1
|
Benton R, Mermet J, Jang A, Endo K, Cruchet S, Menuz K. An integrated anatomical, functional and evolutionary view of the Drosophila olfactory system. EMBO Rep 2025:10.1038/s44319-025-00476-8. [PMID: 40389758 DOI: 10.1038/s44319-025-00476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/21/2025] Open
Abstract
The Drosophila melanogaster olfactory system is one of the most intensively studied parts of the nervous system in any animal. Composed of ~50 independent olfactory neuron classes, with several associated hygrosensory and thermosensory pathways, it has been subject to diverse types of experimental analyses. However, synthesizing the available information is limited by the incomplete data and inconsistent nomenclature found in the literature. In this work, we first "complete" the peripheral sensory map through the identification of a previously uncharacterized antennal sensory neuron population expressing Or46aB, and the definition of an exceptional "hybrid" olfactory neuron class comprising functional Or and Ir receptors. Second, we survey developmental, anatomical, connectomic, functional, and evolutionary studies to generate an integrated dataset and associated visualizations of these sensory neuron pathways, creating an unprecedented resource. Third, we illustrate the utility of the dataset to reveal relationships between different organizational properties of this sensory system, and the new questions these stimulate. Such examples emphasize the power of this resource to promote further understanding of the construction, function, and evolution of these neural circuits.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Jérôme Mermet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Andre Jang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA
| | - Keita Endo
- RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Karen Menuz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, 06269, USA.
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
2
|
Talross GJS, Carlson JR. New dimensions in the molecular genetics of insect chemoreception. Trends Genet 2025:S0168-9525(25)00078-2. [PMID: 40340097 DOI: 10.1016/j.tig.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025]
Abstract
Chemoreception is the foundation of olfaction and taste, which in insects underlie the detection of humans to whom they spread disease and crops that they ravage. Recent advances have provided clear and in some cases surprising new insights into the molecular genetics of chemoreception. We describe mechanisms that govern the choice of a single Odorant receptor gene by an olfactory receptor neuron in Drosophila. We highlight genetic and epigenetic mechanisms by which chemoreceptor expression can be modulated. Exitrons, RNA editing, and pseudo-pseudogenes in chemosensory systems are described. We summarize key insights from the recent structural determinations of odorant and taste receptors. Finally, new molecular components of chemosensory systems, including long noncoding RNAs, are described.
Collapse
Affiliation(s)
- Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
3
|
Persyn E, Duyck PF, François MC, Mille C, Jacob V, Jacquin-Joly E. Transcriptomic analyses in thirteen Tephritidae species provide insights into the ecological driving force behind odorant receptor evolution. Mol Phylogenet Evol 2025; 206:108322. [PMID: 40049262 DOI: 10.1016/j.ympev.2025.108322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/12/2025]
Abstract
The insect olfactory system has evolved while guiding species to specific mating partners, different food sources, and oviposition sites. How species repertoires of odorant receptors (ORs), responsible for the detection of volatile cues, have been shaped by ecologically driven forces remains poorly understood. Due to several host switches back and forth throughout their evolutionary history, fruit flies of the Tephritidae family (Diptera) show highly diverse host preferences, making them good models to address this question. For instance, a comparative analysis of genomic and transcriptomic resources on a large variety of fruit fly species could provide statistical conclusions. Here, we used a RNAseq approach to identify the OR repertoires of thirteen Tephritidae species with different host ranges, namely Bactrocera curvipennis, Bactrocera dorsalis, Bactrocera psidii, Bactrocera tryoni, Bactrocera umbrosa, Bactrocera zonata, Ceratitis capitata, Ceratitis catoirii, Ceratitis quilicii, Dacus ciliatus, Dacus demmerezi, Neoceratitis cyanescens, and Zeugodacus cucurbitae. Manual curation allowed us to annotate 60-80 OR transcripts per species, including the obligatory coreceptor Orco. In total, we reported 698 new OR sequences. Differential expression analyses between antennae and maxillary palps and between the two sexes, performed in three species, revealed some organ- and sex-biased OR expression. Moreover, after adjusting for phylogenetic distance, we found significant correlations between some characteristics of the OR repertoire and species host range: sequences and relative expression level of several ORs were more conserved in polyphagous than in oligophagous species and, in addition, other ORs were found specifically in polyphagous species. Our results provide molecular insights into the ecological driving forces behind Tephritidae OR evolution.
Collapse
Affiliation(s)
- Emma Persyn
- CIRAD, Université de la Réunion, UMR PVBMT, 7, ch. de l'IRAT, F-97410 Saint-Pierre, La Réunion, France; INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France
| | - Pierre-François Duyck
- IAC, Institut Agronomique néo-Calédonien, Équipe ARBOREAL, Laboratoire d'Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, F-98880, La Foa, New Caledonia; CIRAD, UMR PVBMT, F-98488 Nouméa, New Caledonia
| | - Marie-Christine François
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France
| | - Christian Mille
- IAC, Institut Agronomique néo-Calédonien, Équipe ARBOREAL, Laboratoire d'Entomologie Appliquée, Station de Recherches Fruitières de Pocquereux, F-98880, La Foa, New Caledonia
| | - Vincent Jacob
- CIRAD, Université de la Réunion, UMR PVBMT, 7, ch. de l'IRAT, F-97410 Saint-Pierre, La Réunion, France.
| | - Emmanuelle Jacquin-Joly
- INRAE, Sorbonne Université, CNRS, IRD, UPEC, Université Paris Cité, Institute of Ecology & Environmental Sciences of Paris, Route de Saint-Cyr, F-78026 Versailles Cedex, France.
| |
Collapse
|
4
|
Mermet J, Cruchet S, Borbora AS, Lee D, Chai PC, Jang A, Menuz K, Benton R. Multilayer regulation underlies the functional precision and evolvability of the olfactory system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.632932. [PMID: 39868256 PMCID: PMC11761423 DOI: 10.1101/2025.01.16.632932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Sensory neurons must be reproducibly specified to permit accurate neural representation of external signals but also able to change during evolution. We studied this paradox in the Drosophila olfactory system by establishing a single-cell transcriptomic atlas of all developing antennal sensory lineages, including latent neural populations that normally undergo programmed cell death (PCD). This atlas reveals that transcriptional control is robust, but imperfect, in defining selective sensory receptor expression. A second layer of precision is afforded by the intersection of expression of functionally-interacting receptor subunits. A third layer is defined by stereotyped PCD patterning, which masks promiscuous receptor expression in neurons fated to die and removes "empty" neurons lacking receptors. Like receptor choice, PCD is under lineage-specific transcriptional control; promiscuity in this regulation leads to previously-unappreciated heterogeneity in neuronal numbers. Thus functional precision in the mature olfactory system belies developmental noise that might facilitate the evolution of sensory pathways.
Collapse
Affiliation(s)
- Jérôme Mermet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Asfa Sabrin Borbora
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Daehan Lee
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Phing Chian Chai
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Andre Jang
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Karen Menuz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269, United States
- Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
5
|
Yan H. Insect olfactory neurons: receptors, development, and function. CURRENT OPINION IN INSECT SCIENCE 2025; 67:101288. [PMID: 39490981 DOI: 10.1016/j.cois.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Insects represent the most diverse group of animals in the world. While the olfactory systems of different species share general principles of organization, they also exhibit a wide range of structural and functional diversity. Scientists have gained tremendous insight into olfactory neural development and function, notably in Drosophila, but also in other insect species (see reviews by Benton, 2022; Robertson, 2019; Yan et al., 2020). In the last few years, new evidence has steadily mounted, for example, the stoichiometry of odorant receptor and co-receptor (OR-Orco) complex. This review aims to highlight the recent progress on four aspects: (1) the structure and function of the OR-Orco complex, (2) chemosensory gene co-expression, (3) diverse neural developmental processes, and (4) the role of genes and neurons in olfactory development and olfactory-mediated behavior.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA; Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
6
|
Benton R, Mermet J, Jang A, Endo K, Cruchet S, Menuz K. An integrated anatomical, functional and evolutionary view of the Drosophila olfactory system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.632927. [PMID: 39868125 PMCID: PMC11760703 DOI: 10.1101/2025.01.16.632927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The Drosophila melanogaster olfactory system is one of the most intensively studied parts of the nervous system in any animal. Composed of ~60 independent olfactory neuron classes, with several associated hygrosensory and thermosensory pathways, it has been subject to diverse types of experimental analyses. However, synthesizing the available data is limited by the incompleteness and inconsistent nomenclature found in the literature. In this work, we first "complete" the peripheral sensory map through the identification of a previously uncharacterized antennal sensory neuron population expressing Or46aB, and the definition of an exceptional "hybrid" olfactory neuron class comprising functional Or and Ir receptors. Second, we survey developmental, anatomical, connectomic, functional and evolutionary studies to generate an integrated dataset of these sensory neuron pathways - and associated visualizations - creating an unprecedented comprehensive resource. Third, we illustrate the utility of the dataset to reveal relationships between different organizational properties of this sensory system, and the new questions these stimulate. These examples emphasize the power of this resource to promote further understanding of the construction, function and evolution of these neural circuits.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne CH-1015 Lausanne Switzerland
| | - Jérôme Mermet
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne CH-1015 Lausanne Switzerland
| | - Andre Jang
- Department of Physiology and Neurobiology University of Connecticut Storrs Connecticut 06269 United States
| | - Keita Endo
- RIKEN Center for Brain Science Wako Saitama 351-0198 Japan
| | - Steeve Cruchet
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne CH-1015 Lausanne Switzerland
| | - Karen Menuz
- Department of Physiology and Neurobiology University of Connecticut Storrs Connecticut 06269 United States
- Connecticut Institute for Brain and Cognitive Sciences University of Connecticut Storrs Connecticut 06269 United States
| |
Collapse
|
7
|
Lazar AA, Liu T, Yeh CH, Zhou Y. Modeling and characterization of pure and odorant mixture processing in the Drosophila mushroom body calyx. Front Physiol 2024; 15:1410946. [PMID: 39479309 PMCID: PMC11521939 DOI: 10.3389/fphys.2024.1410946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/05/2024] [Indexed: 11/02/2024] Open
Abstract
Associative memory in the Mushroom Body of the fruit fly brain depends on the encoding and processing of odorants in the first three stages of the Early Olfactory System: the Antenna, the Antennal Lobe and the Mushroom Body Calyx. The Kenyon Cells (KCs) of the Calyx provide the Mushroom Body compartments the identity of pure and odorant mixtures encoded as a train of spikes. Characterizing the code underlying the KC spike trains is a major challenge in neuroscience. To address this challenge we start by explicitly modeling the space of odorants using constructs of both semantic and syntactic information. Odorant semantics concerns the identity of odorants while odorant syntactics pertains to their concentration amplitude. These odorant attributes are multiplicatively coupled in the process of olfactory transduction. A key question that early olfactory systems must address is how to disentangle the odorant semantic information from the odorant syntactic information. To address the untanglement we devised an Odorant Encoding Machine (OEM) modeling the first three stages of early olfactory processing in the fruit fly brain. Each processing stage is modeled by Divisive Normalization Processors (DNPs). DNPs are spatio-temporal models of canonical computation of brain circuits. The end-to-end OEM is constructed as cascaded DNPs. By extensively modeling and characterizing the processing of pure and odorant mixtures in the Calyx, we seek to answer the question of its functional significance. We demonstrate that the DNP circuits in the OEM combinedly reduce the variability of the Calyx response to odorant concentration, thereby separating odorant semantic information from syntactic information. We then advance a code, called first spike sequence code, that the KCs make available at the output of the Calyx. We show that the semantics of odorants can be represented by this code in the spike domain and is ready for easy memory access in the Mushroom Body compartments.
Collapse
Affiliation(s)
- Aurel A. Lazar
- Bionet Group, Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Tingkai Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Chung-Heng Yeh
- Bionet Group, Department of Electrical Engineering, Columbia University, New York, NY, United States
| | - Yiyin Zhou
- Department of Computer and Information Science, Fordham University, New York, NY, United States
| |
Collapse
|
8
|
Takagi S, Sancer G, Abuin L, Stupski SD, Roman Arguello J, Prieto-Godino LL, Stern DL, Cruchet S, Álvarez-Ocaña R, Wienecke CFR, van Breugel F, Jeanne JM, Auer TO, Benton R. Olfactory sensory neuron population expansions influence projection neuron adaptation and enhance odour tracking. Nat Commun 2024; 15:7041. [PMID: 39147786 PMCID: PMC11327376 DOI: 10.1038/s41467-024-50808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous olfactory pathways of Drosophila melanogaster and its close relative Drosophila sechellia, an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN number increases contribute to stronger, more persistent, noni-odour tracking behaviour. These expansions result in increased synaptic connections of sensory neurons with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odour-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron population expansions to explain ecologically-relevant, species-specific behaviour.
Collapse
Affiliation(s)
- Suguru Takagi
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Gizem Sancer
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Liliane Abuin
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - S David Stupski
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - J Roman Arguello
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Lucia L Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- The Francis Crick Institute, London, UK
| | - David L Stern
- Janelia Research Campus of the Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Carl F R Wienecke
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Harvard Medical School, Cambridge, MA, USA
| | - Floris van Breugel
- Department of Mechanical Engineering, University of Nevada, Reno, NV, USA
| | - James M Jeanne
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Vien KM, Duan Q, Yeung C, Barish S, Volkan PC. Atypical cadherin, Fat2, regulates axon terminal organization in the developing Drosophila olfactory receptor neurons. iScience 2024; 27:110340. [PMID: 39055932 PMCID: PMC11269957 DOI: 10.1016/j.isci.2024.110340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/08/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The process of how neuronal identity confers circuit organization is intricately related to the mechanisms underlying neurodegeneration and neuropathologies. Modeling this process, the olfactory circuit builds a functionally organized topographic map, which requires widely dispersed neurons with the same identity to converge their axons into one a class-specific neuropil, a glomerulus. In this article, we identified Fat2 (also known as Kugelei) as a regulator of class-specific axon organization. In fat2 mutants, axons belonging to the highest fat2-expressing classes present with a more severe phenotype compared to axons belonging to low fat2-expressing classes. In extreme cases, mutations lead to neural degeneration. Lastly, we found that Fat2 intracellular domain interactors, APC1/2 (Adenomatous polyposis coli) and dop (Drop out), likely orchestrate the cytoskeletal remodeling required for axon condensation. Altogether, we provide a potential mechanism for how cell surface proteins' regulation of cytoskeletal remodeling necessitates identity specific circuit organization.
Collapse
Affiliation(s)
- Khanh M. Vien
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Chun Yeung
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Scott Barish
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Sieriebriennikov B, Sieber KR, Kolumba O, Mlejnek J, Jafari S, Yan H. Orco-dependent survival of odorant receptor neurons in ants. SCIENCE ADVANCES 2024; 10:eadk9000. [PMID: 38848359 PMCID: PMC11160473 DOI: 10.1126/sciadv.adk9000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Olfaction is essential for complex social behavior in insects. To discriminate complex social cues, ants evolved an expanded number of odorant receptor (Or) genes. Mutations in the obligate odorant co-receptor gene orco lead to the loss of ~80% of the antennal lobe glomeruli in the jumping ant Harpegnathos saltator. However, the cellular mechanism remains unclear. Here, we demonstrate massive apoptosis of odorant receptor neurons (ORNs) in the mid to late stages of pupal development, possibly due to ER stress in the absence of Orco. Further bulk and single-nucleus transcriptome analysis shows that, although most orco-expressing ORNs die in orco mutants, a small proportion of them survive: They express ionotropic receptor (Ir) genes that form IR complexes. In addition, we found that some Or genes are expressed in mechanosensory neurons and nonneuronal cells, possibly due to leaky regulation from nearby non-Or genes. Our findings provide a comprehensive overview of ORN development and Or expression in H. saltator.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Biology, New York University, New York, NY 10003, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Kayli R. Sieber
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| | - Olena Kolumba
- Department of Biology, New York University, New York, NY 10003, USA
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Jakub Mlejnek
- Department of Biology, New York University, New York, NY 10003, USA
| | - Shadi Jafari
- Department of Biology, New York University, New York, NY 10003, USA
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
11
|
Takagi S, Sancer G, Abuin L, Stupski SD, Arguello JR, Prieto-Godino LL, Stern DL, Cruchet S, Alvarez-Ocana R, Wienecke CFR, van Breugel F, Jeanne JM, Auer TO, Benton R. Sensory neuron population expansion enhances odor tracking without sensitizing projection neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.556782. [PMID: 37745467 PMCID: PMC10515935 DOI: 10.1101/2023.09.15.556782] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The evolutionary expansion of sensory neuron populations detecting important environmental cues is widespread, but functionally enigmatic. We investigated this phenomenon through comparison of homologous neural pathways of Drosophila melanogaster and its close relative Drosophila sechellia , an extreme specialist for Morinda citrifolia noni fruit. D. sechellia has evolved species-specific expansions in select, noni-detecting olfactory sensory neuron (OSN) populations, through multigenic changes. Activation and inhibition of defined proportions of neurons demonstrate that OSN population increases contribute to stronger, more persistent, noni-odor tracking behavior. These sensory neuron expansions result in increased synaptic connections with their projection neuron (PN) partners, which are conserved in number between species. Surprisingly, having more OSNs does not lead to greater odor-evoked PN sensitivity or reliability. Rather, pathways with increased sensory pooling exhibit reduced PN adaptation, likely through weakened lateral inhibition. Our work reveals an unexpected functional impact of sensory neuron expansions to explain ecologically-relevant, species-specific behavior.
Collapse
|
12
|
Duan Q, Estrella R, Carson A, Chen Y, Volkan PC. The effect of Drosophila attP40 background on the glomerular organization of Or47b olfactory receptor neurons. G3 (BETHESDA, MD.) 2023; 13:jkad022. [PMID: 36695023 PMCID: PMC10085800 DOI: 10.1093/g3journal/jkad022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Bacteriophage integrase-directed insertion of transgenic constructs into specific genomic loci has been widely used by Drosophila community. The attP40 landing site located on the second chromosome gained popularity because of its high inducible transgene expression levels. Here, unexpectedly, we found that homozygous attP40 chromosome disrupts normal glomerular organization of Or47b olfactory receptor neuron (ORN) class in Drosophila. This effect is not likely to be caused by the loss of function of Msp300, where the attP40 docking site is inserted. Moreover, the attP40 background seems to genetically interact with the second chromosome Or47b-GAL4 driver, which results in a similar glomerular defect. Whether the ORN phenotype is caused by the neighbouring genes around Msp300 locus in the presence of attP40-based insertions or a second unknown mutation in the attP40 background remains elusive. Our findings tell a cautionary tale about using this popular transgenic landing site, highlighting the importance of rigorous controls to rule out the attP40 landing site-associated background effects.
Collapse
Affiliation(s)
- Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Rachel Estrella
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Allison Carson
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Yang Chen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Pelin C Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
13
|
Abstract
Among the many wonders of nature, the sense of smell of the fly Drosophila melanogaster might seem, at first glance, of esoteric interest. Nevertheless, for over a century, the 'nose' of this insect has been an extraordinary system to explore questions in animal behaviour, ecology and evolution, neuroscience, physiology and molecular genetics. The insights gained are relevant for our understanding of the sensory biology of vertebrates, including humans, and other insect species, encompassing those detrimental to human health. Here, I present an overview of our current knowledge of D. melanogaster olfaction, from molecules to behaviours, with an emphasis on the historical motivations of studies and illustration of how technical innovations have enabled advances. I also highlight some of the pressing and long-term questions.
Collapse
Affiliation(s)
- Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
14
|
Dorrego-Rivas A, Grubb MS. Developing and maintaining a nose-to-brain map of odorant identity. Open Biol 2022; 12:220053. [PMID: 35765817 PMCID: PMC9240688 DOI: 10.1098/rsob.220053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/24/2022] [Indexed: 01/04/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the olfactory epithelium of the nose transduce chemical odorant stimuli into electrical signals. These signals are then sent to the OSNs' target structure in the brain, the main olfactory bulb (OB), which performs the initial stages of sensory processing in olfaction. The projection of OSNs to the OB is highly organized in a chemospatial map, whereby axon terminals from OSNs expressing the same odorant receptor (OR) coalesce into individual spherical structures known as glomeruli. This nose-to-brain map of odorant identity is built from late embryonic development to early postnatal life, through a complex combination of genetically encoded, OR-dependent and activity-dependent mechanisms. It must then be actively maintained throughout adulthood as OSNs experience turnover due to external insult and ongoing neurogenesis. Our review describes and discusses these two distinct and crucial processes in olfaction, focusing on the known mechanisms that first establish and then maintain chemospatial order in the mammalian OSN-to-OB projection.
Collapse
Affiliation(s)
- Ana Dorrego-Rivas
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| | - Matthew S. Grubb
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK
| |
Collapse
|
15
|
Li DZ, Duan SG, Yang RN, Yi SC, Liu A, Abdelnabby HE, Wang MQ. BarH1 regulates odorant-binding proteins expression and olfactory perception of Monochamus alternatus Hope. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 140:103677. [PMID: 34763091 DOI: 10.1016/j.ibmb.2021.103677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/22/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Insect odorant-binding proteins (OBPs) are a class of small soluble proteins that can be found in various tissues wherein binding and transport of small molecules are required. Thus, OBPs are not only involved in typical olfactory function by specific activities with odorants but also participate in other physiological processes in non-chemosensory tissues. To better understand the complex biological functions of OBPs, it is necessary to study the transcriptional regulation of their expression patterns. In this paper, an apparent gradient expression pattern of Obp19, that was highly and specifically expressed in antennae and played an essential role in the detection of camphene, was defined in the antennae of the Japanese pine sawyer. Further, the transcription factor BarH1, that also presented gradient expression pattern in antennae, was found to regulate expression of Obp19 directly through binding to its upstream DNA sequence. The condition of BarH1 gene silence, the gene expression levels of Obp19 significantly decreased. At the same time, additional olfactory genes also were regulated and thus influence camphene reception. These findings provide us an opportunity to incorporate Obps in the gene regulatory networks of insects, which contribute to a better understanding of the multiplicity and diversity of OBPs and the olfactory mediated behaviors.
Collapse
Affiliation(s)
- Dong-Zhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China; Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, PR China
| | - Shuang-Gang Duan
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Rui-Nan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ao Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hazem Elewa Abdelnabby
- Department of Plant Protection, Faculty of Agriculture, Benha University, Banha, Qalyubia, 13736, Egypt
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
16
|
Mika K, Benton R. Olfactory Receptor Gene Regulation in Insects: Multiple Mechanisms for Singular Expression. Front Neurosci 2021; 15:738088. [PMID: 34602974 PMCID: PMC8481607 DOI: 10.3389/fnins.2021.738088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
The singular expression of insect olfactory receptors in specific populations of olfactory sensory neurons is fundamental to the encoding of odors in patterns of neuronal activity in the brain. How a receptor gene is selected, from among a large repertoire in the genome, to be expressed in a particular neuron is an outstanding question. Focusing on Drosophila melanogaster, where most investigations have been performed, but incorporating recent insights from other insect species, we review the multilevel regulatory mechanisms of olfactory receptor expression. We discuss how cis-regulatory elements, trans-acting factors, chromatin modifications, and feedback pathways collaborate to activate and maintain expression of the chosen receptor (and to suppress others), highlighting similarities and differences with the mechanisms underlying singular receptor expression in mammals. We also consider the plasticity of receptor regulation in response to environmental cues and internal state during the lifetime of an individual, as well as the evolution of novel expression patterns over longer timescales. Finally, we describe the mechanisms and potential significance of examples of receptor co-expression.
Collapse
Affiliation(s)
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Mika K, Cruchet S, Chai PC, Prieto-Godino LL, Auer TO, Pradervand S, Benton R. Olfactory receptor-dependent receptor repression in Drosophila. SCIENCE ADVANCES 2021; 7:eabe3745. [PMID: 34362730 PMCID: PMC8346220 DOI: 10.1126/sciadv.abe3745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/17/2021] [Indexed: 06/01/2023]
Abstract
In olfactory systems across phyla, most sensory neurons express a single olfactory receptor gene selected from a large genomic repertoire. We describe previously unknown receptor gene-dependent mechanisms that ensure singular expression of receptors encoded by a tandem gene array [Ionotropic receptor 75c (Ir75c), Ir75b, and Ir75a, organized 5' to 3'] in Drosophila melanogaster Transcription from upstream genes in the cluster runs through the coding region of downstream loci and inhibits their expression in cis, most likely via transcriptional interference. Moreover, Ir75c blocks accumulation of other receptor proteins in trans through a protein-dependent, posttranscriptional mechanism. These repression mechanisms operate in endogenous neurons, in conjunction with cell type-specific gene regulatory networks, to ensure unique receptor expression. Our data provide evidence for inter-olfactory receptor regulation in invertebrates and highlight unprecedented, but potentially widespread, mechanisms for ensuring exclusive expression of chemosensory receptors, and other protein families, encoded by tandemly arranged genes.
Collapse
Affiliation(s)
- Kaan Mika
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Steeve Cruchet
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Phing Chian Chai
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Lucia L Prieto-Godino
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Sylvain Pradervand
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Lausanne Genomic Technologies Facility, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
18
|
Gaudel F, Guiraudie-Capraz G, Féron F. Limbic Expression of mRNA Coding for Chemoreceptors in Human Brain-Lessons from Brain Atlases. Int J Mol Sci 2021; 22:ijms22136858. [PMID: 34202385 PMCID: PMC8267617 DOI: 10.3390/ijms22136858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
Animals strongly rely on chemical senses to uncover the outside world and adjust their behaviour. Chemical signals are perceived by facial sensitive chemosensors that can be clustered into three families, namely the gustatory (TASR), olfactory (OR, TAAR) and pheromonal (VNR, FPR) receptors. Over recent decades, chemoreceptors were identified in non-facial parts of the body, including the brain. In order to map chemoreceptors within the encephalon, we performed a study based on four brain atlases. The transcript expression of selected members of the three chemoreceptor families and their canonical partners was analysed in major areas of healthy and demented human brains. Genes encoding all studied chemoreceptors are transcribed in the central nervous system, particularly in the limbic system. RNA of their canonical transduction partners (G proteins, ion channels) are also observed in all studied brain areas, reinforcing the suggestion that cerebral chemoreceptors are functional. In addition, we noticed that: (i) bitterness-associated receptors display an enriched expression, (ii) the brain is equipped to sense trace amines and pheromonal cues and (iii) chemoreceptor RNA expression varies with age, but not dementia or brain trauma. Extensive studies are now required to further understand how the brain makes sense of endogenous chemicals.
Collapse
|
19
|
Pojer JM, Saiful Hilmi AJ, Kondo S, Harvey KF. Crumbs and the apical spectrin cytoskeleton regulate R8 cell fate in the Drosophila eye. PLoS Genet 2021; 17:e1009146. [PMID: 34097697 PMCID: PMC8211197 DOI: 10.1371/journal.pgen.1009146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/17/2021] [Accepted: 05/11/2021] [Indexed: 12/31/2022] Open
Abstract
The Hippo pathway is an important regulator of organ growth and cell fate. In the R8 photoreceptor cells of the Drosophila melanogaster eye, the Hippo pathway controls the fate choice between one of two subtypes that express either the blue light-sensitive Rhodopsin 5 (Hippo inactive R8 subtype) or the green light-sensitive Rhodopsin 6 (Hippo active R8 subtype). The degree to which the mechanism of Hippo signal transduction and the proteins that mediate it are conserved in organ growth and R8 cell fate choice is currently unclear. Here, we identify Crumbs and the apical spectrin cytoskeleton as regulators of R8 cell fate. By contrast, other proteins that influence Hippo-dependent organ growth, such as the basolateral spectrin cytoskeleton and Ajuba, are dispensable for the R8 cell fate choice. Surprisingly, Crumbs promotes the Rhodopsin 5 cell fate, which is driven by Yorkie, rather than the Rhodopsin 6 cell fate, which is driven by Warts and the Hippo pathway, which contrasts with its impact on Hippo activity in organ growth. Furthermore, neither the apical spectrin cytoskeleton nor Crumbs appear to regulate the Hippo pathway through mechanisms that have been observed in growing organs. Together, these results show that only a subset of Hippo pathway proteins regulate the R8 binary cell fate decision and that aspects of Hippo signalling differ between growing organs and post-mitotic R8 cells.
Collapse
Affiliation(s)
- Jonathan M. Pojer
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdul Jabbar Saiful Hilmi
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| |
Collapse
|
20
|
Jafari S, Henriksson J, Yan H, Alenius M. Stress and odorant receptor feedback during a critical period after hatching regulates olfactory sensory neuron differentiation in Drosophila. PLoS Biol 2021; 19:e3001101. [PMID: 33793547 PMCID: PMC8043390 DOI: 10.1371/journal.pbio.3001101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/13/2021] [Accepted: 03/02/2021] [Indexed: 11/19/2022] Open
Abstract
Here, we reveal that the regulation of Drosophila odorant receptor (OR) expression during the pupal stage is permissive and imprecise. We found that directly after hatching an OR feedback mechanism both directs and refines OR expression. We demonstrate that, as in mice, dLsd1 and Su(var)3-9 balance heterochromatin formation to direct OR expression. We show that the expressed OR induces dLsd1 and Su(var)3-9 expression, linking OR level and possibly function to OR expression. OR expression refinement shows a restricted duration, suggesting that a gene regulatory critical period brings olfactory sensory neuron differentiation to an end. Consistent with a change in differentiation, stress during the critical period represses dLsd1 and Su(var)3-9 expression and makes the early permissive OR expression permanent. This induced permissive gene regulatory state makes OR expression resilient to stress later in life. Hence, during a critical period OR feedback, similar to in mouse OR selection, defines adult OR expression in Drosophila.
Collapse
Affiliation(s)
- Shadi Jafari
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Johan Henriksson
- Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Hua Yan
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Mattias Alenius
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
21
|
Chen Z, Traniello IM, Rana S, Cash-Ahmed AC, Sankey AL, Yang C, Robinson GE. Neurodevelopmental and transcriptomic effects of CRISPR/Cas9-induced somatic orco mutation in honey bees. J Neurogenet 2021; 35:320-332. [PMID: 33666542 DOI: 10.1080/01677063.2021.1887173] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In insects, odorant receptors facilitate olfactory communication and require the functionality of the highly conserved co-receptor gene orco. Genome editing studies in a few species of ants and moths have revealed that orco can also have a neurodevelopmental function, in addition to its canonical role in adult olfaction, discovered first in Drosophila melanogaster. To extend this analysis, we determined whether orco mutations also affect the development of the adult brain of the honey bee Apis mellifera, an important model system for social behavior and chemical communication. We used CRISPR/Cas9 to knock out orco and examined anatomical and molecular consequences. To increase efficiency, we coupled embryo microinjection with a laboratory egg collection and in vitro rearing system. This new workflow advances genomic engineering technologies in honey bees by overcoming restrictions associated with field studies. We used Sanger sequencing to quickly select individuals with complete orco knockout for neuroanatomical analyses and later validated and described the mutations with amplicon sequencing. Mutant bees had significantly fewer glomeruli, smaller total volume of all the glomeruli, and higher mean individual glomerulus volume in the antennal lobe compared to wild-type controls. RNA-Sequencing revealed that orco knockout also caused differential expression of hundreds of genes in the antenna, including genes related to neural development and genes encoding odorant receptors. The expression of other types of chemoreceptor genes was generally unaffected, reflecting specificity of CRISPR activity in this study. These results suggest that neurodevelopmental effects of orco are related to specific insect life histories.
Collapse
Affiliation(s)
- Zhenqing Chen
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ian M Traniello
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Seema Rana
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amy C Cash-Ahmed
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alison L Sankey
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Che Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Biochemistry Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
22
|
Arguello JR, Abuin L, Armida J, Mika K, Chai PC, Benton R. Targeted molecular profiling of rare olfactory sensory neurons identifies fate, wiring, and functional determinants. eLife 2021; 10:63036. [PMID: 33666172 PMCID: PMC7993999 DOI: 10.7554/elife.63036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Determining the molecular properties of neurons is essential to understand their development, function and evolution. Using Targeted DamID (TaDa), we characterize RNA polymerase II occupancy and chromatin accessibility in selected Ionotropic receptor (Ir)-expressing olfactory sensory neurons in Drosophila. Although individual populations represent a minute fraction of cells, TaDa is sufficiently sensitive and specific to identify the expected receptor genes. Unique Ir expression is not consistently associated with differences in chromatin accessibility, but rather to distinct transcription factor profiles. Genes that are heterogeneously expressed across populations are enriched for neurodevelopmental factors, and we identify functions for the POU-domain protein Pdm3 as a genetic switch of Ir neuron fate, and the atypical cadherin Flamingo in segregation of neurons into discrete glomeruli. Together this study reveals the effectiveness of TaDa in profiling rare neural populations, identifies new roles for a transcription factor and a neuronal guidance molecule, and provides valuable datasets for future exploration.
Collapse
Affiliation(s)
- J Roman Arguello
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland.,Department of Ecology and Evolution Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Liliane Abuin
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Jan Armida
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Kaan Mika
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Phing Chian Chai
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
23
|
Abstract
A detailed description of olfactory system development in ants reveals that - unlike in Drosophila and as in mammals - olfactory receptors may play a role, providing new insights into the developmental evolution of complex chemosensory systems.
Collapse
Affiliation(s)
- Qichen Duan
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
24
|
Zhao Z, McBride CS. Evolution of olfactory circuits in insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 206:353-367. [PMID: 31984441 PMCID: PMC7192870 DOI: 10.1007/s00359-020-01399-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/12/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Recent years have seen an explosion of interest in the evolution of neural circuits. Comparison of animals from different families, orders, and phyla reveals fascinating variation in brain morphology, circuit structure, and neural cell types. However, it can be difficult to connect the complex changes that occur across long evolutionary distances to behavior. Luckily, these changes accumulate through processes that should also be observable in recent time, making more tractable comparisons of closely related species relevant and complementary. Here, we review several decades of research on the evolution of insect olfactory circuits across short evolutionary time scales. We describe two well-studied systems, Drosophila sechellia flies and Heliothis moths, in detailed case studies. We then move through key types of circuit evolution, cataloging examples from other insects and looking for general patterns. The literature is dominated by changes in sensory neuron number and tuning at the periphery-often enhancing neural response to odorants with new ecological or social relevance. However, changes in the way olfactory information is processed by central circuits is clearly important in a few cases, and we suspect the development of genetic tools in non-model species will reveal a broad role for central circuit evolution. Moving forward, such tools should also be used to rigorously test causal links between brain evolution and behavior.
Collapse
Affiliation(s)
- Zhilei Zhao
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| | - Carolyn S McBride
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
25
|
Leyva-Díaz E, Masoudi N, Serrano-Saiz E, Glenwinkel L, Hobert O. Brn3/POU-IV-type POU homeobox genes-Paradigmatic regulators of neuronal identity across phylogeny. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e374. [PMID: 32012462 DOI: 10.1002/wdev.374] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/18/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
One approach to understand the construction of complex systems is to investigate whether there are simple design principles that are commonly used in building such a system. In the context of nervous system development, one may ask whether the generation of its highly diverse sets of constituents, that is, distinct neuronal cell types, relies on genetic mechanisms that share specific common features. Specifically, are there common patterns in the function of regulatory genes across different neuron types and are those regulatory mechanisms not only used in different parts of one nervous system, but are they conserved across animal phylogeny? We address these questions here by focusing on one specific, highly conserved and well-studied regulatory factor, the POU homeodomain transcription factor UNC-86. Work over the last 30 years has revealed a common and paradigmatic theme of unc-86 function throughout most of the neuron types in which Caenorhabditis elegans unc-86 is expressed. Apart from its role in preventing lineage reiterations during development, UNC-86 operates in combination with distinct partner proteins to initiate and maintain terminal differentiation programs, by coregulating a vast array of functionally distinct identity determinants of specific neuron types. Mouse orthologs of unc-86, the Brn3 genes, have been shown to fulfill a similar function in initiating and maintaining neuronal identity in specific parts of the mouse brain and similar functions appear to be carried out by the sole Drosophila ortholog, Acj6. The terminal selector function of UNC-86 in many different neuron types provides a paradigm for neuronal identity regulation across phylogeny. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Regulatory Mechanisms Invertebrate Organogenesis > Worms Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Eduardo Leyva-Díaz
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | - Neda Masoudi
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | | | - Lori Glenwinkel
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York
| |
Collapse
|
26
|
Anholt RRH. Chemosensation and Evolution of Drosophila Host Plant Selection. iScience 2020; 23:100799. [PMID: 31923648 PMCID: PMC6951304 DOI: 10.1016/j.isci.2019.100799] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
The ability to respond to chemosensory cues is critical for survival of most organisms. Among insects, Drosophila melanogaster has the best characterized olfactory system, and the availability of genome sequences of 30 Drosophila species provides an ideal scenario for studies on evolution of chemosensation. Gene duplications of chemoreceptor genes allow for functional diversification of the rapidly evolving chemoreceptor repertoire. Although some species of the genus Drosophila are generalists for host plant selection, rapid evolution of olfactory receptors, gustatory receptors, odorant-binding proteins, and cytochrome P450s has enabled diverse host specializations of different members of the genus. Here, I review diversification of the chemoreceptor repertoire among members of the genus Drosophila along with co-evolution of detoxification mechanisms that may have enabled occupation of diverse host plant ecological niches.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA.
| |
Collapse
|
27
|
Misawa N, Osaki T, Takeuchi S. Membrane protein-based biosensors. J R Soc Interface 2019; 15:rsif.2017.0952. [PMID: 29669891 DOI: 10.1098/rsif.2017.0952] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/19/2018] [Indexed: 01/09/2023] Open
Abstract
This review highlights recent development of biosensors that use the functions of membrane proteins. Membrane proteins are essential components of biological membranes and have a central role in detection of various environmental stimuli such as olfaction and gustation. A number of studies have attempted for development of biosensors using the sensing property of these membrane proteins. Their specificity to target molecules is particularly attractive as it is significantly superior to that of traditional human-made sensors. In this review, we classified the membrane protein-based biosensors into two platforms: the lipid bilayer-based platform and the cell-based platform. On lipid bilayer platforms, the membrane proteins are embedded in a lipid bilayer that bridges between the protein and a sensor device. On cell-based platforms, the membrane proteins are expressed in a cultured cell, which is then integrated in a sensor device. For both platforms we introduce the fundamental information and the recent progress in the development of the biosensors, and remark on the outlook for practical biosensing applications.
Collapse
Affiliation(s)
- Nobuo Misawa
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan.,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group, Kanagawa Institute of Industrial Science and Technology, 3-2-1 Sakado, Takatsu, Kawasaki 213-0012, Japan .,Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| |
Collapse
|
28
|
Chai PC, Cruchet S, Wigger L, Benton R. Sensory neuron lineage mapping and manipulation in the Drosophila olfactory system. Nat Commun 2019; 10:643. [PMID: 30733440 PMCID: PMC6367400 DOI: 10.1038/s41467-019-08345-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/28/2018] [Indexed: 11/20/2022] Open
Abstract
Nervous systems exhibit myriad cell types, but understanding how this diversity arises is hampered by the difficulty to visualize and genetically-probe specific lineages, especially at early developmental stages prior to expression of unique molecular markers. Here, we use a genetic immortalization method to analyze the development of sensory neuron lineages in the Drosophila olfactory system, from their origin to terminal differentiation. We apply this approach to define a fate map of nearly all olfactory lineages and refine the model of temporal patterns of lineage divisions. Taking advantage of a selective marker for the lineage that gives rise to Or67d pheromone-sensing neurons and a genome-wide transcription factor RNAi screen, we identify the spatial and temporal requirements for Pointed, an ETS family member, in this developmental pathway. Transcriptomic analysis of wild-type and Pointed-depleted olfactory tissue reveals a universal requirement for this factor as a switch-like determinant of fates in these sensory lineages. Few tools exist to study molecular diversity during neurodevelopment. Here the authors apply a genetic immortalization method in Drosophila to generate a fate map of olfactory sensory lineages, examine the relationships of this map and the neuroanatomical, molecular and evolutionary properties of the mature circuits, and identify a novel factor controlling lineage development.
Collapse
Affiliation(s)
- Phing Chian Chai
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Steeve Cruchet
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Leonore Wigger
- Lausanne Genomic Technologies Facility, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.,Vital-IT Group, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
29
|
The Effects of High Fat Diet-Induced Stress on Olfactory Sensitivity, Behaviors, and Transcriptional Profiling in Drosophila melanogaster. Int J Mol Sci 2018; 19:ijms19102855. [PMID: 30241362 PMCID: PMC6213603 DOI: 10.3390/ijms19102855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
High-fat diet (HFD) often causes obesity and it has detrimental effects on the sensory system. In particular, sensory-mediated responses are crucial for maintaining energy balance, as they are involved in a metabolic regulation; however, there is still no clear explanation about the relationship between HFD-induced stress and sensory system. To gain insight on how HFD-induced stress affects olfactory sensitivity and behavioral responses, we have used a Drosophila melanogaster model for olfactory and nutrient-related signaling and accessed physiological, behavioral, and transcriptional changes. We demonstrated that lifespan and climbing ability in HFD-treated flies decreased and that olfactory sensitivity and behavioral responses to odorants were changed. Olfactory sensitivity to eight of ten odorants after 14 days on HFD treatment were reduced, while behavioral attraction was increased to benzaldehyde in flies that were treated with HFD. This behavioral and physiological modification in HFD-treated flies for 14 days was accompanied by a significant decrease in DmOrco gene expression in a peripheral olfactory organ, suggesting that is could be involved in the action of metabolic and sensory signal. Gene expression profiles of antennae showed significant differences on the olfactory receptors, odorant-binding proteins, and insulin signaling. Our results suggested that olfactory sensitivity and behavioral responses to HFD-induced stress are mediated through olfactory and nutrient-related signaling pathways.
Collapse
|
30
|
Opachaloemphan C, Yan H, Leibholz A, Desplan C, Reinberg D. Recent Advances in Behavioral (Epi)Genetics in Eusocial Insects. Annu Rev Genet 2018; 52:489-510. [PMID: 30208294 DOI: 10.1146/annurev-genet-120116-024456] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eusocial insects live in societies in which distinct family members serve specific roles in maintaining the colony and advancing the reproductive ability of a few select individuals. Given the genetic similarity of all colony members, the diversity of morphologies and behaviors is surprising. Social communication relies on pheromones and olfaction, as shown by mutants of orco, the universal odorant receptor coreceptor, and through electrophysiological analysis of neuronal responses to pheromones. Additionally, neurohormonal factors and epigenetic regulators play a key role in caste-specific behavior, such as foraging and caste switching. These studies start to allow an understanding of the molecular mechanisms underlying social behavior and provide a technological foundation for future studies of eusocial insects. In this review, we highlight recent findings in eusocial insects that advance our understanding of genetic and epigenetic regulations of social behavior and provide perspectives on future studies using cutting-edge technologies.
Collapse
Affiliation(s)
- Comzit Opachaloemphan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; ,
| | - Hua Yan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; , .,Department of Biology, University of Florida, Gainesville, Florida 32611, USA; .,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | | | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA; ,
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA; , .,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
31
|
Gomez-Diaz C, Martin F, Garcia-Fernandez JM, Alcorta E. The Two Main Olfactory Receptor Families in Drosophila, ORs and IRs: A Comparative Approach. Front Cell Neurosci 2018; 12:253. [PMID: 30214396 PMCID: PMC6125307 DOI: 10.3389/fncel.2018.00253] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/23/2018] [Indexed: 12/20/2022] Open
Abstract
Most insect species rely on the detection of olfactory cues for critical behaviors for the survival of the species, e.g., finding food, suitable mates and appropriate egg-laying sites. Although insects show a diverse array of molecular receptors dedicated to the detection of sensory cues, two main types of molecular receptors have been described as responsible for olfactory reception in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). Although both receptor families share the role of being the first chemosensors in the insect olfactory system, they show distinct evolutionary origins and several distinct structural and functional characteristics. While ORs are seven-transmembrane-domain receptor proteins, IRs are related to the ionotropic glutamate receptor (iGluR) family. Both types of receptors are expressed on the olfactory sensory neurons (OSNs) of the main olfactory organ, the antenna, but they are housed in different types of sensilla, IRs in coeloconic sensilla and ORs in basiconic and trichoid sensilla. More importantly, from the functional point of view, they display different odorant specificity profiles. Research advances in the last decade have improved our understanding of the molecular basis, evolution and functional roles of these two families, but there are still controversies and unsolved key questions that remain to be answered. Here, we present an updated review on the advances of the genetic basis, evolution, structure, functional response and regulation of both types of chemosensory receptors. We use a comparative approach to highlight the similarities and differences among them. Moreover, we will discuss major open questions in the field of olfactory reception in insects. A comprehensive analysis of the structural and functional convergence and divergence of both types of receptors will help in elucidating the molecular basis of the function and regulation of chemoreception in insects.
Collapse
Affiliation(s)
- Carolina Gomez-Diaz
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | - Fernando Martin
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| | | | - Esther Alcorta
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, Oviedo, Spain
| |
Collapse
|
32
|
Combinations of DIPs and Dprs control organization of olfactory receptor neuron terminals in Drosophila. PLoS Genet 2018; 14:e1007560. [PMID: 30102700 PMCID: PMC6107282 DOI: 10.1371/journal.pgen.1007560] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/23/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022] Open
Abstract
In Drosophila, 50 classes of olfactory receptor neurons (ORNs) connect to 50 class-specific and uniquely positioned glomeruli in the antennal lobe. Despite the identification of cell surface receptors regulating axon guidance, how ORN axons sort to form 50 stereotypical glomeruli remains unclear. Here we show that the heterophilic cell adhesion proteins, DIPs and Dprs, are expressed in ORNs during glomerular formation. Many ORN classes express a unique combination of DIPs/dprs, with neurons of the same class expressing interacting partners, suggesting a role in class-specific self-adhesion between ORN axons. Analysis of DIP/Dpr expression revealed that ORNs that target neighboring glomeruli have different combinations, and ORNs with very similar DIP/Dpr combinations can project to distant glomeruli in the antennal lobe. DIP/Dpr profiles are dynamic during development and correlate with sensilla type lineage for some ORN classes. Perturbations of DIP/dpr gene function result in local projection defects of ORN axons and glomerular positioning, without altering correct matching of ORNs with their target neurons. Our results suggest that context-dependent differential adhesion through DIP/Dpr combinations regulate self-adhesion and sort ORN axons into uniquely positioned glomeruli. In the human brain there are over 80 billion neurons that form approximately 100 trillion specific connections. How the brain organizes the axon terminals of these neurons into distinct synaptic units on such a large scale is largely unknown. In Drosophila, 50 classes of olfactory receptor neurons (ORNs) connect to 50 class-specific and uniquely positioned glomeruli in the antennal lobe, providing a complex yet workable model to understand the organization of glomerular structures and morphology. Here we show that the heterophilic cell adhesion proteins, DIPs and Dprs, are expressed in ORNs during glomerular formation. Many ORN classes express a unique combination of DIPs/dprs, with neurons of the same class expressing interacting partners, suggesting a role in class-specific self-adhesion between ORN axons. Analysis of DIP/Dpr expression revealed that ORNs that target neighboring glomeruli have different combinations, and ORNs with very similar DIP/Dpr combinations can project to distant glomeruli in the antennal lobe. Perturbations of DIP/dpr gene function result in local projection defects of ORN axons and glomerular positioning, without altering correct matching of ORNs with their target neurons. Our results suggest that context-dependent differential adhesion through DIP/Dpr combinations regulate self-adhesion and sort ORN axons into uniquely positioned glomeruli.
Collapse
|
33
|
Barish S, Volkan PC. Preparing Developing Peripheral Olfactory Tissue for Molecular and Immunohistochemical Analysis in Drosophila. J Vis Exp 2018. [PMID: 29985372 DOI: 10.3791/57716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The olfactory system of Drosophila is a widely used system in developmental neurobiology, systems neuroscience, as well as neurophysiology, behavior, and behavioral evolution. Drosophila olfactory tissues house the olfactory receptor neurons (ORNs) that detect volatile chemical cues in addition to hydro- and thermo-sensory neurons. In this protocol, we describe the dissection of developing peripheral olfactory tissue of the adult Drosophila species. We first describe how to stage and age Drosophila larvae, followed by the dissection of the antennal disc from early pupal stages, followed by the dissection of the antennae from mid-pupal stages and adults. We also show methods where preparations can be utilized in molecular techniques, such as the RNA extraction for qRT-PCR, RNAseq, or immunohistochemistry. These methods can also be applied to other Drosophila species after species-specific pupal development times are determined, and respective stages are calculated for appropriate aging.
Collapse
|
34
|
Li H, Shuster SA, Li J, Luo L. Linking neuronal lineage and wiring specificity. Neural Dev 2018; 13:5. [PMID: 29653548 PMCID: PMC5899351 DOI: 10.1186/s13064-018-0102-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/14/2018] [Indexed: 02/01/2023] Open
Abstract
Brain function requires precise neural circuit assembly during development. Establishing a functional circuit involves multiple coordinated steps ranging from neural cell fate specification to proper matching between pre- and post-synaptic partners. How neuronal lineage and birth timing influence wiring specificity remains an open question. Recent findings suggest that the relationships between lineage, birth timing, and wiring specificity vary in different neuronal circuits. In this review, we summarize our current understanding of the cellular, molecular, and developmental mechanisms linking neuronal lineage and birth timing to wiring specificity in a few specific systems in Drosophila and mice, and review different methods employed to explore these mechanisms.
Collapse
Affiliation(s)
- Hongjie Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - S. Andrew Shuster
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA 94305 USA
| | - Jiefu Li
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
35
|
Dang P, Fisher SA, Stefanik DJ, Kim J, Raper JA. Coordination of olfactory receptor choice with guidance receptor expression and function in olfactory sensory neurons. PLoS Genet 2018; 14:e1007164. [PMID: 29385124 PMCID: PMC5809090 DOI: 10.1371/journal.pgen.1007164] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/12/2018] [Accepted: 12/25/2017] [Indexed: 11/18/2022] Open
Abstract
Olfactory sensory neurons choose to express a single odorant receptor (OR) from a large gene repertoire and extend axons to reproducible, OR-specific locations within the olfactory bulb. This developmental process produces a topographically organized map of odorant experience in the brain. The axon guidance mechanisms that generate this pattern of connectivity, as well as those that coordinate OR choice and axonal guidance receptor expression, are incompletely understood. We applied the powerful approach of single-cell RNA-seq on newly born olfactory sensory neurons (OSNs) in young zebrafish larvae to address these issues. Expression profiles were generated for 56 individual Olfactory Marker Protein (OMP) positive sensory neurons by single-cell (SC) RNA-seq. We show that just as in mouse OSNs, mature zebrafish OSNs typically express a single predominant OR transcript. Our previous work suggests that OSN targeting is related to the OR clade from which a sensory neuron chooses to express its odorant receptor. We categorized each of the mature cells based on the clade of their predominantly expressed OR. Transcripts expressed at higher levels in each of three clade-related categories were identified using Penalized Linear Discriminant Analysis (PLDA). A genome-wide approach was used to identify membrane-associated proteins that are most likely to have guidance-related activity. We found that OSNs that choose to express an OR from a particular clade also express specific subsets of potential axon guidance genes and transcription factors. We validated our identification of candidate axon guidance genes for one clade of OSNs using bulk RNA-seq from a subset of transgene-labeled neurons that project to a single protoglomerulus. The differential expression patterns of selected candidate guidance genes were confirmed using fluorescent in situ hybridization. Most importantly, we observed axonal mistargeting in knockouts of three candidate axonal guidance genes identified in this analysis: nrp1a, nrp1b, and robo2. In each case, targeting errors were detected in the subset of axons that normally express these transcripts at high levels, and not in the axons that express them at low levels. Our findings demonstrate that specific, functional, axonal guidance related genes are expressed in subsets of OSNs that that can be categorized by their patterns of OR expression.
Collapse
Affiliation(s)
- Puneet Dang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, United States of America
| | - Stephen A. Fisher
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Derek J. Stefanik
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jonathan A. Raper
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
36
|
Shao X, Lakhina V, Dang P, Cheng RP, Marcaccio CL, Raper JA. Olfactory sensory axons target specific protoglomeruli in the olfactory bulb of zebrafish. Neural Dev 2017; 12:18. [PMID: 29020985 PMCID: PMC5637265 DOI: 10.1186/s13064-017-0095-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/24/2017] [Indexed: 01/08/2023] Open
Abstract
Background The axons of Olfactory Sensory Neurons (OSNs) project to reproducible target locations within the Olfactory Bulb (OB), converting odorant experience into a spatial map of neural activity. We characterized the initial targeting of OSN axons in the zebrafish, a model system suitable for studying axonal targeting early in development. In this system the initial targets of OSN axons are a small number of distinct, individually identifiable neuropilar regions called protoglomeruli. Previously, Olfactory Marker Protein-expressing and TRPC2-expressing classes of OSNs were shown to project to specific, non-overlapping sets of protoglomeruli, indicating that particular subsets of OSNs project to specific protoglomerular targets. We set out to map the relationship between the classical Odorant Receptor (OR) an OSN chooses to express and the protoglomerulus its axon targets. Methods A panel of BACs were recombineered so that the axons of OSNs choosing to express modified ORs were fluorescently labeled. Axon projections were followed into the olfactory bulb to determine the protoglomeruli in which they terminated. Results RNA-seq demonstrates that OSNs express a surprisingly wide variety of ORs and Trace Amine Associated Receptors (TAARs) very early when sensory axons are arriving in the bulb. Only a single OR is expressed in any given OSN even at these early developmental times. We used a BAC expression technique to map the trajectories of OSNs expressing specific odorant receptors. ORs can be divided into three clades based upon their sequence similarities. OSNs expressing ORs from two of these clades project to the CZ protoglomerulus, while OSNs expressing ORs from the third clade project to the DZ protoglomerulus. In contrast, OSNs expressing a particular TAAR project to multiple protoglomeruli. Neither OR choice nor axonal targeting are related to the position an OSN occupies within the olfactory pit. Conclusions Our results demonstrate that it is not the choice of a particular OR, but of one from a category of ORs, that is related to initial OSN target location within the olfactory bulb. These choices are not related to OSN position within the olfactory epithelium.
Collapse
Affiliation(s)
- Xin Shao
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Vanisha Lakhina
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08540, USA
| | - Puneet Dang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ryan P Cheng
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Christina L Marcaccio
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jonathan A Raper
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA. .,, 105 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
37
|
Pan JW, Li Q, Barish S, Okuwa S, Zhao S, Soeder C, Kanke M, Jones CD, Volkan PC. Patterns of transcriptional parallelism and variation in the developing olfactory system of Drosophila species. Sci Rep 2017; 7:8804. [PMID: 28821769 PMCID: PMC5562767 DOI: 10.1038/s41598-017-08563-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/13/2017] [Indexed: 11/09/2022] Open
Abstract
Organisms have evolved strikingly parallel phenotypes in response to similar selection pressures suggesting that there may be shared constraints limiting the possible evolutionary trajectories. For example, the behavioral adaptation of specialist Drosophila species to specific host plants can exhibit parallel changes in their adult olfactory neuroanatomy. We investigated the genetic basis of these parallel changes by comparing gene expression during the development of the olfactory system of two specialist Drosophila species to that of four other generalist species. Our results suggest that the parallelism observed in the adult olfactory neuroanatomy of ecological specialists extends more broadly to their developmental antennal expression profiles, and to the transcription factor combinations specifying olfactory receptor neuron (ORN) fates. Additionally, comparing general patterns of variation for the antennal transcriptional profiles in the adult and developing olfactory system of the six species suggest the possibility that specific, non-random components of the developmental programs underlying the Drosophila olfactory system harbor a disproportionate amount of interspecies variation. Further examination of these developmental components may be able to inform a deeper understanding of how traits evolve.
Collapse
Affiliation(s)
- Jia Wern Pan
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Qingyun Li
- Department of Biology, Stanford University, Stanford, California, USA
| | - Scott Barish
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Sumie Okuwa
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Songhui Zhao
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Charles Soeder
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew Kanke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Corbin D Jones
- Department of Biology and Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
38
|
Hsieh YW, Alqadah A, Chuang CF. Mechanisms controlling diversification of olfactory sensory neuron classes. Cell Mol Life Sci 2017; 74:3263-3274. [PMID: 28357469 DOI: 10.1007/s00018-017-2512-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 12/25/2022]
Abstract
Animals survive in harsh and fluctuating environments using sensory neurons to detect and respond to changes in their surroundings. Olfactory sensory neurons are essential for detecting food, identifying danger, and sensing pheromones. The ability to sense a large repertoire of different types of odors is crucial to distinguish between different situations, and is achieved through neuronal diversity within the olfactory system. Here, we review the developmental mechanisms used to establish diversity of olfactory sensory neurons in various model organisms, including Caenorhabditis elegans, Drosophila, and vertebrate models. Understanding and comparing how different olfactory neurons develop within the nervous system of different animals can provide insight into how the olfactory system is shaped in humans.
Collapse
Affiliation(s)
- Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA
| | - Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue, MC 567, Chicago, IL, 60607, USA.
| |
Collapse
|
39
|
Prieto-Godino LL, Rytz R, Cruchet S, Bargeton B, Abuin L, Silbering AF, Ruta V, Dal Peraro M, Benton R. Evolution of Acid-Sensing Olfactory Circuits in Drosophilids. Neuron 2017; 93:661-676.e6. [DOI: 10.1016/j.neuron.2016.12.024] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 10/18/2016] [Accepted: 12/15/2016] [Indexed: 11/29/2022]
|
40
|
Larter NK, Sun JS, Carlson JR. Organization and function of Drosophila odorant binding proteins. eLife 2016; 5. [PMID: 27845621 PMCID: PMC5127637 DOI: 10.7554/elife.20242] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/14/2016] [Indexed: 01/03/2023] Open
Abstract
Odorant binding proteins (Obps) are remarkable in their number, diversity, and abundance, yet their role in olfactory coding remains unclear. They are widely believed to be required for transporting hydrophobic odorants through an aqueous lymph to odorant receptors. We construct a map of the Drosophila antenna, in which the abundant Obps are mapped to olfactory sensilla with defined functions. The results lay a foundation for an incisive analysis of Obp function. The map identifies a sensillum type that contains a single abundant Obp, Obp28a. Surprisingly, deletion of the sole abundant Obp in these sensilla does not reduce the magnitude of their olfactory responses. The results suggest that this Obp is not required for odorant transport and that this sensillum does not require an abundant Obp. The results further suggest a novel role for this Obp in buffering changes in the odor environment, perhaps providing a molecular form of gain control. DOI:http://dx.doi.org/10.7554/eLife.20242.001 Insects use their sense of smell to find mates, to find food and – in the case of insects that transmit diseases such as malaria and Zika – to find us. If we can understand how insect scent detection works at the molecular and cellular level, we may be able to devise new ways of manipulating the insects’ sense of smell and prevent them from finding us. Insects contain a family of proteins called odorant binding proteins that are intriguing in several ways. They are numerous (there are 52 kinds in the fruit fly Drosophila), they are diverse and some are made in remarkably large amounts in the antennae. Fine hair-like structures known as olfactory sensilla protrude from the surface of the antennae. Odorant binding proteins are widely believed to carry odorant molecules through the fluid inside the sensilla to olfactory neurons, which then send signals that trigger the insect’s response to the scent. Larter et al. have now mapped the most abundant odorant binding proteins to the various olfactory sensilla of Drosophila. This revealed that a type of sensillum known as ab8 contained only one abundant odorant binding protein, called Obp28a. Unexpectedly, Larter et al. found that ab8 sensilla that are deprived of this protein respond strongly to odorant molecules. This result suggests that Obp28a is not required to transport odorants to the neurons in ab8; indeed, it appears that these neurons do not require an abundant odorant binding protein in order to respond to a scent. Instead, Obp28a helps to moderate the effects of sudden changes in the level of an odorant in the environment, so that concentrated odors do not trigger too large a response from the olfactory neurons. The details of the role that Obp28a plays in olfactory sensilla remain to be investigated in future studies, and the map created by Larter et al. also lays a foundation for studying the roles of other odorant binding proteins. The discovery that Obp28a is not needed to transport odorant molecules also raises questions about how insects are able to detect smells. Many odorant molecules repel water, so how do these molecules travel through the fluid in the sensilla if odorant binding proteins are not needed to transport them? DOI:http://dx.doi.org/10.7554/eLife.20242.002
Collapse
Affiliation(s)
- Nikki K Larter
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| | - Jennifer S Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - John R Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,Interdepartmental Neuroscience Program, Yale University, New Haven, United States
| |
Collapse
|
41
|
Librado P, Rozas J. Weak Polygenic Selection Drives the Rapid Adaptation of the Chemosensory System: Lessons from the Upstream Regions of the Major Gene Families. Genome Biol Evol 2016; 8:2493-504. [PMID: 27503297 PMCID: PMC5010915 DOI: 10.1093/gbe/evw191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 12/12/2022] Open
Abstract
The animal chemosensory system is involved in essential biological processes, most of them mediated by proteins encoded in multigene families. These multigene families have been fundamental for the adaptation to new environments, significantly contributing to phenotypic variation. This adaptive potential contrasts, however, with the lack of studies at their upstream regions, especially taking into account the evidence linking their transcriptional changes to certain phenotypic effects. Here, we explicitly characterize the contribution of the upstream sequences of the major chemosensory gene families to rapid adaptive processes. For that, we analyze the genome sequences of 158 lines from a population of Drosophila melanogaster that recently colonized North America, and integrate functional and transcriptional data available for this species. We find that both, strong negative and strong positive selection, shape transcriptional evolution at the genome-wide level. The chemosensory upstream regions, however, exhibit a distinctive adaptive landscape, including multiple mutations of small beneficial effect and a reduced number of cis-regulatory elements. Together, our results suggest that the promiscuous and partially redundant transcription and function of the chemosensory genes provide evolutionarily opportunities for rapid adaptive episodes through weak polygenic selection.
Collapse
Affiliation(s)
- Pablo Librado
- Departament de Genètica, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Julio Rozas
- Departament de Genètica, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Ferrer I, Garcia-Esparcia P, Carmona M, Carro E, Aronica E, Kovacs GG, Grison A, Gustincich S. Olfactory Receptors in Non-Chemosensory Organs: The Nervous System in Health and Disease. Front Aging Neurosci 2016; 8:163. [PMID: 27458372 PMCID: PMC4932117 DOI: 10.3389/fnagi.2016.00163] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells’ own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson’s disease (PD), Alzheimer’s disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.
Collapse
Affiliation(s)
- Isidro Ferrer
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Paula Garcia-Esparcia
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Margarita Carmona
- Institute of Neuropathology, Bellvitge University Hospital, Hospitalet de Llobregat, University of BarcelonaBarcelona, Spain; Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de LlobregatBarcelona, Spain
| | - Eva Carro
- Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED)Madrid, Spain; Neuroscience Group, Research Institute HospitalMadrid, Spain
| | - Eleonora Aronica
- Department of Neuropathology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna Vienna, Austria
| | - Alice Grison
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience Trieste, Italy
| | - Stefano Gustincich
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Area of Neuroscience Trieste, Italy
| |
Collapse
|
43
|
Antennal transcriptome analysis of the Asian longhorned beetle Anoplophora glabripennis. Sci Rep 2016; 6:26652. [PMID: 27222053 PMCID: PMC4879564 DOI: 10.1038/srep26652] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 05/04/2016] [Indexed: 11/11/2022] Open
Abstract
Olfactory proteins form the basis of insect olfactory recognition, which is crucial for host identification, mating, and oviposition. Using transcriptome analysis of Anoplophora glabripennis antenna, we identified 42 odorant-binding proteins (OBPs), 12 chemosensory proteins (CSPs), 14 pheromone-degrading enzymes (PDEs), 1 odorant-degrading enzymes (ODE), 37 odorant receptors (ORs), 11 gustatory receptors (GRs), 2 sensory neuron membrane proteins (SNMPs), and 4 ionotropic receptor (IR). All CSPs and PBPs were expressed in antennae, confirming the authenticity of the transcriptome data. CSP expression profiles showed that AglaCSP3, AglaCSP6, and AglaCSP12 were expressed preferentially in maxillary palps and AglaCSP7 and AglaCSP9 were strongly expressed in antennae. The vast majority of CSPs were highly expressed in multiple chemosensory tissues, suggesting their participation in olfactory recognition in almost all olfactory tissues. Intriguingly, the PBP AglaPBP2 was preferentially expressed in antenna, indicating that it is the main protein involved in efficient and sensitive pheromone recognition. Phylogenetic analysis of olfactory proteins indicated AglaGR1 may detect CO2. This study establishes a foundation for determining the chemoreception molecular mechanisms of A. glabripennis, which would provide a new perspective for controlling pest populations, especially those of borers.
Collapse
|
44
|
Falk N, Lösl M, Schröder N, Gießl A. Specialized Cilia in Mammalian Sensory Systems. Cells 2015; 4:500-19. [PMID: 26378583 PMCID: PMC4588048 DOI: 10.3390/cells4030500] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/04/2015] [Accepted: 09/09/2015] [Indexed: 02/01/2023] Open
Abstract
Cilia and flagella are highly conserved and important microtubule-based organelles that project from the surface of eukaryotic cells and act as antennae to sense extracellular signals. Moreover, cilia have emerged as key players in numerous physiological, developmental, and sensory processes such as hearing, olfaction, and photoreception. Genetic defects in ciliary proteins responsible for cilia formation, maintenance, or function underlie a wide array of human diseases like deafness, anosmia, and retinal degeneration in sensory systems. Impairment of more than one sensory organ results in numerous syndromic ciliary disorders like the autosomal recessive genetic diseases Bardet-Biedl and Usher syndrome. Here we describe the structure and distinct functional roles of cilia in sensory organs like the inner ear, the olfactory epithelium, and the retina of the mouse. The spectrum of ciliary function in fundamental cellular processes highlights the importance of elucidating ciliopathy-related proteins in order to find novel potential therapies.
Collapse
Affiliation(s)
- Nathalie Falk
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Marlene Lösl
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Nadja Schröder
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Andreas Gießl
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|