundong Wang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, China
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Taigu, Shanxi, China
| |
Collapse
|
12
|
Amadeu de Oliveira F, MacVinish LJ, Amin S, Herath D, Jeggle P, Mela I, Pieri M, Sharma C, Jarvis GE, Levy FM, Santesso MR, Khan ZN, Leite AL, Oliveira RC, Buzalaf MAR, Edwardson JM. The effect of fluoride on the structure, function, and proteome of intestinal epithelia. ENVIRONMENTAL TOXICOLOGY 2018; 33:63-71. [PMID: 29068160 DOI: 10.1002/tox.22495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Fluoride exposure is widespread, with drinking water commonly containing natural and artificially added sources of the ion. Ingested fluoride undergoes absorption across the gastric and intestinal epithelia. Previous studies have reported adverse gastrointestinal effects with high levels of fluoride exposure. Here, we examined the effects of fluoride on the transepithelial ion transport and resistance of three intestinal epithelia. We used the Caco-2 cell line as a model of human intestinal epithelium, and rat and mouse colonic epithelia for purposes of comparison. Fluoride caused a concentration-dependent decline in forskolin-induced Cl- secretion and transepithelial resistance of Caco-2 cell monolayers, with an IC50 for fluoride of about 3 mM for both parameters. In the presence of 5 mM fluoride, transepithelial resistance fell exponentially with time, with a t1/2 of about 7 hours. Subsequent imaging by immunofluorescence and scanning electron microscopy showed structural abnormalities in Caco-2 cell monolayers exposed to fluoride. The Young's modulus of the epithelium was not affected by fluoride, although proteomic analysis revealed changes in expression of a number of proteins, particularly those involved in cell-cell adhesion. In line with its effects on Caco-2 cell monolayers, fluoride, at 5 mM, also had profound effects on Cl- secretion and transepithelial resistance of both rat and mouse colonic epithelia. Our results show that treatment with fluoride has major effects on the structure, function, and proteome of intestinal epithelia, but only at concentrations considerably higher than those likely to be encountered in vivo, when much lower fluoride doses are normally ingested on a chronic basis.
Collapse
Affiliation(s)
- Flávia Amadeu de Oliveira
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Lesley J MacVinish
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Simran Amin
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Duleni Herath
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Pia Jeggle
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Ioanna Mela
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Maria Pieri
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Chetanya Sharma
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Gavin E Jarvis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Flávia M Levy
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Mariana R Santesso
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Zohaib N Khan
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Aline L Leite
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Rodrigo C Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - Marília A R Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|