1
|
Leyane TS, Jere SW, Houreld NN. Effect of photobiomodulation at 830 nm on gene expression correlated with JAK/STAT signalling in wounded and diabetic wounded fibroblasts in vitro. JOURNAL OF BIOPHOTONICS 2024; 17:e202300230. [PMID: 38010362 DOI: 10.1002/jbio.202300230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Treatment of chronic diabetic wounds is an ongoing socio-economic challenge. Dysregulated signalling pathways characterise cells from chronic diabetic wounds. Photobiomodulation (PBM) stimulates healing by eliciting photochemical effects that affect gene regulation. JAK/STAT signalling is a primary signal transduction pathway involved in wound healing. This in vitro study aimed to determine if PBM at 830 nm and a fluence of 5 J/cm2 regulates genes related to JAK/STAT signalling in wounded and diabetic wounded fibroblast cells. A continuous wave diode laser (12.53 mW/cm2 ) was used to irradiate cells. Forty-eight hours post-PBM, RT-qPCR was used to analyse 84 genes related to JAK/STAT signalling. Five genes were upregulated and four downregulated in wounded cell models, while six genes were downregulated in diabetic wounded models. The results show drastic gene expression differences between wounded and diabetic wounded cell models in response to PBM using 830 nm.
Collapse
Affiliation(s)
- Thobekile S Leyane
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Sandy W Jere
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Nicolette N Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
2
|
Udayan G, Giordano ME, Pagliara P, Lionetto MG. Motility of Mytilus galloprovincialis hemocytes: Sensitivity to paracetamol in vitro exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106779. [PMID: 38016241 DOI: 10.1016/j.aquatox.2023.106779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Pharmaceuticals released into the environment (PiEs) represent an environmental problem of growing concern for the health of ecosystems and humans. An increasing number of studies show that PiEs pose a risk to aquatic organisms. The aim of the present work was to contribute to increasing the knowledge of the effects of PiE on marine biota focusing on the effect of paracetamol on the motility of hemocytes in Mytilus galloprovincialis, a bivalve mollusk species widely utilized as bioindicator organism. Hemocytes are the immunocompetent cells of bivalve mollusks. An early and key stage of mollusk immune response is represented by the recruitment and migration of these cells to the site of infection. Therefore, motility is an intrinsic characteristic of these cells. Here, we first characterized the spontaneous cell movement of M. galloprovincialis hemocytes when plated in a TC-treated polystyrene 96-well microplate. Two different cellular morphotypes were distinguished based on their appearance and motility behavior: spread cells and round-star-shaped cells. The two motility morphotypes were characterized by different velocities as well as movement directness, which were significantly lower in round-star-shaped cells with respect to spread cells. The sensitivity of the motility of M. galloprovincialis hemocytes to paracetamol at different concentrations (0.02, 0.2 and 2 mg/L) was investigated in vitro after 1h and 24h exposure. Paracetamol induced alterations in the motility behavior (both velocity and trajectories) of the hemocytes and the effects were cell-type specific. The study of hemocyte movements at the single cell level by cell tracking and velocimetric parameters analysis provides new sensitive tools for assessing the effects of emerging pollutants at the cellular levels in non-target organisms.
Collapse
Affiliation(s)
- Gayatri Udayan
- Dept. Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Italy
| | - Maria Elena Giordano
- Dept. Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Italy
| | - Patrizia Pagliara
- Dept. Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Italy
| | - Maria Giulia Lionetto
- Dept. Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| |
Collapse
|
3
|
Kołodziej T, Mielnicka A, Dziob D, Chojnacka AK, Rawski M, Mazurkiewicz J, Rajfur Z. Morphomigrational description as a new approach connecting cell's migration with its morphology. Sci Rep 2023; 13:11006. [PMID: 37419901 PMCID: PMC10328925 DOI: 10.1038/s41598-023-35827-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/24/2023] [Indexed: 07/09/2023] Open
Abstract
The examination of morphology and migration of cells plays substantial role in understanding the cellular behaviour, being described by plethora of quantitative parameters and models. These descriptions, however, treat cell migration and morphology as independent properties of temporal cell state, while not taking into account their strong interdependence in adherent cells. Here we present the new and simple mathematical parameter called signed morphomigrational angle (sMM angle) that links cell geometry with translocation of cell centroid, considering them as one morphomigrational behaviour. The sMM angle combined with pre-existing quantitative parameters enabled us to build a new tool called morphomigrational description, used to assign the numerical values to several cellular behaviours. Thus, the cellular activities that until now were characterized using verbal description or by complex mathematical models, are described here by a set of numbers. Our tool can be further used in automatic analysis of cell populations as well as in studies focused on cellular response to environmental directional signals.
Collapse
Affiliation(s)
- Tomasz Kołodziej
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland.
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland.
| | - Aleksandra Mielnicka
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland
- BRAINCITY, Laboratory of Neurobiology, The Nencki Institute of Experimental Biology, PAS, ul. Ludwika Pasteura 3, 02-093, Warsaw, Poland
| | - Daniel Dziob
- Department of Pharmaceutical Biophysics, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland
| | - Anna Katarzyna Chojnacka
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, NW1 1AT, London, United Kingdom
| | - Mateusz Rawski
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, ul. Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Jan Mazurkiewicz
- Laboratory of Inland Fisheries and Aquaculture, Department of Zoology, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, ul. Wojska Polskiego 71C, 60-625, Poznań, Poland
| | - Zenon Rajfur
- Department of Molecular and Interfacial Biophysics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, ul. Lojasiewicza 11, 30-348, Kraków, Poland.
- Jagiellonian Center of Biomedical Imaging, Jagiellonian University, 30-348, Kraków, Poland.
| |
Collapse
|
4
|
Grilo GA, Cakir SN, Shaver PR, Iyer RP, Whitehead K, McClung JM, Vahdati A, de Castro Brás LE. Collagen matricryptin promotes cardiac function by mediating scar formation. Life Sci 2023; 321:121598. [PMID: 36963720 PMCID: PMC10120348 DOI: 10.1016/j.lfs.2023.121598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
AIMS A peptide mimetic of a collagen-derived matricryptin (p1159) was shown to reduce left ventricular (LV) dilation and fibrosis after 7 days delivery in a mouse model of myocardial infarction (MI). This suggested p1159 long-term treatment post-MI could have beneficial effects and reduce/prevent adverse LV remodeling. This study aimed to test the potential of p1159 to reduce adverse cardiac remodeling in a chronic MI model and to elucidate p1159 mode-of-action. MATERIALS AND METHODS Using a permanent occlusion MI rodent model, animals received p1159 or vehicle solution up to 28 days. We assessed peptide treatment effects on scar composition and structure and on systolic function. To assess peptide effects on scar vascularization, a cohort of mice were injected with Griffonia simplicifolia isolectin-B4. To investigate p1159 mode-of-action, LV fibroblasts from naïve animals were treated with increasing doses of p1159. KEY FINDINGS Matricryptin p1159 significantly improved systolic function post-MI (2-fold greater EF compared to controls) by reducing left ventricular dilation and inducing the formation of a compliant and organized infarct scar, which promoted LV contractility and preserved the structural integrity of the heart. Specifically, infarcted scars from p1159-treated animals displayed collagen fibers aligned parallel to the epicardium, to resist circumferential stretching, with reduced levels of cross-linking, and improved tissue perfusion. In addition, we found that p1159 increases cardiac fibroblast migration by activating RhoA pathways via the membrane receptor integrin α4. SIGNIFICANCE Our data indicate p1159 treatment reduced adverse LV remodeling post-MI by modulating the deposition, arrangement, and perfusion of the fibrotic scar.
Collapse
Affiliation(s)
- Gabriel A Grilo
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Sirin N Cakir
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Patti R Shaver
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Rugmani P Iyer
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Kaitlin Whitehead
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Joseph M McClung
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America; Department of Cardiovascular Sciences, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America; East Carolina Diabetes and Obesity Institute, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Ali Vahdati
- Department of Engineering, East Carolina University, Greenville, NC 27858, United States of America
| | - Lisandra E de Castro Brás
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America; Department of Cardiovascular Sciences, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America.
| |
Collapse
|
5
|
Rahim NS, Wu YS, Sim MS, Velaga A, Bonam SR, Gopinath SCB, Subramaniyan V, Choy KW, Teow SY, Fareez IM, Samudi C, Sekaran SD, Sekar M, Guad RM. Three Members of Transmembrane-4-Superfamily, TM4SF1, TM4SF4, and TM4SF5, as Emerging Anticancer Molecular Targets against Cancer Phenotypes and Chemoresistance. Pharmaceuticals (Basel) 2023; 16:110. [PMID: 36678607 PMCID: PMC9867095 DOI: 10.3390/ph16010110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
There are six members of the transmembrane 4 superfamily (TM4SF) that have similar topology and sequence homology. Physiologically, they regulate tissue differentiation, signal transduction pathways, cellular activation, proliferation, motility, adhesion, and angiogenesis. Accumulating evidence has demonstrated, among six TM4SF members, the regulatory roles of transmembrane 4 L6 domain family members, particularly TM4SF1, TM4SF4, and TM4SF5, in cancer angiogenesis, progression, and chemoresistance. Hence, targeting derailed TM4SF for cancer therapy has become an emerging research area. As compared to others, this review aimed to present a focused insight and update on the biological roles of TM4SF1, TM4SF4, and TM4SF5 in the progression, metastasis, and chemoresistance of various cancers. Additionally, the mechanistic pathways, diagnostic and prognostic values, and the potential and efficacy of current anti-TM4SF antibody treatment were also deciphered. It also recommended the exploration of other interactive molecules to be implicated in cancer progression and chemoresistance, as well as potential therapeutic agents targeting TM4SF as future perspectives. Generally, these three TM4SF members interact with different integrins and receptors to significantly induce intracellular signaling and regulate the proliferation, migration, and invasion of cancer cells. Intriguingly, gene silencing or anti-TM4SF antibody could reverse their regulatory roles deciphered in different preclinical models. They also have prognostic and diagnostic value as their high expression was detected in clinical tissues and cells of various cancers. Hence, TM4SF1, TM4SF4, and TM4SF5 are promising therapeutic targets for different cancer types preclinically and deserve further investigation.
Collapse
Affiliation(s)
- Nur Syafiqah Rahim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Department of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Perlis Branch, Arau Campus, Arau 02600, Malaysia
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Bandar Puncak Alam 42300, Malaysia
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia
| | - Maw Shin Sim
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Appalaraju Velaga
- Department of Medicinal Chemistry, Faculty of Pharmacy, MAHSA University, Jenjarom 42610, Malaysia
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA
| | - Subash C. B. Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar 01000, Malaysia
- Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Pauh Campus, Arau 02600, Malaysia
| | - Vetriselvan Subramaniyan
- Department of Pharmacology, School of Medicine, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Ker Woon Choy
- Department of Anatomy, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh 47000, Malaysia
| | - Sin-Yeang Teow
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Quhai, Wenzhou 325060, China
| | - Ismail M. Fareez
- Collaborative Drug Discovery Research (CDDR) Group, Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, Bandar Puncak Alam 42300, Malaysia
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Selangor Branch, Shah Alam Campus, 40450 Shah Alam, Malaysia
| | - Chandramathi Samudi
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shamala Devi Sekaran
- Faculty of Medical and Health Sciences, UCSI University, Kuala Lumpur 56000, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh 30450, Malaysia
| | - Rhanye Mac Guad
- Department of Biomedical Science and Therapeutics, Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
6
|
Li T, Huang Y, Lu C, Gu L, Cao Y, Yin S. Engineering Photocleavable Protein-decorated Hydrogels to Regulate Cell Adhesion and Migration. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2097-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Chandra A, Butler MT, Bear JE, Haugh JM. Modeling cell protrusion predicts how myosin II and actin turnover affect adhesion-based signaling. Biophys J 2022; 121:102-118. [PMID: 34861242 PMCID: PMC8758409 DOI: 10.1016/j.bpj.2021.11.2889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/03/2021] [Accepted: 11/29/2021] [Indexed: 01/07/2023] Open
Abstract
Orchestration of cell migration is essential for development, tissue regeneration, and the immune response. This dynamic process integrates adhesion, signaling, and cytoskeletal subprocesses across spatial and temporal scales. In mesenchymal cells, adhesion complexes bound to extracellular matrix mediate both biochemical signal transduction and physical interaction with the F-actin cytoskeleton. Here, we present a mathematical model that offers insight into both aspects, considering spatiotemporal dynamics of nascent adhesions, active signaling molecules, mechanical clutching, actin treadmilling, and nonmuscle myosin II contractility. At the core of the model is a positive feedback loop, whereby adhesion-based signaling promotes generation of barbed ends at, and protrusion of, the cell's leading edge, which in turn promotes formation and stabilization of nascent adhesions. The model predicts a switch-like transition and optimality of membrane protrusion, determined by the balance of actin polymerization and retrograde flow, with respect to extracellular matrix density. The model, together with new experimental measurements, explains how protrusion can be modulated by mechanical effects (nonmuscle myosin II contractility and adhesive bond stiffness) and F-actin turnover.
Collapse
Affiliation(s)
- Ankit Chandra
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Mitchell T Butler
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - James E Bear
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.
| |
Collapse
|
8
|
Zhou L, Feng S, Li L, Lü S, Zhang Y, Long M. Two Complementary Signaling Pathways Depict Eukaryotic Chemotaxis: A Mechanochemical Coupling Model. Front Cell Dev Biol 2021; 9:786254. [PMID: 34869388 PMCID: PMC8635958 DOI: 10.3389/fcell.2021.786254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 01/16/2023] Open
Abstract
Many eukaryotic cells, including neutrophils and Dictyostelium cells, are able to undergo correlated random migration in the absence of directional cues while reacting to shallow gradients of chemoattractants with exquisite precision. Although progress has been made with regard to molecular identities, it remains elusive how molecular mechanics are integrated with cell mechanics to initiate and manipulate cell motility. Here, we propose a two dimensional (2D) cell migration model wherein a multilayered dynamic seesaw mechanism is accompanied by a mechanical strain-based inhibition mechanism. In biology, these two mechanisms can be mapped onto the biochemical feedback between phosphoinositides (PIs) and Rho GTPase and the mechanical interplay between filamin A (FLNa) and FilGAP. Cell migration and the accompanying morphological changes are demonstrated in numerical simulations using a particle-spring model, and the diffusion in the cell membrane are simulations using a one dimensional (1D) finite differences method (FDM). The fine balance established between endogenous signaling and a mechanically governed inactivation scheme ensures the endogenous cycle of self-organizing pseudopods, accounting for the correlated random migration. Furthermore, this model cell manifests directional and adaptable responses to shallow graded signaling, depending on the overwhelming effect of the graded stimuli guidance on strain-based inhibition. Finally, the model cell becomes trapped within an obstacle-ridden spatial region, manifesting a shuttle run for local explorations and can chemotactically “escape”, illustrating again the balance required in the complementary signaling pathways.
Collapse
Affiliation(s)
- Lüwen Zhou
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo Zhejiang, China.,Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Shiliang Feng
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo Zhejiang, China.,Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics (LNM) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Spiller S, Wippold T, Bellmann-Sickert K, Franz S, Saalbach A, Anderegg U, Beck-Sickinger AG. Protease-Triggered Release of Stabilized CXCL12 from Coated Scaffolds in an Ex Vivo Wound Model. Pharmaceutics 2021; 13:pharmaceutics13101597. [PMID: 34683890 PMCID: PMC8539926 DOI: 10.3390/pharmaceutics13101597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Biomaterials are designed to improve impaired healing of injured tissue. To accomplish better cell integration, we suggest to coat biomaterial surfaces with bio-functional proteins. Here, a mussel-derived surface-binding peptide is used and coupled to CXCL12 (stromal cell-derived factor 1α), a chemokine that activates CXCR4 and consequently recruits tissue-specific stem and progenitor cells. CXCL12 variants with either non-releasable or protease-mediated-release properties were designed and compared. Whereas CXCL12 was stabilized at the N-terminus for protease resistance, a C-terminal linker was designed that allowed for specific cleavage-mediated release by matrix metalloproteinase 9 and 2, since both enzymes are frequently found in wound fluid. These surface adhesive CXCL12 derivatives were produced by expressed protein ligation. Functionality of the modified chemokines was assessed by inositol phosphate accumulation and cell migration assays. Increased migration of keratinocytes and primary mesenchymal stem cells was demonstrated. Immobilization and release were studied for bioresorbable PCL-co-LC scaffolds, and accelerated wound closure was demonstrated in an ex vivo wound healing assay on porcine skin grafts. After 24 h, a significantly improved CXCL12-specific growth stimulation of the epithelial tips was already observed. The presented data display a successful application of protein-coated biomaterials for skin regeneration.
Collapse
Affiliation(s)
- Sabrina Spiller
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany; (S.S.); (K.B.-S.)
| | - Tom Wippold
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
| | - Kathrin Bellmann-Sickert
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany; (S.S.); (K.B.-S.)
| | - Sandra Franz
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
| | - Anja Saalbach
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
| | - Ulf Anderegg
- Department of Dermatology, Venerology and Allergology, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; (T.W.); (S.F.); (A.S.)
- Correspondence: (U.A.); (A.G.B.-S.); Tel.: +49-341-972-5881 (U.A.); +49-341-973-6900 (A.G.B.-S.); Fax: +49-341-972-5878 (U.A.); +49-341-973-6909 (A.G.B.-S.)
| | - Annette G. Beck-Sickinger
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Brüderstr. 34, 04103 Leipzig, Germany; (S.S.); (K.B.-S.)
- Correspondence: (U.A.); (A.G.B.-S.); Tel.: +49-341-972-5881 (U.A.); +49-341-973-6900 (A.G.B.-S.); Fax: +49-341-972-5878 (U.A.); +49-341-973-6909 (A.G.B.-S.)
| |
Collapse
|
10
|
Kober KM, Schumacher M, Conley YP, Topp K, Mazor M, Hammer MJ, Paul SM, Levine JD, Miaskowski C. Signaling pathways and gene co-expression modules associated with cytoskeleton and axon morphology in breast cancer survivors with chronic paclitaxel-induced peripheral neuropathy. Mol Pain 2020; 15:1744806919878088. [PMID: 31486345 PMCID: PMC6755139 DOI: 10.1177/1744806919878088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background The major dose-limiting toxicity of paclitaxel, one of the most commonly used
drugs to treat breast cancer, is peripheral neuropathy (paclitaxel-induced
peripheral neuropathy). Paclitaxel-induced peripheral neuropathy, which
persists into survivorship, has a negative impact on patient’s mood,
functional status, and quality of life. Currently, no interventions are
available to treat paclitaxel-induced peripheral neuropathy. A critical
barrier to the development of efficacious interventions is the lack of
understanding of the mechanisms that underlie paclitaxel-induced peripheral
neuropathy. While data from preclinical studies suggest that disrupting
cytoskeleton- and axon morphology-related processes are a potential
mechanism for paclitaxel-induced peripheral neuropathy, clinical evidence is
limited. The purpose of this study in breast cancer survivors was to
evaluate whether differential gene expression and co-expression patterns in
these pathways are associated with paclitaxel-induced peripheral
neuropathy. Methods Signaling pathways and gene co-expression modules associated with
cytoskeleton and axon morphology were identified between survivors who
received paclitaxel and did (n = 25) or did not (n = 25) develop
paclitaxel-induced peripheral neuropathy. Results Pathway impact analysis identified four significantly perturbed cytoskeleton-
and axon morphology-related signaling pathways. Weighted gene co-expression
network analysis identified three co-expression modules. One module was
associated with paclitaxel-induced peripheral neuropathy group membership.
Functional analysis found that this module was associated with four
signaling pathways and two ontology annotations related to cytoskeleton and
axon morphology. Conclusions This study, which is the first to apply systems biology approaches using
circulating whole blood RNA-seq data in a sample of breast cancer survivors
with and without chronic paclitaxel-induced peripheral neuropathy, provides
molecular evidence that cytoskeleton- and axon morphology-related mechanisms
identified in preclinical models of various types of neuropathic pain
including chemotherapy-induced peripheral neuropathy are found in breast
cancer survivors and suggests pathways and a module of genes for validation
and as potential therapeutic targets.
Collapse
Affiliation(s)
- Kord M Kober
- School of Nursing, University of California, San Francisco, CA, USA
| | - Mark Schumacher
- School of Medicine, University of California, San Francisco, CA, USA
| | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kimberly Topp
- School of Medicine, University of California, San Francisco, CA, USA
| | - Melissa Mazor
- School of Nursing, University of California, San Francisco, CA, USA
| | - Marilynn J Hammer
- Icahn School of Medicine, Mount Sinai Medical Center, New York, NY, USA
| | - Steven M Paul
- School of Nursing, University of California, San Francisco, CA, USA
| | - Jon D Levine
- School of Medicine, University of California, San Francisco, CA, USA
| | | |
Collapse
|
11
|
Polymethoxyflavones from Gardenia oudiepe (Rubiaceae) induce cytoskeleton disruption-mediated apoptosis and sensitize BRAF-mutated melanoma cells to chemotherapy. Chem Biol Interact 2020; 325:109109. [PMID: 32376239 DOI: 10.1016/j.cbi.2020.109109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 04/13/2020] [Indexed: 11/21/2022]
Abstract
A series of 10 natural and semisynthetic flavonoids (1 to 10) were obtained from Gardenia oudiepe (Rubiaceae), an endemic plant from New Caledonia. Most of them were polymethoxylated flavones (PMFs) of rare occurrence. After a cell viability screening test, PMFs 2 and 3 showed significant cytotoxic activity against A2058 human melanoma cells (IC50 = 3.92 and 8.18 μM, respectively) and were selected for in-depth pharmacological assays. Both compounds inhibited cell migration and induced apoptosis and cell cycle arrest after 72h of treatment. Immunofluorescence assays indicated that these outcomes were possibly related to the induction of cytoskeleton disruption associated to actin and tubulin depolymerization. These data were confirmed by molecular docking studies, which showed a good interaction between PMFs 2 and 3 and tubulin, particularly at the colchicine binding site. As A2058 are considered as chemoresistant to conventional chemotherapy, compounds 2 and 3 (½IC50) were associated to clinically-used antimelanoma drugs (vemurafenib and dacarbazine) and combined therapies efficacy was assessed by the MTT assay. PMFs 2 restored the sensitivity of A2058 cells to dacarbazine treatment (IC50 = 49.38 μM vs. >100 μM). Taken together, these data suggest that PMFs from G. oudiepe could be potential leaders for the design of new antimelanoma drugs.
Collapse
|
12
|
Sahana TG, Rekha PD. A novel exopolysaccharide from marine bacterium Pantoea sp. YU16-S3 accelerates cutaneous wound healing through Wnt/β-catenin pathway. Carbohydr Polym 2020; 238:116191. [PMID: 32299547 DOI: 10.1016/j.carbpol.2020.116191] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 01/14/2023]
Abstract
Natural polysaccharides with versatile properties are the potential candidates for wound healing applications. In this study, an exopolysaccharide, EPS-S3, isolated from a marine bacteria Pantoea sp. YU16-S3 was evaluated for its wound-healing abilities by studying the key molecular mechanisms in vitro and in vivo. Basic characterisation showed EPS-S3 as a heteropolysaccharide with glucose, galactose, N-acetyl galactosamine and glucosamine. The molecular weight of EPS-S3 was estimated to be 1.75 × 105 Da. It showed thermal stability up to 200 °C and shear-thickening non-Newtonian behaviour. It was biocompatible with dermal fibroblasts and keratinocytes and showed cell adhesion and cell proliferation properties. EPS-S3 facilitated cell migration in fibroblasts, induced rapid transition of cell cycle phases and also activated macrophages. In vivo experiments in rats showed the re-epithelialization of injured tissue with increased expression of HB-EGF, FGF, E-cadherin and β-catenin in EPS-S3 treatment. The results indicate that EPS-S3 modulates healing process through Wnt/β-catenin pathway due to its unique characteristics. In conclusion, EPS-S3 biosynthesized by the marine bacterium is a potential biomolecule for cutaneous wound healing applications.
Collapse
Affiliation(s)
- T G Sahana
- Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, India.
| | - P D Rekha
- Yenepoya Research Centre, Yenepoya Deemed to be University, University Road, Deralakatte, Mangalore, India.
| |
Collapse
|
13
|
Mutation Enrichment and Transcriptomic Activation Signatures of 419 Molecular Pathways in Cancer. Cancers (Basel) 2020; 12:cancers12020271. [PMID: 31979117 PMCID: PMC7073226 DOI: 10.3390/cancers12020271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022] Open
Abstract
Carcinogenesis is linked with massive changes in regulation of gene networks. We used high throughput mutation and gene expression data to interrogate involvement of 278 signaling, 72 metabolic, 48 DNA repair and 47 cytoskeleton molecular pathways in cancer. Totally, we analyzed 4910 primary tumor samples with individual cancer RNA sequencing and whole exome sequencing profiles including ~1.3 million DNA mutations and representing thirteen cancer types. Gene expression in cancers was compared with the corresponding 655 normal tissue profiles. For the first time, we calculated mutation enrichment values and activation levels for these pathways. We found that pathway activation profiles were largely congruent among the different cancer types. However, we observed no correlation between mutation enrichment and expression changes both at the gene and at the pathway levels. Overall, positive median cancer-specific activation levels were seen in the DNA repair, versus similar slightly negative values in the other types of pathways. The DNA repair pathways also demonstrated the highest values of mutation enrichment. However, the signaling and cytoskeleton pathways had the biggest proportions of representatives among the outstandingly frequently mutated genes thus suggesting their initiator roles in carcinogenesis and the auxiliary/supporting roles for the other groups of molecular pathways.
Collapse
|
14
|
Caccuri F, Bugatti A, Corbellini S, Roversi S, Zani A, Mazzuca P, Marsico S, Caruso A, Giagulli C. The Synthetic Dipeptide Pidotimod Shows a Chemokine-Like Activity through CXC Chemokine Receptor 3 (CXCR3). Int J Mol Sci 2019; 20:ijms20215287. [PMID: 31653015 PMCID: PMC6862300 DOI: 10.3390/ijms20215287] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
In recent years immunomodulators have gained a strong interest and represent nowadays an active expanding area of research for the control of microbial diseases and for their therapeutic potential in preventing, treating and reducing the morbidity and mortality of different diseases. Pidotimod (3-L-pyroglutamyl-L-thiaziolidine-4carboxylic acid, PDT) is a synthetic dipeptide, which possesses immunomodulatory properties and exerts a well-defined pharmacological activity against infections, but its real mechanism of action is still undefined. Here, we show that PDT is capable of activating tyrosine phosphorylation-based cell signaling in human primary monocytes and triggering rapid adhesion and chemotaxis. PDT-induced monocyte migration requires the activation of the PI3K/Akt signaling pathway and chemokine receptor CXCR3. Indeed, a mAb to CXCR3 and a specific receptor inhibitor suppressed significantly PDT-dependent chemotaxis, and CXCR3-silenced primary monocytes lost responsiveness to PDT chemoattraction. Moreover, our results highlighted that the PDT-induced migratory activity is sustained by the CXCR3A isoform, since CXCR3-transfected L1.2 cells acquired responsiveness to PDT stimulation. Finally, we show that PDT, as CXCR3 ligands, is also able to direct the migration of IL-2 activated T cells, which express the highest levels of CXCR3 among CXCR3-expressing cells. In conclusion, our study defines a chemokine-like activity for PDT through CXCR3A and points on the possible role that this synthetic dipeptide may play in leukocyte trafficking and function. Since recent studies have highlighted diverse therapeutic roles for molecules which activates CXCR3, our findings call for an exploration of using this dipeptide in different pathological processes.
Collapse
Affiliation(s)
- Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Silvia Corbellini
- Laboratory of Microbiology and Virology, Azienda Socio Sanitaria Territoriale Spedali Civili, 25123 Brescia, Italy.
| | - Sara Roversi
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Pietro Mazzuca
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| | - Cinzia Giagulli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy.
| |
Collapse
|
15
|
MacKay L, Khadra A. Dynamics of Mechanosensitive Nascent Adhesion Formation. Biophys J 2019; 117:1057-1073. [PMID: 31493858 PMCID: PMC6818182 DOI: 10.1016/j.bpj.2019.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 01/09/2023] Open
Abstract
Cellular migration is a tightly regulated process that involves actin cytoskeleton, adaptor proteins, and integrin receptors. Forces are transmitted extracellularly through protein complexes of these molecules, called adhesions. Adhesions anchor the cell to its substrate, allowing it to migrate. In Chinese hamster ovary cells, three classes of adhesion can be identified: nascent adhesions (NAs), focal complexes, and focal adhesions, ranked here ascendingly based on size and stability. To understand the dynamics and mechanosensitive properties of NAs, a biophysical model of these NAs as colocalized clusters of integrins and adaptor proteins is developed. The model is then analyzed to characterize the dependence of NA area on biophysical parameters that regulate the number of integrins and adaptor proteins within NAs through a mechanosensitive coaggregation mechanism. Our results reveal that NA formation is triggered beyond a threshold of adaptor protein, integrin, or extracellular ligand densities, with these three factors listed in descending order of their relative influence on NA area. Further analysis of the model also reveals that an increase in coaggregation or reductions in integrin mobility inside the adhesion potentiate NA formation. By extending the model to consider the mechanosensitivity of the integrin bond, we identify mechanical stress, rather than mechanical load, as a permissive mechanical parameter that allows for noise-dependent and independent NA assembly, despite both parameters producing a bistable switch possessing a hysteresis. Stochastic simulations of the model confirm these results computationally. This study thus provides insight into the mechanical conditions defining NA dynamics.
Collapse
Affiliation(s)
- Laurent MacKay
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
16
|
Lee YH, Tuyet PT. Synthesis and biological evaluation of quercetin-zinc (II) complex for anti-cancer and anti-metastasis of human bladder cancer cells. In Vitro Cell Dev Biol Anim 2019; 55:395-404. [PMID: 31089950 DOI: 10.1007/s11626-019-00363-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/26/2019] [Indexed: 01/23/2023]
Abstract
Bladder cancer is the 13th leading cause of cancer death worldwide, and its mortality rate is highly associated with the motility of the malignant cells. Although the techniques of urothelial cancer treatment have been continuously advanced in the last decade, the invasive bladder cancer remains incurable and the mean survival time of the patients with high-grade malignancy after cancer relapse is still < 6 months, indicating a new strategy which can reduce bladder cancer cell motility and/or progression is urgently needed. Quercetin is a polyphenolic flavonoid with approved anti-tumor effect. However, the drawbacks of quercetin, including low absorption, extensive metabolism, and rapid elimination, severely hamper its availability in the clinic. In this study, we aim to synthesize the quercetin-zinc complex (Q-ZnCPX) and explore its anti-cancer and anti-metastasis efficacies on human bladder cancer cells in vitro. Based on the results of cell movement and protein expressions in BFTC-905 cells, we found that both cell migratability and invasiveness were markedly reduced by the Q-ZnCPX with concentration of ≥ 12.5 μM through p-AKT and MT1-MMP regulations compared to the cells without treatment (P < 0.05). Moreover, the synthesized Q-ZnCPX with ≥ 75 μM can even provide > 50% of mortality rate (P < 0.05) to the cancer cell after 24-h treatment. These results demonstrated that the synthetic Q-ZnCPX may serve as feasible tool for both anti-cancer and anti-metastasis on human bladder cancer cells dependent on the dosage.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Taoyuan City, 32001, Taiwan, Republic of China. .,Department of Chemical and Materials Engineering, National Central University, Taoyuan City, Taiwan, Republic of China.
| | - Pham-Thi Tuyet
- Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Taoyuan City, 32001, Taiwan, Republic of China
| |
Collapse
|
17
|
Dewi NA, Aulanni'am A, Sujuti H, Widodo MA, Soeatmadji DW. Mechanism of retinal pericyte migration through Angiopoietin/Tie-2 signaling pathway on diabetic rats. Int J Ophthalmol 2018; 11:375-381. [PMID: 29600169 DOI: 10.18240/ijo.2018.03.05] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 01/23/2018] [Indexed: 01/10/2023] Open
Abstract
AIM To investigate the mechanism of pericyte migration through Angiopoietin-2 (Ang-2)/Tie-2 signaling pathway. METHODS We divided the rats into 5 groups. Each diabetic rat model groups injected with Tie-2 inhibitor, ERK1/2 inhibitor, Akt/PKB inhibitor, and DMSO intravitreal. Retinal digest preparation was done to examine the retinal vasculature including pericyte: endothelial ratio, and morphology of pericyte migration. Tie-2, ERK1/2 and Akt/PKB phosporylation were analyzed by confocal laser scanning microscopy. RESULTS There was a correlation between pericyte migration with increasing Ang-2 (P<0.05). Pericyte number reduced by 40% (1:2.4) after 5wk diabetes on diabetic rats. The pericyte: endothelial ratio on group with Tie-2 inhibitor were 1:1.8. The same result shows on group with Akt/PKB inhibition. ERK1/2 inhibitor group shows the best results of pericyte: endothelial ratio (1:1.7). Inhibition on Tie-2 receptor decreased the phosphorylation activity of Tie-2, ERK1/2 and Akt/PKB pathway. ERK1/2 inhibition also decreasing the phosphorylation of Tie-2 and Akt/PKB. But on Akt/PKB inhibition, the phosphorylation of Tie-2 and ERK1/2 were relative the same. CONCLUSION Ang-2 has a role for pericyte migration on diabetic rats through Tie-2 receptor, ERK1/2 and Akt/PKB pathways. ERK1/2 is a dominant pathway based on the ability to supress another pathway activity and decreasing pericyte migration on diabetic rats.
Collapse
Affiliation(s)
- Nadia Artha Dewi
- Department of Ophthalmology, Vitreoretinal Subdivision, Faculty of Medicine, Brawijaya University, Malang 65111, Indonesia
| | - Aulanni'am Aulanni'am
- Department of Biochemistry, Faculty of Sciences, Brawijaya University, Malang 65111, Indonesia
| | - Hidayat Sujuti
- Department of Biochemistry, Faculty of Medicine, Brawijaya University, Malang 65111, Indonesia
| | - Muhammad Aris Widodo
- Department of Pharmacology, Faculty of Medicine, Brawijaya University, Malang 65111, Indonesia
| | - Djoko Wahono Soeatmadji
- Department of Endocrinology, Faculty of Medicine, Brawijaya University, Malang 65111, Indonesia
| |
Collapse
|
18
|
Lasocka I, Szulc-Dąbrowska L, Skibniewski M, Skibniewska E, Strupinski W, Pasternak I, Kmieć H, Kowalczyk P. Biocompatibility of pristine graphene monolayer: Scaffold for fibroblasts. Toxicol In Vitro 2018; 48:276-285. [PMID: 29409908 DOI: 10.1016/j.tiv.2018.01.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/29/2017] [Accepted: 01/30/2018] [Indexed: 12/29/2022]
Abstract
The aim of the present study was to evaluate the cytotoxicity of pristine graphene monolayer and its utility as a scaffold for murine fibroblast L929 cell line. Cell viability, morphology, cytoskeleton architecture (microfilaments and microtubules), cell adhesion and migration into the scratch-wound area were determined using pristine graphene-coated microscopic slides. We found that fibroblasts cultured on pristine graphene monolayer exhibited changes in cell attachment, motility and cytoskeleton organization. Graphene was found to have no cytotoxicity on L929 fibroblasts and increased cell adhesion and proliferation within 24 h of culture. The area of cells growing on graphene was comparable to the area of fibroblasts cultured on glass. Migration of cells on the surface of graphene substrate appeared to be more regular in comparison to uncoated glass surface, however in both control (glass) and experimental (graphene) groups the scratch wound was closed after 48 h of culture. Taken together, our results indicate that pristine graphene monolayer is non-toxic for murine subcutaneous connective tissue fibroblasts and could be beneficial for recovery of damaged tissues after injury. These studies could be helpful in evaluating biocompatibility of graphene, which still remains ambiguous.
Collapse
Affiliation(s)
- Iwona Lasocka
- Department of Biology of Animal Environment, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego street 8, 02-786 Warsaw, Poland
| | - Lidia Szulc-Dąbrowska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Ciszewskiego street 8, 02-786 Warsaw, Poland
| | - Michał Skibniewski
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska street 159, 02-776 Warsaw, Poland.
| | - Ewa Skibniewska
- Department of Biology of Animal Environment, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego street 8, 02-786 Warsaw, Poland
| | - Włodzimierz Strupinski
- Institute of Electronic Materials Technology, Wólczyńska street 133, 01-919 Warsaw, Poland; Faculty of Physics, Warsaw University of Technology, Koszykowa street 75, 00-662 Warsaw, Poland
| | - Iwona Pasternak
- Institute of Electronic Materials Technology, Wólczyńska street 133, 01-919 Warsaw, Poland; Faculty of Physics, Warsaw University of Technology, Koszykowa street 75, 00-662 Warsaw, Poland
| | - Hubert Kmieć
- Department of Biology of Animal Environment, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego street 8, 02-786 Warsaw, Poland
| | - Paweł Kowalczyk
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka street 3, 05-110 Jabłonna, Poland
| |
Collapse
|
19
|
Um E, Oh JM, Granick S, Cho YK. Cell migration in microengineered tumor environments. LAB ON A CHIP 2017; 17:4171-4185. [PMID: 28971203 DOI: 10.1039/c7lc00555e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Recent advances in microengineered cell migration platforms are discussed critically with a focus on how cell migration is influenced by engineered tumor microenvironments, the medical relevance being to understand how tumor microenvironments may promote or suppress the progression of cancer. We first introduce key findings in cancer cell migration under the influence of the physical environment, which is systematically controlled by microengineering technology, followed by multi-cues of physico-chemical factors, which represent the complexity of the tumor environment. Recognizing that cancer cells constantly communicate not only with each other but also with tumor-associated cells such as vascular, fibroblast, and immune cells, and also with non-cellular components, it follows that cell motility in tumor microenvironments, especially metastasis via the invasion of cancer cells into the extracellular matrix and other tissues, is closely related to the malignancy of cancer-related mortality. Medical relevance of forefront research realized in microfabricated devices, such as single cell sorting based on the analysis of cell migration behavior, may assist personalized theragnostics based on the cell migration phenotype. Furthermore, we urge development of theory and numerical understanding of single or collective cell migration in microengineered platforms to gain new insights in cancer metastasis and in therapeutic strategies.
Collapse
Affiliation(s)
- Eujin Um
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | | | | | | |
Collapse
|
20
|
Zahari NK, Idrus RBH, Chowdhury SR. Laminin-Coated Poly(Methyl Methacrylate) (PMMA) Nanofiber Scaffold Facilitates the Enrichment of Skeletal Muscle Myoblast Population. Int J Mol Sci 2017; 18:E2242. [PMID: 29084180 PMCID: PMC5713212 DOI: 10.3390/ijms18112242] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 02/06/2023] Open
Abstract
Myoblasts, the contractile cells of skeletal muscle, have been invaluable for fundamental studies of muscle development and clinical applications for muscle loss. A major limitation to the myoblast-based therapeutic approach is contamination with non-contractile fibroblasts, which overgrow during cell expansion. To overcome these limitations, this study was carried out to establish a 3D culture environment using nanofiber scaffolds to enrich the myoblast population during construct formation. Poly(methyl methacrylate) (PMMA) nanofiber (PM) scaffolds were fabricated using electrospinning techniques and coated with extracellular matrix (ECM) proteins, such as collagen or laminin, in the presence or absence of genipin. A mixed population of myoblasts and fibroblasts was isolated from human skeletal muscle tissues and cultured on plain surfaces, as well as coated and non-coated PM scaffolds. PMMA can produce smooth fibers with an average diameter of 360 ± 50 nm. Adsorption of collagen and laminin on PM scaffolds is significantly enhanced in the presence of genipin, which introduces roughness to the nanofiber surface without affecting fiber diameter and mechanical properties. It was also demonstrated that laminin-coated PM scaffolds significantly enhance myoblast proliferation (0.0081 ± 0.0007 h-1) and migration (0.26 ± 0.04 μm/min), while collagen-coated PM scaffolds favors fibroblasts proliferation (0.0097 ± 0.0009 h-1) and migration (0.23 ± 0.03 μm/min). Consequently, the myoblast population was enriched on laminin-coated PM scaffolds throughout the culture process. Therefore, laminin coating of nanofiber scaffolds could be a potential scaffold for the development of a tissue-engineered muscle substitute.
Collapse
Affiliation(s)
- Nor Kamalia Zahari
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Kuala Lumpur, Malaysia.
| | - Ruszymah Binti Haji Idrus
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Kuala Lumpur, Malaysia.
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Kuala Lumpur, Malaysia.
| | - Shiplu Roy Chowdhury
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Cheras 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Ngan E, Kiepas A, Brown CM, Siegel PM. Emerging roles for LPP in metastatic cancer progression. J Cell Commun Signal 2017; 12:143-156. [PMID: 29027626 DOI: 10.1007/s12079-017-0415-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/03/2017] [Indexed: 01/21/2023] Open
Abstract
LIM domain containing proteins are important regulators of diverse cellular processes, and play pivotal roles in regulating the actin cytoskeleton. Lipoma Preferred Partner (LPP) is a member of the zyxin family of LIM proteins that has long been characterized as a promoter of mesenchymal/fibroblast cell migration. More recently, LPP has emerged as a critical inducer of tumor cell migration, invasion and metastasis. LPP is thought to contribute to these malignant phenotypes by virtue of its ability to shuttle into the nucleus, localize to adhesions and, most recently, to promote invadopodia formation. In this review, we will examine the mechanisms through which LPP regulates the functions of adhesions and invadopodia, and discuss potential roles of LPP in mediating cellular responses to mechanical cues within these mechanosensory structures.
Collapse
Affiliation(s)
- Elaine Ngan
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Alex Kiepas
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Claire M Brown
- Department of Physiology, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Room 508, Montréal, Québec, H3A 1A3, Canada. .,Department of Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
22
|
Mohan K, Nosbisch JL, Elston TC, Bear JE, Haugh JM. A Reaction-Diffusion Model Explains Amplification of the PLC/PKC Pathway in Fibroblast Chemotaxis. Biophys J 2017; 113:185-194. [PMID: 28700916 DOI: 10.1016/j.bpj.2017.05.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 12/20/2022] Open
Abstract
During the proliferative phase of cutaneous wound healing, dermal fibroblasts are recruited into the clotted wound by a concentration gradient of platelet-derived growth factor (PDGF), together with other spatial cues. Despite the importance of this chemotactic process, the mechanisms controlling the directed migration of slow-moving mesenchymal cells such as fibroblasts are not well understood. Here, we develop and analyze a reaction-diffusion model of phospholipase C/protein kinase C (PKC) signaling, which was recently identified as a requisite PDGF-gradient-sensing pathway, with the goal of identifying mechanisms that can amplify its sensitivity in the shallow external gradients typical of chemotaxis experiments. We show that phosphorylation of myristoylated alanine-rich C kinase substrate by membrane-localized PKC constitutes a positive feedback that is sufficient for local pathway amplification. The release of phosphorylated myristoylated alanine-rich C kinase substrate and its subsequent diffusion and dephosphorylation in the cytosol also serves to suppress the pathway in down-gradient regions of the cell. By itself, this mechanism only weakly amplifies signaling in a shallow PDGF gradient, but it synergizes with other feedback mechanisms to enhance amplification. This model offers a framework for a mechanistic understanding of phospholipase C/PKC signaling in chemotactic gradient sensing and can guide the design of experiments to assess the roles of putative feedback loops.
Collapse
Affiliation(s)
- Krithika Mohan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Jamie L Nosbisch
- Biomathematics Graduate Program, North Carolina State University, Raleigh, North Carolina
| | - Timothy C Elston
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - James E Bear
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jason M Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina.
| |
Collapse
|
23
|
Riehl BD, Lee JS, Ha L, Kwon IK, Lim JY. Flowtaxis of osteoblast migration under fluid shear and the effect of RhoA kinase silencing. PLoS One 2017; 12:e0171857. [PMID: 28199362 PMCID: PMC5310897 DOI: 10.1371/journal.pone.0171857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/26/2017] [Indexed: 02/07/2023] Open
Abstract
Despite the important role of mechanical signals in bone remodeling, relatively little is known about how fluid shear affects osteoblastic cell migration behavior. Here we demonstrated that MC3T3-E1 osteoblast migration could be activated by physiologically-relevant levels of fluid shear in a shear stress-dependent manner. Interestingly, shear-sensitive osteoblast migration behavior was prominent only during the initial period after the onset of the steady flow (for about 30 min), exhibiting shear stress-dependent migration speed, displacement, arrest coefficient, and motility coefficient. For example, cell speed at 1 min was 0.28, 0.47, 0.51, and 0.84 μm min-1 for static, 2, 15, and 25 dyne cm-2 shear stress, respectively. Arrest coefficient (measuring how often cells are paused during migration) assessed for the first 30 min was 0.40, 0.26, 0.24, and 0.12 respectively for static, 2, 15, and 25 dyne cm-2. After this initial period, osteoblasts under steady flow showed decreased migration capacity and diminished shear stress dependency. Molecular interference of RhoA kinase (ROCK), a regulator of cytoskeletal tension signaling, was found to increase the shear-sensitive window beyond the initial period. Cells with ROCK-shRNA had increased migration in the flow direction and continued shear sensitivity, resulting in greater root mean square displacement at the end of 120 min of measurement. It is notable that the transient osteoblast migration behavior was in sharp contrast to mesenchymal stem cells that exhibited sustained shear sensitivity (as we recently reported, J. R. Soc. Interface. 2015; 12:20141351). The study of fluid shear as a driving force for cell migration, i.e., "flowtaxis", and investigation of molecular mechanosensors governing such behavior (e.g., ROCK as tested in this study) may provide new and improved insights into the fundamental understanding of cell migration-based homeostasis.
Collapse
Affiliation(s)
- Brandon D. Riehl
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Jeong Soon Lee
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Ligyeom Ha
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Il Keun Kwon
- The Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Jung Yul Lim
- Department of Mechanical and Materials Engineering, College of Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
- The Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
- * E-mail:
| |
Collapse
|
24
|
Activin A stimulates migration of the fallopian tube epithelium, an origin of high-grade serous ovarian cancer, through non-canonical signaling. Cancer Lett 2017; 391:114-124. [PMID: 28115208 DOI: 10.1016/j.canlet.2017.01.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/05/2017] [Accepted: 01/11/2017] [Indexed: 12/28/2022]
Abstract
Factors that stimulate the migration of fallopian tube epithelial (FTE)-derived high-grade serous ovarian cancer (HGSOC) to the ovary are poorly elucidated. This study characterized the effect of the ovarian hormone, activin A, on normal FTE and HGSOC. Activin A and TGFβ1 induced an epithelial-to-mesenchymal transition in murine oviductal epithelial (MOE) cells, but only activin A increased migration. The migratory effect of activin A was independent of Smad2/3 and required phospho-AKT, phospho-ERK, and Rac1. Exogenous activin A stimulated migration of the HGSOC cell line OVCAR3 through a similar mechanism. Activin A signaling inhibitors, SB431542 and follistatin, reduced migration in OVCAR4 cells, which expressed activin A subunits (encoded by INHBA). Murine superovulation increased phospho-Smad2/3 immunostaining in the FTE. In Oncomine, transcripts for the activin A receptors (ACVR1B and ACVR2A) were higher in serous tumors relative to the normal ovary, while inhibitors of activin A signaling (INHA and TGFB3) were lower. High expression of both INHBA and ACVR2A, but not TGFβ receptors or co-receptors, was associated with shorter disease-free survival in serous cancer patients. These results suggest activin A stimulates migration of FTE-derived tumors to the ovary.
Collapse
|
25
|
Fouani L, Menezes SV, Paulson M, Richardson DR, Kovacevic Z. Metals and metastasis: Exploiting the role of metals in cancer metastasis to develop novel anti-metastatic agents. Pharmacol Res 2017; 115:275-287. [DOI: 10.1016/j.phrs.2016.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 01/06/2023]
|
26
|
Priyadarsini S, Sarker-Nag A, Rowsey TG, Ma JX, Karamichos D. Establishment of a 3D In Vitro Model to Accelerate the Development of Human Therapies against Corneal Diabetes. PLoS One 2016; 11:e0168845. [PMID: 28005998 PMCID: PMC5179241 DOI: 10.1371/journal.pone.0168845] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/07/2016] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To establish an in vitro model that would mirror the in vivo corneal stromal environment in diabetes (DM) patients. METHODS Human corneal fibroblasts from Healthy (HCFs), Type 1DM (T1DM) and Type 2DM (T2DM) donors were isolated and cultured for 4 weeks with Vitamin C stimulation in order to allow for extracellular matrix (ECM) secretion and assembly. RESULTS Our data indicated altered cellular morphology, increased cellular migration, increased ECM assembly, and severe mitochondrial damage in both T1DM and T2DMs when compared to HCFs. Furthermore, we found significant downregulation of Collagen I and Collagen V expression in both T1DM and T2DMs. Furthermore, a significant up regulation of fibrotic markers was seen, including α-smooth muscle actin in T2DM and Collagen III in both T1DM and T2DMs. Metabolic analysis suggested impaired Glycolysis and Tricarboxylic acid cycle (TCA) pathway. CONCLUSION DM has significant effects on physiological and clinical aspects of the human cornea. The benefits in developing and fully characterizing our 3D in vitro model are enormous and might provide clues for the development of novel therapeutics.
Collapse
Affiliation(s)
- Shrestha Priyadarsini
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Akhee Sarker-Nag
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Tyler G. Rowsey
- Department of Biology and Chemistry, East Central University, Ada, Oklahoma, United States of America
| | - Jian-Xing Ma
- Department of Physiology Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Dimitrios Karamichos
- Department of Ophthalmology/Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
27
|
Biondini M, Sadou-Dubourgnoux A, Paul-Gilloteaux P, Zago G, Arslanhan MD, Waharte F, Formstecher E, Hertzog M, Yu J, Guerois R, Gautreau A, Scita G, Camonis J, Parrini MC. Direct interaction between exocyst and Wave complexes promotes cell protrusions and motility. J Cell Sci 2016; 129:3756-3769. [PMID: 27591259 DOI: 10.1242/jcs.187336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/16/2016] [Indexed: 12/25/2022] Open
Abstract
Coordination between membrane trafficking and actin polymerization is fundamental in cell migration, but a dynamic view of the underlying molecular mechanisms is still missing. The Rac1 GTPase controls actin polymerization at protrusions by interacting with its effector, the Wave regulatory complex (WRC). The exocyst complex, which functions in polarized exocytosis, has been involved in the regulation of cell motility. Here, we show a physical and functional connection between exocyst and WRC. Purified components of exocyst and WRC directly associate in vitro, and interactions interfaces are identified. The exocyst-WRC interaction is confirmed in cells by co-immunoprecipitation and is shown to occur independently of the Arp2/3 complex. Disruption of the exocyst-WRC interaction leads to impaired migration. By using time-lapse microscopy coupled to image correlation analysis, we visualized the trafficking of the WRC towards the front of the cell in nascent protrusions. The exocyst is necessary for WRC recruitment at the leading edge and for resulting cell edge movements. This direct link between the exocyst and WRC provides a new mechanistic insight into the spatio-temporal regulation of cell migration.
Collapse
Affiliation(s)
- Marco Biondini
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - Amel Sadou-Dubourgnoux
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - Perrine Paul-Gilloteaux
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR 144, Paris 75005, France
| | - Giulia Zago
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - Melis D Arslanhan
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - François Waharte
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France Cell and Tissue Imaging Facility (PICT-IBiSA), CNRS UMR 144, Paris 75005, France
| | | | - Maud Hertzog
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS UMR 5100, Université Paul Sabatier, Toulouse 31062, France
| | - Jinchao Yu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Saclay, CEA-Saclay, Gif-sur-Yvette 91191
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, University Paris-Saclay, CEA-Saclay, Gif-sur-Yvette 91191
| | - Alexis Gautreau
- Laboratoire de Biochimie Ecole Polytechnique, CNRS UMR7654, Palaiseau Cedex 91128, France
| | - Giorgio Scita
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare and Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan 20139, Italy
| | - Jacques Camonis
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| | - Maria Carla Parrini
- Institut Curie, Centre de Recherche, Paris Sciences et Lettres Research University, Paris 75005, France ART group, Inserm U830, Paris 75005, France
| |
Collapse
|
28
|
PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front. Proc Natl Acad Sci U S A 2016; 113:10091-6. [PMID: 27555588 DOI: 10.1073/pnas.1604720113] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells migrate by directing Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) activities and by polymerizing actin toward the leading edge of the cell. Previous studies have proposed that this polarization process requires a local positive feedback in the leading edge involving Rac small GTPase and actin polymerization with PI3K likely playing a coordinating role. Here, we show that the pleckstrin homology and RhoGEF domain containing G3 (PLEKHG3) is a PI3K-regulated Rho guanine nucleotide exchange factor (RhoGEF) for Rac1 and Cdc42 that selectively binds to newly polymerized actin at the leading edge of migrating fibroblasts. Optogenetic inactivation of PLEKHG3 showed that PLEKHG3 is indispensable both for inducing and for maintaining cell polarity. By selectively binding to newly polymerized actin, PLEKHG3 promotes local Rac1/Cdc42 activation to induce more local actin polymerization, which in turn promotes the recruitment of more PLEKHG3 to induce and maintain cell front. Thus, autocatalytic reinforcement of PLEKHG3 localization to the leading edge of the cell provides a molecular basis for the proposed positive feedback loop that is required for cell polarization and directed migration.
Collapse
|
29
|
Holmes WR, Edelstein-Keshet L. Analysis of a minimal Rho-GTPase circuit regulating cell shape. Phys Biol 2016; 13:046001. [DOI: 10.1088/1478-3975/13/4/046001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Lima CR, Geraldo MV, Fuziwara CS, Kimura ET, Santos MF. MiRNA-146b-5p upregulates migration and invasion of different Papillary Thyroid Carcinoma cells. BMC Cancer 2016; 16:108. [PMID: 26883911 PMCID: PMC4754828 DOI: 10.1186/s12885-016-2146-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 02/08/2016] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Tumor invasiveness is directly related to the ability of tumor cells to migrate and invade surrounding tissues, usually degrading extracellular matrix. Despite significant progress in the knowledge about migration and invasion, there is much more to elucidate about their regulatory mechanisms, especially in cancer cells. MicroRNAs (miRs) were recently described as important regulators of migration. Differential expression of miRs in cancer is frequently associated with progression, invasion and metastasis. In papillary thyroid carcinoma (PTC), miR-146b-5p is highly expressed and positively correlated to the degree of malignancy. METHODS This study aimed to investigate the role of miR-146b-5p on the migratory and invasive behaviors of thyroid cells, using a non tumor rat thyroid follicular cell line (PCCl3) transfected with the miR-146b-5p genomic region, and two PTC cell lines (TPC-1 and BCPAP, bearing distinct oncogenic backgrounds), which express high levels of miR-146b-5p, after miR-146b inhibition by antagomiR and miR-146b overexpression by mimics-miR. Migration and invasion were studied by time-lapse and transwell assays (with and without Matrigel®). Gelatin degradation assays were also employed, as well as F-actin staining. RESULTS Migration and invasion of PCCl3 were increased 2-3x after miR-146b-5p overexpression (10X) and large lamellipodia were evident in those cells. After miR-146b-5p inhibition, TPC-1 and BCPAP migration and invasion were significantly reduced, with cells showing several simultaneous processes and low polarity. Gelatin degradation was inhibited in TPC-1 cells after inhibition of miR-146b-5p, but was unaffected in BCPAP cells, which did not degrade gelatin. The inhibition of miR-146b-5p in PCCl3 also inhibited migration and invasion, and additional (exogenous) overexpression of this miR in TPC-1 and BCPAP cells increased migration and invasion, without effects on cell morphology or gelatin degradation. The overexpression of SMAD4 in BCPAP cells, a validated target of miR-146b-5p and key protein in the TGF-β signaling pathway, inhibited migration similarly to the effects observed with the antagomiR 146b-5p. CONCLUSIONS miR-146b-5p positively regulates migration and invasion of thyroid normal and tumor follicular cells (independently from their original mutation, either BRAF or RET/PTC), through a mechanism that involves the actin cytoskeleton but not an increased capacity of matrix degradation.
Collapse
Affiliation(s)
- Cilene Rebouças Lima
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Murilo Vieira Geraldo
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Cesar Seigi Fuziwara
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Edna Teruko Kimura
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Marinilce Fagundes Santos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
31
|
James J, Tun W, Clark A. Quantifying trophoblast migration: In vitro approaches to address in vivo situations. Cell Adh Migr 2015; 10:77-87. [PMID: 26479000 DOI: 10.1080/19336918.2015.1083667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
When trophoblasts migrate and invade in vivo, they do so by interacting with a range of other cell types, extracellular matrix proteins, chemotactic factors and physical forces such as fluid shear stress. These factors combine to influence overall trophoblast migration and invasion into the decidua, which in turn determines the success of spiral artery remodelling, and pregnancy itself. Our understanding of these important but complex processes is limited by the simplified conditions in which we often study cell migration in vitro, and many discrepancies are observed between different in vitro models in the literature. On top of these experimental considerations, the migration of individual trophoblasts can vary widely. While time-lapse microscopy provides a wealth of information on trophoblast migration, manual tracking of individual cell migration is a time consuming task that ultimately restricts the numbers of cells quantified, and thus the ability to extract meaningful information from the data. However, the development of automated imaging algorithms is likely to aid our ability to accurately interpret trophoblast migration in vitro, and better allow us to relate these observations to in vivo scenarios. This commentary discusses the advantages and disadvantages of techniques commonly used to quantify trophoblast migration and invasion, both from a cell biology and a mathematical perspective, and examines how such techniques could be improved to help us relate trophoblast migration more accurately to in vivo function in the future.
Collapse
Affiliation(s)
- Joanna James
- a Department of Obstetrics and Gynecology , Faculty of Medical and Health Sciences, University of Auckland , Auckland , New Zealand
| | - Win Tun
- a Department of Obstetrics and Gynecology , Faculty of Medical and Health Sciences, University of Auckland , Auckland , New Zealand.,b Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| | - Alys Clark
- b Auckland Bioengineering Institute, University of Auckland , Auckland , New Zealand
| |
Collapse
|
32
|
Manes NP, Angermann BR, Koppenol-Raab M, An E, Sjoelund VH, Sun J, Ishii M, Germain RN, Meier-Schellersheim M, Nita-Lazar A. Targeted Proteomics-Driven Computational Modeling of Macrophage S1P Chemosensing. Mol Cell Proteomics 2015. [PMID: 26199343 DOI: 10.1074/mcp.m115.048918] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Osteoclasts are monocyte-derived multinuclear cells that directly attach to and resorb bone. Sphingosine-1-phosphate (S1P)(1) regulates bone resorption by functioning as both a chemoattractant and chemorepellent of osteoclast precursors through two G-protein coupled receptors that antagonize each other in an S1P-concentration-dependent manner. To quantitatively explore the behavior of this chemosensing pathway, we applied targeted proteomics, transcriptomics, and rule-based pathway modeling using the Simmune toolset. RAW264.7 cells (a mouse monocyte/macrophage cell line) were used as model osteoclast precursors, RNA-seq was used to identify expressed target proteins, and selected reaction monitoring (SRM) mass spectrometry using internal peptide standards was used to perform absolute abundance measurements of pathway proteins. The resulting transcript and protein abundance values were strongly correlated. Measured protein abundance values, used as simulation input parameters, led to in silico pathway behavior matching in vitro measurements. Moreover, once model parameters were established, even simulated responses toward stimuli that were not used for parameterization were consistent with experimental findings. These findings demonstrate the feasibility and value of combining targeted mass spectrometry with pathway modeling for advancing biological insight.
Collapse
Affiliation(s)
- Nathan P Manes
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Bastian R Angermann
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Marijke Koppenol-Raab
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Eunkyung An
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Virginie H Sjoelund
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Jing Sun
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Masaru Ishii
- §Immunology Frontier Research Center, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ronald N Germain
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Martin Meier-Schellersheim
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421
| | - Aleksandra Nita-Lazar
- From the ‡Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland, 20892-0421;
| |
Collapse
|
33
|
Rajendiran S, Kpetemey M, Maji S, Gibbs LD, Dasgupta S, Mantsch R, Hare RJ, Vishwanatha JK. MIEN1 promotes oral cancer progression and implicates poor overall survival. Cancer Biol Ther 2015; 16:876-85. [PMID: 25996585 PMCID: PMC4622880 DOI: 10.1080/15384047.2015.1040962] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/03/2015] [Accepted: 04/09/2015] [Indexed: 10/23/2022] Open
Abstract
Oral squamous cell carcinoma is a highly malignant tumor with the potential to invade local and distant sites and promote lymph node metastasis. Major players underlying the molecular mechanisms behind tumor progression are yet to be fully explored. Migration and invasion enhancer 1 (MIEN1), a novel protein overexpressed in various cancers, facilitates cell migration and invasion. In the present study we investigated the expression and role of MIEN1 in oral cancer progression using an in vitro model, patient derived oral tissues and existing TCGA data. Expression analysis using immortalized normal and cancer cells demonstrated increased expression of MIEN1 in cancer. Assays performed after MIEN1 knockdown in OSC-2 cells showed decreased migration, invasion and filopodia formation; while MIEN1 overexpression in DOK cells increased these characteristics and also up-regulated some Akt/NF-κB effectors, thereby suggesting an important role for MIEN1 in oral cancer progression. Immunohistochemical staining and analyses of oral tissue specimens, collected from patients over multiple visits, revealed significantly more staining in severe dysplasia and squamous cell carcinoma compared to mildly dysplastic or hyperplastic tissues. Finally, this was corroborated with the TCGA dataset, where MIEN1 expression was not only higher in intermediate and high grade cancer with significantly lower survival but also correlated with smoking. In summary, we demonstrate that MIEN1 expression not only positively correlates with oral cancer progression but also seems to be a critical molecular determinant in migration and invasion of oral cancer cells, thereby, playing a possible role in their metastatic dissemination.
Collapse
Key Words
- CRS, current reformed smoker
- CS, current smoker
- GFP, green fluorescent protein
- HNSCC, head and neck squamous cell carcinoma
- MIEN1
- MIEN1, migration and invasion enhancer 1
- MMP-9, matrix metallopeptidase 9
- NF-κB
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- OSCC, oral squamous cell carcinoma
- TCGA HNSCC database
- TCGA, the cancer genome atlas
- VEGF, vascular endothelial growth factor
- filopodia
- invasion
- longitudinal study
- migration
- oral cancer
- siRNA, small interfering RNA
- survival
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Smrithi Rajendiran
- Department of Molecular and Medical Genetics; Institute for Cancer Research and Texas Center for Health Disparities; University of North Texas Health Science Center; Fort Worth, TX USA
- These authors contributed equally to this work.
| | - Marilyne Kpetemey
- Department of Molecular and Medical Genetics; Institute for Cancer Research and Texas Center for Health Disparities; University of North Texas Health Science Center; Fort Worth, TX USA
- These authors contributed equally to this work.
| | - Sayantan Maji
- Department of Molecular and Medical Genetics; Institute for Cancer Research and Texas Center for Health Disparities; University of North Texas Health Science Center; Fort Worth, TX USA
- These authors contributed equally to this work.
| | - Lee D Gibbs
- Department of Molecular and Medical Genetics; Institute for Cancer Research and Texas Center for Health Disparities; University of North Texas Health Science Center; Fort Worth, TX USA
| | - Subhamoy Dasgupta
- Department of Molecular and Medical Genetics; Institute for Cancer Research and Texas Center for Health Disparities; University of North Texas Health Science Center; Fort Worth, TX USA
- Department of Molecular and Cellular Biology; Baylor College of Medicine; Houston, TX USA
| | - Rebecca Mantsch
- Department of Pathology; Plaza Medical Center; Fort Worth, TX USA
| | - Richard J Hare
- Department of Pathology; Plaza Medical Center; Fort Worth, TX USA
| | - Jamboor K Vishwanatha
- Department of Molecular and Medical Genetics; Institute for Cancer Research and Texas Center for Health Disparities; University of North Texas Health Science Center; Fort Worth, TX USA
| |
Collapse
|
34
|
Karunarathne WKA, O'Neill PR, Gautam N. Subcellular optogenetics - controlling signaling and single-cell behavior. J Cell Sci 2014; 128:15-25. [PMID: 25433038 DOI: 10.1242/jcs.154435] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Variation in signaling activity across a cell plays a crucial role in processes such as cell migration. Signaling activity specific to organelles within a cell also likely plays a key role in regulating cellular functions. To understand how such spatially confined signaling within a cell regulates cell behavior, tools that exert experimental control over subcellular signaling activity are required. Here, we discuss the advantages of using optogenetic approaches to achieve this control. We focus on a set of optical triggers that allow subcellular control over signaling through the activation of G-protein-coupled receptors (GPCRs), receptor tyrosine kinases and downstream signaling proteins, as well as those that inhibit endogenous signaling proteins. We also discuss the specific insights with regard to signaling and cell behavior that these subcellular optogenetic approaches can provide.
Collapse
Affiliation(s)
- W K Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Patrick R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Narasimhan Gautam
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
35
|
Plasticity in the macromolecular-scale causal networks of cell migration. PLoS One 2014; 9:e90593. [PMID: 24587399 PMCID: PMC3938764 DOI: 10.1371/journal.pone.0090593] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 02/03/2014] [Indexed: 11/26/2022] Open
Abstract
Heterogeneous and dynamic single cell migration behaviours arise from a complex multi-scale signalling network comprising both molecular components and macromolecular modules, among which cell-matrix adhesions and F-actin directly mediate migration. To date, the global wiring architecture characterizing this network remains poorly defined. It is also unclear whether such a wiring pattern may be stable and generalizable to different conditions, or plastic and context dependent. Here, synchronous imaging-based quantification of migration system organization, represented by 87 morphological and dynamic macromolecular module features, and migration system behaviour, i.e., migration speed, facilitated Granger causality analysis. We thereby leveraged natural cellular heterogeneity to begin mapping the directionally specific causal wiring between organizational and behavioural features of the cell migration system. This represents an important advance on commonly used correlative analyses that do not resolve causal directionality. We identified organizational features such as adhesion stability and adhesion F-actin content that, as anticipated, causally influenced cell migration speed. Strikingly, we also found that cell speed can exert causal influence over organizational features, including cell shape and adhesion complex location, thus revealing causality in directions contradictory to previous expectations. Importantly, by comparing unperturbed and signalling-modulated cells, we provide proof-of-principle that causal interaction patterns are in fact plastic and context dependent, rather than stable and generalizable.
Collapse
|
36
|
Ouyang L, Lee J, Park CK, Mao M, Shi Y, Gong Z, Zheng H, Li Y, Zhao Y, Wang G, Fu H, Kim J, Lim HY. Whole-genome sequencing of matched primary and metastatic hepatocellular carcinomas. BMC Med Genomics 2014; 7:2. [PMID: 24405831 PMCID: PMC3896667 DOI: 10.1186/1755-8794-7-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/27/2013] [Indexed: 02/06/2023] Open
Abstract
Background To gain biological insights into lung metastases from hepatocellular carcinoma (HCC), we compared the whole-genome sequencing profiles of primary HCC and paired lung metastases. Methods We used whole-genome sequencing at 33X-43X coverage to profile somatic mutations in primary HCC (HBV+) and metachronous lung metastases (> 2 years interval). Results In total, 5,027-13,961 and 5,275-12,624 somatic single-nucleotide variants (SNVs) were detected in primary HCC and lung metastases, respectively. Generally, 38.88-78.49% of SNVs detected in metastases were present in primary tumors. We identified 65–221 structural variations (SVs) in primary tumors and 60–232 SVs in metastases. Comparison of these SVs shows very similar and largely overlapped mutated segments between primary and metastatic tumors. Copy number alterations between primary and metastatic pairs were also found to be closely related. Together, these preservations in genomic profiles from liver primary tumors to metachronous lung metastases indicate that the genomic features during tumorigenesis may be retained during metastasis. Conclusions We found very similar genomic alterations between primary and metastatic tumors, with a few mutations found specifically in lung metastases, which may explain the clinical observation that both primary and metastatic tumors are usually sensitive or resistant to the same systemic treatments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jhingook Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul 135-710, Korea.
| | | |
Collapse
|
37
|
Norisoboldine suppresses VEGF-induced endothelial cell migration via the cAMP-PKA-NF-κB/Notch1 pathway. PLoS One 2013; 8:e81220. [PMID: 24349042 PMCID: PMC3857208 DOI: 10.1371/journal.pone.0081220] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 10/09/2013] [Indexed: 12/11/2022] Open
Abstract
The migration of endothelial cells has been regarded as a potential target for the treatment of angiogenesis-related diseases. Previously, we demonstrated that norisoboldine (NOR), an alkaloid compound isolated from Radix Linderae, can significantly suppress synovial angiogenesis by selectively inhibiting endothelial cell migration. In this study, we evaluated the importance of various pathways in VEGF-induced endothelial cell migration using specific inhibitor. VEGF-induced endothelial cell migration and sprouting were significantly inhibited by H-89 (an inhibitor of protein kinase A (PKA)) but not by inhibitors of other pathways. NOR markedly suppressed VEGF-induced intracytoplasmic cAMP production and PKA activation and thereby down-regulated the activation of downstream components of the PKA pathway, including enzymes (src, VASP and eNOS) and the transcription factor NF-κB. Moreover, the transcription activation potential of NF-κB, which is related to IκBα phosphorylation and the disruption of the p65/IκBα complex, was reduced by NOR. Meanwhile, NOR selectively inhibited the expression of p-p65 (ser276) but not p-p65 (ser536) or PKAc, indicating that PKAc participates in the regulation of NF-κB by NOR. Co-immunoprecipitation and immunofluorescence assays confirmed that NOR inhibited the formation of the PKAc/p65 complex and thereby decreased p65 (ser276) phosphorylation to prevent p65 binding to DNA. Docking models indicated that the affinity of NOR for PKA was higher than that of the original PKA ligand. Moreover, the fact that H-89 improved Notch1 activation, but DAPT (an inhibitor of Notch) failed to affect PKA activation, suggested that PKA may act on upstream of Notch1. In conclusion, the inhibitory effects of NOR on endothelial cell migration can be attributed to its modulation of the PKA pathway, especially on the processes of p65/IκBα complex disruption and PKAc/p65 complex formation. These results suggest that NOR inhibit VEGF-induced endothelial cell migration via a cAMP-PKA-NF-κB/Notch1 signaling pathway.
Collapse
|
38
|
Welf ES, Johnson HE, Haugh JM. Bidirectional coupling between integrin-mediated signaling and actomyosin mechanics explains matrix-dependent intermittency of leading-edge motility. Mol Biol Cell 2013; 24:3945-55. [PMID: 24152734 PMCID: PMC3861089 DOI: 10.1091/mbc.e13-06-0311] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A physicochemical model is used to describe the coupling of adhesion, cytoskeletal, and signaling dynamics during cell migration. Analysis of stochastic simulations predicts relationships between measurable quantities that reflect partitioning of stress between F-actin–bound adhesions, which act as a molecular clutch, and retrograde F-actin flow. Animal cell migration is a complex process characterized by the coupling of adhesion, cytoskeletal, and signaling dynamics. Here we model local protrusion of the cell edge as a function of the load-bearing properties of integrin-based adhesions, actin polymerization fostered by adhesion-mediated signaling, and mechanosensitive activation of RhoA that promotes myosin II–generated stress on the lamellipodial F-actin network. Analysis of stochastic model simulations illustrates how these pleiotropic functions of nascent adhesions may be integrated to govern temporal persistence and frequency of protrusions. The simulations give mechanistic insight into the documented effects of extracellular matrix density and myosin abundance, and they show characteristic, nonnormal distributions of protrusion duration times that are similar to those extracted from live-cell imaging experiments. Analysis of the model further predicts relationships between measurable quantities that reflect the partitioning of stress between tension on F-actin–bound adhesions, which act as a molecular clutch, and dissipation by retrograde F-actin flow.
Collapse
Affiliation(s)
- Erik S Welf
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695
| | | | | |
Collapse
|
39
|
Huang CH, Tang M, Shi C, Iglesias PA, Devreotes PN. An excitable signal integrator couples to an idling cytoskeletal oscillator to drive cell migration. Nat Cell Biol 2013; 15:1307-16. [PMID: 24142103 PMCID: PMC3838899 DOI: 10.1038/ncb2859] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 09/11/2013] [Indexed: 12/22/2022]
Abstract
It is generally believed that cytoskeletal activities drive random cell migration while signal transduction events initiated by receptors regulate the cytoskeleton to guide cells. However, we find that the cytoskeletal network, involving Scar/Wave, Arp 2/3, and actin binding proteins, is only capable of generating rapid oscillations and undulations of the cell boundary. The signal transduction network, comprising multiple pathways that include Ras GTPases, PI3K, and Rac GTPases, is required to generate the sustained protrusions of migrating cells. The signal transduction network is excitable, displaying wave propagation, refractoriness, and maximal response to suprathreshold stimuli, even in the absence of the cytoskeleton. We suggest that cell motility results from coupling of “pacemaker” signal transduction and “idling motor” cytoskeletal networks, and various guidance cues that modulate the threshold for triggering signal transduction events are integrated to control the mode and direction of migration.
Collapse
Affiliation(s)
- Chuan-Hsiang Huang
- 1] Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA [2]
| | | | | | | | | |
Collapse
|
40
|
Zhu W, Tan Y, Qiu Q, Li X, Huang Z, Fu Y, Liang M. Comparison of the properties of human CD146+ and CD146- periodontal ligament cells in response to stimulation with tumour necrosis factor α. Arch Oral Biol 2013; 58:1791-803. [PMID: 24200306 DOI: 10.1016/j.archoralbio.2013.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/20/2013] [Accepted: 09/29/2013] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Periodontal ligament stem cells (PDLSCs) can be used in periodontal regeneration. Tumour necrosis factor-alpha (TNF-α) participates in the regulation of cell proliferation, apoptosis, differentiation, and migration. However, whether TNF-α can affect the biological features of PDLSCs is still unclear. The objective of this study was to illustrate the biological effects (proliferation, apoptosis, osteogenesis and migration) of TNF-α on human CD146 positive periodontal ligament cells (CD146+PLDCs) and CD146 negative periodontal ligament cells (CD146-PDLCs). METHODS CD146±PDLCs were isolated from human PDLCs and analyzed using a fluorescence-activated cell sorter. The biological effects of TNF-α on CD146±PDLCs were evaluated by CCK-8 assay (proliferation), DAPI staining (apoptosis), alizarin red staining and alkaline phosphatase activities assay (osteogenesis), and wounding assay and transwell assay (migration). RESULTS CD146+PDLCs, which expressed MSC surface markers CD105, CD90, CD73, CD44, and Stro-1, showed higher proliferative and osteogenic potential than CD146-PDLCs. TNF-α at a dose of 2.5ng/ml was found to enhance both proliferation and osteogenesis in CD146+PDLCs. At 5ng/ml, TNF-α promoted proliferation, osteogenesis, and apoptosis in CD146+PDLCs and enhanced osteogenesis in CD146-PDLCs. At 10ng/ml, TNF-α only aggravated apoptosis in CD146+PDLCs. The migratory ability of both CD146+PDLCs and CD146-PDLCs was not altered by TNF-α. CONCLUSIONS CD146+PDLCs were subpopulation of MSC. It showed greater proliferative and osteogenic potential than CD146-PDLCs. At low concentration, TNF-α was beneficial to CD146+PDLCs on proliferation and osteogenesis, and at high concentration it was detrimental. CD146-PDLCs were found to be less sensitive to TNF-α.
Collapse
Affiliation(s)
- Wenjun Zhu
- Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Envisioning migration: mathematics in both experimental analysis and modeling of cell behavior. Curr Opin Cell Biol 2013; 25:538-42. [PMID: 23660413 DOI: 10.1016/j.ceb.2013.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/10/2013] [Accepted: 04/12/2013] [Indexed: 01/14/2023]
Abstract
The complex nature of cell migration highlights the power and challenges of applying mathematics to biological studies. Mathematics may be used to create model equations that recapitulate migration, which can predict phenomena not easily uncovered by experiments or intuition alone. Alternatively, mathematics may be applied to interpreting complex data sets with better resolution--potentially empowering scientists to discern subtle patterns amid the noise and heterogeneity typical of migrating cells. Iteration between these two methods is necessary in order to reveal connections within the cell migration signaling network, as well as to understand the behavior that arises from those connections. Here, we review recent quantitative analysis and mathematical modeling approaches to the cell migration problem.
Collapse
|
42
|
Abstract
Cell shape is known to have profound effects on a number of cell behaviors. In this paper we have studied its role in cell migration through modeling the effect of cell shape on the cell traction force distribution, the traction force dependent stability of cell adhesion and the matrix rigidity dependent traction force formation. To quantify the driving force of cell migration, a new parameter called the motility factor, that takes account of the effect of cell shape, matrix rigidity and dynamic stability of cell adhesion, is proposed. We showed that the motility factor depends on the matrix rigidity in a biphasic manner, which is consistent with the experimental observations of the biphasic dependence of cell migration speed on the matrix rigidity. We showed that the cell shape plays a pivotal role in the cell migration behavior by regulating the traction force at the cell front and rear. The larger the cell polarity, the larger the motility factor is. The keratocyte-like shape has a larger motility factor than the fibroblast-like shape, which explains why keratocyte has a much higher migration speed. The motility factor might be an appropriate parameter for a quantitative description of the driving force of cell migration.
Collapse
Affiliation(s)
- Yuan Zhong
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, People's Republic of China
| | | |
Collapse
|
43
|
Abstract
This review focuses on basic principles of motility in different cell types, formation of the specific cell structures that enable directed migration, and how external signals are transduced into cells and coupled to the motile machinery. Feedback mechanisms and their potential role in maintenance of internal chemotactic gradients and persistence of directed migration are highlighted.
Collapse
Affiliation(s)
- A V Vorotnikov
- Department of Biochemistry and Molecular Medicine, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
44
|
Ca2+ pulses control local cycles of lamellipodia retraction and adhesion along the front of migrating cells. Curr Biol 2012; 22:837-42. [PMID: 22521790 DOI: 10.1016/j.cub.2012.03.037] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/30/2012] [Accepted: 03/19/2012] [Indexed: 11/21/2022]
Abstract
Ca(2+) signals regulate polarization, speed, and turning of migrating cells. However, the molecular mechanism by which Ca(2+) acts on moving cells is not understood. Here we show that local Ca(2+) pulses along the front of migrating human endothelial cells trigger cycles of retraction of local lamellipodia and, concomitantly, strengthen local adhesion to the extracellular matrix. These Ca(2+) release pulses had small amplitudes and diameters and were triggered repetitively near the leading plasma membrane with only little coordination between different regions. We show that each Ca(2+) pulse triggers contraction of actin filaments by activating myosin light-chain kinase and myosin II behind the leading edge. The cyclic force generated by myosin II operates locally, causing a partial retraction of the nearby protruding lamellipodia membrane and a strengthening of paxillin-based focal adhesion within the same lamellipodia. Photo release of Ca(2+) demonstrated a direct role of Ca(2+) in triggering local retraction and adhesion. Together, our study suggests that spatial sensing, forward movement, turning, and chemotaxis are in part controlled by confined Ca(2+) pulses that promote local lamellipodia retraction and adhesion cycles along the leading edge of moving cells.
Collapse
|
45
|
Nalbandian A, Ghimbovschi S, Radom-Aizik S, Dec E, Vesa J, Martin B, Knoblach S, Smith C, Hoffman E, Kimonis VE. Global gene profiling of VCP-associated inclusion body myopathy. Clin Transl Sci 2012; 5:226-34. [PMID: 22686199 DOI: 10.1111/j.1752-8062.2012.00407.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia (IBMPFD) is an autosomal dominant disorder caused by mutations in the Valosin-containing protein (VCP) gene on chromosome 9p12-13. Patients demonstrate limb girdle muscle weakness, which eventually progresses to involve respiratory muscles, and death from respiratory and cardiac failure. This is the first investigation to analyze key molecular mediators and signaling cascades in skeletal muscle causing myopathy by global gene microarray in hopes of understanding the dysregulated genes and molecular mechanisms underlying IBMPFD and the hope of finding novel therapeutic targets. We determined expression profiles using Human Genome Array microarray technology in Vastus lateralis muscles from patients and their first-degree relatives. We analyzed gene annotations by Database for Annotation, Visualization and Integration Discovery and identified differentially dysregulated genes with roles in several novel biological pathways, including regulation of actin cytoskeleton, ErbB signaling, cancer, in addition to regulation of autophagy, and lysosomal signaling, known disrupted pathways in VCP disease. In this report, we present data from the first global microarray analyzing IBMPFD patient muscles and elucidating dysregulated pathways to further understand the pathogenesis of the disease and discover potential therapeutics.
Collapse
Affiliation(s)
- Angèle Nalbandian
- Department of Pediatrics, Division of Genetics and Metabolism, University of California, Irvine, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Phosphatidylinositol lipids generated through the action of phosphinositide 3-kinase (PI3K) are key mediators of a wide array of biological responses. In particular, their role in the regulation of cell migration has been extensively studied and extends to amoeboid as well as mesenchymal migration. Through the emergence of fluorescent probes that target PI3K products as well as the use of specific inhibitors and knockout technologies, the spatio-temporal distribution of PI3K products in chemotaxing cells has been shown to represent a key anterior polarity signal that targets downstream effectors to actin polymerization. In addition, through intricate cross-talk networks PI3K products have been shown to regulate signals that control posterior effectors. Yet, in more complex environments or in conditions where chemoattractant gradients are steep, a variety of cell types can still chemotax in the absence of PI3K signals. Indeed, parallel signal transduction pathways have been shown to coordinately regulate cell polarity and directed movement. In this chapter, we will review the current role PI3K products play in the regulation of directed cell migration in various cell types, highlight the importance of mathematical modeling in the study of chemotaxis, and end with a brief overview of other signaling cascades known to also regulate chemotaxis.
Collapse
Affiliation(s)
- Michael C Weiger
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bldg.37/Rm2066, 20892-4256, Bethesda, MD, USA
| | | |
Collapse
|
47
|
Welf ES, Haugh JM. Stochastic models of cell protrusion arising from spatiotemporal signaling and adhesion dynamics. Methods Cell Biol 2012; 110:223-41. [PMID: 22482951 DOI: 10.1016/b978-0-12-388403-9.00009-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
During cell migration, local protrusion events are regulated by biochemical and physical processes that are in turn coordinated with the dynamic properties of cell-substratum adhesion structures. In this chapter, we present a modeling approach for integrating the apparent stochasticity and spatial dependence of signal transduction pathways that promote protrusion in tandem with adhesion dynamics. We describe our modeling framework, as well as its abstraction, parameterization, and validation against experimental data. Analytical techniques for identifying and evaluating the effects of model bistability on simulation simulation results are shown, and implications of this analysis for understanding cell protrusion behavior are offered.
Collapse
Affiliation(s)
- Erik S Welf
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | | |
Collapse
|
48
|
Ho E, Dagnino L. Epidermal growth factor induction of front-rear polarity and migration in keratinocytes is mediated by integrin-linked kinase and ELMO2. Mol Biol Cell 2011; 23:492-502. [PMID: 22160594 PMCID: PMC3268727 DOI: 10.1091/mbc.e11-07-0596] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Epidermal growth factor (EGF) is a potent chemotactic and mitogenic factor for epidermal keratinocytes, and these properties are central for normal epidermal regeneration after injury. The involvement of mitogen-activated protein kinases as mediators of the proliferative effects of EGF is well established. However, the molecular mechanisms that mediate motogenic responses to this growth factor are not clearly understood. An obligatory step for forward cell migration is the development of front-rear polarity and formation of lamellipodia at the leading edge. We show that stimulation of epidermal keratinocytes with EGF, but not with other growth factors, induces development of front-rear polarity and directional migration through a pathway that requires integrin-linked kinase (ILK), Engulfment and Cell Motility-2 (ELMO2), integrin β1, and Rac1. Furthermore, EGF induction of front-rear polarity and chemotaxis require the tyrosine kinase activity of the EGF receptor and are mediated by complexes containing active RhoG, ELMO2, and ILK. Our findings reveal a novel link between EGF receptor stimulation, ILK-containing complexes, and activation of small Rho GTPases necessary for acquisition of front-rear polarity and forward movement.
Collapse
Affiliation(s)
- Ernest Ho
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada
| | | |
Collapse
|
49
|
Abstract
Background Many methods have been developed to infer and reason about molecular interaction networks. These approaches often yield networks with hundreds or thousands of nodes and up to an order of magnitude more edges. It is often desirable to summarize the biological information in such networks. A very common approach is to use gene function enrichment analysis for this task. A major drawback of this method is that it ignores information about the edges in the network being analyzed, i.e., it treats the network simply as a set of genes. In this paper, we introduce a novel method for functional enrichment that explicitly takes network interactions into account. Results Our approach naturally generalizes Fisher’s exact test, a gene set-based technique. Given a function of interest, we compute the subgraph of the network induced by genes annotated to this function. We use the sequence of sizes of the connected components of this sub-network to estimate its connectivity. We estimate the statistical significance of the connectivity empirically by a permutation test. We present three applications of our method: i) determine which functions are enriched in a given network, ii) given a network and an interesting sub-network of genes within that network, determine which functions are enriched in the sub-network, and iii) given two networks, determine the functions for which the connectivity improves when we merge the second network into the first. Through these applications, we show that our approach is a natural alternative to network clustering algorithms. Conclusions We presented a novel approach to functional enrichment that takes into account the pairwise relationships among genes annotated by a particular function. Each of the three applications discovers highly relevant functions. We used our methods to study biological data from three different organisms. Our results demonstrate the wide applicability of our methods. Our algorithms are implemented in C++ and are freely available under the GNU General Public License at our supplementary website. Additionally, all our input data and results are available at http://bioinformatics.cs.vt.edu/~murali/supplements/2011-incob-nbe/.
Collapse
|
50
|
Kameritsch P, Pogoda K, Pohl U. Channel-independent influence of connexin 43 on cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1993-2001. [PMID: 22155212 DOI: 10.1016/j.bbamem.2011.11.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/10/2011] [Accepted: 11/18/2011] [Indexed: 01/06/2023]
Abstract
In this review we focus on the role of connexins, especially of Cx43, as modulators of migration - a fundamental process in embryogenesis and in physiologic functions of the adult organism. This impact of connexins is partly mediated by their function as intercellular channels but an increasing number of studies support the view that at least part of the effects are truly independent of the channel function. The channel-independent function comprises extrinsic guidance of migrating cells due to connexin mediated cell adhesion as well as intracellular processes. Cx43 has been shown to exert effects on migration by interfering with receptor signalling, cytoskeletal remodelling and tubulin dynamics. These effects are mainly dependent on the presence of the carboxyl tail of Cx43. The molecular basis of this channel-independent connexin function is still not yet fully understood but early results open an exciting view towards new functions of connexins in the cell. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
|