1
|
Sun R, Li Y, Feng Y, Shao X, Li R, Li H, Sun S, Wang J. PFN1 Knockdown Aggravates Mitophagy to Retard Lung Adenocarcinoma Initiation and M2 Macrophage Polarization. Mol Biotechnol 2025; 67:2673-2684. [PMID: 39120820 DOI: 10.1007/s12033-024-01228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/17/2024] [Indexed: 08/10/2024]
Abstract
Tumor-associated macrophages (TAM) are considered as crucial influencing factors of lung adenocarcinoma (LUAD) carcinogenesis and metastasis. Profilin 1 (PFN1) has been proposed as a potent driver of migration and drug resistance in LUAD. The focus of this work was to figure out the functional mechanism of PFN1 in macrophage polarization in LUAD. PFN1 expression and its significance in patients' survival were detected by ENCORI and Kaplan-Meier Plotter. RT-qPCR and western blotting examined PFN1 expression in LUAD cells. CCK-8 assay and colony formation assay detected cell proliferation. Flow cytometry detected cell apoptosis. Relevant assay kit tested caspase3 concentration. Western blotting analyzed the expression of proliferation- and apoptosis-related proteins. RT-qPCR and immunofluorescence staining measured M1 and M2 macrophages markers. Mitophagy was assessed by MitoTracker Red staining, immunofluorescence staining, and western blotting. PFN1 expression was increased in LUAD tissues and cells and correlated with the poor survival rate of LUAD patients. Deficiency of PFN1 hindered the proliferation, whereas facilitated the apoptosis of LUAD cells. Additionally, PFN1 interference impaired M2 macrophage polarization. Moreover, PFN1 knockdown exacerbated the mitophagy in LUAD cells and mitophagy inhibitor mitochondrial division inhibitor 1 (Mdivi-1) notably reversed the effects of PFN1 down-regulation on the proliferation, apoptosis as well as macrophage polarization in LUAD cells. To sum up, activation of mitophagy initiated by PFN1 depletion might obstruct the occurrence and M2 macrophage polarization in LUAD.
Collapse
Affiliation(s)
- Rongrong Sun
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China.
| | - Yang Li
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Yu Feng
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Xiaoyan Shao
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Rantian Li
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Hao Li
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Sanyuan Sun
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China
| | - Jiangbo Wang
- Department of Oncology, Xuzhou Central Hospital, 199 Jiefang South Road, XuZhou, 221000, Jiangsu, China.
| |
Collapse
|
2
|
Varghese R, Ramamoorthy S. Deciphering the effects of bixin on pulmonary alveolar adenocarcinoma migration and proliferation via targeting BAX/BCL-2 and Cyclin D1. Sci Rep 2025; 15:15109. [PMID: 40301461 PMCID: PMC12041254 DOI: 10.1038/s41598-025-96788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 03/29/2025] [Indexed: 05/01/2025] Open
Abstract
There is a tremendous upsurge in lung cancer incidences due to changing lifestyles and other environmental risk factors. Unfortunately, the use of clinical therapeutics is causing serious side effects and drug-resistant tumors. Taking account of the severity of lung cancer malignancy and the pressing need for natural therapeutics, we investigated the anticancer potential of bixin in A549, pulmonary alveolar adenocarcinoma cell lines meticulously for the first time. Bixin is an apocarotenoid present in the seed arils of Bixa orellana known for its remarkable coloring utilities and high medicinal value. Here, we identified the cytotoxic and anti-migratory nature of bixin through MTT and scratch assay. Bixin also induced characteristic apoptotic morphological changes in cells which were distinguished through 4',6-diamidino-2-phenylindole (DAPI), and Acridine orange/Ethidium bromide (AO/EB) labeling. Bixin induced the mitochondrion-associated intrinsic apoptosis in A549 cells as evidenced in mitochondrial membrane potential assay, apoptosis assay, cell cycle analysis, and caspase assays. The relative gene expression studies proved that the bixin upregulated BAX, and downregulated BCL-2 and Cyclin D1. The in-silico analyses, molecular docking and molecular dynamics simulation underlined the interaction features of bixin and targeted proteins.
Collapse
Affiliation(s)
- Ressin Varghese
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
3
|
El‐Khouly D, Thabet NA, Sayed‐Ahmed M, Omran MM. Promotion of Autophagy and Apoptosis in Colorectal Cancer Exposed to Imatinib and Thymoquinone. J Biochem Mol Toxicol 2025; 39:e70238. [PMID: 40143604 PMCID: PMC11947640 DOI: 10.1002/jbt.70238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/18/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Cancer cells possess high proliferative ability and usually override apoptosis and metastasize to distant lesions. Autophagy in cancer cells is a double-edged weapon where a cross-regulation postulation between apoptosis and autophagy exists. The aim of the present study was to investigate the effect of adding Thymoquinone (TQ) to Imatinib (IM) in HCT116 human colorectal cancer cell line model on various apoptotic and autophagy markers. The combination doses of IM and TQ were selected according to our previous study concerned with cytotoxicity and uptake/efflux genes modulation. In the current study, the combination induced autophagy in HCT116 cell line which in turn enhanced apoptosis. Moreover, early apoptosis was evidenced. The induction of both autophagy and apoptosis resulted in programmed cell death. The assessment of AMPK, Par-4, apoptosis markers, colony formation assays, flow cytometry and autophagy detection by acridine orange proved this rapport.
Collapse
Affiliation(s)
- Dalia El‐Khouly
- Department of Pharmacology and Toxicology, Faculty of PharmacyAhram Canadian University, 6th of October CityGizaEgypt
| | - Nadia A. Thabet
- Department of Cancer Biology, Pharmacology Unit, National Cancer InstituteCairo UniversityEgypt
| | - Mohamed Sayed‐Ahmed
- Department of Cancer Biology, Pharmacology Unit, National Cancer InstituteCairo UniversityEgypt
| | - Mervat M. Omran
- Department of Cancer Biology, Pharmacology Unit, National Cancer InstituteCairo UniversityEgypt
- Department of Obstetrics and GynecologyUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
4
|
de Santana MR, Argolo DS, Lima IS, dos Santos CC, Victor MM, Ramos GDS, do Nascimento RP, Ulrich H, Costa SL. Naringenin Exhibits Antiglioma Activity Related to Aryl Hydrocarbon Receptor Activity and IL-6, CCL2, and TNF-α Expression. Brain Sci 2025; 15:325. [PMID: 40149846 PMCID: PMC11940588 DOI: 10.3390/brainsci15030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a highly aggressive brain tumor characterized by rapid cell proliferation, invasive behavior, and chemoresistance. The aryl hydrocarbon receptor (AhR) is implicated in chemoresistance and immune evasion, making it a promising therapeutic target. Natural compounds such as flavonoids have gained attention for their anti-inflammatory, antioxidant, and anticancer properties. Among them, naringenin, a citrus-derived flavonoid, exerts antiproliferative, pro-apoptotic, and immunomodulatory effects. OBJECTIVES This study investigated the antiglioma effects of the flavonoid naringenin on the viability, growth, and migration of glioma cells and its potential role as an AhR modulator. METHODS Human (U87) and rat (C6) glioma cell lines were exposed to naringenin (10-300 µM) alone or in combination with the AhR agonist indole-3-carbinol (50 µM) for 24 to 48 h. Cell viability, scratch wound, and cell migration assays were performed. The expression of inflammatory markers was also analyzed by RT-qPCR. RESULTS Naringenin exerted dose- and time-dependent inhibition of cell viability and migration. The treatment decreased the gene expression of interleukin-6 (IL-6) and chemokine (CCL2), alongside increased tumor necrosis factor-alpha (TNF-α) expression, an effect reversed by the AhR agonist. CONCLUSIONS These findings highlight naringenin's potential as an antiglioma agent and its role in AhR signaling.
Collapse
Affiliation(s)
- Monique Reis de Santana
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (D.S.A.); (I.S.L.); (C.C.d.S.); (R.P.d.N.)
| | - Deivison Silva Argolo
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (D.S.A.); (I.S.L.); (C.C.d.S.); (R.P.d.N.)
| | - Irlã Santos Lima
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (D.S.A.); (I.S.L.); (C.C.d.S.); (R.P.d.N.)
| | - Cleonice Creusa dos Santos
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (D.S.A.); (I.S.L.); (C.C.d.S.); (R.P.d.N.)
| | - Maurício Moraes Victor
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador 40231-300, Brazil; (M.M.V.); (G.d.S.R.)
| | - Gabriel dos Santos Ramos
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador 40231-300, Brazil; (M.M.V.); (G.d.S.R.)
| | - Ravena Pereira do Nascimento
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (D.S.A.); (I.S.L.); (C.C.d.S.); (R.P.d.N.)
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-220, Brazil;
| | - Silvia Lima Costa
- Laboratory of Neurochemistry and Cellular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador 40231-300, Brazil; (M.R.d.S.); (D.S.A.); (I.S.L.); (C.C.d.S.); (R.P.d.N.)
- National Institute of Translational Neuroscience (INNT), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
5
|
Anchimowicz J, Zielonka P, Jakiela S. Plant Secondary Metabolites as Modulators of Mitochondrial Health: An Overview of Their Anti-Oxidant, Anti-Apoptotic, and Mitophagic Mechanisms. Int J Mol Sci 2025; 26:380. [PMID: 39796234 PMCID: PMC11720160 DOI: 10.3390/ijms26010380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Plant secondary metabolites (PSMs) are a diverse group of bioactive compounds, including flavonoids, polyphenols, saponins, and terpenoids, which have been recognised for their critical role in modulating cellular functions. This review provides a comprehensive analysis of the effects of PSMs on mitochondrial health, with particular emphasis on their therapeutic potential. Emerging evidence shows that these metabolites improve mitochondrial function by reducing oxidative stress, promoting mitochondrial biogenesis, and regulating key processes such as apoptosis and mitophagy. Mitochondrial dysfunction, a hallmark of many pathologies, including neurodegenerative disorders, cardiovascular diseases, and metabolic syndrome, has been shown to benefit from the protective effects of PSMs. Recent studies show that PSMs can improve mitochondrial dynamics, stabilise mitochondrial membranes, and enhance bioenergetics, offering significant promise for the prevention and treatment of mitochondrial-related diseases. The molecular mechanisms underlying these effects, including modulation of key signalling pathways and direct interactions with mitochondrial proteins, are discussed. The integration of PSMs into therapeutic strategies is highlighted as a promising avenue for improving treatment efficacy while minimising the side effects commonly associated with synthetic drugs. This review also highlights the need for future research to elucidate the specific roles of individual PSMs and their synergistic interactions within complex plant matrices, which may further optimise their therapeutic utility. Overall, this work provides valuable insights into the complex role of PSMs in mitochondrial health and their potential as natural therapeutic agents targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
| | | | - Slawomir Jakiela
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (J.A.); (P.Z.)
| |
Collapse
|
6
|
Sharma S, Mishra A, Ramniwas S, Pandey P. An Updated Review Summarizing the Anticancer Potential of Naringenin. Endocr Metab Immune Disord Drug Targets 2025; 25:364-376. [PMID: 39005120 DOI: 10.2174/0118715303308238240705061522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
One important phytochemical is naringenin, which belongs to the flavanone class of polyphenols. It is found in citrus fruits, such as grapefruits, but it can also be found in tomatoes, cherries, and other food-grade medicinal plants. Naringenin has a significant chemotherapeutic promise, as several investigations have conclusively shown. Therefore, the goal of this review is to synthesize the literature that has been done on naringenin as a possible anti-cancer agent and clarify the mechanisms of action that have been described in treatment plans for different kinds of cancer. In a variety of cancer cells, naringenin works by affecting several pathways associated with cell cycle arrest, anti-metastasis, apoptosis, anti-angiogenesis, and DNA repair. It has been shown to alter several molecular targets linked to the development of cancer, such as drug transporters, transcription factors, reactive nitrogen species, reactive oxygen species, cellular kinases, and inflammatory cytokines and regulators of the cell cycle. In summary, this research provides significant insights into the potential of naringenin as a strong and prospective candidate for use in medicines, nutraceuticals, functional foods, and dietary supplements to improve the management of carcinoma.
Collapse
Affiliation(s)
- Srishti Sharma
- Department of Biotechnology, GLA University, Mathura, India
| | - Anuja Mishra
- Department of Biotechnology, GLA University, Mathura, India
| | - Seema Ramniwas
- University Centre of Research and Development, University Institute of Biotechnology, Chandigarh University Gharuan, Mohali, Punjab, India
| | - Pratibha Pandey
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, 140417, Punjab, India
- Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103 India
- Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
7
|
Emran TB, Eva TA, Zehravi M, Islam F, Khan J, Kareemulla S, Arjun UVNV, Balakrishnan A, Taru PP, Nainu F, Salim E, Rab SO, Nafady MH, Wilairatana P, Park MN, Kim B. Polyphenols as Therapeutics in Respiratory Diseases: Moving from Preclinical Evidence to Potential Clinical Applications. Int J Biol Sci 2024; 20:3236-3256. [PMID: 38904027 PMCID: PMC11186353 DOI: 10.7150/ijbs.93875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/04/2024] [Indexed: 06/22/2024] Open
Abstract
Respiratory diseases are the most common and severe health complication and a leading cause of death worldwide. Despite breakthroughs in diagnosis and treatment, few safe and effective therapeutics have been reported. Phytochemicals are gaining popularity due to their beneficial effects and low toxicity. Polyphenols are secondary metabolites with high molecular weights found at high levels in natural food sources such as fruits, vegetables, grains, and citrus seeds. Over recent decades, polyphenols and their beneficial effects on human health have been the subject of intense research, with notable successes in preventing major chronic non-communicable diseases. Many respiratory syndromes can be treated effectively with polyphenolic supplements, including acute lung damage, pulmonary fibrosis, asthma, pulmonary hypertension, and lung cancer. This review summarizes the role of polyphenols in respiratory conditions with sufficient experimental data, highlights polyphenols with beneficial effects for each, and identifies those with therapeutic potential and their underlying mechanisms. Moreover, clinical studies and future research opportunities in this area are discussed.
Collapse
Affiliation(s)
- Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh
| | - Shaik Kareemulla
- Department of Pharmacy Practice, M. M. College of Pharmacy (Maharishi Markandeshwar Deemed University), Mullana-Ambala, Haryana 133207, India
| | - Uppuluri Varuna Naga Venkata Arjun
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science, Technology, and Advanced Studies (VISTAS), Tamil Nadu, India
| | - Anitha Balakrishnan
- Department of Pharmaceutics, GRT Institute of Pharmaceutical Education and Research, Tiruttani, India
| | - Poonam Popatrao Taru
- Department of Pharmacognosy, School of Pharmacy, Vishwakarma University, Kondhwa, Pune, India
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia
| | - Emil Salim
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155, Indonesia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02453, Republic of Korea
| |
Collapse
|
8
|
Tang SJ, Shao CX, Yang Y, Ren R, Jin L, Hu D, Wu SL, Lei P, He YL, Xu J. The antitumor effect of mycelia extract of the medicinal macrofungus Inonotus hispidus on HeLa cells via the mitochondrial-mediated pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116407. [PMID: 37001769 DOI: 10.1016/j.jep.2023.116407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inonotus hispidus (I. hispidus), known as shaggy bracket, has been used extensively in China and some East Asian countries as a traditional medicinal macrofungus to treat difficult diseases, such as diabetes, gout, and arthritis. Modern pharmacological research has shown that I. hispidus has an important application value in antitumor treatment. However, the main anti-cervical cancer activity substances from its mycelia and its mechanisms are still not clear. AIMS OF THE STUDY To enrich the germplasm resources of I. hispidus, to reveal the antitumor activity of the extract from the mycelium of I. hispidus against cervical cancer, and to preliminarily analyze its action mechanism. MATERIALS AND METHODS The SH3 strain was isolated from wild fruiting bodies and identified by morphology and molecular biology. The antitumor active component from the mycelium of I. hispidus was isolated and identified with liquid chromatography-tandem mass spectrometry. The cell viability was assessed by MTT assay. The cell cycle distribution, apoptotic cell detection, and mitochondrial membrane potential were detected by flow cytometer. The expression of apoptosis-related proteins was assessed by Western blotting. The inhibition of tumor growth in vivo was assessed by a mouse xenograft model. RESULTS The SH3 strain was isolated and identified as a new strain of I. hispidus. The antitumor active component containing cyclic peptides from the mycelium of I. hispidus (CCM) was isolated for the first time. In addition, we found that CCM had a strong inhibitory effect on HeLa proliferation in vitro and in vivo. Mechanically, the CCM blocked the cell cycle at the G0/G1 phase, decreased the mitochondrial membrane potential, and eventually promoted apoptosis of HeLa cells through the mitochondria-mediated pathway by upregulating the expression levels of Bax, cytochrome C, cleaved caspase-9, and cleaved caspase-3 and downregulating the expression level of Bcl-2. CONCLUSIONS Our study not only enriches the strain resources of I. hispidus but also confirms that the mycelium of this strain has active components that can inhibit cervical cancer. This is highly significant for the development of active drugs and drug lead molecules for treating cervical cancer.
Collapse
Affiliation(s)
- Shao-Jun Tang
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Chen-Xia Shao
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Yi Yang
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Rui Ren
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Lei Jin
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Dan Hu
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Shen-Lian Wu
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Pin Lei
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Yue-Lin He
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Jun Xu
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China.
| |
Collapse
|
9
|
A Mechanism Exploration for the Yi-Fei-San-Jie Formula against Non-Small-Cell Lung Cancer Based on UPLC-MS/MS, Network Pharmacology, and In Silico Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:3436814. [PMID: 36654811 PMCID: PMC9842415 DOI: 10.1155/2023/3436814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 01/11/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most prevalent cancers worldwide. A Yi-Fei-San-Jie formula (YFSJF), widely used in NSCLC treatment in south China, has been validated in clinical studies. However, the pharmacological mechanism behind it remains unclear. In this study, 73 compounds were identified using ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), with 58 enrolled in network pharmacology. The protein-protein interaction network, functional enrichment analysis, and compound-target-pathway network were constructed using 74 overlapping targets from 58 drugs and NSCLC. YFSJF has many targets and pathways in the fight against NSCLC. PIK3R1, PIK3CA, and AKT1 were identified as key targets, and the PI3K/AKT pathway was identified as the key pathway. According to the Human Protein Atlas (THPA) database and the Kaplan-Meier Online website, the three key targets had varying expression levels in normal and abnormal tissues and were linked to prognosis. Molecular docking and dynamics simulations verified that hub compounds have a strong affinity with three critical targets. This study revealed multiple compounds, targets, and pathways for YFSJF against NSCLC and suggested that YFSJF might inhibit PIK3R1, PIK3CA, and AKT1 to suppress the PI3K/AKT pathway and play its pharmacological role.
Collapse
|
10
|
Bada L, Pereira RB, Pereira DM, Lores M, Celeiro M, Quezada E, Uriarte E, Gil-Longo J, Viña D. Phytochemical Analysis and Antiproliferative Activity of Ulex gallii Planch. (Fabaceae), a Medicinal Plant from Galicia (Spain). MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010351. [PMID: 36615543 PMCID: PMC9822445 DOI: 10.3390/molecules28010351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023]
Abstract
The genus Ulex comprises thirteen accepted species of perennial shrubs in the family Fabaceae. In Galicia (Spain) many of these are considered spontaneous colonizing species, which are easy to establish and maintain. Among them, Ulex gallii Planch. is used in traditional medicine for the same anti-infective, hypotensive and diuretic purposes as Ulex europaeus L., which is the most studied species. Likewise, some studies have described the antitumoral properties of several species. However, there are few scientific studies that justify the use of Ulex gallii Planch. and nothing has been reported about its composition to date. In our study, the entire plant was extracted with methanol and the crude extract was subjected to liquid phase extraction with distinct solvents, yielding three fractions: hexane (H), dichloromethane (D) and methanol (M), which were subsequently fractionated. The dichloromethane (D5, D7 and D8) and methanol (M4) sub-fractions showed antiproliferative activity on A549 (lung cancer) and AGS (stomach cancer) cell lines, and caspase 3/7 activity assessment and DNA quantification were also performed. Targeted analysis via UHPLC-QToF, in combination with untargeted analysis via MS-Dial, MS-Finder and Global Natural Products Social Molecular Networking (GNPS), allowed us to tentatively identify different metabolites in these sub-fractions, mostly flavonoids, that might be involved in their antiproliferative activity.
Collapse
Affiliation(s)
- Lucía Bada
- Group of Pharmacology of Chronic Diseases (CD Pharma), Molecular Medicine and Chronic Diseases Research Centre (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Renato B. Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - David M. Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence: (D.M.P.); (D.V.); Tel.: +351-22-042-8655 (D.M.P.); +34-881-815-424 (D.V.)
| | - Marta Lores
- Laboratory of Research and Development of Analytical Solutions (LIDSA), Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Chemistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Celeiro
- CRETUS Institute, Department of Analytical Chemistry, Nutrition and Food Science, Campus Vida, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Elías Quezada
- Department of Organic Chemistry, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Department of Organic Chemistry, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - José Gil-Longo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- Group of Pharmacology of Chronic Diseases (CD Pharma), Molecular Medicine and Chronic Diseases Research Centre (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Correspondence: (D.M.P.); (D.V.); Tel.: +351-22-042-8655 (D.M.P.); +34-881-815-424 (D.V.)
| |
Collapse
|
11
|
Duda-Madej A, Stecko J, Sobieraj J, Szymańska N, Kozłowska J. Naringenin and Its Derivatives-Health-Promoting Phytobiotic against Resistant Bacteria and Fungi in Humans. Antibiotics (Basel) 2022; 11:1628. [PMID: 36421272 PMCID: PMC9686724 DOI: 10.3390/antibiotics11111628] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 07/30/2023] Open
Abstract
Naringenin is a trihydroxyflavanone present in large amount in different citrus fruits, e.g., oranges, pomelos, grapefruits, but also in tomatoes, fenugreek and coffee. It has a wide range of pharmacological and biological effects beneficial to human health. Its antioxidant, anti-cancer, anti-inflammatory, antifungal and antimicrobial activity is frequently reported in scientific literature. In this review we presented the current state of knowledge on the antimicrobial activity of naringenin and its natural and synthetic derivatives as a phytobiotic against resistant Gram-positive and Gram-negative bacteria as well as fungi in humans. Most of the data reported here have been obtained from in vitro or in vivo studies. Over the past few years, due to the overuse of antibiotics, the occurrence of bacteria resistant to all available antibiotics has been growing. Therefore, the main focus here is on antibiotic resistant strains, which are a significant, worldwide problem in the treatment of infectious diseases. The situation is so alarming that the WHO has listed microbial resistance to drugs on the list of the 10 most important health problems facing humanity. In addition, based on scientific reports from recent years, we described the potential molecular mechanism of action of these bioflavonoids against pathogenic strains of microorganisms. As plant-derived substances have been pushed out of use with the beginning of the antibiotic era, we hope that this review will contribute to their return as alternative methods of preventing and treating infections in the epoch of drug resistance.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Jakub Stecko
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland
| | - Jakub Sobieraj
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland
| | - Natalia Szymańska
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland
| | - Joanna Kozłowska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
12
|
Synergism Potentiates Oxidative Antiproliferative Effects of Naringenin and Quercetin in MCF-7 Breast Cancer Cells. Nutrients 2022; 14:nu14163437. [PMID: 36014942 PMCID: PMC9412616 DOI: 10.3390/nu14163437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed type of cancer as of 2020. Quercetin (Que) and Naringenin (Nar) are predominantly found in citrus fruits and vegetables and have shown promising antiproliferative effects in multiple studies. It is also known that the bioactive effects of these flavonoids are more pronounced in whole fruit than in isolation. This study investigates the potential synergistic effects of Que and Nar (CoQN) in MCF-7 BC cells. MCF-7 cells were treated with a range of concentrations of Que, Nar or CoQN to determine cell viability. The IC50 of CoQN was then used to investigate caspase 3/7 activity, Bcl-2 gene expression, lipid peroxidation and mitochondrial membrane potential to evaluate oxidative stress and apoptosis. CoQN treatment produced significant cytotoxicity, reduced Bcl-2 gene expression and increased caspase 3/7 activity compared to either Nar or Que. Furthermore, CoQN significantly increased lipid peroxidation and reduced mitochondrial membrane potential (MMP) compared to either Nar or Que. Therefore, CoQN treatment has potential pharmacological application in BC chemotherapy by inducing oxidative stress and apoptosis in MCF-7 BC cells. The results of this study support the increased consumption of whole fruits and vegetables to reduce cell proliferation in cancer.
Collapse
|
13
|
Caro-Ramírez JY, Rivas MG, Gonzalez PJ, Williams PAM, Naso LG, Ferrer EG. Copper(II) cation and bathophenanthroline coordination enhance therapeutic effects of naringenin against lung tumor cells. Biometals 2022; 35:1059-1076. [PMID: 35931942 DOI: 10.1007/s10534-022-00422-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022]
Abstract
The development of new anticancer compounds is one of the challenges of bioinorganic and medicinal chemistry. Naringenin and its metal complexes have been recognized as promising inhibitors of cell proliferation, having enormous potential to act as an antioxidant and antitumorigenic agent. Lung cancer is the second most commonly diagnosed type of cancer. Therefore, this study is devoted to investigate the effects of Cu(II), naringenin (Nar), binary Cu(II)-naringenin complex (CuNar), and the Cu(II)-naringenin containing bathophenanthroline as an auxiliary ligand (CuNarBatho) on adenocarcinoma human alveolar basal epithelial cells (A549 cells) that are used as models for the study of drug therapies against lung cancer. The ternary complex shows selectivity being high cytotoxic against malignant cells. The cell death generated by CuNarBatho involves ROS production, loss of mitochondrial membrane potential, and depletion of GSH level and GSH/GSSG ratio. The structure-relationship activity was assessed by comparison with the reported Cu(II)-naringenin-phenanthroline complex. The CuNarBatho complex was synthesized and characterized by elemental analysis, molar conductivity, mass spectrometry, thermogravimetric measurements and UV-VIS, FT-IR, EPR, Raman and 1H-NMR spectroscopies. In addition, the binding to bovine serum albumin (BSA) was studied at the physiological conditions (pH = 7.4) by fluorescence spectroscopy.
Collapse
Affiliation(s)
- Janetsi Y Caro-Ramírez
- Centro de Química Inorgánica (CEQUINOR, UNLP, CONICET, asociado a CICPBA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465 La Plata, CP 1900, Buenos Aires, Argentina
| | - María G Rivas
- Departamento de Física, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA, Santa Fe, Argentina
| | - Pablo J Gonzalez
- Departamento de Física, Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral and CONICET, S3000ZAA, Santa Fe, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR, UNLP, CONICET, asociado a CICPBA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465 La Plata, CP 1900, Buenos Aires, Argentina.
| | - Luciana G Naso
- Centro de Química Inorgánica (CEQUINOR, UNLP, CONICET, asociado a CICPBA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465 La Plata, CP 1900, Buenos Aires, Argentina
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR, UNLP, CONICET, asociado a CICPBA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bv. 120 N° 1465 La Plata, CP 1900, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Motallebi M, Bhia M, Rajani HF, Bhia I, Tabarraei H, Mohammadkhani N, Pereira-Silva M, Kasaii MS, Nouri-Majd S, Mueller AL, Veiga FJB, Paiva-Santos AC, Shakibaei M. Naringenin: A potential flavonoid phytochemical for cancer therapy. Life Sci 2022; 305:120752. [PMID: 35779626 DOI: 10.1016/j.lfs.2022.120752] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Naringenin is an important phytochemical which belongs to the flavanone group of polyphenols, and is found mainly in citrus fruits like grapefruits and others such as tomatoes and cherries plus medicinal plants derived food. Available evidence demonstrates that naringenin, as herbal medicine, has important pharmacological properties, including anti-inflammatory, antioxidant, neuroprotective, hepatoprotective, and anti-cancer activities. Collected data from in vitro and in vivo studies show the inactivation of carcinogens after treatment with pure naringenin, naringenin-loaded nanoparticles, and also naringenin in combination with anti-cancer agents in various malignancies, such as colon cancer, lung neoplasms, breast cancer, leukemia and lymphoma, pancreatic cancer, prostate tumors, oral squamous cell carcinoma, liver cancer, brain tumors, skin cancer, cervical and ovarian cancer, bladder neoplasms, gastric cancer, and osteosarcoma. Naringenin inhibits cancer progression through multiple mechanisms, like apoptosis induction, cell cycle arrest, angiogenesis hindrance, and modification of various signaling pathways including Wnt/β-catenin, PI3K/Akt, NF-ĸB, and TGF-β pathways. In this review, we demonstrate that naringenin is a natural product with potential for the treatment of different types of cancer, whether it is used alone, in combination with other agents, or in the form of the naringenin-loaded nanocarrier, after proper technological encapsulation.
Collapse
Affiliation(s)
- Mahzad Motallebi
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Department of Biology, Yadegar-e-Imam Khomeini Shahr-e-Rey Branch, Islamic Azad University, Tehran 1815163111, Iran
| | - Mohammed Bhia
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran 7616911319, Iran; Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran
| | - Huda Fatima Rajani
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E0T5, Canada
| | - Iman Bhia
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hadi Tabarraei
- Department of Veterinary Biomedical Science, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon SKS7N 5B4, Canada
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maryam Sadat Kasaii
- Department of Nutrition Research, Department of Community Nutrition, National Nutrition and Food Technology Research Institute (WHO Collaborating Center); and Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1981619573, Iran
| | - Saeedeh Nouri-Majd
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran 14155-6117, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336 Munich, Germany
| | - Francisco J B Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336 Munich, Germany.
| |
Collapse
|
15
|
Naringenin induces intrinsic and extrinsic apoptotic signaling pathways in cancer cells: A systematic review and meta-analysis of in vitro and in vivo data. Nutr Res 2022; 105:33-52. [DOI: 10.1016/j.nutres.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/24/2022]
|
16
|
Paclitaxel-Containing Extract Exerts Anti-Cancer Activity through Oral Administration in A549-Xenografted BALB/C Nude Mice: Synergistic Effect between Paclitaxel and Flavonoids or Lignoids. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3648175. [PMID: 35509628 PMCID: PMC9060980 DOI: 10.1155/2022/3648175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 11/18/2022]
Abstract
Taxus yunnanensis is a paclitaxel-containing herb with traditional usage in cancer treatment, and its extract possesses great oral bioavailability of paclitaxel. However, it is elusive whether paclitaxel-containing extract (HDS-1) can exert anti-tumor effect through oral administration and how other components contribute to its efficacy. Therefore, we investigate the oral-route anti-tumor effect of HDS-1 in A549-bearing mice. HDS-1-derived flavonoids (HDS-2) and lignoids (HDS-3) are hypothesized to contribute to HDS-1’s efficacy, and their effects of enhancing enterocytic absorption and cytotoxicity of paclitaxel are validated in 2 permeability experiments and apoptosis-related assay, respectively. In vivo, A549 growth is significantly inhibited by 86.1 ± 12.94% (
) at 600 mg/kg of HDS-1 and 65.7 ± 38.71% (
) at 200 mg/kg. HDS-2 and HDS-3 significantly reduce the efflux ratio of paclitaxel to 2.33 and 3.70, respectively, in Caco-2 permeability experiment and reduce paclitaxel reflux in MDCK-MDR1 experiment. Furthermore, HDS-2 and HDS-3 potentiated paclitaxel-induced cytotoxicity by 19.1–22.45% (
) and 10.52–18.03% (
), respectively, inhibited the expression of cyclinB1, Bcl-2, and pMCL-1, and increased the percentage of necrosis cell in the condition of paclitaxel exposure. Conclusively, paclitaxel-containing extracts exert anti-cancer effects through oral administration, and flavonoid and lignoids contribute to its anti-cancer effect through simultaneously improving enterocytic absorption of paclitaxel and the cytotoxic effect of paclitaxel.
Collapse
|
17
|
Singh S, Sharma A, Monga V, Bhatia R. Compendium of naringenin: potential sources, analytical aspects, chemistry, nutraceutical potentials and pharmacological profile. Crit Rev Food Sci Nutr 2022; 63:8868-8899. [PMID: 35357240 DOI: 10.1080/10408398.2022.2056726] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Naringenin is flavorless, water insoluble active principle belonging to flavanone subclass. It exhibits a diverse pharmacological profile as well as divine nutraceutical values. Although several researchers have explored this phytoconstituent to evaluate its promising properties, still it has not gained recognition at therapeutic levels and more clinical investigations are still required. Also the neutraceutical potential has limited marketed formulations. This compilation includes the description of reported therapeutic potentials of naringenin in variety of pathological conditions alongwith the underlying mechanisms. Details of various analytical investigations carried on this molecule have been provided along with brief description of chemistry and structural activity relationship. In the end, various patents filed and clinical trial data has been provided. Naringenin has revealed promising pharmacological activities including cardiovascular diseases, neuroprotection, anti-diabetic, anticancer, antimicrobial, antiviral, antioxidant, anti-inflammatory and anti-platelet activity. It has been marketed in the form of nanoformulations, co-crystals, solid dispersions, tablets, capsules and inclusion complexes. It is also available in various herbal formulations as nutraceutical supplement. There are some pharmacokinetic issue with naringenin like poor absorption and low dissolution rate. Although these issues have been sorted out upto certain extent still further research to investigate the bioavailability of naringenin from herbal supplements and its clinical efficacy is essential.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Pharmaceutical Chemistry & Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Alok Sharma
- Department of Pharmacognosy, ISF College of Pharmacy, Moga, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry & Analysis, ISF College of Pharmacy, Moga, Punjab, India
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry & Analysis, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
18
|
Sesquiterpene lactones isolated from Carpesium abrotanoides L. by LC–MS combined with HSCCC inhibit liver cancer through suppression of the JAK2/STAT3 signaling pathway. Med Chem Res 2022. [DOI: 10.1007/s00044-021-02838-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Yao W, Zhang X, Xu F, Cao C, Liu T, Xue Y. The therapeutic effects of naringenin on bronchial pneumonia in children. Pharmacol Res Perspect 2021; 9:e00825. [PMID: 34310866 PMCID: PMC8312741 DOI: 10.1002/prp2.825] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/29/2021] [Indexed: 01/28/2023] Open
Abstract
Bronchial pneumonia in children is a common infectious disease in toddlers and infants, which may cause hyperpyrexia, pulmonary moist rales, and even respiratory failure. Traditional drugs for bronchial pneumonia in children often lead to drug resistance and side effects. Recently, naringenin has been reported to be a potential treatment for several airway inflammatory diseases due to its anti-inflammatory and anti-microbial activities. The current clinical study aimed to evaluate the safety and therapeutic effect of naringenin in treating bronchial pneumonia in children. A total of 180 eligible patients were randomly assigned into naringenin (NAR) group and azithromycin (AZI) group. All participants were required to follow a 5-day oral administration, and their serum cytokine levels were measured during the clinical intervention. After the treatment, the disappearance time of clinical symptoms, and the incidences of complications and adverse reactions were compared between the two groups. Naringenin was able to inhibit inflammation, shorten the disappearance time of clinical symptoms, reduce the incidences of bronchial pneumonia complications and related adverse reactions, and improve the health conditions of the patients. Our results suggested that naringenin was safe and beneficial to children with bronchial pneumonia, providing new insights into the clinical application of naringenin.
Collapse
Affiliation(s)
- Wenjing Yao
- Department of PediatricsZibo Central HospitalZiboShandongChina
| | - Xiaopeng Zhang
- Department of PediatricsZibo Central HospitalZiboShandongChina
| | - Feng Xu
- Department of PediatricsZibo Central HospitalZiboShandongChina
| | - Chunxia Cao
- Department of PediatricsZibo Central HospitalZiboShandongChina
| | - Tongtong Liu
- Department of PediatricsZibo Central HospitalZiboShandongChina
| | - Yuanyuan Xue
- Department of PediatricsZibo Central HospitalZiboShandongChina
| |
Collapse
|
20
|
Shi H, Zhao F, Chen H, Zhou Q, Geng P, Zhou Y, Wu H, Chong J, Wang F, Dai D, Yang J, Wang S. Naringenin has an inhibitory effect on rivaroxaban in rats both in vitro and in vivo. Pharmacol Res Perspect 2021. [PMCID: PMC8099043 DOI: 10.1002/prp2.782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Food–drug interactions are reported to have some impacts on the pharmacokinetics and pharmacodynamics of various oral drugs. To better understand the effects of naringenin, one natural product in many fruits, on the pharmacokinetics of rivaroxaban, drug–drug interactions (DDIs) between naringenin and rivaroxaban in vitro were investigated in Sprague–Dawley (SD) rat liver microsomes. For the DDIs in vivo, 12 male SD rats were randomly divided into the experimental group and the control group with six rats in each group. Rats in the experimental group were pre‐treated with naringenin (10 mg/kg/day) for 2 weeks before the administration of rivaroxaban (10 mg/kg) by oral gavage, while the rats in the control group were given rivaroxaban (10 mg/kg) only once. The plasma concentration of rivaroxaban in rats was then measured by UPLC‐MS/MS. In vitro data indicated that naringenin could decrease the metabolic clearance rate of rivaroxaban with the IC50 value of 38.89 μM, and exhibited a mixed inhibition to rivaroxaban (Ki =54.91 μM, aKi =73.33 μM, a = 0.74). In vivo data in rats revealed that as compared with that of the control group, the AUC(0–t) value of rats in the experimental group was increased from 2406.28 ± 519.69 μg/h/L to 4005.04 ± 1172.76 μg/h/L, the Cmax value was increased from 310.23 ± 85.76 μg/L to 508.71 ± 152.48 μg/L, and the Vz/F and CLz/F were decreased from 23.03 ± 4.81 L/kg to 16.2 ± 8.42 L/kg, 4.26 ± 0.91 L/h/kg to 2.57 ± 0.73 L/h/kg, respectively. These data indicated that naringenin had an inhibitory effect on the pharmacokinetics of rivaroxaban in rats, suggesting that the DDIs between naringenin and rivaroxaban might occur when they were co‐administered in the clinic.
Collapse
Affiliation(s)
- Hai‐Feng Shi
- Cardiovascular Department Beijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical Sciences Beijing P. R. China
| | - Fang‐Ling Zhao
- Peking University Fifth School of Clinical Medicine Beijing P. R. China
- The Key Laboratory of Geriatrics Beijing Institute of GeriatricsBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical Sciences Beijing P. R. China
| | - Hao Chen
- Cardiovascular Department Beijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical Sciences Beijing P. R. China
| | - Quan Zhou
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical UniversityThe People's Hospital of Lishui. Lishui Zhejiang P. R. China
| | - Pei‐Wu Geng
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical UniversityThe People's Hospital of Lishui. Lishui Zhejiang P. R. China
| | - Yun‐Fang Zhou
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical UniversityThe People's Hospital of Lishui. Lishui Zhejiang P. R. China
| | - Hua‐Lan Wu
- Cardiovascular Department Beijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical Sciences Beijing P. R. China
| | - Jia Chong
- Cardiovascular Department Beijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical Sciences Beijing P. R. China
| | - Fang Wang
- Cardiovascular Department Beijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical Sciences Beijing P. R. China
| | - Da‐Peng Dai
- Peking University Fifth School of Clinical Medicine Beijing P. R. China
- The Key Laboratory of Geriatrics Beijing Institute of GeriatricsBeijing HospitalNational Center of GerontologyNational Health CommissionInstitute of Geriatric MedicineChinese Academy of Medical Sciences Beijing P. R. China
| | - Jie‐Fu Yang
- Cardiovascular Department Beijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical Sciences Beijing P. R. China
| | - Shuang‐Hu Wang
- The Laboratory of Clinical Pharmacy The Sixth Affiliated Hospital of Wenzhou Medical UniversityThe People's Hospital of Lishui. Lishui Zhejiang P. R. China
| |
Collapse
|
21
|
Wei MM, Zhao SJ, Dong XM, Wang YJ, Fang C, Wu P, Song GQ, Gao JN, Huang ZH, Xie T, Zhou JL. A combination index and glycoproteomics-based approach revealed synergistic anticancer effects of curcuminoids of turmeric against prostate cancer PC3 cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113467. [PMID: 33058923 DOI: 10.1016/j.jep.2020.113467] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/29/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herbal medicines (HMs) often exert integration effects, including synergistic, additive and antagonistic effects, in such ways that they act on multiple targets and multiple pathways on account of their multiple components. Turmeric, made from the rhizome of Curcuma longa L., is a well-known HM prescribed in the polyherbal formulas for cancer treatment in traditional Chinese medicines (TCMs). However, neither the multiple anticancer compounds of turmeric nor the integration effects of these components are fully known. AIM OF THE STUDY This work aims to develop a systematic approach to reveal the integration effect mechanisms of multiple anticancer compounds in turmeric against prostate cancer PC3 cells. MATERIALS AND METHODS Combination index and omics technologies were applied to profile the integration effect mechanisms of bioactive compounds in proportions naturally found in turmeric. PC3 cell line (a prostate cancer cell line) fishing and high resolution mass spectrometry were employed to screen and identify the anticancer compounds from turmeric. The combinations which contain different cell-bound compounds in natural proportions were prepared for further evaluation of anti-cancer activity by using cell viability assays, and assessment of cell apoptosis and cell cycle analysis. Combination index analysis was applied to study the integration effects of the anticancer compounds in their natural proportions. Finally, quantitative glycoproteomics/proteomics and Western blot were implemented to reveal the potential synergistic effect mechanisms of the anticancer compounds based on their natural proportions in turmeric. RESULTS Three curcuminoids (curcumin, CUR; demethoxycurcumin, DMC; bisdemethoxycurcumin, BDMC) in turmeric were discovered and shown to possess significant synergistic anticancer activities. Combination index analysis revealed an additive effect of CUR combined with DMC or BDMC and a slight synergistic effect of DMC combined with BDMC in natural proportions in turmeric, while a combination of all three curcuminoids (CUR, DMC and BDMC) at a ratio of 1:1:1 yielded superior synergistic effects. Interestingly, the presence of BDMC and DMC are essential for synergistic effect. Glycoproteomics and proteomics demonstrated that different curcuminoids regulate various protein pathways, such as ribosome, glycolysis/gluconeogenesis, biosynthesis of amino acids, and combination of CUR + DMC + BDMC showed the most powerful effects on down-regulation of protein expression. CONCLUSIONS Our analytical approach provides a systematic understanding of the holistic activity and integration effects of the anti-cancer compounds in turmeric and three curcuminoids of turmeric showed a synergistic effect on PC3 cells.
Collapse
Affiliation(s)
- Meng-Meng Wei
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Shu-Juan Zhao
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Xue-Man Dong
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Yong-Jie Wang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Can Fang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Pu Wu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Gao-Qian Song
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jun-Na Gao
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Zhi-Hui Huang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jian-Liang Zhou
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
22
|
Shi X, Luo X, Chen T, Guo W, Liang C, Tang S, Mo J. Naringenin inhibits migration, invasion, induces apoptosis in human lung cancer cells and arrests tumour progression in vitro. J Cell Mol Med 2021. [PMID: 33523599 DOI: 10.1111/jcmm] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Lung cancer is one of the major cause for high-death rate all over the world, due to increased metastasize and difficulties in diagnosis. Naringenin is naturally occurring flavonoid found in various fruits including tomatoes, citrus fruit and figs. Naringenin is known to have several therapeutic effects including anti-atherogenic, antimicrobial, anti-inflammatory, hepatoprotective, anticancer and anti-mutagenic. The present study was aimed to analyse the naringenin induced anti-proliferative and apoptosis effects in human lung cancer cells. Cells were treated with various concentrations of naringenin (10, 100 & 200 µmol/L) for 48 hours. Cisplatin (20 µg/mL) was used as positive control. Cell viability, apoptosis, migration and mRNA, and protein expression of caspase-3, matrixmetallo proteinases-2 (MMP-2) and MMP-9 were determined. The cell viability was 93.7 ± 7.5, 51.4 ± 4.4 and 32.1 ± 2.1 at 10, 100 and 200 µmol/L of naringenin respectively. Naringenin significantly increased apoptotic cells. The 100 and 200 µmol/L of naringenin significantly suppressed the larger wounds of cultured human cancer cells compared with the untreated lung cancer cells. Naringenin increased d the expression of caspase-3 and reduced the expression of MMP-2 and MMP-9. Taking all these data together, it is suggested that the naringenin was effective against human lung cancer proliferation, migration and metastasis.
Collapse
Affiliation(s)
- Xingyuan Shi
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation Oncology, The Fifth hospital of Guangzhou Medial University, Guangzhou, China
| | - Xueping Luo
- Department of Thoracic surgery, The Fifth hospital of Guangzhou Medial University, Guangzhou, China
| | - Ting Chen
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation Oncology, The Fifth hospital of Guangzhou Medial University, Guangzhou, China
| | - Wei Guo
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation Oncology, The Fifth hospital of Guangzhou Medial University, Guangzhou, China
| | - Chanjin Liang
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation Oncology, The Fifth hospital of Guangzhou Medial University, Guangzhou, China
| | - Sihan Tang
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation Oncology, The Fifth hospital of Guangzhou Medial University, Guangzhou, China
| | - Jianming Mo
- Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
23
|
Shi X, Luo X, Chen T, Guo W, Liang C, Tang S, Mo J. Naringenin inhibits migration, invasion, induces apoptosis in human lung cancer cells and arrests tumour progression in vitro. J Cell Mol Med 2021; 25:2563-2571. [PMID: 33523599 PMCID: PMC7933922 DOI: 10.1111/jcmm.16226] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the major cause for high-death rate all over the world, due to increased metastasize and difficulties in diagnosis. Naringenin is naturally occurring flavonoid found in various fruits including tomatoes, citrus fruit and figs. Naringenin is known to have several therapeutic effects including anti-atherogenic, antimicrobial, anti-inflammatory, hepatoprotective, anticancer and anti-mutagenic. The present study was aimed to analyse the naringenin induced anti-proliferative and apoptosis effects in human lung cancer cells. Cells were treated with various concentrations of naringenin (10, 100 & 200 µmol/L) for 48 hours. Cisplatin (20 µg/mL) was used as positive control. Cell viability, apoptosis, migration and mRNA, and protein expression of caspase-3, matrixmetallo proteinases-2 (MMP-2) and MMP-9 were determined. The cell viability was 93.7 ± 7.5, 51.4 ± 4.4 and 32.1 ± 2.1 at 10, 100 and 200 µmol/L of naringenin respectively. Naringenin significantly increased apoptotic cells. The 100 and 200 µmol/L of naringenin significantly suppressed the larger wounds of cultured human cancer cells compared with the untreated lung cancer cells. Naringenin increased d the expression of caspase-3 and reduced the expression of MMP-2 and MMP-9. Taking all these data together, it is suggested that the naringenin was effective against human lung cancer proliferation, migration and metastasis.
Collapse
Affiliation(s)
- Xingyuan Shi
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Xueping Luo
- Department of Thoracic surgeryThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Ting Chen
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Wei Guo
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Chanjin Liang
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Sihan Tang
- Guangzhou key Laboratory of Enhanced Recovery after Abdominal Surgery, Department of Radiation OncologyThe Fifth hospital of Guangzhou Medial UniversityGuangzhouChina
| | - Jianming Mo
- Department of Respiratory MedicinePeking University Shenzhen HospitalShenzhenChina
| |
Collapse
|