1
|
Shrestha P, Patel NL, Kalen JD, Usama SM, Schnermann MJ. Tracking the Fate of Therapeutic Proteins Using Ratiometric Imaging of Responsive Shortwave Infrared Probes. J Am Chem Soc 2025. [PMID: 40025700 DOI: 10.1021/jacs.4c15614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Monoclonal antibodies (mAbs) are essential agents for cancer treatment and diagnosis. Advanced optical imaging strategies have the potential to address specific questions regarding their complex in vivo life cycle. This study presents responsive shortwave infrared (SWIR) probes and an associated imaging scheme to assess mAb biodistribution, cellular uptake, and proteolysis. Specifically, we identify a Pegylated benzo-fused norcyanine derivative (Benz-NorCy7) that is activated in acidic environments and can be appended to mAbs without significant changes in optical properties. As a mAb conjugate, this agent shows high tumor specificity in a longitudinal imaging study in a murine model. To enable independent tracking of mAb uptake and lysosomal uptake and retention, a two-color ratiometric imaging strategy was employed using an "always-ON" heptamethine cyanine dye (λex = 785 nm) and the pH-responsive Benz-NorCy7 (λex = 890 nm). To assess proteolytic catabolism, we append a cleavable carbamate to Benz-NorCy7 to create turn-ON probes. These agents facilitate the comparison of two common peptide linkers and provide insights into their in vivo properties. Overall, these studies provide a strategy to assess the fate of protein-based therapeutics using optical imaging.
Collapse
Affiliation(s)
- Pradeep Shrestha
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Nimit L Patel
- Small Animal Imaging Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Joseph D Kalen
- Small Animal Imaging Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
2
|
Verma N, Setia A, Mehata AK, Randhave N, Badgujar P, Malik AK, Muthu MS. Recent Advancement of Indocyanine Green Based Nanotheranostics for Imaging and Therapy of Coronary Atherosclerosis. Mol Pharm 2024; 21:4804-4826. [PMID: 39225111 DOI: 10.1021/acs.molpharmaceut.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is a vascular intima condition in which any part of the circulatory system is affected, including the aorta and coronary arteries. Indocyanine green (ICG), a theranostic compound approved by the FDA, has shown promise in the treatment of coronary atherosclerosis after incorporation into nanoplatforms. By integration of ICG with targeting agents such as peptides or antibodies, it is feasible to increase its concentration in damaged arteries, hence increasing atherosclerosis detection. Nanotheranostics offers cutting-edge techniques for the clinical diagnosis and therapy of atherosclerotic plaques. Combining the optical properties of ICG with those of nanocarriers enables the improved imaging of atherosclerotic plaques and targeted therapeutic interventions. Several ICG-based nanotheranostics platforms have been developed such as polymeric nanoparticles, iron oxide nanoparticles, biomimetic systems, liposomes, peptide-based systems, etc. Theranostics for atherosclerosis diagnosis use magnetic resonance imaging (MRI), computed tomography (CT), near-infrared fluorescence (NIRF) imaging, photoacoustic/ultrasound imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT) imaging techniques. In addition to imaging, there is growing interest in employing ICG to treat atherosclerosis. In this review, we provide a conceptual explanation of ICG-based nanotheranostics for the imaging and therapy of coronary atherosclerosis. Moreover, advancements in imaging modalities such as MRI, CT, PET, SPECT, and ultrasound/photoacoustic have been discussed. Furthermore, we highlight the applications of ICG for coronary atherosclerosis.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
3
|
Roschelle M, Rabbani R, Gweon S, Kumar R, Vercruysse A, Cho NW, Spitzer MH, Niknejad AM, Stojanović VM, Anwar M. A Wireless, Multicolor Fluorescence Image Sensor Implant for Real-Time Monitoring in Cancer Therapy. ARXIV 2024:arXiv:2406.18881v1. [PMID: 38979489 PMCID: PMC11230517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Real-time monitoring of dynamic biological processes in the body is critical to understanding disease progression and treatment response. This data, for instance, can help address the lower than 50% response rates to cancer immunotherapy. However, current clinical imaging modalities lack the molecular contrast, resolution, and chronic usability for rapid and accurate response assessments. Here, we present a fully wireless image sensor featuring a 2.5×5 mm2 CMOS integrated circuit for multicolor fluorescence imaging deep in tissue. The sensor operates wirelessly via ultrasound (US) at 5 cm depth in oil, harvesting energy with 221 mW/cm2 incident US power density (31% of FDA limits) and backscattering data at 13 kbps with a bit error rate <10-6. In-situ fluorescence excitation is provided by micro-laser diodes controlled with a programmable on-chip driver. An optical frontend combining a multi-bandpass interference filter and a fiber optic plate provides >6 OD excitation blocking and enables three-color imaging for detecting multiple cell types. A 36×40-pixel array captures images with <125 μm resolution. We demonstrate wireless, dual-color fluorescence imaging of both effector and suppressor immune cells in ex vivo mouse tumor samples with and without immunotherapy. These results show promise for providing rapid insight into therapeutic response and resistance, guiding personalized medicine.
Collapse
Affiliation(s)
- Micah Roschelle
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 USA
| | - Rozhan Rabbani
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 USA
| | - Surin Gweon
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 USA
| | - Rohan Kumar
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 USA
| | - Alec Vercruysse
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 USA
| | - Nam Woo Cho
- Department of Radiation Oncology and the Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA 94158 USA
| | - Matthew H. Spitzer
- Department of Otolaryngology-Head and Neck Surgery and the Department of Microbiology and Immunology, University of California, San Francisco, CA 94158 USA
| | - Ali M. Niknejad
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 USA
| | - Vladimir M. Stojanović
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 USA
| | - Mekhail Anwar
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley, CA 94720 USA
- Department of Radiation Oncology, University of California, San Francisco, CA 94158 USA
| |
Collapse
|
4
|
Bao K, Yoon JS, Ahn S, Lee JH, Cross CJ, Jeong MY, Frangioni JV, Choi HS. A robotic system for automated chemical synthesis of therapeutic agents. MATERIALS ADVANCES 2024; 5:5290-5297. [PMID: 38894709 PMCID: PMC11181120 DOI: 10.1039/d4ma00099d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The development of novel compounds for tissue-specific targeting and imaging is often impeded by a lack of lead compounds and the availability of reliable chemistry. Automated chemical synthesis systems provide a potential solution by enabling reliable, repeated access to large compound libraries for screening. Here we report an integrated solid-phase combinatorial chemistry system created using commercial and customized robots. Our goal is to optimize reaction parameters, such as varying temperature, shaking, microwave irradiation, aspirating and dispensing large-sized solid beads, and handling different washing solvents for separation and purification. This automated system accommodates diverse chemical reactions such as peptide synthesis and conventional coupling reactions. To confirm its functionality and reproducibility, 20 nerve-specific contrast agents for biomedical imaging were systematically and repeatedly synthesized and compared to other nerve-targeted agents using molecular fingerprinting and Uniform Manifold Approximation and Projection, which lays the foundation for creating reliable and reproductive chemical libraries in bioimaging and nanomedicine.
Collapse
Affiliation(s)
- Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA
- Center for Molecular Imaging, Department of Medicine, Beth Israel Deaconess Medical Center Boston MA 02215 USA
| | - Jong Seo Yoon
- Center for Molecular Imaging, Department of Medicine, Beth Israel Deaconess Medical Center Boston MA 02215 USA
| | - Sung Ahn
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA
| | - Jeong Heon Lee
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA
- Center for Molecular Imaging, Department of Medicine, Beth Israel Deaconess Medical Center Boston MA 02215 USA
| | - Conor J Cross
- Center for Molecular Imaging, Department of Medicine, Beth Israel Deaconess Medical Center Boston MA 02215 USA
| | - Myung Yung Jeong
- Center for Molecular Imaging, Department of Medicine, Beth Israel Deaconess Medical Center Boston MA 02215 USA
- Department of Cogno-Mechatronics Engineering, Pusan National University Busan 46241 South Korea
| | - John V Frangioni
- Center for Molecular Imaging, Department of Medicine, Beth Israel Deaconess Medical Center Boston MA 02215 USA
- Curadel, LLC Natick MA 01760 USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA
- Center for Molecular Imaging, Department of Medicine, Beth Israel Deaconess Medical Center Boston MA 02215 USA
| |
Collapse
|
5
|
Talukdar S, Singh SK, Mishra MK, Singh R. Emerging Trends in Nanotechnology for Endometriosis: Diagnosis to Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:976. [PMID: 38869601 PMCID: PMC11173792 DOI: 10.3390/nano14110976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
Endometriosis, an incurable gynecological disease that causes abnormal growth of uterine-like tissue outside the uterine cavity, leads to pelvic pain and infertility in millions of individuals. Endometriosis can be treated with medicine and surgery, but recurrence and comorbidities impair quality of life. In recent years, nanoparticle (NP)-based therapy has drawn global attention, notably in medicine. Studies have shown that NPs could revolutionize conventional therapeutics and imaging. Researchers aim to enhance the prognosis of endometriosis patients with less invasive and more effective NP-based treatments. This study evaluates this potential paradigm shift in endometriosis management, exploring NP-based systems for improved treatments and diagnostics. Insights into nanotechnology applications, including gene therapy, photothermal therapy, immunotherapy, and magnetic hyperthermia, offering a theoretical reference for the clinical use of nanotechnology in endometriosis treatment, are discussed in this review.
Collapse
Affiliation(s)
- Souvanik Talukdar
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.T.); (S.K.S.)
| | - Santosh K. Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.T.); (S.K.S.)
| | - Manoj K. Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA;
| | - Rajesh Singh
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA; (S.T.); (S.K.S.)
- Cancer Health Equity Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| |
Collapse
|
6
|
Wang M, Xie H, Tang BZ, Wang WX. Novel Near-Infrared-II In Vivo Visualization Revealed Rapid Calcium Intestine Turnover in Daphnia magna with Delayed Impact by Cadmium and Acidification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4558-4570. [PMID: 38408313 DOI: 10.1021/acs.est.3c10468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Calcium is a highly demanded metal, and its transport across the intestine of Daphnia magna remains a significant unresolved question. Due to technical constraints, the visualization of the kinetic process of Ca passage through D. magna has been challenging. Here, we developed the second near-infrared Ca sensor (NIR-II Ca) and conducted real-time in vivo imaging of Ca in daphnids with a high signal-to-noise ratio, deep tissue penetration, and minimal damage. Through the utilization of the NIR-II Ca sensor, we for the first time visualized and quantified the kinetic process of Ca passage in the intestine in real time. The results revealed that trophically available Ca passed through the intestines in 24 h, whereas waterborne Ca required only 35 min. This rapid "flushing through" mechanism established waterborne Ca as the primary source of Ca absorption. However, environmental stressors such as water acidification and cadmium significantly delayed the Ca passage and absorption. The development of NIR imaging and sensors allows for real-time dynamic visualization of contaminants/nutrients in organisms and holds great potential as a powerful tool for future studies into material kinetic processes in living animals.
Collapse
Affiliation(s)
- Mengyu Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Huilin Xie
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Wen-Xiong Wang
- School of Energy and Environment, State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
7
|
Zhang H, Xiang FF, Liu YZ, Chen YJ, Zhou DH, Liu YH, Chen SY, Yu XQ, Li K. Molecular Engineering of Sulfone-Xanthone Chromophore for Enhanced Fluorescence Navigation. JACS AU 2023; 3:3462-3472. [PMID: 38155649 PMCID: PMC10751763 DOI: 10.1021/jacsau.3c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
Enriching the palette of high-performance fluorescent dyes is vital to support the frontier of biomedical imaging. Although various rhodamine skeletons remain the premier type of small-molecule fluorophores due to the apparent high brightness and flexible modifiability, they still suffer from the inherent defect of small Stokes shift due to the nonideal fluorescence imaging signal-to-background ratio. Especially, the rising class of fluorescent dyes, sulfone-substituted xanthone, exhibits great potential, but low chemical stability is also pointed out as the problem. Molecular engineering of sulfone-xanthone to obtain a large Stokes shift and high stability is highly desired, but it is still scarce. Herein, we present the combination modification method for optimizing the performance of sulfone-xanthone. These redesigned fluorescent skeletons owned greatly improved stability and Stokes shift compared with the parent sulfone-rhodamine. To the proof of bioimaging capacity, annexin protein-targeted peptide LS301 was introduced to the most promising dyes, J-S-ARh, to form the tumor-targeted fluorescent probe, J-S-LS301. The resulting probe, J-S-LS301, can be an outstanding fluorescence tool for the orthotopic transplantation tumor model of hepatocellular carcinoma imaging and on-site pathological analysis. In summary, the combination method could serve as a basis for rational optimization of sulfone-xanthone. Overall, the chemistry reported here broadens the scope of accessible sulfone-xanthone functionality and, in turn, enables to facilitate the translation of biomedical research toward the clinical domain.
Collapse
Affiliation(s)
- Hong Zhang
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
- Department
of Radiology, West China Hospital, Sichuan
University, No. 37, Guoxue
Street, Chengdu 610041, P. R. China
| | - Fei-Fan Xiang
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Yan-Zhao Liu
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Yu-Jin Chen
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Ding-Heng Zhou
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Yan-Hong Liu
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Shan-Yong Chen
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| | - Xiao-Qi Yu
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
- Asymmetric
Synthesis and Chiral Technology Key Laboratory of Sichuan Province,
Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Kun Li
- Key
Laboratory of Green Chemistry and Technology of Ministry of Education,
College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
8
|
Maschio R, Buonsanti F, Crivellin F, Ferretti F, Lattuada L, Maisano F, Orio L, Pizzuto L, Campanella R, Clouet A, Cavallotti C, Giovenzana GB. Improved synthesis of DA364, an NIR fluorescence RGD probe targeting α vβ 3 integrin. Org Biomol Chem 2023; 21:8584-8592. [PMID: 37855098 DOI: 10.1039/d3ob01206a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Optical imaging (OI) is gaining increasing attention in medicine as a non-invasive diagnostic imaging technology and as a useful tool for image-guided surgery. OI exploits the light emitted in the near-infrared region by fluorescent molecules able to penetrate living tissues. Cyanines are an important class of fluorescent molecules and by their conjugation to peptides it is possible to achieve optical imaging of tumours by selective targeting. We report here the improvements obtained in the synthesis of DA364, a small fluorescent probe (1.5 kDa) prepared by conjugation of pentamethine cyanine Cy5.5 to an RGD peptidomimetic, which can target tumour cells overexpressing integrin αvβ3 receptors.
Collapse
Affiliation(s)
- Rachele Maschio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy.
| | - Federica Buonsanti
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Federico Crivellin
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Fulvio Ferretti
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Luciano Lattuada
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Federico Maisano
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Laura Orio
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Lorena Pizzuto
- Bracco Imaging Spa, Bracco Research Centre, Via Ribes 5, 10010 Colleretto Giacosa, TO, Italy.
| | - Raphael Campanella
- Bracco Suisse SA, Route de la Galaise 31, 1228 Plan le Ouates, Switzerland
| | - Anthony Clouet
- Bracco Suisse SA, Route de la Galaise 31, 1228 Plan le Ouates, Switzerland
| | | | - Giovanni B Giovenzana
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2/3, 28100 Novara, Italy.
- CAGE Chemicals Srl, Via Bovio 6, 28100 Novara, Italy
| |
Collapse
|
9
|
Mirbeik A, Ebadi N. Deep learning for tumor margin identification in electromagnetic imaging. Sci Rep 2023; 13:15925. [PMID: 37741854 PMCID: PMC10517989 DOI: 10.1038/s41598-023-42625-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
In this work, a novel method for tumor margin identification in electromagnetic imaging is proposed to optimize the tumor removal surgery. This capability will enable the visualization of the border of the cancerous tissue for the surgeon prior or during the excision surgery. To this end, the border between the normal and tumor parts needs to be identified. Therefore, the images need to be segmented into tumor and normal areas. We propose a deep learning technique which divides the electromagnetic images into two regions: tumor and normal, with high accuracy. We formulate deep learning from a perspective relevant to electromagnetic image reconstruction. A recurrent auto-encoder network architecture (termed here DeepTMI) is presented. The effectiveness of the algorithm is demonstrated by segmenting the reconstructed images of an experimental tissue-mimicking phantom. The structure similarity measure (SSIM) and mean-square-error (MSE) average of normalized reconstructed results by the DeepTMI method are about 0.94 and 0.04 respectively, while that average obtained from the conventional backpropagation (BP) method can hardly overcome 0.35 and 0.41 respectively.
Collapse
Affiliation(s)
- Amir Mirbeik
- RadioSight LLC, Hoboken, NJ, 07030, USA
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, 1 Castle Point Ter, Hoboken, NJ, 07030, USA
| | - Negar Ebadi
- Department of Electrical and Computer Engineering, Stevens Institute of Technology, 1 Castle Point Ter, Hoboken, NJ, 07030, USA.
- Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
10
|
Ju M, Yoon K, Lee S, Kim KG. Single Quasi-Symmetrical LED with High Intensity and Wide Beam Width Using Diamond-Shaped Mirror Refraction Method for Surgical Fluorescence Microscope Applications. Diagnostics (Basel) 2023; 13:2763. [PMID: 37685301 PMCID: PMC10486995 DOI: 10.3390/diagnostics13172763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
To remove tumors with the same blood vessel color, observation is performed using a surgical microscope through fluorescent staining. Therefore, surgical microscopes use light emitting diode (LED) emission and excitation wavelengths to induce fluorescence emission wavelengths. LEDs used in hand-held type microscopes have a beam irradiation range of 10° and a weak power of less than 0.5 mW. Therefore, fluorescence emission is difficult. This study proposes to increase the beam width and power of LED by utilizing the quasi-symmetrical beam irradiation method. Commercial LED irradiates a beam 1/r2 distance away from the target (working distance). To obtain the fluorescence emission probability, set up four mirrors. The distance between the mirrors and the LED is 5.9 cm, and the distance between the mirrors and the target is 2.95 cm. The commercial LED reached power on target of 8.0 pW within the wavelength band of 405 nm. The power reaching the target is 0.60 mW in the wavelength band of 405 nm for the LED with the beam mirror attachment method using the quasi-symmetrical beam irradiation method. This result is expected to be sufficient for fluorescence emission. The light power of the mirror was increased by approximately four times.
Collapse
Affiliation(s)
- Minki Ju
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Kicheol Yoon
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Sangyun Lee
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Kwang Gi Kim
- Medical Devices R&D Center, Gachon University Gil Medical Center, 21, 774 beon-gil, Namdong-daero Namdong-gu, Incheon 21565, Republic of Korea; (M.J.); (K.Y.); (S.L.)
- Department of Biomedical Engineering, College of Health Science & Medicine, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology (GAIHST), Gachon University, 38-13, 3 Dokjom-ro, Namdong-gu, Incheon 21565, Republic of Korea
| |
Collapse
|
11
|
Shamim M, Dinh J, Yang C, Nomura S, Kashiwagi S, Kang H, Choi HS, Henary M. Synthesis, Optical Properties, and In Vivo Biodistribution Performance of Polymethine Cyanine Fluorophores. ACS Pharmacol Transl Sci 2023; 6:1192-1206. [PMID: 37588753 PMCID: PMC10425993 DOI: 10.1021/acsptsci.3c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/18/2023]
Abstract
Near-infrared (NIR) cyanine dyes showed enhanced properties for biomedical imaging. A systematic modification within the cyanine skeleton has been made through a facile design and synthetic route for optimal bioimaging. Herein, we report the synthesis of 11 NIR cyanine fluorophores and an investigation of their physicochemical properties, optical characteristics, photostability, and in vivo performance. All synthesized fluorophores absorb and emit within 610-817 nm in various solvents. These dyes also showed high molar extinction coefficients ranging from 27,000 to 270,000 cm-1 M-1, quantum yields 0.01 to 0.33, and molecular brightness 208-79,664 cm-1 M-1 in the tested solvents. Photostability data demonstrate that all tested fluorophores 28, 18, 20, 19, 25, and 24 are more photostable than the FDA-approved indocyanine green. In the biodistribution study, most compounds showed tissue-specific targeting to selectively accumulate in the adrenal glands, lymph nodes, or gallbladder while excreted to the hepatobiliary clearance route. Among the tested, compound 23 showed the best targetability to the bone marrow and lymph nodes. Since the safety of cyanine fluorophores is well established, rationally designed cyanine fluorophores established in the current study will expand an inventory of contrast agents for NIR imaging of not only normal tissues but also cancerous regions originating from these organs/tissues.
Collapse
Affiliation(s)
- Md Shamim
- Department
of Chemistry, Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jason Dinh
- Gordon
Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Chengeng Yang
- Gordon
Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Shinsuke Nomura
- Gordon
Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Satoshi Kashiwagi
- Gordon
Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Homan Kang
- Gordon
Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hak Soo Choi
- Gordon
Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Maged Henary
- Department
of Chemistry, Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
12
|
Imaging of Indocyanine Green-Human Serum Albumin (ICG-HSA) Complex in Secreted Protein Acidic and Rich in Cysteine (SPARC)-Expressing Glioblastoma. Int J Mol Sci 2023; 24:ijms24010850. [PMID: 36614294 PMCID: PMC9821702 DOI: 10.3390/ijms24010850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma is the most common and fatal primary glioma and has a severe prognosis. It is a challenge for neurosurgeons to remove brain tumor tissues completely by resection. Meanwhile, fluorescence-guided surgery (FGS) is a technique used in glioma surgery to enhance the visualization of tumor edges to clarify the extent of tumor resection. Indocyanine green (ICG) is the only FDA-approved NIR fluorescent agent. It non-covalently binds to human serum albumin (HSA). Secreted protein acidic and rich in cysteine (SPARC) is an extracellular glycoprotein expressed in gliomas and binds to albumin, suggesting that it plays an important role in tumor uptake of the ICG-HSA complex. Here we demonstrate the binding properties of HSA or SPARC to ICG using surface plasmon resonance and saturation binding assay. According to in vitro and in vivo studies, the results showed that the uptake of ICG-HSA complex was higher in SPARC-expressing glioblastoma cell line and tumor region compared with the uptake of free ICG. Here, we visualized the SPARC-dependent uptake of ICG and ICG-HSA complex in U87MG. Our results demonstrated that the ICG-HSA complex is likely to be used as an efficient imaging agent targeting SPARC-expressing tumors, especially glioblastoma.
Collapse
|
13
|
Géczi T, Simonka Z, Lantos J, Wetzel M, Szabó Z, Lázár G, Furák J. Near-infrared fluorescence guided surgery: State of the evidence from a health technology assessment perspective. Front Surg 2022; 9:919739. [PMID: 35959120 PMCID: PMC9360526 DOI: 10.3389/fsurg.2022.919739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Different applications of near-infrared fluorescence-guided surgery are very promising, and techniques that help surgeons in intraoperative guidance have been developed, thereby bridging the gap between preoperative imaging and intraoperative visualization and palpation. Thus, these techniques are advantageous in terms of being faster, safer, less invasive, and cheaper. There are a few fluorescent dyes available, but the most commonly used dye is indocyanine green. It can be used in its natural form, but different nanocapsulated and targeted modifications are possible, making this dye more stable and specific. A new active tumor-targeting strategy is the conjugation of indocyanine green nanoparticles with antibodies, making this dye targeted and highly selective to various tumor proteins. In this mini-review, we discuss the application of near-infrared fluorescence-guided techniques in thoracic surgery. During lung surgery, it can help find small, non-palpable, or additional tumor nodules, it is also useful for finding the sentinel lymph node and identifying the proper intersegmental plane for segmentectomies. Furthermore, it can help visualize the thoracic duct, smaller bullae of the lung, phrenic nerve, or pleural nodules. We summarize current applications and provide a framework for future applications and development.
Collapse
Affiliation(s)
- Tibor Géczi
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Correspondence: Tibor Géczi
| | - Zsolt Simonka
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Judit Lantos
- Department of Neurology, Bács-Kiskun County Hospital, Kecskemét, Hungary
| | - Melinda Wetzel
- Department of Anesthesiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Szabó
- Institute of Surgical Research, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - György Lázár
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - József Furák
- Department of Surgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
14
|
Kang H, Kang MW, Kashiwagi S, Choi HS. NIR fluorescence imaging and treatment for cancer immunotherapy. J Immunother Cancer 2022; 10:e004936. [PMID: 35858710 PMCID: PMC9305898 DOI: 10.1136/jitc-2022-004936] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has emerged as one of the most powerful anticancer therapies. However, the details on the interaction between tumors and the immune system are complicated and still poorly understood. Optical fluorescence imaging is a technique that allows for the visualization of fluorescence-labeled immune cells and monitoring of the immune response during immunotherapy. To this end, near-infrared (NIR) light has been adapted for optical fluorescence imaging because it is relatively safe and simple without hazardous ionizing radiation and has relatively deeper tissue penetration into living organisms than visible fluorescence light. In this review, we discuss state-of-the-art NIR optical imaging techniques in cancer immunotherapy to observe the dynamics, efficacy, and responses of the immune components in living organisms. The use of bioimaging labeling techniques will give us an understanding of how the immune system is primed and ultimately developed.
Collapse
Affiliation(s)
- Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Min-Woong Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Yokomizo S, Henary M, Buabeng ER, Fukuda T, Monaco H, Baek Y, Manganiello S, Wang H, Kubota J, Ulumben AD, Lv X, Wang C, Inoue K, Fukushi M, Kang H, Bao K, Kashiwagi S, Choi HS. Topical pH Sensing NIR Fluorophores for Intraoperative Imaging and Surgery of Disseminated Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201416. [PMID: 35567348 PMCID: PMC9286000 DOI: 10.1002/advs.202201416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 05/05/2023]
Abstract
Fluorescence-guided surgery (FGS) aids surgeons with real-time visualization of small cancer foci and borders, which improves surgical and prognostic efficacy of cancer. Despite the steady advances in imaging devices, there is a scarcity of fluorophores available to achieve optimal FGS. Here, 1) a pH-sensitive near-infrared fluorophore that exhibits rapid signal changes in acidic tumor microenvironments (TME) caused by the attenuation of intramolecular quenching, 2) the inherent targeting for cancer based on chemical structure (structure inherent targeting, SIT), and 3) mitochondrial and lysosomal retention are reported. After topical application of PH08 on peritoneal tumor regions in ovarian cancer-bearing mice, a rapid fluorescence increase (< 10 min), and extended preservation of signals (> 4 h post-topical application) are observed, which together allow for the visualization of submillimeter tumors with a high tumor-to-background ratio (TBR > 5.0). In addition, PH08 is preferentially transported to cancer cells via organic anion transporter peptides (OATPs) and colocalizes in the mitochondria and lysosomes due to the positive charges, enabling a long retention time during FGS. PH08 not only has a significant impact on surgical and diagnostic applications but also provides an effective and scalable strategy to design therapeutic agents for a wide array of cancers.
Collapse
Affiliation(s)
- Shinya Yokomizo
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Department of Radiological SciencesTokyo Metropolitan University7‐2‐10 Higashi‐OguArakawaTokyo116–8551Japan
| | - Maged Henary
- Department of Chemistry and Center for Diagnostics and TherapeuticsGeorgia State University100 Piedmont Avenue SEAtlantaGA30303USA
| | - Emmanuel R. Buabeng
- Department of Chemistry and Center for Diagnostics and TherapeuticsGeorgia State University100 Piedmont Avenue SEAtlantaGA30303USA
| | - Takeshi Fukuda
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
- Department of Obstetrics and GynecologyOsaka City University Graduate School of Medicine1‐4‐3, AsahimachiAbeno‐kuOsaka545–8585Japan
| | - Hailey Monaco
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Yoonji Baek
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Sophia Manganiello
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Haoran Wang
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Jo Kubota
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Amy Daniel Ulumben
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Xiangmin Lv
- Vincent Center for Reproductive BiologyVincent Department of Obstetrics and GynecologyMassachusetts General HospitalBostonMA02114USA
| | - Cheng Wang
- Vincent Center for Reproductive BiologyVincent Department of Obstetrics and GynecologyMassachusetts General HospitalBostonMA02114USA
| | - Kazumasa Inoue
- Department of Radiological SciencesTokyo Metropolitan University7‐2‐10 Higashi‐OguArakawaTokyo116–8551Japan
| | - Masahiro Fukushi
- Department of Radiological SciencesTokyo Metropolitan University7‐2‐10 Higashi‐OguArakawaTokyo116–8551Japan
| | - Homan Kang
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Kai Bao
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Hak Soo Choi
- Gordon Center for Medical ImagingDepartment of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| |
Collapse
|
16
|
Fukuda T, Yokomizo S, Casa S, Monaco H, Manganiello S, Wang H, Lv X, Ulumben AD, Yang C, Kang MW, Inoue K, Fukushi M, Sumi T, Wang C, Kang H, Bao K, Henary M, Kashiwagi S, Soo Choi H. Fast and Durable Intraoperative Near-infrared Imaging of Ovarian Cancer Using Ultrabright Squaraine Fluorophores. Angew Chem Int Ed Engl 2022; 61:e202117330. [PMID: 35150468 PMCID: PMC9007913 DOI: 10.1002/anie.202117330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Indexed: 12/19/2022]
Abstract
The residual tumor after surgery is the most significant prognostic factor of patients with epithelial ovarian cancer. Near-infrared (NIR) fluorescence-guided surgery is actively utilized for tumor localization and complete resection during surgery. However, currently available contrast-enhancing agents display low on-target binding, unfavorable pharmacokinetics, and toxicity, thus not ideal for clinical use. Here we report ultrabright and stable squaraine fluorophores with optimal pharmacokinetics by introducing an asymmetric molecular conformation and surface charges for rapid transporter-mediated cellular uptake. Among the tested, OCTL14 shows low serum binding and rapid distribution into cancer tissue via organic cation transporters (OCTs). Additionally, the charged squaraine fluorophores are retained in lysosomes, providing durable intraoperative imaging in a preclinical murine model of ovarian cancer up to 24 h post-injection. OCTL14 represents a significant departure from the current bioconjugation approach of using a non-targeted fluorophore and would provide surgeons with an indispensable tool to achieve optimal resection.
Collapse
Affiliation(s)
- Takeshi Fukuda
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo, 116-8551, Japan
| | - Stefanie Casa
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Hailey Monaco
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sophia Manganiello
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Haoran Wang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xiangmin Lv
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amy Daniel Ulumben
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chengeng Yang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Min-Woong Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Daejeon, 301-721, South Korea
| | - Kazumasa Inoue
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo, 116-8551, Japan
| | - Masahiro Fukushi
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo, 116-8551, Japan
| | - Toshiyuki Sumi
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Cheng Wang
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Maged Henary
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
- Center for Diagnostics and Therapeutics, 145 Piedmont Avenue S.E., Atlanta, GA 30303, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
17
|
Valderrey V, Gawlitza K, Rurack K. Thiourea- and Amino-Substituted Benzoxadiazole Dyes with Large Stokes Shifts as Red-Emitting Probe Monomers for Imprinted Polymer Layers Targeting Carboxylate-Containing Antibiotics. Chemistry 2022; 28:e202104525. [PMID: 35224792 PMCID: PMC9310751 DOI: 10.1002/chem.202104525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Bifunctional fluorescent molecular oxoanion probes based on the benzoxadiazole (BD) chromophore are described which integrate a thiourea binding motif and a polymerizable 2-aminoethyl methacrylate unit in the 4,7-positions of the BD core. Concerted charge transfer in this electron donor-acceptor-donor architecture endows the dyes with strongly Stokes shifted (up to >250 nm) absorption and fluorescence. Binding of electron-rich carboxylate guests at the thiourea receptor leads to further analyte-induced red-shifts of the emission, shifting the fluorescence maximum of the complexes to ≥700 nm. Association constants for acetate are ranging from 1-5×105 M-1 in acetonitrile. Integration of one of the fluorescent probes through its polymerizable moiety into molecularly imprinted polymers (MIPs) grafted from the surface of submicron silica cores yielded fluorescent MIP-coated particle probes for the selective detection of antibiotics containing aliphatic carboxylate groups such as enoxacin (ENOX) at micromolar concentrations in highly polar solvents like acetonitrile.
Collapse
Affiliation(s)
- Virginia Valderrey
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| | - Kornelia Gawlitza
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| | - Knut Rurack
- Chemical and Optical Sensing DivisionBundesanstalt für Materialforschung und -prüfung (BAM)Richard-Willstätter-Straße 1112489BerlinGermany
| |
Collapse
|
18
|
Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Fukuda T, Yokomizo S, Casa S, Monaco H, Manganiello S, Wang H, Lv X, Ulumben AD, Yang C, Kang MW, Inoue K, Fukushi M, Sumi T, Wang C, Kang H, Bao K, Henary M, Kashiwagi S, Choi HS. Fast and Durable Intraoperative Near‐infrared Imaging of Ovarian Cancer Using Ultrabright Squaraine Fluorophores. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Hailey Monaco
- Massachusetts General Hospital radiology UNITED STATES
| | | | - Haoran Wang
- Massachusetts General Hospital radiology UNITED STATES
| | - Xiangmin Lv
- Massachusetts General Hospital Obstetrics and Gynecology UNITED STATES
| | | | - Chengeng Yang
- Massachusetts General Hospital radiology UNITED STATES
| | | | - Kazumasa Inoue
- Tokyo Metropolitan University - Arakawa Campus: Tokyo Toritsu Daigaku - Arakawa Campus Radiation Science JAPAN
| | - Masahiro Fukushi
- Tokyo Metropolitan University - Arakawa Campus: Tokyo Toritsu Daigaku - Arakawa Campus Radiation Science JAPAN
| | - Toshiyuki Sumi
- Osaka City University: Osaka Shiritsu Daigaku Obstetrics and Gynecology JAPAN
| | - Cheng Wang
- Massachusetts General Hospital Obstetrics and Gynecology UNITED STATES
| | - Homan Kang
- Massachusetts General Hospital radiology UNITED STATES
| | - Kai Bao
- Massachusetts General Hospital radiology UNITED STATES
| | - Maged Henary
- Georgia State University Chemistry UNITED STATES
| | - Satoshi Kashiwagi
- Massachusetts General Hospital Radiology 149 13th Street 02129 Charlestown UNITED STATES
| | - Hak Soo Choi
- Massachusetts General Hospital Radiology 149 13th Street 02129 Boston UNITED STATES
| |
Collapse
|
20
|
Fregatti P, Gipponi M, Sparavigna M, Diaz R, Murelli F, Depaoli F, Baldelli I, Gallo M, Friedman D. Standardized comparison of radioguided surgery with indocyanine green detection of the sentinel lymph node in early stage breast cancer patients: Personal experience and literature review. J Cancer Res Ther 2021; 17:1530-1534. [PMID: 34916390 DOI: 10.4103/jcrt.jcrt_772_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Piero Fregatti
- Department Surgical Sciences and Integrated Diagnostic (DISC), School of Medicine, University of Genoa; Breast Surgery Clinic, Department Surgical Sciences and Integrated Diagnostic (DISC), San Martino Policlinic Hospital, Genoa, Italy
| | - Marco Gipponi
- Department Surgical Sciences and Integrated Diagnostic (DISC), School of Medicine, University of Genoa; Breast Surgery Clinic, Department Surgical Sciences and Integrated Diagnostic (DISC), San Martino Policlinic Hospital, Genoa, Italy
| | - Marco Sparavigna
- Department Surgical Sciences and Integrated Diagnostic (DISC), San Martino Policlinic Hospital, Genoa, Italy
| | - Raquel Diaz
- Department Surgical Sciences and Integrated Diagnostic (DISC), San Martino Policlinic Hospital, Genoa, Italy
| | - Federica Murelli
- Department Surgical Sciences and Integrated Diagnostic (DISC), San Martino Policlinic Hospital, Genoa, Italy
| | | | - Ilaria Baldelli
- Plastic and Recostructive Unit, San Martino Policlinic Hospital, Department Surgical Sciences and Integrated Diagnostic (DISC), School of Medicine, University of Genoa, Genoa, Italy
| | - Maurizio Gallo
- Department of Internal Medicine (Di.M.I.), University of Genoa, San Martino Policlinic Hospital, Genoa, Italy
| | - Daniele Friedman
- Department Surgical Sciences and Integrated Diagnostic (DISC), School of Medicine, University of Genoa; Breast Surgery Clinic, Department Surgical Sciences and Integrated Diagnostic (DISC), San Martino Policlinic Hospital, Genoa, Italy
| |
Collapse
|
21
|
Yang C, Wang H, Yokomizo S, Hickey M, Chang H, Kang H, Fukuda T, Song MY, Lee SY, Park JW, Bao K, Choi HS. ZW800‐PEG: A Renal Clearable Zwitterionic Near‐Infrared Fluorophore for Potential Clinical Translation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chengeng Yang
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston MA 02129 USA
| | - Haoran Wang
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston MA 02129 USA
- Wuya College of Innovation Shenyang Pharmaceutical University Shenyang 110016 P. R. China
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston MA 02129 USA
| | - Morgan Hickey
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston MA 02129 USA
| | - Hyejin Chang
- Division of Science Education Kangwon National University Chuncheon 24341 S. Korea
| | - Homan Kang
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston MA 02129 USA
| | - Takeshi Fukuda
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston MA 02129 USA
| | | | | | | | - Kai Bao
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston MA 02129 USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston MA 02129 USA
| |
Collapse
|
22
|
Bishnoi S, Kumari A, Rehman S, Minz A, Senapati S, Nayak D, Gupta S. Fusogenic Viral Protein-Based Near-Infrared Active Nanocarriers for Biomedical Imaging. ACS Biomater Sci Eng 2021; 7:3351-3360. [PMID: 34111927 DOI: 10.1021/acsbiomaterials.1c00267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An effective drug delivery system (DDS) relies on an efficient cellular uptake and faster intracellular delivery of theranostic agents, bypassing the endosomal mediated degradation of the payload. The use of viral nanoparticles (VNPs) permits such advancement, as the viruses are naturally evolved to infiltrate the host cells to deliver their genetic material. As a proof of concept, we bioengineered the vesicular stomatitis virus glycoprotein (VSV-G)-based near-infrared (NIR) active viral nanoconstructs (NAVNs) encapsulating indocyanine green dye (ICG) for NIR bioimaging. NAVNs are spherical in size and have the intrinsic cellular-fusogenic properties of VSV-G. Further, the NIR imaging displaying higher fluorescence intensity in NAVNs treated cells suggests enhanced cellular uptake and delivery of ICG by NAVNs compared to the free form of ICG. The overall study highlights the effectiveness of VSV-G-based VNPs as an efficient delivery system for NIR fluorescence imaging.
Collapse
Affiliation(s)
- Suman Bishnoi
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Anshu Kumari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India.,School of Medicine, University of Maryland Baltimore, Maryland 21201, United States
| | - Sheeba Rehman
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Aliva Minz
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | | | - Debasis Nayak
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India
| | - Sharad Gupta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552, India.,School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
23
|
Zhao H, Li H, Tian C, Zhang L, Cheng Z. Facile Synthesis of Unimodal Polymethacrylates with Narrow Dispersity via NIR LED Light-Controlled Bromine-Iodine Transformation Reversible-Deactivation Radical Polymerization. Macromol Rapid Commun 2021; 42:e2100211. [PMID: 34028909 DOI: 10.1002/marc.202100211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Indexed: 11/08/2022]
Abstract
A facile and clean strategy for synthesizing unimodal polymethacrylates with narrow dispersity (Đ < 1.10) is successfully developed by a near-infrared (NIR) light-emitting diode (LED) light (λmax = 740 nm)-controlled in situ bromine-iodine transformation reversible-deactivation radical polymerization system without the use of NIR dyes and expensive catalysts. In this system, alkyl iodide ethyl α-iodophenylacetate (EIPA) initiator is generated in situ by the nucleophilic substitution reaction between an alkyl bromide compound ethyl α-bromophenylacetate and sodium iodide (NaI). At the same time, excessive NaI is also acted as a highly active catalyst by forming halogen bonds with terminal iodine of the polymer chains in this system to make it capable of precisely synthesizing polymethacrylates with narrow dispersities (Đ = 1.03-1.10). In addition, the strong penetration ability of NIR LED light is illustrated by the successful polymerization even through 11 pieces of A4 paper.
Collapse
Affiliation(s)
- Haitao Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Haihui Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chun Tian
- Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, Zhejiang, 315201, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
24
|
Yang C, Wang H, Yokomizo S, Hickey M, Chang H, Kang H, Fukuda T, Song MY, Lee SY, Park JW, Bao K, Choi HS. ZW800-PEG: A Renal Clearable Zwitterionic Near-Infrared Fluorophore for Potential Clinical Translation. Angew Chem Int Ed Engl 2021; 60:13847-13852. [PMID: 33857346 DOI: 10.1002/anie.202102640] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/30/2021] [Indexed: 12/18/2022]
Abstract
Near-infrared (NIR) fluorescence imaging has advanced medical imaging and image-guided interventions during the past three decades. Despite tremendous advances in imaging devices, surprisingly only a few dyes are currently available in the clinic. Previous fluorophores, ZW800-1A and ZW800-1C, significantly improved the poor performance of the FDA-approved indocyanine green. However, ZW800-1A is not stable in serum and ZW800-1C induces severe stacking in aqueous media. To solve such dilemmas, ZW800-PEG was designed by introducing a flexible yet stable thiol PEG linker. ZW800-PEG shows high solubility in both aqueous and organic solvents, thus improving renal clearance with minimal binding to serum proteins during systemic circulation. The sulfide group on the meso position of the heptamethine core improves serum stability and physicochemical properties including the maximum emission wavelength shift to 800 nm, enabling the use of ZW800-PEG for image-guided interventions and augmenting photothermal therapy.
Collapse
Affiliation(s)
- Chengeng Yang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Haoran Wang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.,Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Morgan Hickey
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon, 24341, S. Korea
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Takeshi Fukuda
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | | | | | | | - Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| |
Collapse
|
25
|
Not so innocent: Impact of fluorophore chemistry on the in vivo properties of bioconjugates. Curr Opin Chem Biol 2021; 63:38-45. [PMID: 33684856 DOI: 10.1016/j.cbpa.2021.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
The combination of targeting ligands and fluorescent dyes is a powerful strategy to observe cell types and tissues of interest. Conjugates of peptides, proteins, and, in particular, monoclonal antibodies (mAbs) exhibit excellent tumor targeting in various contexts. This approach has been translated to a clinical setting to provide real-time molecular insights during the surgical resection of solid tumors. A critical element of this approach is the generation of highly fluorescent bioconjugates that maintain the properties of the parent targeting ligand. A number of studies have found that fluorophores can dramatically impact the pharmacokinetic and tumor-targeting properties of the bioconjugates they are meant to only innocently observe. In this review, we summarize several examples of these effects and highlight strategies that have been used to mitigate them. These include the application of site-specific labeling chemistries, modulating label density, and altering the structure of the fluorescent probe itself. In particular, we point out the significant potential of fluorophores with hydrophilic but net-neutral structures. Overall, this review highlights recent progress in refining the in vivo properties of fluorescent bioconjugates, and we hope, will inform future efforts in this area.
Collapse
|
26
|
Moses AS, Demessie AA, Taratula O, Korzun T, Slayden OD, Taratula O. Nanomedicines for Endometriosis: Lessons Learned from Cancer Research. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004975. [PMID: 33491876 PMCID: PMC7928207 DOI: 10.1002/smll.202004975] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/03/2020] [Indexed: 05/02/2023]
Abstract
Endometriosis is an incurable gynecological disease characterized by the abnormal growth of endometrium-like tissue, characteristic of the uterine lining, outside of the uterine cavity. Millions of people with endometriosis suffer from pelvic pain and infertility. This review aims to discuss whether nanomedicines that are promising therapeutic approaches for various diseases have the potential to create a paradigm shift in endometriosis management. For the first time, the available reports and achievements in the field of endometriosis nanomedicine are critically evaluated, and a summary of how nanoparticle-based systems can improve endometriosis treatment and diagnosis is provided. Parallels between cancer and endometriosis are also drawn to understand whether some fundamental principles of the well-established cancer nanomedicine field can be adopted for the development of novel nanoparticle-based strategies for endometriosis. This review provides the state of the art of endometriosis nanomedicine and perspective for researchers aiming to realize and exploit the full potential of nanoparticles for treatment and imaging of the disorder.
Collapse
Affiliation(s)
- Abraham S Moses
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Ananiya A Demessie
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Olena Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Tetiana Korzun
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| | - Ov D Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Oleh Taratula
- College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR, 97201, USA
| |
Collapse
|
27
|
Ji Y, Jones C, Baek Y, Park GK, Kashiwagi S, Choi HS. Near-infrared fluorescence imaging in immunotherapy. Adv Drug Deliv Rev 2020; 167:121-134. [PMID: 32579891 DOI: 10.1016/j.addr.2020.06.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Near-infrared (NIR) light possesses many suitable optophysical properties for medical imaging including low autofluorescence, deep tissue penetration, and minimal light scattering, which together allow for high-resolution imaging of biological tissue. NIR imaging has proven to be a noninvasive and effective real-time imaging methodology that provides a high signal-to-background ratio compared to other potential optical imaging modalities. In response to this, the use of NIR imaging has been extensively explored in the field of immunotherapy. To date, NIR fluorescence imaging has successfully offered reliable monitoring of the localization, dynamics, and function of immune responses, which are vital in assessing not only the efficacy but also the safety of treatments to design immunotherapies optimally. This review aims to provide an overview of the current research on NIR imaging of the immune response. We expect that the use of NIR imaging will expand further in response to the recent success in cancer immunotherapy. We will also offer our insights on how this technology will meet rapidly growing expectations in the future.
Collapse
Affiliation(s)
- Yuanyuan Ji
- Scientific Research Centre, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Catherine Jones
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yoonji Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - G Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
28
|
Xiong T, Li M, Chen Y, Du J, Fan J, Peng X. A singlet oxygen self-reporting photosensitizer for cancer phototherapy. Chem Sci 2020; 12:2515-2520. [PMID: 34164019 PMCID: PMC8179246 DOI: 10.1039/d0sc05495j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Photodynamic cancer therapy has attracted great attention with the increasing threat of tumors, and improving its therapeutic efficacy is highly desirable. However, due to the highly efficient intersystem crossing potency to generate singlet oxygen (1O2), high-efficiency photosensitizers often suffer from weak fluorescence and excess injury to normal tissue. To overcome these obstacles, here we show a reliable self-reporting strategy for real-time monitoring of therapeutic progression. As a proof of concept, a molecular dyad is designed by connecting benzo[a]phenoselenazinium (NBSe) to rhodamine (Rh), namely Rh-NBSe, where the fluorescence of the Rh unit is initially suppressed by the fluorescence resonance energy transfer mechanism, but enabled to recover as feedback signal once the reaction with photosensitized 1O2 takes place. The observed fluorescence increases by irradiation in vitro and in vivo successfully reflect the real-time 1O2 generation speed in photodynamic therapy. In addition, the favorable therapeutic advantages of Rh-NBSe are also verified, for example, the high Φ Δ (0.8) and the low IC50 (0.2 μM, 6 J cm-2). Based on the therapeutic ability and real-time 1O2 self-reporting ability, Rh-NBSe demonstrates significant potential for self-regulating phototherapy.
Collapse
Affiliation(s)
- Tao Xiong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Mingle Li
- Department of Chemistry, Korea University Seoul 02481 Korea
| | - Yingchao Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,Shenzhen Research Institute, Dalian University of Technology Shenzhen 518057 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,Shenzhen Research Institute, Dalian University of Technology Shenzhen 518057 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China .,Shenzhen Research Institute, Dalian University of Technology Shenzhen 518057 China
| |
Collapse
|
29
|
Kim SH, Park JH, Kwon JS, Cho JG, Park KG, Park CH, Yoo JJ, Atala A, Choi HS, Kim MS, Lee SJ. NIR fluorescence for monitoring in vivo scaffold degradation along with stem cell tracking in bone tissue engineering. Biomaterials 2020; 258:120267. [PMID: 32781325 PMCID: PMC7484145 DOI: 10.1016/j.biomaterials.2020.120267] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022]
Abstract
Stem cell-based tissue engineering has the potential to use as an alternative for autologous tissue grafts; however, the contribution of the scaffold degradation along with the transplanted stem cells to in vivo tissue regeneration remains poorly understood. Near-infrared (NIR) fluorescence imaging has great potential to monitor implants while avoiding autofluorescence from the adjacent host tissue. To utilize NIR imaging for in vivo monitoring of scaffold degradation and cell tracking, we synthesized 800-nm emitting NIR-conjugated PCL-ran-PLLA-ran-PGA (ZW-PCLG) copolymers with three different degradation rates and labeled 700-nm emitting lipophilic pentamethine (CTNF127) on the human placental stem cells (CT-PSCs). The 3D bioprinted hybrid constructs containing the CT-PSC-laden hydrogel together with the ZW-PCLG scaffolds demonstrate that NIR fluorescent imaging enables tracking of in vivo scaffold degradation and stem cell fate for bone regeneration in a rat calvarial bone defect model. This NIR-based monitoring system can be effectively utilized to study cell-based tissue engineering applications.
Collapse
Affiliation(s)
- Soon Hee Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA; Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ji Hoon Park
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA; Department of Molecular Science and Technology, Ajou University, Suwon, 443-759, Republic of Korea
| | - Jin Seon Kwon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA; Department of Molecular Science and Technology, Ajou University, Suwon, 443-759, Republic of Korea
| | - Jae Gu Cho
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA; Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Kate G Park
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Guro-dong 80 Guro-gu, Seoul, 152-703, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute, College of Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Hak Soo Choi
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Guro-dong 80 Guro-gu, Seoul, 152-703, Republic of Korea.
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-759, Republic of Korea.
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
30
|
On KC, Rho J, Yoon HY, Chang H, Yhee JY, Yoon JS, Jeong SY, Kim HK, Kim K. Tumor-Targeting Glycol Chitosan Nanoparticles for Image-Guided Surgery of Rabbit Orthotopic VX2 Lung Cancer. Pharmaceutics 2020; 12:E621. [PMID: 32635231 PMCID: PMC7407595 DOI: 10.3390/pharmaceutics12070621] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
Theranostic nanoparticles can deliver therapeutic agents as well as diverse imaging agents to tumors. The enhanced permeation and retention (EPR) effect is regarded as a crucial mechanism for the tumor-targeted delivery of nanoparticles. Although a large number of studies of the EPR effect of theranostic nanoparticles have been performed, the effect of the change in the body size of the host on the EPR effect is not fully understood. In this regard, comparative research is needed on the behavior of nanoparticles in large animals for developing the nanoparticles to the clinical stage. In this study, we prepared fluorophore (indocyanine green (ICG) or cyanine 5.5 (Cy5.5))-conjugated glycol chitosan nanoparticles (CNPs) for comparing the tumor-targeting efficacy in VX2 tumor-bearing mouse and rabbit models. As expected, the CNPs formed nano-sized spherical nanoparticles and were stable for 8 days under aqueous conditions. The CNPs also exhibited dose-dependent cellular uptake into VX2 tumor cells without cytotoxicity. The half-life of the near-infrared fluorescence (NIRF) signals in the blood were 3.25 h and 4.73 h when the CNPs were injected into mice and rabbits, respectively. Importantly, the CNPs showed excellent tumor accumulation and prolonged biodistribution profiles in both the VX2 tumor-bearing mouse and rabbit models, wherein the tumor accumulation was maximized at 48 h and 72 h, respectively. Based on the excellent tumor accumulation of the CNPs, finally, the CNPs were used in the image-guided surgery of the rabbit orthotopic VX2 lung tumor model. The lung tumor tissue was successfully removed based on the NIRF signal from the CNPs in the tumor tissue. This study shows that CNPs can be potentially used for tumor theragnosis in small animals and large animals.
Collapse
Affiliation(s)
- Kyeong Cheol On
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (K.C.O.); (J.S.Y.); (S.Y.J.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Jiyun Rho
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea;
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| | - Hong Yeol Yoon
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Hyeyoun Chang
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA;
| | | | - Jun Sik Yoon
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (K.C.O.); (J.S.Y.); (S.Y.J.)
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Seo Young Jeong
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea; (K.C.O.); (J.S.Y.); (S.Y.J.)
| | - Hyun Koo Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Korea;
- Department of Thoracic and Cardiovascular Surgery, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
31
|
Park GK, Lee JH, Soriano E, Choi M, Bao K, Katagiri W, Kim DY, Paik JH, Yun SH, Frangioni JV, Clancy TE, Kashiwagi S, Henary M, Choi HS. Rapid and Selective Targeting of Heterogeneous Pancreatic Neuroendocrine Tumors. iScience 2020; 23:101006. [PMID: 32268281 PMCID: PMC7139119 DOI: 10.1016/j.isci.2020.101006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/10/2020] [Accepted: 03/18/2020] [Indexed: 01/12/2023] Open
Abstract
Design of tissue-specific contrast agents to delineate tumors from background tissues is a major unmet clinical need for ultimate surgical interventions. Bioconjugation of fluorophore(s) to a ligand has been mainly used to target overexpressed receptors on tumors. However, the size of the final targeted ligand can be large, >20 kDa, and cannot readily cross the microvasculature to meet the specific tissue, resulting in low targetability with a high background. Here, we report a small and hydrophilic phenoxazine with high targetability and retention to pancreatic neuroendocrine tumor. This bioengineered fluorophore permits sensitive detection of ultrasmall (<0.5 mm) ectopic tumors within a few seconds after a single bolus injection, highlighting every tumor in the pancreas from the surrounding healthy tissues with reasonable half-life. The knowledge-based approach and validation used to develop structure-inherent tumor-targeted fluorophores have a tremendous potential to improve treatment outcome by providing definite tumor margins for image-guided surgery.
Collapse
Affiliation(s)
- G Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jeong Heon Lee
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Eduardo Soriano
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA
| | - Myunghwan Choi
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, MA 02139, USA
| | - Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Wataru Katagiri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Do-Yeon Kim
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ji-Hye Paik
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, MA 02139, USA
| | | | - Thomas E Clancy
- Division of Surgical Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Maged Henary
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
32
|
Qi B, Crawford AJ, Wojtynek NE, Talmon GA, Hollingsworth MA, Ly QP, Mohs AM. Tuned near infrared fluorescent hyaluronic acid conjugates for delivery to pancreatic cancer for intraoperative imaging. Theranostics 2020; 10:3413-3429. [PMID: 32206099 PMCID: PMC7069077 DOI: 10.7150/thno.40688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
The prognosis of pancreatic cancer remains poor. Intraoperative fluorescence imaging of tumors could improve staging and surgical resection, thereby improving prognosis. However, imaging pancreatic cancer with macromolecular delivery systems, is often hampered by nonspecific organ accumulation. Methods: We describe the rational development of hyaluronic acid (HA) conjugates that vary in molecular weight and are conjugated to near infrared fluorescent (NIRF) dyes that have differences in hydrophilicity, serum protein binding affinity, and clearance mechanism. We systematically investigated the roles of each of these properties on tumor accumulation, relative biodistribution, and the impact of intraoperative imaging of orthotopic, syngeneic pancreatic cancer. Results: Each HA-NIRF conjugate displayed intrapancreatic tumor enhancement. Regardless of HA molecular weight, Cy7.5 conjugation directed biodistribution to the liver, spleen, and bowels. Conjugation of IRDye800 to 5 and 20 kDa HA resulted in low liver and spleen signal while enhancing the tumor up to 14-fold compared to healthy pancreas, while 100 kDa HA conjugated to IRDye800 resulting in liver and spleen accumulation. Conclusion: These studies demonstrate that by tuning HA molecular weight and the physicochemical properties of the conjugated moiety, in this case a NIRF probe, peritoneal biodistribution can be substantially altered to achieve optimized delivery to tumors intraoperative abdominal imaging.
Collapse
|
33
|
Zhou L, Wu Y, Luo Y, Li H, Meng X, Liu C, Xiang J, Zhang P, Gong P, Cai L. Mitochondria-Localized Self-Reporting Small-Molecule-Decorated Theranostic Agents for Cancer-Organelle Transporting and Imaging. ACS APPLIED BIO MATERIALS 2019; 2:5164-5173. [DOI: 10.1021/acsabm.9b00811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Lihua Zhou
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yayun Wu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Luo
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongfeng Li
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoqing Meng
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Internal Medicine, University of Michigan, 109 Zina Pitcher Place, BSRB Ann Arbor, Michigan 48109, United States
| | - Chuangjun Liu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Jingjing Xiang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- HKUST Shenzhen Research Institute, No. 9 Yuexing First RD, South Area, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan 523808, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, CAS-HK Joint Lab for Biomaterials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
34
|
Egloff-Juras C, Bezdetnaya L, Dolivet G, Lassalle HP. NIR fluorescence-guided tumor surgery: new strategies for the use of indocyanine green. Int J Nanomedicine 2019; 14:7823-7838. [PMID: 31576126 PMCID: PMC6768149 DOI: 10.2147/ijn.s207486] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/27/2019] [Indexed: 12/15/2022] Open
Abstract
Surgery is the frontline treatment for a large number of cancers. The objective of these excisional surgeries is the complete removal of the primary tumor with sufficient safety margins. Removal of the entire tumor is essential to improve the chances of a full recovery. To help surgeons achieve this objective, near-infrared fluorescence-guided surgical techniques are of great interest. The concomitant use of fluorescence and indocyanine green (ICG) has proved effective in the identification and characterization of tumors. Moreover, ICG is authorized by the Food and Drug Administration and the European Medicines Agency and is therefore the subject of a large number of studies. ICG is one of the most commonly used fluorophores in near-infrared fluorescence-guided techniques. However, it also has some disadvantages, such as limited photostability, a moderate fluorescence quantum yield, a high plasma protein binding rate, and undesired aggregation in aqueous solution. In addition, ICG does not specifically target tumor cells. One way to exploit the capabilities of ICG while offsetting these drawbacks is to develop high-performance near-infrared nanocomplexes formulated with ICG (with high selectivity for tumors, high tumor-to-background ratios, and minimal toxicity). In this review article, we focus on recent developments in ICG complexation strategies to improve near-infrared fluorescence-guided tumor surgery. We describe targeted and nontargeted ICG nanoparticle models and ICG complexation with targeting agents.
Collapse
Affiliation(s)
- Claire Egloff-Juras
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Université de Lorraine, CHRU-Nancy, Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Lina Bezdetnaya
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Gilles Dolivet
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| | - Henri-Pierre Lassalle
- Université de Lorraine, CNRS, CRAN, Nancy F-54000, France.,Institut de Cancérologie de Lorraine, Nancy F-54000, France
| |
Collapse
|
35
|
Targeted Near-Infrared Fluorescence Imaging for Regenerative Medicine. Tissue Eng Regen Med 2019; 16:433-442. [PMID: 31624699 DOI: 10.1007/s13770-019-00219-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Background Advances in tissue engineering and regenerative medicine over the last three decades have made great progress in the development of diagnostic and therapeutic methodologies for damaged tissues. However, regenerative medicine is still not the first line of treatment for patients due to limited understanding of the tissue regeneration process. Therefore, it is prerequisite to develop molecular imaging strategies combined with appropriate contrast agents to validate the therapeutic progress of damaged tissues. Methods The goal of this review is to discuss the progress in the development of near-infrared (NIR) contrast agents and their biomedical applications for labeling cells and scaffolds, as well as monitoring the treatment progress of native tissue in living organisms. We also discuss the design consideration of NIR contrast agents for tissue engineering and regenerative medicine in terms of their physicochemical and optical properties. Results The use of NIR imaging system and targeted contrast agents can provide high-resolution and high sensitivity imaging to track/monitor the in vivo fate of administered cells, the degradation rate of implanted scaffolds, and the tissue growth and integration of surrounding cells during the therapeutic period. Conclusion NIR fluorescence imaging techniques combined with targeted contrast agents can play a significant role in regenerative medicine by monitoring the therapeutic efficacy of implanted cells and scaffolds which would enhance the development of cell therapies and promote their successful clinical translations.
Collapse
|
36
|
Jung JS, Jo D, Jo G, Hyun H. Near-Infrared Contrast Agents for Bone-Targeted Imaging. Tissue Eng Regen Med 2019; 16:443-450. [PMID: 31624700 DOI: 10.1007/s13770-019-00208-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 01/21/2023] Open
Abstract
Background For the bone-specific imaging, a structure-inherent targeting of bone tissue recently has been reported a new strategy based on incorporation of targeting moieties into the chemical structure of near-infrared (NIR) contrast agents, while conventional methods require covalent conjugation of bone-targeting ligands to NIR contrast agents. This will be a new approach for bone-targeted imaging by using the bifunctional NIR contrast agents. Methods The goal of this review is to provide an overview of the recent advances in optical imaging of bone tissue, highlighting the structure-inherent targeting by developing NIR contrast agents without the need for a bone-targeting ligand such as bisphosphonates. Results A series of iminodiacetated and phosphonated NIR contrast agents for the structure-inherent targeting of bone tissue showed excellent bone-targeting ability in vivo without non-specific binding. Additionally, the phosphonated NIR contrast agents could be useful in the diagnosis of bone metastasis. Conclusion By developing bone-targeted NIR contrast agents, optical imaging of bone tissue makes it very attractive for preclinical studies of bone growth or real-time fluorescence guided surgery resulting in high potential to shift the clinical paradigms.
Collapse
Affiliation(s)
- Jin Seok Jung
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju, 61469 South Korea
| | - Danbi Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju, 61469 South Korea
| | - Gayoung Jo
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju, 61469 South Korea
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju, 61469 South Korea
| |
Collapse
|
37
|
Das P, Santos S, Park GK, Hoseok I, Choi HS. Real-Time Fluorescence Imaging in Thoracic Surgery. THE KOREAN JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY 2019; 52:205-220. [PMID: 31403028 PMCID: PMC6687041 DOI: 10.5090/kjtcs.2019.52.4.205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/24/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
Near-infrared (NIR) fluorescence imaging provides a safe and cost-efficient method for immediate data acquisition and visualization of tissues, with technical advantages including minimal autofluorescence, reduced photon absorption, and low scattering in tissue. In this review, we introduce recent advances in NIR fluorescence imaging systems for thoracic surgery that improve the identification of vital tissues and facilitate the resection of tumorous tissues. When coupled with appropriate NIR fluorophores, NIR fluorescence imaging may transform current intraoperative thoracic surgery methods by enhancing the precision of surgical procedures and augmenting postoperative outcomes through improvements in diagnostic accuracy and reductions in the remission rate.
Collapse
Affiliation(s)
- Priyanka Das
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sheena Santos
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - G Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - I Hoseok
- Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea.,Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Luciano MP, Namgoong JM, Nani RR, Nam SH, Lee C, Shin IH, Schnermann MJ, Cha J. A Biliary Tract-Specific Near-Infrared Fluorescent Dye for Image-Guided Hepatobiliary Surgery. Mol Pharm 2019; 16:3253-3260. [PMID: 31244218 DOI: 10.1021/acs.molpharmaceut.9b00453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite advances, visual inspection, palpation, and intraoperative ultrasound remain the most utilized tools during surgery today. A particularly challenging issue is the identification of the biliary system due to its complex architecture partially embedded within the liver. Fluorescence guided surgical interventions, particularly using near-infrared (NIR) wavelengths, are an emerging approach for the real-time assessment of the hepatobiliary system. However, existing fluorophores, such as the FDA-approved indocyanine green (ICG), have significant limitations for rapid and selective visualization of bile duct anatomy. Here we report a novel NIR fluorophore, BL (Bile Label)-760, which is exclusively metabolized by the liver providing high signal in the biliary system shortly after intravenous administration. This molecule was identified by first screening a small set of known heptamethine cyanines including clinically utilized agents. After finding that none of these were well-suited, we then designed and tested a small series of novel dyes within a prescribed polarity range. We validated the molecule that emerged from these efforts, BL-760, through animal studies using both rodent and swine models employing a clinically applicable imaging system. In contrast to ICG, BL-760 fluorescence revealed a high target-to-background ratio (TBR) of the cystic duct relative to liver parenchyma 5 min after intravenous injection. During hepatic resection surgery, intrahepatic ducts were clearly highlighted, and bile leakage was easily detected. In conclusion, BL-760 has highly promising properties for intraoperative navigation during hepatobiliary surgery.
Collapse
Affiliation(s)
- Michael P Luciano
- Chemical Biology Laboratory, Center for Cancer Research , National Cancer Institute , 376 Boyles Street , Frederick , Maryland 21702 , United States
| | - Jung-Man Namgoong
- Sheikh Zayed Institute for Pediatric Surgical Innovation , Children's National Health System , 111 Michigan Avenue Northwest , Washington , D.C. 20010 , United States.,Department of Surgery , University of Ulsan College of Medicine , Asan Medical Center, 88 Olympic-ro, 43-gil , Songpa-gu, Seoul 138-736 , South Korea
| | - Roger R Nani
- Chemical Biology Laboratory, Center for Cancer Research , National Cancer Institute , 376 Boyles Street , Frederick , Maryland 21702 , United States
| | - So-Hyun Nam
- Sheikh Zayed Institute for Pediatric Surgical Innovation , Children's National Health System , 111 Michigan Avenue Northwest , Washington , D.C. 20010 , United States.,Department of Surgery , Dong-A University College of Medicine , 26 Daesingongwon-Ro , Seo-Gu, Busan 49201 , South Korea
| | - Choonghee Lee
- InTheSmart Co , Center for Medical Innovation Bld , 71 Daehak-ro , Jongro-gu, Seoul , South Korea
| | - Il Hyung Shin
- InTheSmart Co , Center for Medical Innovation Bld , 71 Daehak-ro , Jongro-gu, Seoul , South Korea
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research , National Cancer Institute , 376 Boyles Street , Frederick , Maryland 21702 , United States
| | - Jaepyeong Cha
- Chemical Biology Laboratory, Center for Cancer Research , National Cancer Institute , 376 Boyles Street , Frederick , Maryland 21702 , United States.,Department of Pediatrics , George Washington University School of Medicine and Health Sciences , 2300 Eye Street Northwest , Washington , D.C. 20052 , United States
| |
Collapse
|
39
|
Reichel D, Tripathi M, Butte P, Saouaf R, Perez JM. Tumor-Activatable Clinical Nanoprobe for Cancer Imaging. Nanotheranostics 2019; 3:196-211. [PMID: 31183314 PMCID: PMC6536784 DOI: 10.7150/ntno.34921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose: A successful cancer surgery requires the complete removal of cancerous tissue, while also sparing as much healthy, non-cancerous tissue as possible. To achieve this, an accurate identification of tumor boundaries during surgery is critical, but intra-operative tumor visualization remains challenging. Fluorescence imaging is a promising method to improve tumor detection and delineate tumor boundaries during surgery, but the lack of stable, long-circulating, clinically-translatable fluorescent probes that can identify tumors with high signal-to-noise ratios and low background fluorescence signals have prevented its widespread application. Methods: We screened the optical properties of several fluorescent dyes before and after nanoprobe encapsulation, and then identified nanoprobes with quenched fluorescence that were re-activated upon dye release. The physical and biological properties of these nanoprobes leading to fluorescence activation were investigated in vitro. Further, the cancer imaging properties of both free dyes and nanoprobe-encapsulated dyes were compared in vivo. Results: A novel fluorescent nanoprobe was prepared by combining two FDA-approved agents commonly used in the clinic: Feraheme (FH) and indocyanine green (ICG). The resulting FH-entrapped ICG nanoprobe [FH(ICG)] displayed quenched fluorescence compared to other nanoprobes, and this quenched fluorescence was re-activated in acidic tumor microenvironment conditions (pH 6.8) and upon uptake into cancer cells. Finally, in vivo studies in a prostate cancer mouse model demonstrated that FH(ICG) treatments enhance long-term fluorescence signals in tumors compared to ICG treatments, allowing for fluorescence-guided tumor identification using clinically relevant fluorescence cameras. Conclusions: FH(ICG) nanoprobes were identified as fluorescent nanoprobes with beneficial fluorescence activation properties compared to other FH-entrapped dyes. The activatable nature of this nanoprobe allows for a low background fluorescence signal and high signal-to-noise ratio within a long-circulating nanoagent, which allows for long-term fluorescence signals from tumors that enabled their fluorescence-guided detection. This activatable nanoprobe offers tremendous potential as a clinically translatable image-guided cancer therapy modality that can be prepared in a clinical setting.
Collapse
Affiliation(s)
- Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Manisha Tripathi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048.,Current Address: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, 79430
| | - Pramod Butte
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Rola Saouaf
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048.,S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - J Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048.,Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| |
Collapse
|
40
|
Park GK, Lee JH, Levitz A, Fakhri GE, Hwang NS, Henary M, Choi HS. Lysosome-Targeted Bioprobes for Sequential Cell Tracking from Macroscopic to Microscopic Scales. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806216. [PMID: 30740778 PMCID: PMC6574216 DOI: 10.1002/adma.201806216] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/22/2019] [Indexed: 05/05/2023]
Abstract
Longitudinal tracking of living cells is crucial to understanding the mechanism of action and toxicity of cell-based therapeutics. To quantify the presence of administered cells in the host tissue without sacrifice of animals, labeling of the target cells with a nontoxic and stable contrast agent is a prerequisite. However, such long-term live cell tracking is currently limited by the lack of fluorophores with steady optical and physicochemical properties in the near-infrared (NIR) window. Herein, for the first time, the design of fixable cell-tracking NIR fluorophores (CTNFs) with high optical properties, excellent cell permeation and retention, and high stability against chemical treatments is reported. Efficient cellular labeling and tracking of CTNFs using intraoperative optical fluorescence imaging by following the fate of NIR-labeled cells from the time of injection into animals to ex vivo cellular analysis after resection of the target tissue is demonstrated. Due to the lipophilic cationicity and primary amine docking group, CTNF126 outperforms the other tested fluorophores with rapid diffusion into the cytoplasmic membrane and sequestration inside the lysosomes, which prevents cellular efflux and improves cellular retention. Thus, CTNF126 will be useful to track cells in living organisms for the mechanism of action at the single cell level.
Collapse
Affiliation(s)
| | | | | | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Nathaniel S. Hwang
- Interdisciplinary Program in Bioengineering and School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, South Korea
| | | | | |
Collapse
|
41
|
Sajedi S, Sabet H, Choi HS. Intraoperative biophotonic imaging systems for image-guided interventions. NANOPHOTONICS 2019; 8:99-116. [PMID: 31187017 PMCID: PMC6559750 DOI: 10.1515/nanoph-2018-0134] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biophotonic imaging has revolutionized the operation room by providing surgeons intraoperative image-guidance to diagnose tumors more efficiently and to resect tumors with real-time image navigation. Among many medical imaging modalities, near-infrared (NIR) light is ideal for image-guided surgery because it penetrates relatively deeply into living tissue, while nuclear imaging provides quantitative and unlimited depth information. It is therefore ideal to develop an integrated imaging system by combining NIR fluorescence and gamma-positron imaging to provide surgeons with highly sensitive and quantitative detection of diseases, such as cancer, in real-time without changing the look of the surgical field. The focus of this review is to provide recent progress in intraoperative biophotonic imaging systems, NIR fluorescence imaging and intraoperative nuclear imaging devices, and their future perspectives for image-guided interventions.
Collapse
Affiliation(s)
- Salar Sajedi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hamid Sabet
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
42
|
Son J, Yi G, Yoo J, Park C, Koo H, Choi HS. Light-responsive nanomedicine for biophotonic imaging and targeted therapy. Adv Drug Deliv Rev 2019; 138:133-147. [PMID: 30321619 DOI: 10.1016/j.addr.2018.10.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/16/2018] [Accepted: 10/08/2018] [Indexed: 12/26/2022]
Abstract
Nanoparticles (NPs) play a key role in nanomedicine in multimodal imaging, drug delivery and targeted therapy of human diseases. Consequently, due to the attractive properties of NPs including high stability, high payload, multifunctionality, design flexibility, and efficient delivery to target tissues, nanomedicine employs various types of NPs to enhance targeting and treatment efficacy. In this review, we primarily focus on light-responsive materials, such as fluorophores, photosensitizers, semiconducting polymers, carbon structures, gold particles, quantum dots, and upconversion crystals, for their biomedical applications. Armed with these nanomaterials, NPs represent a growing potential in biophotonic imaging (luminescence, photoacoustic, surface enhanced Raman scattering, and optical coherence tomography) as well as targeted therapy (photodynamic therapy, photothermal therapy, and light-responsive drug release).
Collapse
Affiliation(s)
- Jihwan Son
- Department of Medical Lifescience, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea; Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Gawon Yi
- Department of Medical Lifescience, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea; Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Jihye Yoo
- Department of Medical Lifescience, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea; Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Changhee Park
- Department of Medical Lifescience, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea; Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Heebeom Koo
- Department of Medical Lifescience, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea; Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea; Catholic Photomedicine Research Institute, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
43
|
Kang H, Hu S, Cho MH, Hong SH, Choi Y, Choi HS. Theranostic Nanosystems for Targeted Cancer Therapy. NANO TODAY 2018; 23:59-72. [PMID: 31186672 PMCID: PMC6559746 DOI: 10.1016/j.nantod.2018.11.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanomaterials have revolutionized cancer imaging, diagnosis, and treatment. Multifunctional nanoparticles in particular have been designed for targeted cancer therapy by modulating their physicochemical properties to be delivered to the target and activated by internal and/or external stimuli. This review will focus on the fundamental "chemical" design considerations of stimuli-responsive nanosystems to achieve favorable tumor targeting beyond biological barriers and, furthermore, enhance targeted cancer therapy. In addition, we will summarize innovative smart nanosystems responsive to external stimuli (e.g., light, magnetic field, ultrasound, and electric field) and internal stimuli in the tumor microenvironment (e.g., pH, enzyme, redox potential, and oxidative stress).
Collapse
Affiliation(s)
- Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shuang Hu
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Nuclear Medicine, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 601141, China
| | - Mi Hyeon Cho
- Biomarker Branch, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, South Korea
| | - Suk Ho Hong
- Biomarker Branch, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, South Korea
| | - Yongdoo Choi
- Biomarker Branch, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, South Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
44
|
Li M, Long S, Kang Y, Guo L, Wang J, Fan J, Du J, Peng X. De Novo Design of Phototheranostic Sensitizers Based on Structure-Inherent Targeting for Enhanced Cancer Ablation. J Am Chem Soc 2018; 140:15820-15826. [PMID: 30380856 DOI: 10.1021/jacs.8b09117] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Structure-inherent targeting (SIT) agents are of particular importance for clinical precision medicine; however, there still exists a great lack of SIT phototheranostics for simultaneous cancer diagnosis and targeted photodynamic therapy (PDT). Herein, for the first time, we propose a "one-for-all" strategy by using the Förster resonance energy transfer (FRET) mechanism to construct such omnipotent SIT phototheranostics. Of note, this novel tactic can not only endow conventional sensitizers with highly effective native tumor-targeting potency but also simultaneously improve their photosensitization activities, resulting in dramatically boosted therapeutic index. After intravenous injection of the prepared SIT theranostic, the neoplastic sites are distinctly "lighted up" and distinguished from neighboring tissues, showing a near-infrared signal-to-background ratio value as high as 12.5. More importantly, benefiting from the FRET effect, markedly amplified light-harvesting ability and 1O2 production are demonstrated. Better still, other favorable features are also simultaneously achieved, including specific mitochondria anchoring, augmented cellular uptake (>13-fold), as well as ideal biocompatibility, all of which allow orders-of-magnitude promotion in anticancer efficiency both in vitro and in vivo. We believe this one-for-all SIT platform will provide a new idea for future cancer precision therapy.
Collapse
Affiliation(s)
- Mingle Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Saran Long
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Yao Kang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Lianying Guo
- Department of Pathophysiology , Dalian Medical University , Dalian 116044 , China
| | - Jingyun Wang
- Department School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
45
|
Hu S, Kang H, Baek Y, El Fakhri G, Kuang A, Choi HS. Real-Time Imaging of Brain Tumor for Image-Guided Surgery. Adv Healthc Mater 2018; 7:e1800066. [PMID: 29719137 PMCID: PMC6105507 DOI: 10.1002/adhm.201800066] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/22/2018] [Indexed: 02/05/2023]
Abstract
The completion of surgical resection is a key prognostic factor in brain tumor treatment. This requires surgeons to identify residual tumors in theater as well as to margin the proximity of the tumor to adjacent normal tissue. Subjective assessments, such as texture palpation or visual tissue differences, are commonly used by oncology surgeons during resection to differentiate cancer lesions from normal tissue, which can potentially result in either an incomplete tumor resection, or accidental removal of normal tissue. Moreover, malignant brain tumors are even more difficult to distinguish from normal brain tissue, and resecting noncancerous tissue may create neurological defects after surgery. To optimize the resection margin in brain tumors, a variety of intraoperative guidance techniques are developed, such as neuronavigation, magnetic resonance imaging, ultrasound, Raman spectroscopy, and optical fluorescence imaging. When combined with appropriate contrast agents, optical fluorescence imaging can provide the neurosurgeon real-time image guidance to improve resection completeness and to decrease surgical complications.
Collapse
Affiliation(s)
- Shuang Hu
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Yoonji Baek
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Anren Kuang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
46
|
Deng G, Li S, Sun Z, Li W, Zhou L, Zhang J, Gong P, Cai L. Near-infrared fluorescence imaging in the largely unexplored window of 900-1,000 nm. Theranostics 2018; 8:4116-4128. [PMID: 30128040 PMCID: PMC6096386 DOI: 10.7150/thno.26539] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/03/2018] [Indexed: 12/17/2022] Open
Abstract
Near-infrared (NIR) fluorescence imaging has relied on fluorophores that emit in the 700-900 nm NIR-Ia or 1,000-1,700 nm NIR-II window for generating deep-tissue images. Up until now, there have been few fluorophores developed for the 900-1,000 nm NIR-Ib window. This is largely because NIR-Ib light is thought to be strongly absorbed by water. Methods: Here we found that six heptamethine dyes had distinct emission peaks in both the NIR-Ia and NIR-Ib window. We tested the performance of these contrast agents by introducing them into the leaves of the common house plant Epipremnum aureum with early stage anthracnose leaf infections from Khaya senegalensis, as well as injecting them into the hind feet of nude mice and tails of tumour-bearing mice in vivo. Results: Heptamethine dyes yielded superior images of leaf venation, anthracnose infection locations, sentinel lymph nodes, brain tumours and subcutaneous tumours in the NIR-Ib window. We found that NIR-Ib images had markedly enhanced signal-to-background ratio because autofluorescence, scattering and light absorption by biological tissues and water were weaker at longer wavelengths. Conclusion: NIR-Ib fluorescence imaging was a powerful method for studying sentinel lymph nodes, tumours, leaf veins and early anthracnose infection locations in plant leaves. The findings challenge our current view of NIR fluorescence imaging and may have important implications for biomedical research and image-guided cancer surgery.
Collapse
|
47
|
Wang Z, Ni K, Zhang X, Ai S, Guan W, Cai H, Wang Y, Lu Q, Lane LA. Method for Real-Time Tissue Quantification of Indocyanine Green Revealing Optimal Conditions for Near Infrared Fluorescence Guided Surgery. Anal Chem 2018; 90:7922-7929. [PMID: 29864280 DOI: 10.1021/acs.analchem.8b00480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Near infrared fluorescence guided surgery (NIRFGS) offers better distinction between cancerous and normal tissues compared to surgeries relying on a surgeon's senses of sight and touch. Because of the greater accuracy in determining tumor tissue margins, NIRFGS within clinics continues to grow. However, NIRFGS lacks standardization of the indocyanine green (ICG) dose and the preoperative period allowed after ICG administration. In an aim to find optimal doses and preoperative periods for NIRFGS standardization, we developed a method that quantitatively determines ICG levels within tissues in real-time. We find that not only do the dose and the preoperative periods influence tumor-to-background ratios (TBRs), but both also heavily influence subject-to-subject variances of these ratios. Optimal detection conditions are observed when larger than typical ICG doses are administered and longer than typical preoperative periods are allowed. Larger doses lead to increased TBRs, but longer preoperative periods are necessary to reduce TBR variances to those observed when using smaller doses. Our results suggest that a clinical investigation into maximum tolerable ICG doses and prolonging preoperative periods in NIRFGS is warranted.
Collapse
Affiliation(s)
- Ziyang Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Kena Ni
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Xudong Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Shichao Ai
- Department of General Surgery, Drum Tower Hospital , Medical School of Nanjing University , Nanjing , Jiangsu 210008 , China
| | - Wenxian Guan
- Department of General Surgery, Drum Tower Hospital , Medical School of Nanjing University , Nanjing , Jiangsu 210008 , China
| | - Huiming Cai
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Yiqing Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Qian Lu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu 210093 , China
| | - Lucas A Lane
- Department of Biomedical Engineering, College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu 210093 , China
| |
Collapse
|
48
|
Wada H, Hyun H, Bao K, Lee JH, El Fakhri G, Choi Y, Choi HS. Multivalent Mannose-Decorated NIR Nanoprobes for Targeting Pan Lymph Nodes. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2018; 340:51-57. [PMID: 29962899 PMCID: PMC6022841 DOI: 10.1016/j.cej.2018.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lymphadenectomy is a prerequisite for most malignancies to define the precise staging of cancer, as well as resect the possible metastases completely. While it improves prognosis, lymphadenectomy often causes postoperative edema or bleeding because of unclear surgical margins. In this study, we synthesized near-infrared (NIR) fluorescent nanoprobes with conjugating various mannose moieties on the surface to target macrophages in the lymph node. Armed with these NIR nanoprobes, we demonstrated the feasibility of intraoperative pan lymph nodes (PLN) mapping and real-time optical imaging under the NIR fluorescence imaging system. We found that even single mannose-conjugated ZW800-1 showed specific uptake in lymph nodes within 4 h, and multiple mannose-employed polyrotaxanes highlighted PLN efficiently with low background signals in major organs. This technology can help surgeons perform lymphadenectomy with ease and safety by identifying all regional lymph nodes proficiently after a single intravenous injection of NIR nanoprobes.
Collapse
Affiliation(s)
- Hideyuki Wada
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hoon Hyun
- Department of Biomedical Science, Chonnam National University Medical School, Gwangju 501-746, South Korea
| | - Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jeong Heon Lee
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Yongdoo Choi
- Biomarker Branch, National Cancer Center, 323 Ilsan-ro, Goyang, Gyeonggi 10408, South Korea
- Corresponding Author: Y.C. ( or H.S.C. ()
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Corresponding Author: Y.C. ( or H.S.C. ()
| |
Collapse
|
49
|
Moore LS, Rosenthal EL, de Boer E, Prince AC, Patel N, Richman JM, Morlandt AB, Carroll WR, Zinn KR, Warram JM. Effects of an Unlabeled Loading Dose on Tumor-Specific Uptake of a Fluorescently Labeled Antibody for Optical Surgical Navigation. Mol Imaging Biol 2018; 19:610-616. [PMID: 27830425 DOI: 10.1007/s11307-016-1022-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Intraoperative optical imaging to guide surgeons during oncologic resections offers a unique and promising solution to the ambiguity of cancer margins to tactile and visual assessment that results in devastatingly high rates of positive margins. Sequestering of labeled antibodies by normal tissues with high expression of the antibody target, or "antigen sinks", diminishes the efficacy of these probes to provide contrast between the tumor and background tissues by decreasing the amount of circulating probe available for uptake by the tumor and by increasing the fluorescence of non-tumor tissues. We hypothesized that administering a dose of unlabeled antibody prior to infusion of the near-infrared (NIR) fluorescently labeled antibody would improve tumor-specific uptake and contrast of the fluorescently labeled probe by occupying extra-tumoral binding sites, thereby increasing the amount of labeled probe available for uptake by the tumor. PROCEDURES In this study, we explore this concept by testing two different "pre-load" doses of unlabeled cetuximab (the standard 10-mg test dose, and a larger, experimental 100-mg test dose) in six patients receiving cetuximab conjugated to the fluorescent dye IRDye800CW (cetuximab-IRDye800CW) in a clinical trial, and compared the amount of fluorescent antibody in tumor and background tissues, as well as the tumor-specific contrast of each. RESULTS The patients receiving the larger preload (100 mg) of unlabeled cetuximab demonstrated significantly higher concentrations (9.5 vs. 0.1 μg) and a longer half-life (30.3 vs. 20.6 days) of the labeled cetuximab in plasma, as well as significantly greater tumor fluorescence (32.3 vs. 9.3 relative fluorescence units) and tumor to background ratios (TBRs) (5.5 vs. 1.7). CONCLUSIONS Administering a preload of unlabeled antibody prior to infusion of the fluorescently labeled drug may be a simple and effective way to improve the performance of antibody-based probes to guide surgical resection of solid malignancies.
Collapse
Affiliation(s)
- Lindsay S Moore
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eben L Rosenthal
- Department of Otolaryngology, Stanford University, Stanford, CA, USA
| | - Esther de Boer
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Surgery, University of Groningen, Groningen, the Netherlands
| | - Andrew C Prince
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Neel Patel
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joshua M Richman
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anthony B Morlandt
- Department of Oral & Maxillofacial Surgery, University of Alabama Birmingham, Birmingham, AL, USA
| | - William R Carroll
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kurt R Zinn
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason M Warram
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL, USA. .,Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA. .,Departments of Otolaryngology, Neurosurgery, and Radiology, The University of Alabama at Birmingham, 1670 University Blvd., Birmingham, AL, 35294, USA.
| |
Collapse
|
50
|
A new Monte Carlo code for light transport in biological tissue. Med Biol Eng Comput 2017; 56:649-655. [PMID: 28849546 DOI: 10.1007/s11517-017-1713-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 08/09/2017] [Indexed: 12/14/2022]
Abstract
The aim of this work was to develop an event-by-event Monte Carlo code for light transport (called MCLTmx) to identify and quantify ballistic, diffuse, and absorbed photons, as well as their interaction coordinates inside the biological tissue. The mean free path length was computed between two interactions for scattering or absorption processes, and if necessary scatter angles were calculated, until the photon disappeared or went out of region of interest. A three-layer array (air-tissue-air) was used, forming a semi-infinite sandwich. The light source was placed at (0,0,0), emitting towards (0,0,1). The input data were: refractive indices, target thickness (0.02, 0.05, 0.1, 0.5, and 1 cm), number of particle histories, and λ from which the code calculated: anisotropy, scattering, and absorption coefficients. Validation presents differences less than 0.1% compared with that reported in the literature. The MCLTmx code discriminates between ballistic and diffuse photons, and inside of biological tissue, it calculates: specular reflection, diffuse reflection, ballistics transmission, diffuse transmission and absorption, and all parameters dependent on wavelength and thickness. The MCLTmx code can be useful for light transport inside any medium by changing the parameters that describe the new medium: anisotropy, dispersion and attenuation coefficients, and refractive indices for specific wavelength.
Collapse
|