1
|
Zhang L, Yuan J, Yao S, Wen G, An J, Jin H, Tuo B. Role of m5C methylation in digestive system tumors (Review). Mol Med Rep 2025; 31:142. [PMID: 40183387 PMCID: PMC11979572 DOI: 10.3892/mmr.2025.13507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/06/2025] [Indexed: 04/05/2025] Open
Abstract
Currently, the incidence of digestive system tumors has been increasing annually, thus becoming a prevalent cause of cancer‑related mortalities. Although significant strides have been made in targeting the molecular mechanisms that underpin the development of these tumors, their treatment and prognosis still pose substantial challenges. This is primarily due to the ambiguity of early diagnostic indicators and the fact that most digestive system tumors are detected at an advanced stage. However, epigenetic modifications are capable of altering the expression of oncogenes and regulating biological processes in cancer. In recent years, the study of methylation in relation to tumor pathogenesis has become a focus of prominent research. Among the various types of methylation, 5‑methylcytosine (m5C) methylation plays a crucial role in the development of digestive system tumors and is anticipated to serve as a novel therapeutic target. However, to date, a comprehensive and systematic review concerning the role of m5C methylation in digestive system tumors is lacking. Consequently, the present study reviewed the role of m5C methylation in digestive system tumors such as esophageal cancer, gastric cancer and hepatocellular carcinoma, with the aim of providing a valuable reference for future research endeavors.
Collapse
Affiliation(s)
- Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jianbo Yuan
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, P.R. China
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
Wang J, Du J, Song Y, Tan X, Wu J, Wang T, Shi Y, Xu X, Yu Z, Song B. CILP1 interacting with YBX1 promotes hypertrophic scar formation by suppressing PPARs transcription. Cell Death Dis 2025; 16:371. [PMID: 40346063 PMCID: PMC12064789 DOI: 10.1038/s41419-025-07554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 03/03/2025] [Accepted: 03/17/2025] [Indexed: 05/11/2025]
Abstract
Hypertrophic scar (HS) represents the most prevalent form of skin fibrosis, significantly impacting the quality of life. Despite this, the molecular mechanisms driving HS formation remain largely undefined, impeding the development of effective treatments. The study showed that Cartilage Intermediate Layer Protein 1 (CILP1) was predominantly expressed in myofibroblasts and was up-regulated in various forms of skin fibrosis, including human hypertrophic and keloid scars, and in animal models of HS. Notably, we detected elevated serum levels of CILP1 in fifty-two patients with HS compared to twenty healthy individuals, suggesting its potential as a novel biomarker. The findings indicated that CILP1 was involved in a negative feedback loop with TGF-β and inhibited the transcription of Peroxisome Proliferator-Activated Receptors (PPARs) via interaction with Y-box-binding protein 1 (YBX1). This interaction promoted cell proliferation, migration, and collagen production in hypertrophic scar fibroblasts (HSFs). In vivo studies further confirmed that CILP1 knockdown markedly reduced HS formation, whereas administration of recombinant human CILP1 protein exacerbated it. These discoveries illuminated the CILP1-YBX1-PPARs signaling pathway as a key regulator of HS formation, offering a foundation for novel therapeutic approaches.
Collapse
Affiliation(s)
- Jianzhang Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Juan Du
- Department of Dermatology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Xiaoying Tan
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Junzheng Wu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Yi Shi
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China
| | - Xingbo Xu
- Clinic for Cardiology and Pulmonology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China.
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, 710032, China.
| |
Collapse
|
3
|
Bazina I, Šešelja K, Pirman T, Horvatić A, Erman A, Mihalj M, Baus Lončar M. The Effect of Tff3 Deficiency on the Liver of Mice Exposed to a High-Fat Diet. Biomedicines 2025; 13:1024. [PMID: 40426854 DOI: 10.3390/biomedicines13051024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Trefoil factor protein 3 (Tff3) is a small peptide known as an epithelial tissue-protective protein, and it is also identified as a novel participant in complex metabolic processes. In numerous mouse models of obesity, Tff3 has been found to be downregulated in the liver and its overexpression is associated with an improvement in metabolic parameters. These mouse models with metabolic phenotypes have a multigenic background, with numerous genes contributing to their phenotype. To elucidate the role of Tff3 protein in metabolic events, we developed a mouse model with Tff3 deficiency on a C57Bl6N background without other intrinsic mutations affecting metabolism. Methods: We investigated the effects of a high-fat diet (9 weeks) on the liver of Tff3 protein-deficient mice of both sexes and the corresponding wild type. We investigated the general metabolic status of the animals and analysed the expression of markers of relevant pathophysiological pathways in the liver. Results:Tff3-deficient mice had significantly lower body weight. They also had a comparable total liver fat content but it was distributed in small vesicles, indicating the protective effect of Tff3 deficiency. The results of molecular analysis showed no major gene expression changes in inflammation-, ER- and oxidative stress-, and lipid metabolism-related genes. Tff3-/- males had reduced expression of Il1α and Cxcr7 genes in the liver and no global proteome changes; Tff3-deficient females had decreased expression of Irs2 and Atf4 genes and total proteome comparison showed decreased levels of proteins related to ribosome biosynthesis and the inhibition of acetylation. Conclusions: Our results demonstrate that Tff3 deficiency reduces lipid accumulation in the liver and we set the direction for further studies aimed at uncovering the exact molecular mechanisms in other organs. Furthermore, it emphasises the need to include both sexes in future research, as the observed phenotype differs significantly depending on sex.
Collapse
Affiliation(s)
- Iva Bazina
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia
| | - Kate Šešelja
- Division of Molecular Medicine, Ruđer Boškovic Institute, Bjenička 54, 10000 Zagreb, Croatia
| | - Tatjana Pirman
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1230 Domzale, Slovenia
| | - Anita Horvatić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Martina Mihalj
- Department of Dermatology and Venereology, University Hospital Osijek, 31000 Osijek, Croatia
- Department of Physiology and Immunology, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Mirela Baus Lončar
- Faculty of Chemical Engineering and Technology, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Huang H, Fang L, Zhu C, Lv J, Xu P, Chen Z, Zhang Z, Wang J, Wang W, Xu Z. YBX1 promotes 5-Fluorouracil resistance in gastric cancer via m5C-dependent ATG9A mRNA stabilization through autophagy. Oncogene 2025:10.1038/s41388-025-03411-2. [PMID: 40251390 DOI: 10.1038/s41388-025-03411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/20/2025]
Abstract
5-Fluorouracil (5-FU) is a first-line chemotherapeutic agent for advanced gastric cancer (GC). However, its clinical efficacy is often undermined by the development of chemoresistance. Aberrant activation of oncogenic pathways, including autophagy, has been implicated in 5-FU resistance. Epigenetic modifications, such as 5-methylcytosine (m5C), are also recognized to modulate autophagy and contribute to chemoresistance, though the underlying molecular mechanisms remain poorly understood. In this study, we discovered that YBX1, an m5C reader protein, was significantly upregulated in 5-FU-resistant GC cell lines and patient tissues. Both in vitro and in vivo experiments demonstrated that YBX1 promoted autophagy in GC cells, thereby enhancing 5-FU resistance. Mechanistically, the transcription factor MAZ was found to bind to the YBX1 promoter, driving its transcriptional upregulation. YBX1, in turn, stabilized ATG9A mRNA via NSUN2-mediated m5C modification, thereby enhancing autophagic activity and conferring chemoresistance. Clinically, elevated YBX1 expression correlated with poor prognosis in patients with advanced GC undergoing 5-FU-based chemotherapy. These findings establish YBX1 as a key regulator of autophagy and 5-FU resistance in GC and highlight its potential as a novel therapeutic target for overcoming 5-FU resistance.
Collapse
Affiliation(s)
- Hongxin Huang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Lang Fang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Chuming Zhu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jialun Lv
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Penghui Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zetian Chen
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhijun Zhang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Jihuan Wang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Weizhi Wang
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Zekuan Xu
- Gastric Cancer Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- Institute for Gastric Cancer Research, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
5
|
Qi J, Jiang T, Liu B, Hu Q, Chen J, Ma N, Xu Y, Song H, Song J. LINC02167 stabilizes KSR1 mRNA in an m 5C-dependent manner to regulate the ERK/MAPK signaling pathway and promotes colorectal cancer metastasis. J Exp Clin Cancer Res 2025; 44:121. [PMID: 40234937 PMCID: PMC11998267 DOI: 10.1186/s13046-025-03368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Metastasis is a leading cause of colorectal cancer (CRC)-related mortality, yet its molecular mechanisms remain poorly understood. Long noncoding RNAs (lncRNAs) have emerged as critical regulators of CRC metastasis, but their specific roles are not fully elucidated. This study identifies and characterizes a novel lncRNA LINC02167 as a critical regulator of CRC metastasis. METHODS LINC02167 expression was analyzed in CRC tissues via real-time quantitative polymerase chain reaction and fluorescence in situ hybridization. Functional assays evaluated its role in CRC cell migration, invasion, and metastasis in vitro and in vivo. Mechanistic exploration involves a combination of techniques, including RNA sequencing, mass spectrometry, RNA pull-down, RNA immunoprecipitation, chromatin immunoprecipitation, luciferase reporter assays, RNA stability assays, and bioinformatics analysis, to uncover the molecular interactions and pathways regulated by LINC02167. RESULTS LINC02167 is markedly upregulated in CRC tissues and strongly correlates with advanced clinical features and poor prognosis. Functional analyses reveal that LINC02167 enhances CRC cell migration and invasion in vitro and promotes metastasis in vivo. Mechanistically, LINC02167 serves as a molecular scaffold, forming a complex with YBX1 and ILF3 to facilitate YBX1 binding to NSUN2-mediated m5C modification sites on KSR1 mRNA, thereby stabilizing KSR1 mRNA and activating the ERK/MAPK signaling pathway to drive CRC metastasis. Additionally, MYC-driven transcriptional activation leads to the upregulation of LINC02167 in CRC. CONCLUSIONS This study uncovers a novel mechanism through which LINC02167 promotes the ERK/MAPK pathway and CRC metastasis via m5C modification, underscoring its potential as a promising therapeutic target for metastatic CRC treatment.
Collapse
Affiliation(s)
- Junwen Qi
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Bowen Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Qihang Hu
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Junnan Chen
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Ning Ma
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
6
|
Cao L, Jia K, Van Tine BA, Yu Y, Peng Y, Chen X, Pan Q, Yang W, Zhang Z, Shao Z, Wu W. KPNA2 promotes osteosarcoma progression by regulating the alternative splicing of DDX3X mediated by YBX1. Oncogene 2025:10.1038/s41388-025-03375-3. [PMID: 40216969 DOI: 10.1038/s41388-025-03375-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 03/11/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Osteosarcoma (OS) is a rapidly progressive primary malignant bone tumor that occurs in children and adolescents aged between 15 and 19 years and adults aged over 60 years. As alternative splicing (AS) changes caused by abnormal splicing factors contribute to tumor progression, gene expression and AS analyses were performed on 44 osteosarcoma patients to create a genome-wide co-expression network of RNA-binding proteins (RBPs), AS events, and AS genes. A gain- or loss-of-function osteosarcoma cell model was established, and an interactive network analysis and enrichment analysis were performed. Karyopherin Subunit Alpha 2 (KPNA2) negatively correlated with patient survival. KPNA2 transports splicing factor Y-box Binding Protein 1 (YBX1) into the nucleus and YBX1 accelerates the degradation of the ATP-dependent RNA helicase DDX3X (DDX3X) through the nonsense-mediated decay (NMD) pathway to promote intron retention of the DDX3X gene, thus reducing DDX3X protein levels. KPNA2/YBX1 axis regulates the stability of DDX3X mRNA and cell cycle progression. KPNA2/YBX1/DDX3X axis might be potential targets for inhibiting disease progression and improving OS patient survival. It integrates AS control of DDX3X into the progression of OS and represents a potential prognostic biomarker and therapeutic target for OS therapy.
Collapse
Affiliation(s)
- Li Cao
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ke Jia
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - B A Van Tine
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yihan Yu
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yizhong Peng
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Xuanzuo Chen
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Qing Pan
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Wenbo Yang
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhicai Zhang
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Zengwu Shao
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Wei Wu
- Department of Orthopaedic, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
7
|
Peng J, He J, Lin L, Li Y, Xia Y. Neural Stem Cell Extracellular Vesicles Carrying YBX1 Inhibited Neuronal Pyroptosis Through Increasing m6A-modified GPR30 Stability and Expression in Ischemic Stroke. Transl Stroke Res 2025; 16:262-279. [PMID: 37966628 DOI: 10.1007/s12975-023-01210-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Neural stem cell-derived extracellular vesicles (NSC-derived EVs) alleviated ischemic stroke (IS) by suppressing the activation of nucleotide-binding domain leucine-rich repeats family protein 3 (NLRP3) inflammasome and neuronal pyroptosis. However, the specific mechanism needs further investigation. qRT-qPCR, Western blotting, and immunofluorescence detected related gene expression. Immunofluorescent analyzed the expression of Ki-67, βIII-Tubulin (Tuj1), and GFAP. Lactate dehydrogenase (LDH) release and IL-1β and IL-18 levels were analyzed by LDH and ELISA kits. TTC staining evaluated the infarction of brain tissues. Flow cytometric analysis measured caspase-1 activity. M6A methylated RNA immunoprecipitation PCR (MeRIP-PCR) measured methylation levels of G protein-coupled receptor 30 (GPR30). RIP and Co-IP analyzed the interactions of Y box binding protein (YBX1)/GPR30, YBX1/IGF2BP1 and NLRP3/speckle-type POZ protein (SPOP), as well as the ubiquitination levels of NLRP3. NSC-derived EVs inhibited the ischemia-reperfusion (I/R) injury of rats and the neuronal pyroptosis induced by oxygen-glucose deprivation/reoxygenation (OGD/R). Knockdown of EVs carrying YBX1 or GPR30 silencing abolished these inhibiting effects. GPR30 mRNA and IGF2BP1 protein were enriched by YBX1 antibody. YBX1 enhanced the stability of m6A-modified GPR30 by interacting with IGF2BP1 and thus promoting GPR30 expression. Knockdown of IGF2BP1 suppressed the binding between YBX1 and GPR30 mRNA. GPR30 promoted NLRP3 ubiquitination by interacting with SPOP. EVs carrying YBX1 could reduce the infarction of brain tissues and inhibit neuronal pyroptosis in rats with I/R injury. NSC-derived EVs carrying YBX1 increased the stability of m6A-modified GPR30 by interacting with IGF2BP1; the upregulation of GPR30 inhibited the activation of NLRP3 inflammasome through promoting NLRP3 ubiquitination by SPOP, ultimately suppressing the neuronal pyroptosis in IS.
Collapse
Affiliation(s)
- Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - Jun He
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - Long Lin
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - You Li
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Hainan Province, Haikou, 570208, People's Republic of China.
| |
Collapse
|
8
|
Wang H, Zhao B, Zhang J, Hu Q, Zhou L, Zhang Y, Cai Y, Qu Y, Jiang T, Zhang D. N4-Acetylcytidine-Mediated CD2BP2-DT Drives YBX1 Phase Separation to Stabilize CDK1 and Promote Breast Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411834. [PMID: 39976088 PMCID: PMC12005790 DOI: 10.1002/advs.202411834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in the initiation and progression of breast cancer. However, the specific mechanisms and biological functions of lncRNAs in breast cancer remain incompletely understood. Bioinformatics analysis identifies a novel lncRNA, CD2BP2-DT, that is overexpressed in breast cancer and correlates with adverse clinicopathological features and poor overall survival. Both in vivo and in vitro experiments demonstrate that CD2BP2-DT promotes proliferation of breast cancer cells. Mechanistically, NAT10 mediates the N4-acetylcytidine (ac4C) modification of CD2BP2-DT, enhancing its RNA stability and expression. More importantly, CD2BP2-DT enhances the stability of CDK1 mRNA by mediating YBX1 phase separation, thereby promoting the proliferation of breast cancer cells. In conclusion, the lncRNA CD2BP2-DT is identified as a crucial driver of breast cancer cell proliferation through the YBX1/CDK1 axis, highlighting its potential as a promising biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Bozhi Zhao
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Jiayu Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Qunyu Hu
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Linlin Zhou
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Yinghui Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Yixin Cai
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Yuansong Qu
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| | - Tao Jiang
- Department of General SurgeryThe Affiliated Hospital of Xuzhou Medical UniversityInstitute of Digestive DiseasesXuzhou Medical UniversityXuzhou221002China
| | - Dongwei Zhang
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbin150086China
| |
Collapse
|
9
|
Bonazza S, Courtney DG. Influenza A virus RNA localisation and the interceding trafficking pathways of the host cell. PLoS Pathog 2025; 21:e1013090. [PMID: 40267083 PMCID: PMC12017568 DOI: 10.1371/journal.ppat.1013090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Viruses have evolved to efficiently navigate host cells to deliver, express, and replicate their genetic material. Understanding the mechanisms underlying viral RNA localisation is paramount to designing new antivirals. In this review, we discuss Influenza A Virus (IAV) as a model system to highlight some of the ways in which RNA viruses can hijack the endomembrane systems, as well as nuclear transporters, to achieve the correct localisation of their transcripts. IAV exemplifies a nuclear-replicating RNA virus with a complex and highly regulated RNA localisation and trafficking system within host cells. The virus subverts various vesicular transport systems and nuclear transporters, altering normal cellular functions. IAV RNA trafficking begins during entry; after clathrin-mediated endocytosis, the viral genome (vRNPs) is released into the cytosol after fusion with the endosomal membrane, and it is subsequently imported into the nucleus via the importin system. There, vRNPs engage with most major subnuclear structures and exploit host chromatin, the transcription machinery and splicing apparatus to achieve efficient viral mRNA synthesis and export. Subsequently, newly synthesised vRNPs are rapidly exported from the nucleus and contact the host's recycling endosome network for transport to the plasma membrane. We discuss the critical viral remodelling of the entire endomembrane system, particularly the Rab11 recycling endosome and the endoplasmic reticulum. Lastly, replicated genomes come together into bundles to be inserted in budding virions, and we discuss the current models being proposed and the evidence behind them. Despite advances in understanding these processes, several knowledge gaps remain, particularly regarding the specific export of unspliced IAV transcripts, the remodelling of the endomembrane system, and segment bundling.
Collapse
Affiliation(s)
- Stefano Bonazza
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - David G. Courtney
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
10
|
Liu Q, Yan L, Wu T, Wu Q, Ke B, Shen W. Peli1, regulated by m 6A modification, suppresses NLRP3 inflammasome activation in atherosclerosis by inhibiting YB-1. Commun Biol 2025; 8:457. [PMID: 40102597 PMCID: PMC11920095 DOI: 10.1038/s42003-025-07839-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/27/2025] [Indexed: 03/20/2025] Open
Abstract
The activation of pyrin domain-containing-3 (NLRP3) inflammasome in macrophages is a risk factor accelerating the progression of atherosclerosis (AS). Here, the function of pellino 1 (Peli1) in regulating the activation of NLRP3 inflammasome during the development of AS was investigated. Our results showed that Y-box binding protein 1 (YB-1) knockdown could inhibit the progression of AS in vivo, and YB-1 silencing repressed oxidized low-density lipoprotein (ox-LDL)-mediated lipid accumulation and inflammation in macrophages by inactivating NLRP3 inflammasome. E3 ubiquitination ligase Peli1 mediated ubiquitination-dependent degradation of YB-1 during AS progression. Moreover, it was found that YTH domain-containing 2 (YTHDC2) recognized methyltransferase-like 3 (METTL3)-mediated Peli1 N6-methyladenosine (m6A) modification and mediated Peli1 mRNA degradation. Rescue studies revealed that YB-1 upregulation abrogated the repressive effect of Peli1 upregulation on AS progression both in vitro and in vivo. Taken together, Peli1, regulated by m6A modification, inhibited YB-1-mediated activation of NLRP3 inflammasome in macrophages by promoting YB-1 ubiquitination to suppress the progression of AS.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Cardiovascular Medicine, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Lu Yan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tao Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
11
|
Dickmander RJ, Lenarcic EM, Sears JD, Hale AE, Moorman NJ. RNA-targeted proteomics identifies YBX1 as critical for efficient HCMV mRNA translation. Proc Natl Acad Sci U S A 2025; 122:e2421155122. [PMID: 40035757 PMCID: PMC11912382 DOI: 10.1073/pnas.2421155122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025] Open
Abstract
Viruses have evolved unique strategies to circumvent host control of protein synthesis and enable viral protein synthesis in the face of the host response. Defining the factors that regulate viral messenger RNA (mRNA) translation is thus critical to understand how viruses replicate and cause disease. To identify factors that might regulate viral mRNA translation, we developed a technique for identifying proteins associated with a native RNA expressed from its endogenous promoter and genomic locus. This approach uses a guide RNA to target dCas13b fused to a biotin ligase domain to a specific RNA, where it covalently labels proteins in close proximity. Using this approach, we identified multiple proteins associated with transcripts encoding the human cytomegalovirus (HCMV) IE1 and IE2 proteins and found that several associated proteins positively or negatively regulate HCMV replication. We confirmed that one such protein, the cellular Y-box binding protein 1 (YBX1), binds to HCMV immediate early mRNAs and is required for efficient viral protein expression and virus replication. Ablating YBX1 expression reduced the association of HCMV immediate early mRNAs with polysomes, demonstrating a role for YBX1 as a positive regulator of viral RNA translation. These results provide a powerful tool for unraveling RNA-protein interactions that can be used in a wide range of biological processes and reveal a role for YBX1 as a critical regulator of HCMV immediate early gene expression.
Collapse
Affiliation(s)
- Rebekah J. Dickmander
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Erik M. Lenarcic
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - John D. Sears
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Andrew E. Hale
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
12
|
Tang T, Yang T, Xue H, Liu X, Yu J, Liang C, Li D, Xiang C, Zheng J, Wei L, Ma B. Breast cancer stem cell-derived exosomal lnc-PDGFD induces fibroblast-niche formation and promotes lung metastasis. Oncogene 2025; 44:601-617. [PMID: 39633064 PMCID: PMC11850284 DOI: 10.1038/s41388-024-03237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with high metastatic potential and lack of therapeutic targets. Breast cancer stem cells (BCSCs) are enriched in TNBC and contribute to its metastatic propensity. Accumulating evidence suggests that cancer-derived exosomes are key drivers of premetastatic niche formation in distal organs. However, the function and underlying mechanism of BCSC-derived exosomes in TNBC metastasis remain elusive. Here, we demonstrated that BCSC-derived exosomes exhibit a greater capacity to activate fibroblasts and promote TNBC cell metastasis to the lung than non-BCSC-derived exosomes. Additionally, we found that upregulation of exosomal long non-coding RNA platelet derived growth factor D (lnc-PDGFD) expression in BCSCs is responsible for fibroblast activation through YBX1/NF-kB signaling in the lung. Activated fibroblasts further promote tumor progression by secreting IL-11. Taken together, BCSC-derived exosomes enriched with lnc-PDGFD could activate fibroblasts, thereby facilitating lung metastasis in TNBC patients. These results provide new insights into the mechanism of TNBC metastasis to the lung.
Collapse
Affiliation(s)
- Tingting Tang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tao Yang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Huijie Xue
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiao Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jie Yu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Chen Liang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Dameng Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Chenxi Xiang
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Liang Wei
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Bo Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
13
|
Li Z, Chen L, Zhang G, Wang S, Xu E, Teng J, Xu J, Peng F, Min Q, Wang Z, Shao S, Zhao L, Shan B, Wang Y, Zhan Q, Liu X. Loss of MNX1 Sensitizes Tumors to Cytotoxic T Cells by Degradation of PD-L1 mRNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2403077. [PMID: 39912421 PMCID: PMC11947991 DOI: 10.1002/advs.202403077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 12/04/2024] [Indexed: 02/07/2025]
Abstract
Immune checkpoint blockade (ICB) therapy, targeting programmed cell death ligand-1 (PD-L1)/programmed cell death protein 1 (PD-1) axis and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), has exhibited amazing clinical outcomes in various types of cancers. However, only a small portion of patients benefit from ICB therapy, indicating that the mechanism underlying immune checkpoint is still unclear. Here, it is reported that motor neuron and pancreas homeobox 1 (MNX1), a homeobox domain-containing transcription factor, contributes to the tumor immune escape. MNX1 increases PD-L1 expression in cancer cells by stabilizing PD-L1 mRNA rather than activating transcription. Mechanistically, MNX1 exists in the cytoplasm of cancer cells and interacts with Y-box binding protein 1 (YBX1), a multifunctional DNA/RNA-binding protein, to enhance the binding of YBX1 to PD-L1 mRNA. MNX1 ablation activates cytotoxic T cell-mediated anti-tumor immunity and sensitizes CTLA-4 blockade therapy. Moreover, MNX1 also facilitates tumor progression in an immune-independent manner in cancer cells. In addition, MNX1 is upregulated by its adjacent long non-coding RNA MNX1-AS1 via HECT and RLD domain containing E3 ubiquitin protein ligase 2 (HERC2). Together, these results reveal MNX1 as a novel immune checkpoint regulator with promising therapeutic potential.
Collapse
Affiliation(s)
- Zhengzheng Li
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
- Soochow University Cancer InstituteSuzhou215000China
| | - Lei Chen
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
- Department of Pulmonary OncologyAffiliated Hospital of Guangdong Medical UniversityZhanjiang524001China
| | - Ge Zhang
- Department of ImmunologyCollege of Basic Medical SciencesDalian Medical UniversityDalian116044China
| | - Shuang Wang
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Enhang Xu
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Jinglei Teng
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Jiancheng Xu
- Soochow University Cancer InstituteSuzhou215000China
| | - Fang Peng
- Department of Pathologythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China
| | - Qingjie Min
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Zhuoya Wang
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Shujuan Shao
- University Key Laboratory of Proteomics in Liaoning ProvinceDalian Medical UniversityDalian116044China
| | - Lianmei Zhao
- Research Centerthe Fourth Hospital of Hebei Medical UniversityShijiazhuang050011China
| | - Baoen Shan
- Research Centerthe Fourth Hospital of Hebei Medical UniversityShijiazhuang050011China
| | - Yang Wang
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| | - Qimin Zhan
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
- Soochow University Cancer InstituteSuzhou215000China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijing100142China
| | - Xuefeng Liu
- Institute of Cancer Stem CellDalian Medical UniversityDalian116044China
| |
Collapse
|
14
|
Li ZQ, Zhao LX, Wang SY, Hu CY, Wang YY, Yang Y. YBX1 is required for assembly of viral replication complexes of chikungunya virus and replication of multiple alphaviruses. J Virol 2025; 99:e0201524. [PMID: 39745458 PMCID: PMC11852927 DOI: 10.1128/jvi.02015-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/06/2024] [Indexed: 02/26/2025] Open
Abstract
Chikungunya virus (CHIKV), an enveloped positive-sense RNA virus, is a member of the alphaviruses and cause fever and arthralgia in humans. We performed genome-wide CRISPR/Cas9-based screens and identified Y-box binding protein 1 (YBX1) as an essential cellular factor for CHIKV. Deficiency of YBX1 inhibited CHIKV RNA replication and impaired virus production. Upon CHIKV infection, YBX1 showed a striking re-localization to viral replication complexes (vRCs), where it co-localized with CHIKV nsP3 and dsRNA intermediates. YBX1 directly interacted with CHIKV nsP3, and mutation of the YBX1-binding motif in CHIKV nsP3 suppressed viral replication in host cells. Furthermore, YBX1 bound to viral RNA and increased the viral RNA-binding activity of CHIKV nsP3. Consistently, the RNA-binding activity of YBX1, as well as the ability of nsP3 to bind to YBX1, was required for efficient CHIKV replication. In addition to CHIKV, YBX1 was also essential for replication of all examined alphaviruses including the prototypic alphavirus. Our findings suggest that YBX1 acts as a scaffold for assembly of chikungunya vRCs and an important factor for replication of multiple alphaviruses, which may serve as a potential target for the development of anti-alphavirus therapies.IMPORTANCEAlphaviruses are a group of mosquito-transmitted, enveloped, positive-strand RNA viruses in the Togaviridae family. Most alphaviruses are important pathogens that continue to cause human disease ranging from severe and potentially fatal neurological disease to chronic arthritic disease on a global scale. Here, we found that YBX1 promotes binding of CHIKV genomic RNA to nsP3, which is a key component of the replication complex, and is therefore pivotal for CHIKV replication. Deficiency of YBX1 results in reduced replication of multiple alphaviruses, including arthritogenic and encephalitic alphaviruses. These findings suggest that YBX1 is an important cellular factor for multiple alphaviruses and a potential target for preventing alphavirus infections.
Collapse
Affiliation(s)
- Zhen-Qi Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li-Xin Zhao
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Su-Yun Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chu-Yu Hu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yan-Yi Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yan Yang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Zhao T, Zhang Z, Chen Z, Xu G, Wang Y, Wang F. Biological functions of 5-methylcytosine RNA-binding proteins and their potential mechanisms in human cancers. Front Oncol 2025; 15:1534948. [PMID: 39990690 PMCID: PMC11842269 DOI: 10.3389/fonc.2025.1534948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
The 5-methylcytosine (m5C) modification is a crucial epigenetic RNA modification, which is involved in the post-transcriptional regulation of genes. It plays an important role in various biological processes, including cell metabolism, growth, apoptosis, and tumorigenesis. By affecting the proliferation, migration, invasion, and drug sensitivity of tumor cells, m5C methylation modification plays a vital part in the initiation and progression of tumors and is closely associated with the poor tumor prognosis. m5C-related proteins are categorized into three functional groups: m5C methyltransferases (m5C writers), m5C demethylases (m5C erasers), and m5C methyl-binding proteins (m5C readers). This paper introduces several common methodologies for detecting m5C methylation; and reviews the molecular structure and biological functions of m5C readers, including ALYREF, YBX1, YBX2, RAD52, YTHDF2, FMRP, and SRSF2. It further summarizes their roles and regulatory mechanisms in tumors, offering novel targets and insights for tumor treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Fang Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Liang J, Tang B, Shen J, Rejiepu M, Guo Y, Wang X, Shao S, Guo F, Wang Q, Zhang L. New Insights into the Role of Inflammatory Pathways and Immune Cell Infiltration in Sleep Deprivation-Induced Atrial Fibrillation: An Integrated Bioinformatics and Experimental Study. J Inflamm Res 2025; 18:791-812. [PMID: 39845021 PMCID: PMC11752835 DOI: 10.2147/jir.s495777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025] Open
Abstract
Background The common occurrence of atrial fibrillation (AF) as a cardiac arrhythmia, along with its link to sleep deprivation (SD), is gaining more acknowledgment. Even with progress in comprehending the development of AF, the molecular connections between SD and AF are still not well-defined. The objective of this research was to pinpoint the shared molecular routes responsible for SD-induced AF and investigate possible treatment targets. Methods Utilizing bioinformatics, we examined two transcriptome datasets from the Gene Expression Omnibus (GEO) database to pinpoint genes with differential expression (DEGs) common to SD and AF. Analyses focusing on functional enrichment, such as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), were conducted to pinpoint crucial biological mechanisms and pathways. Furthermore, we utilized immunofluorescence and Western blot techniques to evaluate YBX1 expression and its role in activating NLRP3 inflammasomes in a rat model induced by SD. Results A total of 540 common DEGs were precisely identified between the AF and SD data collections. Studies emphasizing functional enrichment have highlighted the significance of inflammation pathways, particularly the NOD-like receptor signaling route. The application of machine learning uncovered four crucial genes-CDC5L, MAPK14, RAB5A, and YBX1-with YBX1 becoming the predominant gene in diagnostic processes. Investigating immune penetration revealed significant connections between YBX1 expression and specific immune cell types, notably CD8+ T cells and M1 macrophages. Live studies have demonstrated that SD amplifies the atrial electrical rearrangement, structural changes, the infiltration of inflammatory cells, and the heightened presence of YBX1 along with inflammasome elements. Conclusion The research pinpoints YBX1 as a crucial gene in SD-related AF, possibly influencing its impact via the NOD-like receptor signaling route and the invasion of immune cells. The results offer crucial understanding of the molecular processes behind AF and propose YBX1 as a possible treatment focus to reduce the risk of AF caused by SD.
Collapse
Affiliation(s)
- Junqing Liang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Baopeng Tang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Jun Shen
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Manzeremu Rejiepu
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Yankai Guo
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Xiaoyan Wang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Shijie Shao
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- Cardiac Pacing and Electrophysiology Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Fei Guo
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Qin Wang
- Department of Geriatrics and Cadre Ward, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Ling Zhang
- Xinjiang Key Laboratory of Cardiac Electrophysiology and Cardiac Remodeling, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
17
|
Gao L, Jia R. Alternative Splicing: Emerging Roles in Anti-Aging Strategies. Biomolecules 2025; 15:131. [PMID: 39858525 PMCID: PMC11763286 DOI: 10.3390/biom15010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/21/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Alternative splicing plays a fundamental role in gene expression and protein complexity. Aberrant splicing impairs cell homeostasis and is closely associated with aging and cellular senescence. Significant changes to alternative splicing, including dysregulated splicing events and the abnormal expression of splicing factors, have been detected during the aging process or in age-related disorders. Here, we highlight the possibility of suppressing aging and cellular senescence by controlling alternative splicing. In this review, we will summarize the latest research progress on alternative splicing in aging and cellular senescence, discuss the roles and regulatory mechanisms of alternative splicing during aging, and then excavate existing and potential approaches to anti-aging by controlling alternative splicing. Novel therapeutic breakthroughs concerning aging and senescence entail a further understanding of regulating alternative splicing mechanically and accurately.
Collapse
Affiliation(s)
| | - Rong Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430072, China;
| |
Collapse
|
18
|
Ma L, Liu W, Wang X, Li D, Wei C. Mechanism of RBM15 in the malignant proliferation of colorectal cancer cells through regulating the stability of LncRNA FGD5-AS1 via m6A modification. Exp Cell Res 2025; 444:114384. [PMID: 39701357 DOI: 10.1016/j.yexcr.2024.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/18/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer all around the world. This study explored the mechanism of RBM15-mediated m6A modification in CRC cell malignant proliferation. The expression of RBM15, LncRNA FGD5-AS1, and HOXC10 was detected in CRC cells. m6A levels in cells and m6A enrichment on FGD5-AS1 RNA were analyzed. FGD5-AS1 RNA stability and localization in CRC cells were analyzed. The binding of LncRNA FGD5-AS1 to YBX1 and YBX1 to the HOXC10 promoter was analyzed. Combined experiments were conducted to validate the mechanism. Tumor xenografts in nude mice were used to verify the mechanism of RBM15 in vivo. RBM15 was highly expressed in CRC cells. RBM15 inhibition suppressed CRC cell proliferation and reduced PCNA expression. RBM15 increased m6A modification on FGD5-AS1 RNA, enhancing FGD5-AS1 stability and expression. FGD5-AS1 promoted HOXC10 expression by recruiting YBX1 to the HOXC10 promoter. YBX1 inhibition suppressed HOXC10 expression. Overexpression of FGD5-AS1 or HOXC10 partially reversed the alleviative effect of RBM15 inhibition on CRC cell proliferation. RBM15 downregulation attenuated in vivo CRC cell proliferation by inhibiting the FGD5-AS1/HOXC10 axis. In conclusion, RBM15 promotes the FGD5-AS1/HOXC10 axis via m6A modification to promote CRC cell proliferation.
Collapse
Affiliation(s)
- Lin Ma
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai 'an, Shandong, 271000, China
| | - Weihua Liu
- Department of Gastro-Intestinal Tract, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, Shandong, 251100, China
| | - Xin Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai 'an, Shandong, 271000, China
| | - Dezheng Li
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai 'an, Shandong, 271000, China
| | - Chuankui Wei
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Shandong First Medical University, Tai 'an, Shandong, 271000, China.
| |
Collapse
|
19
|
Chen Y, Du C, Tang J, Zhao Y, Xie H, Zheng S, Tu Z. Super-enhancer-associated circPVT1 promotes malignancy of hepatocellular carcinoma via YBX1-mediated RRM2 activation. Cancer Lett 2024; 611:217395. [PMID: 39694225 DOI: 10.1016/j.canlet.2024.217395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 12/08/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Circular RNAs (circRNAs), the essential members of epigenetic reprogramming, are emerging as an appealing layer in hepatocellular carcinoma (HCC). Super-enhancers (SEs) are large clusters of transcriptional enhancers with the tremendous gene activation potential and are extensively investigated in cancer research. The present study explores and uncovers an SE-related circRNA circPVT1, identifying its biological functions and downstream mechanisms in HCC. CircPVT1 is upregulated in HCC, serving as an independent prognostic factor for patients with HCC. Enrichment of H3K27ac and H3K4me1 modifications has been confirmed at the genomic loci of circPVT1's host gene, and the expression of circPVT1 is triggered by SEs. Functionally, circPVT1 enhances cell propagation and mobility capabilities in vitro, and facilitates tumour growth and metastasis in vivo. Mechanistically, circPVT1 recruits YBX1 into the cell nucleus, promoting the transcription of RRM2. Dysregulation of the circPVT1-RRM2 axis advances HCC malignancy, while inhibition of RRM2 or SE alleviates the effects of circPVT1 overexpression. In conclusion, our work demonstrates that circPVT1 is driven by super-enhancers. CircPVT1 promotes HCC progression via YBX1-mediated transcriptional activation of RRM2. These findings provide constructive insights into exploring the pathogenesis of HCC.
Collapse
Affiliation(s)
- Yunhao Chen
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China.
| | - Chengli Du
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Jie Tang
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Yanchun Zhao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Zhejiang Province, China; Key Laboratory of the diagnosis and treatment of organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, China; Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Zhengliang Tu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
20
|
Zhang W, Liu Y, Zhao Z, Zhang Y, Liang Y, Wang W. YBX1: A Multifunctional Protein in Senescence and Immune Regulation. Curr Issues Mol Biol 2024; 46:14058-14079. [PMID: 39727969 PMCID: PMC11726992 DOI: 10.3390/cimb46120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
The Y-box binding protein 1 (YBX1) is a multifunctional protein with a wide range of roles in cell biology. It plays a crucial role in immune modulation, senescence, and disease progression. This review presents a comprehensive analysis of the specific functions and mechanisms of YBX1 in these areas. Initially, YBX1 is shown to be closely associated with cellular senescence and impacts significant biological processes, including cell proliferation, damage repair, and metabolism. This suggests potential applications in the prevention and treatment of senescence-related diseases. Additionally, YBX1 regulates the immune response by controlling the function of immune cells and the expression of immune molecules. It is essential in maintaining immune system homeostasis and impacts the pathological process of various diseases, including tumors. Lastly, the diverse functions of the YBX1 protein make it a promising candidate for the development of innovative therapeutic strategies for diseases. Comprehensive research on its mechanisms could provide novel insights and approaches for the prevention, diagnosis, and treatment of related diseases.
Collapse
Affiliation(s)
- Wenze Zhang
- The First College of Clinical Medicine, Lanzhou University, Lanzhou 730000, China;
| | - Ying Liu
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China; (Y.L.); (Z.Z.); (Y.Z.); (Y.L.)
| | - Zhe Zhao
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China; (Y.L.); (Z.Z.); (Y.Z.); (Y.L.)
| | - Yizhi Zhang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China; (Y.L.); (Z.Z.); (Y.Z.); (Y.L.)
| | - Yujuan Liang
- The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China; (Y.L.); (Z.Z.); (Y.Z.); (Y.L.)
| | - Wanxia Wang
- The First College of Clinical Medicine, Lanzhou University, Lanzhou 730000, China;
- NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Lanzhou 730000, China
| |
Collapse
|
21
|
Li Q, Guo G, Chen Y, Lu L, Li H, Zhou Z, Guo J, Gan X, Hu Y, Li Q, Sun M, Liu X. HCP5 Derived Novel Microprotein Triggers Progression of Gastric Cancer through Regulating Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407012. [PMID: 39447131 PMCID: PMC11633528 DOI: 10.1002/advs.202407012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/31/2024] [Indexed: 10/26/2024]
Abstract
The context of long noncoding RNAs (lncRNAs) contains many unannotated open reading frames (ORFs). These ORFs potentially encode novel proteins or peptides with crucial roles in various human cancers, yet the translational potential of these lncRNAs and the functions of the protein products remain largely unexplored, especially in gastric cancer (GC). In this study, a comprehensive analysis is performed and identified a GC associated lncRNA known as HCP5, which contains a non-canonical ORF. Further analysis showed that HCP5-132aa, a microprotein encoded by HCP5 harboring this ORF, is highly expressed in GC cells and tissues, and can promote the proliferation of GC cells by inhibiting ferroptosis. Mechanistically, HCP5-132aa enhances the interaction between YBX1 and ELAVL1, facilitates recognition of YBX1 at the m5C site in the 3'UTR of SLC7A11 and G6PD mRNA, and preserves their stability via ELAVL1. By employing a Cas9/sgRNA delivery system with AAV in vivo, effectively knocked out the HCP5-132aa and inhibition of tumor growth in a patient-derived xenograft model are achieved. These findings demonstrate that the novel protein HCP5-132aa, derived from lncRNA HCP5, mediates the repression of ferroptosis, thereby driving the progression of GC and identifying a new potential therapeutic target for its treatment.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Guoqing Guo
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Yuli Chen
- Suzhou Cancer Center Core LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215001China
| | - Lu Lu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Hanyang Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| | - Zihan Zhou
- The First Clinical Medical CollegeNanjing Medical UniversityNanjing211166China
| | - Jiahao Guo
- Suzhou Cancer Center Core LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215001China
| | - Xiongkang Gan
- Department of Cardiovascular MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Yanming Hu
- Suzhou Cancer Center Core LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215001China
| | - Qiunuo Li
- The First Clinical Medical CollegeNanjing Medical UniversityNanjing211166China
| | - Ming Sun
- Suzhou Cancer Center Core LaboratoryThe Affiliated Suzhou Hospital of Nanjing Medical UniversitySuzhou Municipal HospitalGusu SchoolNanjing Medical UniversitySuzhou215001China
| | - Xianghua Liu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjing211166China
| |
Collapse
|
22
|
Liu Y, Song J, Shi Q, Chen B, Qiu W, Liu Y, Huang S, He X. Glucose-induced LINC01419 reprograms the glycolytic pathway by recruiting YBX1 to enhance PDK1 mRNA stability in hepatocellular carcinoma. Clin Transl Med 2024; 14:e70122. [PMID: 39625183 PMCID: PMC11613097 DOI: 10.1002/ctm2.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 11/23/2024] [Indexed: 12/06/2024] Open
Abstract
Metabolic reprogramming provides the necessary energy for the development of malignant tumours and is emerging as a novel tumour treatment strategy. However, the widespread expression of metabolic enzymes in diverse cell types makes the development of specific drugs that target cancer cells without affecting normal cellular functions challenging. Accumulating evidence has demonstrated the essential roles of long non-coding RNAs (lncRNAs) in the regulatory network associated with glucose metabolism in tumour cells. The mechanism and therapeutic potential of cancer-specific lncRNAs in modulating tumour glucose metabolism warrant in-depth exploration. Here we revealed that glucose-induced LINC01419 promoted the growth and metastasis of HCC cells by driving metabolic reprogramming. Mechanistically, LINC01419 directly interacted with Y-box binding protein 1 (YBX1) in the cytoplasm and facilitated its binding to PDK1 mRNA, thus enhancing PDK1 mRNA stability and increasing lactate production. Furthermore, YY1 contributed to the transcriptional activation of LINC01419 in HCC under high-glucose conditions. Notably, administration of an N-acetylgalactosamine (GalNAc)-conjugated siRNA specifically targeting LINC01419 markedly retarded the growth of orthotopic xenograft tumours. These findings provide evidence for an unprecedented regulatory mechanism of LINC01419 involving metabolic reprogramming in human cancer. The newly identified LINC01419/YBX1-PDK1 axis may represent a promising therapeutic target for HCC. Moreover, GalNAc-siLINC01419 holds significant potential for clinical application. KEY POINTS: This study highlights the considerable regulatory role of LINC01419 in the metabolism of HCC. The newly identified LINC01419/YBX1-PDK1 axis constitutes a valuable target. Hepatic-specific delivery of GalNAc-siLINC01419 presents a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Yanfang Liu
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Junjiao Song
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Qili Shi
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Bing Chen
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Wenying Qiu
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Yizhe Liu
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Shenglin Huang
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
| | - Xianghuo He
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Collaborative Innovation Center for Cancer Personalized MedicineNanjing UniversityNanjingChina
| |
Collapse
|
23
|
Zhu B, Zhang Z, Pardeshi L, Chen Y, Ge W. Y box-binding protein 1 regulates zebrafish folliculogenesis partly through p21-mediated control of follicle cell proliferation. Development 2024; 151:dev202898. [PMID: 39470059 DOI: 10.1242/dev.202898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
Y box-binding protein 1 (Ybx1/ybx1) regulates gene expression through DNA/RNA binding. In zebrafish, Ybx1 is highly abundant in primary growth (PG) follicles in the ovary, but decreases precipitously as the follicles enter the secondary growth (SG). To understand Ybx1 function in folliculogenesis, we created a ybx1 mutant using TALEN and observed disrupted folliculogenesis during the previtellogenic (PV) to early vitellogenic (EV) transition of SG, resulting in underdeveloped ovaries and infertility. Expression and western blot analyses revealed differential gene expression between ybx1-/- and control ovaries, with significantly increased expression of cdkn1a (p21), a cell cycle inhibitor, in ybx1-/- follicles. While cdkn1a knockout via CRISPR/Cas9 was embryonically lethal, the heterozygote (cdkn1a+/-) displayed advanced follicle activation and maturation, contrasting with the ybx1-/- phenotype. Partial loss of p21 alleviated the ybx1-/- phenotype, restoring folliculogenesis with normal PG-PV and PV-EV transitions in ybx1-/-;cdkn1a+/- mutants. While ybx1-/- mutant follicle cells displayed poor proliferation in vivo and in vitro, the cells from the ybx1-/-;cdkn1a+/- follicles resumed normal proliferation. In conclusion, Ybx1 is crucial for early folliculogenesis in zebrafish, potentially by repressing cdkn1a expression, either directly or indirectly.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), University of Macau, Taipa, Macau, China
| | - Zhiwei Zhang
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), University of Macau, Taipa, Macau, China
| | - Lakhansing Pardeshi
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Yingying Chen
- Genomics and Bioinformatics Core, Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), University of Macau, Taipa, Macau, China
| |
Collapse
|
24
|
Yu LM, Wang ZR, Fan QX, Jia T, Zhang TH, Zhu XQ, Liu Q. mRNA 5-methylcytosine in Eimeria tenella oocysts: An abundant post-transcriptional modification associated with broad-ranging biological processes. Int J Biol Macromol 2024; 280:135817. [PMID: 39306157 DOI: 10.1016/j.ijbiomac.2024.135817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Eimeria tenella is the major causative agent of chicken coccidiosis. 5-Methylcytosine (m5C) is a type of RNA chemical modifications reported to regulate diverse biological processes. However, the distribution and biological functions of m5C in E. tenella mRNAs are yet to be known. Herein, we report transcriptome-wide profiling of mRNA m5C in E. tenella by employing m5C RNA immunoprecipitation followed by a deep-sequencing approach (m5C-RIP-seq). Our data showed that m5C peaks were distributed across the whole mRNA body. Compared with unsporulated oocysts, there were 2813 hypermethylated and 1850 hypomethylated m5C peaks in sporulated oocysts. Generally, a positive correlation between m5C modification and gene expression levels was observed. The mRNA sequencing (RNA-seq) and m5C-RIP-seq data were consistent with the results of the quantitative reverse transcription PCR (RT-qPCR) and methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR), respectively. Gene Ontology (GO) and pathway enrichment analysis predicated diverse biological functions and pathways, including microtubule motor activity, helicase activity, cGMP-PKG signaling pathway, aminoacyl-tRNA biosynthesis, glycolysis/gluconeogenesis, and spliceosome. Meanwhile, stage-specific gene expression signatures of m5C-related regulators were observed. Altogether, our findings reveal the transcriptional significance of m5C modification in E. tenella oocysts, providing resources and clues for further in-depth research.
Collapse
Affiliation(s)
- Lin-Mei Yu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Zi-Rui Wang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Qing-Xin Fan
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Tao Jia
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Tian-Hong Zhang
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| | - Qing Liu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, PR China.
| |
Collapse
|
25
|
Boo SH, Shin MK, Ha H, Woo JS, Kim YK. Transcriptome-wide analysis for glucocorticoid receptor-mediated mRNA decay reveals various classes of target transcripts. Mol Cells 2024; 47:100130. [PMID: 39426683 PMCID: PMC11577233 DOI: 10.1016/j.mocell.2024.100130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
The glucocorticoid receptor (GR) can bind to DNA or RNA, eliciting transcriptional activation/repression or rapid messenger RNA (mRNA) degradation, respectively. Although GR-mediated transcriptional regulation has been well-characterized, the molecular details of rapid mRNA degradation induced by glucocorticoids are not yet fully understood. Here, we demonstrate that glucocorticoid-induced GR-mediated mRNA decay (GMD) takes place in the nucleus and the cytoplasm, acting on pre-mRNAs and mRNAs. We also performed cross-linking and immunoprecipitation coupled with high-throughput sequencing analysis for GMD factors (GR, YBX1, and HRSP12) and mRNA sequencing analysis to identify endogenous GMD substrates. Our comprehensive coupled with high-throughput sequencing and mRNA sequencing analyses reveal that a range of cellular transcripts containing a common binding site for GR, YBX1, and HRSP12 are preferential targets for GMD, suggesting possible new functions of GMD in various biological events.
Collapse
Affiliation(s)
- Sung Ho Boo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Min-Kyung Shin
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Hongseok Ha
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jae-Sung Woo
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| | - Yoon Ki Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
26
|
Xu J, Hörner M, Nagel M, Perhat P, Korneck M, Noß M, Hauser S, Schöls L, Admard J, Casadei N, Schüle R. Unraveling Axonal Transcriptional Landscapes: Insights from iPSC-Derived Cortical Neurons and Implications for Motor Neuron Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586780. [PMID: 38585749 PMCID: PMC10996649 DOI: 10.1101/2024.03.26.586780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neuronal function and pathology are deeply influenced by the distinct molecular profiles of the axon and soma. Traditional studies have often overlooked these differences due to the technical challenges of compartment specific analysis. In this study, we employ a robust RNA-sequencing (RNA-seq) approach, using microfluidic devices, to generate high-quality axonal transcriptomes from iPSC-derived cortical neurons (CNs). We achieve high specificity of axonal fractions, ensuring sample purity without contamination. Comparative analysis revealed a unique and specific transcriptional landscape in axonal compartments, characterized by diverse transcript types, including protein-coding mRNAs, RNAs encoding ribosomal proteins (RPs), mitochondrial-encoded RNAs, and long non-coding RNAs (lncRNAs). Previous works have reported the existence of transcription factors (TFs) in the axon. Here, we detect a set of TFs specific to the axon and indicative of their active participation in transcriptional regulation. To investigate transcripts and pathways essential for central motor neuron (MN) degeneration and maintenance we analyzed KIF1C-knockout (KO) CNs, modeling hereditary spastic paraplegia (HSP), a disorder associated with prominent length-dependent degeneration of central MN axons. We found that several key factors crucial for survival and health were absent in KIF1C-KO axons, highlighting a possible role of these also in other neurodegenerative diseases. Taken together, this study underscores the utility of microfluidic devices in studying compartment-specific transcriptomics in human neuronal models and reveals complex molecular dynamics of axonal biology. The impact of KIF1C on the axonal transcriptome not only deepens our understanding of MN diseases but also presents a promising avenue for exploration of compartment specific disease mechanisms.
Collapse
|
27
|
Guo Q, Zhou Y, Ni H, Niu M, Xu S, Zheng L, Zhang W. The SIX2/PFN2 feedback loop promotes the stemness of gastric cancer cells. J Transl Med 2024; 22:832. [PMID: 39256760 PMCID: PMC11389068 DOI: 10.1186/s12967-024-05618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/18/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The roles of the transcriptional factor SIX2 have been identified in several tumors. However, its roles in gastric cancer (GC) progression have not yet been revealed. Our objective is to explore the impact and underlying mechanisms of SIX2 on the stemness of GC cells. METHODS Lentivirus infection was employed to establish stable expression SIX2 or PFN2 in GC cells. Gain- and loss-of-function experiments were conducted to detect changes of stemness markers, flow cytometry profiles, tumor spheroid formation, and tumor-initiating ability. ChIP, RNA-sequencing, tissue microarray, and bioinformatics analysis were performed to reveal the correlation between SIX2 and PFN2. The mechanisms underlying the SIX2/PFN2 loop-mediated effects were elucidated through tissue microarray analysis, RNA stability assay, IP-MS, Co-Immunoprecipitation, and inhibition of the JNK signaling pathway. RESULTS The stemness of GC cells was enhanced by SIX2. Mechanistically, SIX2 directly bound to PFN2's promoter and promoted PFN2 activity. PFN2, in turn, promoted the mRNA stability of SIX2 by recruiting RNA binding protein YBX-1, subsequently activating the downstream MAPK/JNK pathway. CONCLUSION This study unveils the roles of SIX2 in governing GC cell stemness, defining a novel SIX2/PFN2 regulatory loop responsible for this regulation. This suggests the potential of targeting the SIX2/PFN2 loop for GC treatment (Graphical Abstracts).
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, P. R. China
| | - Yi Zhou
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China
| | - Haiwei Ni
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China
| | - Miaomiao Niu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Jiangsu Key Laboratory of Drug Design and Optimization, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Shengtao Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, P. R. China
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou, 215132, P. R. China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, P. R. China.
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, P. R. China.
| |
Collapse
|
28
|
Lu K, Cheng X, He L, Li M, Chen Q, Qian C, Zhao R, Yang L, Liu F, Liu S, Zhang T, Feng L, Wu L, Wu X, Xu N, Li Y, Wang J, Han Y, Yuan H, Liu T, Zheng M, Lu S, Li D. LNCHC directly binds and regulates YBX1 stability to ameliorate metabolic dysfunction-associated steatotic liver disease progression. Liver Int 2024; 44:2396-2408. [PMID: 38847599 DOI: 10.1111/liv.15975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 08/30/2024]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) represents the foremost cause of chronic liver disease, yet its underlying mechanisms remain elusive. Our group previously discovered a novel long non-coding RNA (lncRNA) in rats, termed lncHC and its human counterpart, LNCHC. This study aimed to explore the role of LNCHC in the progression of MASLD. METHODS RNA-binding proteins bound to LNCHC were searched by mass spectrometry. The target genes of LNCHC and Y-Box binding protein 1 (YBX1) were identified by RNA-seq. MASLD animal models were utilised to examine the roles of LNCHC, YBX1 and patatin-like phospholipase domain containing 3 (PNPLA3) in MASLD progression. RESULTS Here, we identified LNCHC as a native restrainer during MASLD development. Notably, LNCHC directly binds YBX1 and prevents protein ubiquitination. Up-regulation of YBX1 then stabilises PNPLA3 mRNA to alleviate lipid accumulation in hepatocytes. Furthermore, both cell and animal studies demonstrate that LNCHC, YBX1 and PNPLA3 function to improve hepatocyte lipid accumulation and exacerbate metabolic dysfunction-associated steatohepatitis development. CONCLUSIONS In summary, our findings unveil a novel LNCHC functionality in regulating YBX1 and PNPLA3 mRNA stability during MASLD development, providing new avenues in MASLD treatment.
Collapse
Affiliation(s)
- Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Xiaona Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Lei He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center of China, Beijing, China
| | - Mengda Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Chen Qian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Rong Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Luyun Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Fangtong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Sitong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Tianyun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Lina Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Litao Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Xiaodan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Nan Xu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaan Xi, China
| | - Ya Li
- Department of Clinical Laboratory, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, Shaanxi, China
| | - Jun Wang
- Second Department of Infectious Disease, Xi'an Children's Hospital, Xi'an, China
| | - Yu Han
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiyang Yuan
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Tiemin Liu
- Department of Endocrinology and Metabolism, School of Life Sciences, Fudan University, Shanghai, China
| | - Minghua Zheng
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, Shaan Xi, China
| |
Collapse
|
29
|
Meng H, Miao H, Zhang Y, Chen T, Yuan L, Wan Y, Jiang Y, Zhang L, Cheng W. YBX1 promotes homologous recombination and resistance to platinum-induced stress in ovarian cancer by recognizing m5C modification. Cancer Lett 2024; 597:217064. [PMID: 38880223 DOI: 10.1016/j.canlet.2024.217064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Platinum-based chemotherapy causes genetic damage and induces apoptosis in ovarian cancer cells. Enhancing the ability to resist platinum drug-induced DNA damage and apoptotic stress is critical for tumor cells to acquire drug resistance. Here, we found that Y-box binding protein 1 (YBX1) was highly expressed in cisplatin-resistant patient-derived organoids (PDOs) and was a crucial gene for alleviating platinum-induced stress and maintaining drug resistance characteristics in ovarian cancer cells. Mechanistically, YBX1 recognized m5C modifications in CHD3 mRNA and maintained mRNA stability by recruiting PABPC1 protein. This regulatory process enhanced chromatin accessibility and improved the efficiency of homologous recombination (HR) repair, facilitating tumor cells to withstand platinum-induced apoptotic stress. In addition, SU056, an inhibitor of YBX1, exhibited the potential to reverse platinum resistance in subcutaneous and PDO orthotopic xenograft models. In conclusion, YBX1 is critical for ovarian cancer cells to alleviate the platinum-induced stress and may be a potential target for reversing drug-resistant therapies.
Collapse
Affiliation(s)
- Huangyang Meng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huixian Miao
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yashuang Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Chen
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Lin Yuan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Yicong Wan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Yi Jiang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Lin Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wenjun Cheng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
30
|
Li R, Zhang Y, Wang A, Feng Y, Zhang T, Wang H, Chen Y, Yu X, Song X, Ding H, Xu L, Dong G, Jiang F. The recruitment of CD8 + T cells through YBX1 stabilization abrogates tumor intrinsic oncogenic role of MIR155HG in lung adenocarcinoma. Cell Death Discov 2024; 10:334. [PMID: 39043648 PMCID: PMC11266398 DOI: 10.1038/s41420-024-02102-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
Previous studies revealed that MIR155HG possessed an oncogenic role in many types of tumors including lung adenocarcinoma (LUAD), along with higher expression in tumors. However, in our study, we observed a positive correlation between MIR155HG expression and overall survival across different cohorts. The transferred PBMC on the NCG mouse model abrogated the tumor intrinsic oncogenic role of MIR155HG in LUAD. Upregulation of MIR155HG positively correlated with CD8+ T cell infiltration both in vitro and in vivo, as well as LUAD tissues. Mechanistically, we revealed that MIR155HG increased the cytokine CCL5 expression at the transcriptional level, which depended on the interaction between MIR155HG and YBX1 protein, a novel transcription factor of CCL5, resulting in the more protein stability of YBX1 through dampening ubiquitination. Additionally, we also observed that MIR155 could increase PD-L1 expression to hamper the activity of recruited CD8+ T cells, which could be rescued through PD-L1 mAb addition. Finally, we uncovered that patients with high MIR155HG expression had a higher response rate to immunotherapy, and the combination of MIR155HG overexpression and PD-L1 mAb increased the efficacy of PD-L1 mAb. Together, our study provides a novel biomarker and potential combination treatment strategy for patients who received immunotherapy.
Collapse
Affiliation(s)
- Rutao Li
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Yijian Zhang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Anpeng Wang
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yipeng Feng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Te Zhang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Yuzhong Chen
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Xinnian Yu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
- Department of Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xuming Song
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - HanLin Ding
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China.
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China.
| | - Feng Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China.
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, China.
- The Fourth Clinical College of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
31
|
Li F, Li W. Readers of RNA Modification in Cancer and Their Anticancer Inhibitors. Biomolecules 2024; 14:881. [PMID: 39062595 PMCID: PMC11275166 DOI: 10.3390/biom14070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer treatment has always been a challenge for humanity. The inadequacies of current technologies underscore the limitations of our efforts against this disease. Nevertheless, the advent of targeted therapy has introduced a promising avenue, furnishing us with more efficacious tools. Consequently, researchers have turned their attention toward epigenetics, offering a novel perspective in this realm. The investigation of epigenetics has brought RNA readers to the forefront, as they play pivotal roles in recognizing and regulating RNA functions. Recently, the development of inhibitors targeting these RNA readers has emerged as a focal point in research and holds promise for further strides in targeted therapy. In this review, we comprehensively summarize various types of inhibitors targeting RNA readers, including non-coding RNA (ncRNA) inhibitors, small-molecule inhibitors, and other potential inhibitors. We systematically elucidate their mechanisms in suppressing cancer progression by inhibiting readers, aiming to present inhibitors of readers at the current stage and provide more insights into the development of anticancer drugs.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
32
|
Li ZL, Xie Y, Xie Y, Chen H, Zhou X, Liu M, Zhang XL. HCV 5-Methylcytosine Enhances Viral RNA Replication through Interaction with m5C Reader YBX1. ACS Chem Biol 2024; 19:1648-1660. [PMID: 38954741 DOI: 10.1021/acschembio.4c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Hepatitis C virus (HCV) is a positive-stranded RNA virus that mainly causes chronic hepatitis, cirrhosis and hepatocellular carcinoma. Recently we confirmed m5C modifications within NS5A gene of HCV RNA genome. However, the roles of the m5C modification and its interaction with host proteins in regulating HCV's life cycle, remain unexplored. Here, we demonstrate that HCV infection enhances the expression of the host m5C reader YBX1 through the transcription factor MAX. YBX1 acts as an m5C reader, recognizing the m5C-modified NS5A C7525 site in the HCV RNA genome and significantly enhancing HCV RNA stability. This m5C-modification is also required for YBX1 colocalization with lipid droplets and HCV Core protein. Moreover, YBX1 facilitates HCV RNA replication, as well as viral assembly/budding. The tryptophan residue at position 65 (W65) of YBX1 is critical for these functions. Knockout of YBX1 or the application of YBX1 inhibitor SU056 suppresses HCV RNA replication and viral protein translation. To our knowledge, this is the first report demonstrating that the interaction between host m5C reader YBX1 and HCV RNA m5C methylation facilitates viral replication. Therefore, hepatic-YBX1 knockdown holds promise as a potential host-directed strategy for HCV therapy.
Collapse
Affiliation(s)
- Zhu-Li Li
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yan Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Yuke Xie
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Hongliang Chen
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Xiang Zhou
- Department of Chemistry and Molecular Science, Wuhan University, Wuhan 430070, Hubei Province, China
| | - Min Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology Wuhan University Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- State Key Laboratory of Virology, Frontier Science Center for Immunology and Metabolism, Wuhan University School of Medicine, Wuhan 430071, China
| |
Collapse
|
33
|
Zhang M, Xing J, Zhao S, Lu M, Liu Y, Lin L, Gao W, Chen L, Li W, Shang J, Zhou J, Yin X, Zhu X. Exosomal YB-1 facilitates ovarian restoration by MALAT1/miR-211-5p/FOXO 3 axis. Cell Biol Toxicol 2024; 40:29. [PMID: 38700571 PMCID: PMC11068691 DOI: 10.1007/s10565-024-09871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/24/2024] [Indexed: 05/06/2024]
Abstract
Premature ovarian failure (POF) affects many adult women less than 40 years of age and leads to infertility. Mesenchymal stem cells-derived small extracellular vesicles (MSCs-sEVs) are attractive candidates for ovarian function restoration and folliculogenesis for POF due to their safety and efficacy, however, the key mediator in MSCs-sEVs that modulates this response and underlying mechanisms remains elusive. Herein, we reported that YB-1 protein was markedly downregulated in vitro and in vivo models of POF induced with H2O2 and CTX respectively, accompanied by granulosa cells (GCs) senescence phenotype. Notably, BMSCs-sEVs transplantation upregulated YB-1, attenuated oxidative damage-induced cellular senescence in GCs, and significantly improved the ovarian function of POF rats, but that was reversed by YB-1 depletion. Moreover, YB-1 showed an obvious decline in serum and GCs in POF patients. Mechanistically, YB-1 as an RNA-binding protein (RBP) physically interacted with a long non-coding RNA, MALAT1, and increased its stability, further, MALAT1 acted as a competing endogenous RNA (ceRNA) to elevate FOXO3 levels by sequestering miR-211-5p to prevent its degradation, leading to repair of ovarian function. In summary, we demonstrated that BMSCs-sEVs improve ovarian function by releasing YB-1, which mediates MALAT1/miR-211-5p/FOXO3 axis regulation, providing a possible therapeutic target for patients with POF.
Collapse
Affiliation(s)
- Mengxue Zhang
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jie Xing
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Shijie Zhao
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Department of Obstetrics and Gynecology, The Fourth Hospital of Changsha, Changsha, People's Republic of China
| | - Minjun Lu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Yueqin Liu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
| | - Li Lin
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Wujiang Gao
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Lu Chen
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Wenxin Li
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Junyu Shang
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Jiamin Zhou
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Xinming Yin
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiaolan Zhu
- Reproductive Center, The Fourth Affiliated Hospital of Jiangsu University, 20 Zhengdong Road, Zhenjiang, Jiangsu, 212001, People's Republic of China.
- Institute of Reproductive Sciences, Jiangsu University, Zhenjiang, 212001, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Ge Y, Weng H, Sun Y, Wu M. Integrated single-cell and spatial transcriptomic analysis reveals YBX1 drives immune regulation in GBM progression. Heliyon 2024; 10:e29451. [PMID: 38628755 PMCID: PMC11019236 DOI: 10.1016/j.heliyon.2024.e29451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
The RNA modification 5-methylcytosine (m5C) is widespread across various RNA types, significantly impacting RNA stability and translational efficiency. Accumulating evidence highlights its significant role within the tumorigenesis and progression of multiple malignancies. Nevertheless, the specific process through m5C is implicated in Glioblastoma (GBM) remains unclear. We conducted acomprehensive analysis of m5C expression distribution in single-cell GBM data. Our findings revealed elevated m5C scores in GBM single-cell data compared to the normal group. Additionally, multiple tumors exhibited significantly higher m5C scores than the normal group. Moreover, there was a positive correlation observed between the m5C score and inflammation score. m5C regulatory factor YBX1 exhibited a heightened expression in GBM, correlating closely with metastatic tendencies and an unfavorable prognosis across various cancer types. YBX1 has different biological functions in myeloid cells 1 and myeloid cells 2. YBX1 may act as immunosuppressive regulator by inhibiting the NF-κB pathway and inflammatory response in myeloid cells 1. YBX1 is essential for immune infiltrates, which creates a highly immunosuppressive tumor microenvironment by TNF signaling pathway in myeloid cells 2. YBX1+ neoplastic cells promote cell proliferation by NF-κB pathway. APOE mediates the interaction of YBX1+ myeloid cells and neoplastic cells by NF-κB.
Collapse
Affiliation(s)
- Yanshan Ge
- Hunan Provincial Tumor Hospital / the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410008, Hunan, China
| | - Huiting Weng
- Department of Clinical Nursing, The Second Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital / the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital / the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, 410008, Hunan, China
| |
Collapse
|
35
|
Frese AN, Mariossi A, Levine MS, Wühr M. Quantitative proteome dynamics across embryogenesis in a model chordate. iScience 2024; 27:109355. [PMID: 38510129 PMCID: PMC10951915 DOI: 10.1016/j.isci.2024.109355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/11/2023] [Accepted: 02/23/2024] [Indexed: 03/22/2024] Open
Abstract
The evolution of gene expression programs underlying the development of vertebrates remains poorly characterized. Here, we present a comprehensive proteome atlas of the model chordate Ciona, covering eight developmental stages and ∼7,000 translated genes, accompanied by a multi-omics analysis of co-evolution with the vertebrate Xenopus. Quantitative proteome comparisons argue against the widely held hourglass model, based solely on transcriptomic profiles, whereby peak conservation is observed during mid-developmental stages. Our analysis reveals maximal divergence at these stages, particularly gastrulation and neurulation. Together, our work provides a valuable resource for evaluating conservation and divergence of multi-omics profiles underlying the diversification of vertebrates.
Collapse
Affiliation(s)
- Alexander N. Frese
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Andrea Mariossi
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Michael S. Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Martin Wühr
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
36
|
Zhang HR, Li TJ, Yu XJ, Liu C, Wu WD, Ye LY, Jin KZ. The GFPT2-O-GlcNAcylation-YBX1 axis promotes IL-18 secretion to regulate the tumor immune microenvironment in pancreatic cancer. Cell Death Dis 2024; 15:244. [PMID: 38575607 PMCID: PMC10995196 DOI: 10.1038/s41419-024-06589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024]
Abstract
The immunosuppressive microenvironment caused by several intrinsic and extrinsic mechanism has brought great challenges to the immunotherapy of pancreatic cancer. We identified GFPT2, the key enzyme in hexosamine biosynthesis pathway (HBP), as an immune-related prognostic gene in pancreatic cancer using transcriptome sequencing and further confirmed that GFPT2 promoted macrophage M2 polarization and malignant phenotype of pancreatic cancer. HBP is a glucose metabolism pathway leading to the generation of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is further utilized for protein O-GlcNAcylation. We confirmed GFPT2-mediated O-GlcNAcylation played an important role in regulating immune microenvironment. Through cellular proteomics, we identified IL-18 as a key downstream of GFPT2 in regulating the immune microenvironment. Through CO-IP and protein mass spectrum, we confirmed that YBX1 was O-GlcNAcylated and nuclear translocated by GFPT2-mediated O-GlcNAcylation. Then, YBX1 functioned as a transcription factor to promote IL-18 transcription. Our study elucidated the relationship between the metabolic pathway of HBP in cancer cells and the immune microenvironment, which might provide some insights into the combination therapy of HBP vulnerability and immunotherapy in pancreatic cancer.
Collapse
Affiliation(s)
- Hui-Ru Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Tian-Jiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Pancreatic Cancer Institute, Shanghai, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wei-Ding Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Long-Yun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Kai-Zhou Jin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Centre, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| |
Collapse
|
37
|
Yuan S, Zhou G, Xu G. Translation machinery: the basis of translational control. J Genet Genomics 2024; 51:367-378. [PMID: 37536497 DOI: 10.1016/j.jgg.2023.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/23/2023] [Accepted: 07/23/2023] [Indexed: 08/05/2023]
Abstract
Messenger RNA (mRNA) translation consists of initiation, elongation, termination, and ribosome recycling, carried out by the translation machinery, primarily including tRNAs, ribosomes, and translation factors (TrFs). Translational regulators transduce signals of growth and development, as well as biotic and abiotic stresses, to the translation machinery, where global or selective translational control occurs to modulate mRNA translation efficiency (TrE). As the basis of translational control, the translation machinery directly determines the quality and quantity of newly synthesized peptides and, ultimately, the cellular adaption. Thus, regulating the availability of diverse machinery components is reviewed as the central strategy of translational control. We provide classical signaling pathways (e.g., integrated stress responses) and cellular behaviors (e.g., liquid-liquid phase separation) to exemplify this strategy within different physiological contexts, particularly during host-microbe interactions. With new technologies developed, further understanding this strategy will speed up translational medicine and translational agriculture.
Collapse
Affiliation(s)
- Shu Yuan
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guilong Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, Hubei 430072, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
38
|
Akiyama Y, Ivanov P. Oxidative Stress, Transfer RNA Metabolism, and Protein Synthesis. Antioxid Redox Signal 2024; 40:715-735. [PMID: 37767630 PMCID: PMC11001508 DOI: 10.1089/ars.2022.0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
Significance: Oxidative stress refers to excessive intracellular levels of reactive oxygen species (ROS) due to an imbalance between ROS production and the antioxidant defense system. Under oxidative stress conditions, cells trigger various stress response pathways to protect themselves, among which repression of messenger RNA (mRNA) translation is one of the key hallmarks promoting cell survival. This regulation process minimizes cellular energy consumption, enabling cells to survive in adverse conditions and to promote recovery from stress-induced damage. Recent Advances: Recent studies suggest that transfer RNAs (tRNAs) play important roles in regulating translation as a part of stress response under adverse conditions. In particular, research relying on high-throughput techniques such as next-generation sequencing and mass spectrometry approaches has given us detailed information on mechanisms such as individual tRNA dynamics and crosstalk among post-transcriptional modifications. Critical Issues: Oxidative stress leads to dynamic tRNA changes, including their localization, cleavage, and alteration of expression profiles and modification patterns. Growing evidence suggests that these changes not only are tightly regulated by stress response mechanisms, but also can directly fine-tune the translation efficiency, which contributes to cell- or tissue-specific response to oxidative stress. Future Directions: In this review, we describe recent advances in the understanding of the dynamic changes of tRNAs caused by oxidative stress. We also highlight the emerging roles of tRNAs in translation regulation under the condition of oxidative stress. In addition, we discuss future perspectives in this research field. Antioxid. Redox Signal. 40, 715-735.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
39
|
Jiang T, Qi J, Xue Z, Liu B, Liu J, Hu Q, Li Y, Ren J, Song H, Xu Y, Xu T, Fan R, Song J. The m 6A modification mediated-lncRNA POU6F2-AS1 reprograms fatty acid metabolism and facilitates the growth of colorectal cancer via upregulation of FASN. Mol Cancer 2024; 23:55. [PMID: 38491348 PMCID: PMC10943897 DOI: 10.1186/s12943-024-01962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/19/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have emerged as key players in tumorigenesis and tumour progression. However, the biological functions and potential mechanisms of lncRNAs in colorectal cancer (CRC) are unclear. METHODS The novel lncRNA POU6F2-AS1 was identified through bioinformatics analysis, and its expression in CRC patients was verified via qRT-PCR and FISH. In vitro and in vivo experiments, such as BODIPY staining, Oil Red O staining, triglyceride (TAG) assays, and liquid chromatography mass spectrometry (LC-MS) were subsequently performed with CRC specimens and cells to determine the clinical significance, and functional roles of POU6F2-AS1. Biotinylated RNA pull-down, RIP, Me-RIP, ChIP, and patient-derived organoid (PDO) culture assays were performed to confirm the underlying mechanism of POU6F2-AS1. RESULTS The lncRNA POU6F2-AS1 is markedly upregulated in CRC and associated with adverse clinicopathological features and poor overall survival in CRC patients. Functionally, POU6F2-AS1 promotes the growth and lipogenesis of CRC cells both in vitro and in vivo. Mechanistically, METTL3-induced m6A modification is involved in the upregulation of POU6F2-AS1. Furthermore, upregulated POU6F2-AS1 could tether YBX1 to the FASN promoter to induce transcriptional activation, thus facilitating the growth and lipogenesis of CRC cells. CONCLUSIONS Our data revealed that the upregulation of POU6F2-AS1 plays a critical role in CRC fatty acid metabolism and might provide a novel promising biomarker and therapeutic target for CRC.
Collapse
Affiliation(s)
- Tao Jiang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Junwen Qi
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Zhenyu Xue
- Department of Radiation Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Bowen Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jianquan Liu
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Qihang Hu
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yuqiu Li
- Affiliated First Clinical College, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
- Central Laboratory, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jing Ren
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Hu Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Yixin Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Teng Xu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Ruizhi Fan
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China
| | - Jun Song
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
- Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, 221002, China.
| |
Collapse
|
40
|
Brandt S, Bernhardt A, Häberer S, Wolters K, Gehringer F, Reichardt C, Krause A, Geffers R, Kahlfuß S, Jeron A, Bruder D, Lindquist JA, Isermann B, Mertens PR. Comparative Analysis of Acute Kidney Injury Models and Related Fibrogenic Responses: Convergence on Methylation Patterns Regulated by Cold Shock Protein. Cells 2024; 13:367. [PMID: 38474331 PMCID: PMC10930537 DOI: 10.3390/cells13050367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Fibrosis is characterized by excessive extracellular matrix formation in solid organs, disrupting tissue architecture and function. The Y-box binding protein-1 (YB-1) regulates fibrosis-related genes (e.g., Col1a1, Mmp2, and Tgfβ1) and contributes significantly to disease progression. This study aims to identify fibrogenic signatures and the underlying signaling pathways modulated by YB-1. METHODS Transcriptomic changes associated with matrix gene patterns in human chronic kidney diseases and murine acute injury models were analyzed with a focus on known YB-1 targets. Ybx1-knockout mouse strains (Ybx1ΔRosaERT+TX and Ybx1ΔLysM) were subjected to various kidney injury models. Fibrosis patterns were characterized by histopathological staining, transcriptome analysis, qRT-PCR, methylation analysis, zymography, and Western blotting. RESULTS Integrative transcriptomic analyses revealed that YB-1 is involved in several fibrogenic signatures related to the matrisome, the WNT, YAP/TAZ, and TGFß pathways, and regulates Klotho expression. Changes in the methylation status of the Klotho promoter by specific methyltransferases (DNMT) are linked to YB-1 expression, extending to other fibrogenic genes. Notably, kidney-resident cells play a significant role in YB-1-modulated fibrogenic signaling, whereas infiltrating myeloid immune cells have a minimal impact. CONCLUSIONS YB-1 emerges as a master regulator of fibrogenesis, guiding DNMT1 to fibrosis-related genes. This highlights YB-1 as a potential target for epigenetic therapies interfering in this process.
Collapse
Affiliation(s)
- Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Saskia Häberer
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
| | - Katharina Wolters
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
| | - Fabian Gehringer
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Charlotte Reichardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Anna Krause
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Sascha Kahlfuß
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Andreas Jeron
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dunja Bruder
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Institute of Medical Microbiology, Infection Control and Prevention, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jonathan A. Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, 04103 Leipzig, Germany;
| | - Peter R. Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.B.); (A.B.); (S.H.); (F.G.); (C.R.); (A.K.); (J.A.L.)
- Medical Faculty, Health Campus Immunology, Infectiology and Inflammation (GCI-3), Otto-von-Guericke University, 39120 Magdeburg, Germany; (S.K.); (A.J.); (D.B.)
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| |
Collapse
|
41
|
Zhao Y, Xing C, Peng H. ALYREF (Aly/REF export factor): A potential biomarker for predicting cancer occurrence and therapeutic efficacy. Life Sci 2024; 338:122372. [PMID: 38135116 DOI: 10.1016/j.lfs.2023.122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
5-Methylcytosine (m5C) methylation is present in almost all types of RNA as an essential epigenetic modification. It is dynamically modulated by its associated enzymes, including m5C methyltransferases (NSUN, DNMT and TRDMT family members), demethylases (TET family and ALKBH1) and binding proteins (YTHDF2, ALYREF and YBX1). Among them, aberrant expression of the RNA-binding protein ALYREF can facilitate a variety of malignant phenotypes such as maintenance of proliferation, malignant heterogeneity, metastasis, and drug resistance to cell death through different regulatory mechanisms, including pre-mRNA processing, mRNA stability, and nuclear-cytoplasmic shuttling. The induction of these cellular processes by ALYREF results in treatment resistance and poor outcomes for patients. However, there are currently few reports of clinical applications or drug trials related to ALYREF. In addition, the looming observations on the role of ALYREF in the mechanisms of carcinogenesis and disease prognosis have triggered considerable interest, but critical evidence is not available. For example, animal experiments and ALYREF small molecule inhibitor trials. In this review, we, therefore, revisit the literature on ALYREF and highlight its importance as a prognostic biomarker for early prevention and as a therapeutic target.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, Hunan 410011, China; Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan 410011, China.
| |
Collapse
|
42
|
Li YJ, Guo Q, Ye MS, Cai G, Xiao WF, Deng S, Xiao Y. YBX1 promotes type H vessel-dependent bone formation in an m5C-dependent manner. JCI Insight 2024; 9:e172345. [PMID: 38385749 PMCID: PMC11143935 DOI: 10.1172/jci.insight.172345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024] Open
Abstract
RNA-binding proteins (RBPs) interact with RNA and ubiquitously regulate RNA transcripts during their life cycle, playing a fundamental role in the progression of angiogenesis-related diseases. In the skeletal system, endothelium-dependent angiogenesis is indispensable for bone formation. However, the role of RBPs in endothelium-dependent bone formation is unclear. Here, we show that RBP-Y-box-binding protein 1 (YBX1) was strongly reduced in the bone vasculature of ovariectomy (OVX) mice. Endothelial cell-specific deletion of Ybx1 impaired CD31-high, endomucin-high (CD31hiEMCNhi) endothelium morphology and resulted in low bone mass whereas Ybx1 overexpression promoted angiogenesis-dependent osteogenesis and ameliorated bone loss. Mechanistically, YBX1 deletion disrupted CD31, EMCN, and bone morphogenetic protein 4 (BMP4) stability in an m5C-dependent manner and blocked endothelium-derived BMP4 release, thereby inhibiting osteogenic differentiation of bone mesenchymal stromal cells. Administration of recombinant BMP4 protein restored impaired bone formation in Ybx1 deletion mice. Tail vein injection of CD31-modified polyethylene glycol-poly (lactic-co-glycolic acid) carrying sciadopitysin, a natural YBX1 agonist, pharmacologically partially reversed CD31hiEMCNhi vessels' decline and improved bone mass in both OVX and aging animals. These findings demonstrated the role of RBP-YBX1 in angiogenesis-dependent bone formation and provided a therapeutic approach for ameliorating osteoporosis.
Collapse
Affiliation(s)
- Yu-Jue Li
- Department of Endocrinology, Endocrinology Research Center
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center
| | - Ming-Sheng Ye
- Department of Endocrinology, Endocrinology Research Center
| | - GuangPing Cai
- Department of Endocrinology, Endocrinology Research Center
| | | | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital of Central South University, Changsha, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center
| |
Collapse
|
43
|
Wu L, Huang S, Tian W, Liu P, Xie Y, Qiu Y, Li X, Tang Y, Zheng S, Sun Y, Tang H, Du W, Tan W, Xie X. PIWI-interacting RNA-YBX1 inhibits proliferation and metastasis by the MAPK signaling pathway via YBX1 in triple-negative breast cancer. Cell Death Discov 2024; 10:7. [PMID: 38182573 PMCID: PMC10770055 DOI: 10.1038/s41420-023-01771-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
Breast cancer is the second leading cause of death in women worldwide, with triple-negative breast cancer (TNBC) having the worst prognosis. Although there are numerous studies on TNBC, there is no effective treatment for it, and it is still a major problem today. Studies on PIWI-interacting RNAs (piRNAs) are increasing and investigating the mechanism of piRNAs in the proliferation and metastasis of TNBC may lead to new potential treatment targets. Here, we identified a novel piRNA, piR-YBX1, which was downregulated in TNBC compared to matched normal breast tissue. Overexpression of piR-YBX1 significantly inhibited the proliferation, migration, invasion ability of TNBC cells both in vivo and in vitro. Mechanistically, piR-YBX1 could bind directly to mRNA of Y-box binding protein 1 (YBX1) and overexpression of piR-YBX1 downregulated YBX1 in both mRNA and protein levels, while the function of piR-YBX1 could be partly rescued by overexpression of YBX1. In addition, YBX1 could bind to RAF1 which is the key molecule in the MAPK signaling pathway, and overexpression of piR-YBX1 inhibited the p-MEK and p-ERK1/2, which can be reverted by YBX1. In conclusion, our findings discovered that the piR-YBX1/YBX1/MAPK axis suppresses the proliferation and metastasis of TNBC and therefore piR-YBX1 has the potential to be an effective therapeutic agent for breast cancer.
Collapse
Affiliation(s)
- Linyu Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Shanshan Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wenwen Tian
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou, 510095, China
| | - Peng Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yi Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yu Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Shaoquan Zheng
- Department of Breast Surgery, Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuying Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, 415003, China.
| | - Weige Tan
- Department of Breast Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Xinhua Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
44
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
45
|
Zhou R, Huang Y, Feng X, Zhou R, Wang L, Xie G, Xiao Y, Zhou H. Decreased YB-1 expression denervates brown adipose tissue and contributes to age-related metabolic dysfunction. Cell Prolif 2024; 57:e13520. [PMID: 37321837 PMCID: PMC10771110 DOI: 10.1111/cpr.13520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Thermogenesis in brown adipose tissue (BAT) declines with aging, however, the underlying mechanism remains unclear. Here, we show that the expression of Y-box binding protein 1 (YB-1), a critical DNA/RNA binding protein, decreased in the BAT of aged mice due to the reduction of microbial metabolite butyrate. Genetic ablation of YB-1 in the BAT accelerated diet-induced obesity and BAT thermogenic dysfunction. In contrast, overexpression of YB-1 in the BAT of aged mice was sufficient to promote BAT thermogenesis, thus alleviating diet-induced obesity and insulin resistance. Interestingly, YB-1 had no direct effect on adipose UCP1 expression. Instead, YB-1 promoted axon guidance of BAT via regulating the expression of Slit2, thus potentiating sympathetic innervation and thermogenesis. Moreover, we have identified that a natural compound Sciadopitysin, which promotes YB-1 protein stability and nuclear translocation, alleviated BAT aging and metabolic disorders. Together, we reveal a novel fat-sympathetic nerve unit in regulating BAT senescence and provide a promising strategy against age-related metabolic disorders.
Collapse
Affiliation(s)
- Ruoyu Zhou
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Xu Feng
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Rui Zhou
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Liwen Wang
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
| | - Genqing Xie
- Department of EndocrinologyThe First People's Hospital of Xiangtan cityXiangtanChina
| | - Yuan Xiao
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaChina
| | - Haiyan Zhou
- Department of Endocrinology, Endocrinology Research CenterXiangya Hospital of Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaChina
| |
Collapse
|
46
|
Greenblatt CL, Lathe R. Vaccines and Dementia: Part I. Non-Specific Immune Boosting with BCG: History, Ligands, and Receptors. J Alzheimers Dis 2024; 98:343-360. [PMID: 38393912 PMCID: PMC10977417 DOI: 10.3233/jad-231315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2024] [Indexed: 02/25/2024]
Abstract
Vaccines such as Bacille Calmette-Guérin (BCG) can apparently defer dementia onset with an efficacy better than all drugs known to date, as initially reported by Gofrit et al. (PLoS One14, e0224433), now confirmed by other studies. Understanding how and why is of immense importance because it could represent a sea-change in how we manage patients with mild cognitive impairment through to dementia. Given that infection and/or inflammation are likely to contribute to the development of dementias such as Alzheimer's disease (Part II of this work), we provide a historical and molecular background to how vaccines, adjuvants, and their component molecules can elicit broad-spectrum protective effects against diverse agents. We review early studies in which poxvirus, herpes virus, and tuberculosis (TB) infections afford cross-protection against unrelated pathogens, a concept known as 'trained immunity'. We then focus on the attenuated TB vaccine, BCG, that was introduced to protect against the causative agent of TB, Mycobacterium tuberculosis. We trace the development of BCG in the 1920 s through to the discovery, by Freund and McDermott in the 1940 s, that extracts of mycobacteria can themselves exert potent immunostimulating (adjuvant) activity; Freund's complete adjuvant based on mycobacteria remains the most potent immunopotentiator reported to date. We then discuss whether the beneficial effects of BCG require long-term persistence of live bacteria, before focusing on the specific mycobacterial molecules, notably muramyl dipeptides, that mediate immunopotentiation, as well as the receptors involved. Part II addresses evidence that immunopotentiation by BCG and other vaccines can protect against dementia development.
Collapse
Affiliation(s)
- Charles L. Greenblatt
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel–Canada (IMRIC), Hebrew University of Jerusalem, Jerusalem, Israel
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh Medical School, Edinburgh, UK
| |
Collapse
|
47
|
Zeng W, Pan Y, Chen H, Lei X, Zhang X. YBX1, Targeted By Microrna-382-5p, Promotes Laryngeal Squamous Cell Carcinoma Progression via Modulating RAS/MAPK Signaling. Recent Pat Anticancer Drug Discov 2024; 19:176-187. [PMID: 38214357 DOI: 10.2174/1574892818666230207091720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 02/10/2023]
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is the most common cancer of head and neck cancer. Y-box binding protein-1 (YBX1) has tumor-promoting effects in some types of cancers. However, its role in LSCC remains unknown. This study set out to identify the role of YBX1 in LSCC. METHODS Bioinformatics analysis of the Gene Expression Omnibus (GEO) database and our cohort data were used to explore the association of YBX1 expression with clinicopathological factors in LSCC. Then, cells with stably or transiently transfected with plasmid or siRNA were constructed to assess the effect of loss and gain of YBX1 on the biological phenotypes of LSCC cells in vitro. In addition, subcutaneous xenograft and orthotopic liver tumor mouse models were constructed for validation. The interrogated miRNA databases and subsequent luciferase reporter assays were used to confirm the miR-382-5p target of YBX1. At last, KEGG enrichment annotation from TGCA data was used for downstream analyses of miR-382-5p/YBX1 and verified by PCR and Western immunoblotting. RESULTS The results showed that significant upregulation of YBX1 in LSCC tumors was correlated with advanced TNM stage and poor prognosis. Knockdown of YBX1 markedly impaired the proliferative, invasive, and migratory activity of Tu212 cells. We confirmed that miR-382-5p targets YBX1 to mediate LSCC progression both in vitro and in vivo. We further confirmed that miR-382-5p/YBX1 modulated the Ras/MAPK signaling axis to regulate the progression of LSCC. CONCLUSION Together, our results indicated that YBX1 is an important promoter of LSCC progression. And miR-382-5p/YBX1/RAS/MAPK signaling pathway can be perceived as a promising target in the treatment of LSCC.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Head and Neck Surgery, Ganzhou Cancer Hospital, Jiangxi Province, People's Republic of China
| | - Yiyun Pan
- Department of Oncology, Ganzhou Cancer Hospital, Jiangxi Province, People's Republic of China
| | - Hailong Chen
- Department of Oncology, Ganzhou Cancer Hospital, Jiangxi Province, People's Republic of China
| | - Xianhua Lei
- Department of Pathology, Ganzhou Cancer Hospital, Jiangxi Province, People's Republic of China
| | - Xiangmin Zhang
- Department of Head and Neck Surgery, Ganzhou Cancer Hospital, Jiangxi Province, People's Republic of China
- Department of Otolaryngology, Longgang E.N.T hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T Shenzhen, Guangdong Province, People's Republic of China
| |
Collapse
|
48
|
Lan P, Li M, Wang Y, Wang J, Li L, Zhang S, Zhang X, Ran C, Zheng J, Gong H. Y-box protein-1 modulates circSPECC1 to promote glioma tumorigenesis via miR-615-5p/HIP1/AKT axis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1902-1912. [PMID: 37994157 PMCID: PMC10753359 DOI: 10.3724/abbs.2023230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 06/13/2023] [Indexed: 11/24/2023] Open
Abstract
Y-box binding protein-1 (YB-1) is upregulated in glioma and plays an important role in its occurrence and drug resistance. However, the involved regulatory processes and downstream pathways are still unclear. Since various circular RNAs (circRNAs) and microRNAs (miRNAs) also play roles in the pathogenesis of glioma, we hypothesize that YB-1 may exert its function through a circRNA-miRNA-protein interaction network. In this study, we use the RNA binding protein immunoprecipitation assay and quantitative reverse transcription polymerase chain reaction to determine the circRNAs involved in the regulation of YB-1 and further elucidate their biological functions. The level of circSPECC1 (hsa_circ_0000745) modulated by YB-1 is significantly upregulated in the U251 and U87 glioma cell lines. Downregulation of circSPECC1 markedly inhibits the proliferation and invasiveness of U251 and U87 cells by inducing apoptosis. Bioinformatics analysis reveals that miR-615-5p could interact with circSPECC1 and huntingtin-interacting protein-1 (HIP-1). Then we determine the interactions between miR-615-5p, circSPECC1, and HIP1 using dual luciferase reporter system and pull-down assays. Mechanistic analysis indicates that the downregulation of circSPECC1 results in a decreased HIP1 expression. This study demonstrates that circSPECC1 modulated by YB-1 is increased in glioma cell lines. In addition, circSPECC1 promotes glioma growth through the upregulation of HIP1 by sponging miR-615-5p and targeting the HIP1/AKT pathway. This indicates that YB-1 and circSPECC1 may both be promising targets for glioma treatment.
Collapse
Affiliation(s)
- Ping Lan
- Department of NephrologyHospital of Nephrologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an710061China
| | - Meihe Li
- Department of Renal TransplantationHospital of Nephrologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an710061China
| | - Ying Wang
- Department of Renal TransplantationHospital of Nephrologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an710061China
| | - Jingwen Wang
- Department of Renal TransplantationHospital of Nephrologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an710061China
| | - Luyao Li
- Department of Pathologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an710061China
| | - Sha Zhang
- Department of Pathologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an710061China
| | - Xuan Zhang
- Department of Pathologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an710061China
| | - Caihong Ran
- Department of PathologyNgari Prefecture People’s HospitalNgari Prefecture 859099China
| | - Jin Zheng
- Department of Renal TransplantationHospital of Nephrologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an710061China
| | - Huilin Gong
- Department of Pathologythe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an710061China
| |
Collapse
|
49
|
Zhou X, Zhu H, Luo C, Yan Z, Zheng G, Zou X, Zou J, Zhang G. The role of RNA modification in urological cancers: mechanisms and clinical potential. Discov Oncol 2023; 14:235. [PMID: 38117350 PMCID: PMC10733275 DOI: 10.1007/s12672-023-00843-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
RNA modification is a post-transcriptional level of regulation that is widely distributed in all types of RNAs, including mRNA, tRNA, rRNA, miRNA, and lncRNA, where N6-methyladenine (m6A) is the most abundant mRNA methylation modification. Significant evidence has depicted that m6A modifications are closely related to human diseases, especially cancer, and play pivotal roles in RNA transcription, splicing, stabilization, and translation processes. The most common urological cancers include prostate, bladder, kidney, and testicular cancers, accounting for a certain proportion of human cancers, with an ever-increasing incidence and mortality. The recurrence, systemic metastasis, poor prognosis, and drug resistance of urologic tumors have prompted the identification of new therapeutic targets and mechanisms. Research on m6A modifications may provide new solutions to the current puzzles. In this review, we provide a comprehensive overview of the key roles played by RNA modifications, especially m6A modifications, in urologic cancers, as well as recent research advances in diagnostics and molecularly targeted therapies.
Collapse
Affiliation(s)
- Xuming Zhou
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Hezhen Zhu
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Cong Luo
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Zhaojie Yan
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Guansong Zheng
- First Clinical College, Gannan Medical University, Ganzhou, 341000, China
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China
| | - Junrong Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Institute of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China.
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, 341000, China.
| |
Collapse
|
50
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|