1
|
Rillaerts K, Verlinden L, Doms S, Carmeliet G, Verstuyf A. A comprehensive perspective on the role of vitamin D signaling in maintaining bone homeostasis: Lessons from animal models. J Steroid Biochem Mol Biol 2025; 250:106732. [PMID: 40122304 DOI: 10.1016/j.jsbmb.2025.106732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/14/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025]
Abstract
1,25(OH)2D3 is well known for its role in maintaining normal serum calcium levels. Through its receptor, 1,25(OH)2D3 enhances intestinal calcium absorption and renal calcium reabsorption, thereby ensuring serum calcium levels are within physiological range, which is in turn important for normal bone development and mineralization. The vitamin D receptor (VDR) achieves this via transcriptional induction of genes important in calcium transport. When intestinal and renal calcium (re)absorption is impaired, VDR-mediated signaling will stimulate bone resorption and inhibit mineralization in order to maintain normal serum calcium levels, as evidenced in mice with a systemic or intestine-specific deletion of the VDR. However, VDR signaling in bone is also reported to have anabolic effects. In this review we will discuss the effects of 1,25(OH)2D3-mediated VDR signaling on bone homeostasis and provide an overview of the in vitro experiments and various transgenic mice models that have been generated to unravel the role of VDR signaling in different bone cell types such as chondrocytes, (pre)osteoblasts, osteocytes, and (pre)osteoclasts.
Collapse
Affiliation(s)
- Kayleigh Rillaerts
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, bus 902, Leuven 3000, Belgium
| | - Lieve Verlinden
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, bus 902, Leuven 3000, Belgium
| | - Stefanie Doms
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, bus 902, Leuven 3000, Belgium
| | - Geert Carmeliet
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, bus 902, Leuven 3000, Belgium
| | - Annemieke Verstuyf
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, bus 902, Leuven 3000, Belgium
| |
Collapse
|
2
|
Annamalai C, Viswanathan P. Vitamin D and Acute Kidney Injury: A Reciprocal Relationship. Biomolecules 2025; 15:586. [PMID: 40305356 PMCID: PMC12025042 DOI: 10.3390/biom15040586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/07/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Vitamin D is a sterol prohormone with no intrinsic biological activity. Calcitriol, the active form of vitamin D, is synthesized in the kidneys. It has well-known pleiotropic and cytoprotective properties. In addition to regulating parathyroid hormone secretion and enhancing gut calcium absorption, it exhibits antioxidant, anti-inflammatory, antiproliferative, and antineoplastic effects. However, the role of vitamin D in AKI is unclear, unlike in CKD. Thus, this review aimed to understand how dysregulated vitamin D homeostasis occurs in AKI, as well as to explore how vitamin D deficiency and excess influence AKI. A comprehensive literature search was conducted between January 2000 and June 2024 to uncover relevant works detailing vitamin D homeostasis in health as well as investigating the impact of vitamin D deficiency and excess in humans, animals, and in vitro cell models of AKI. According to the findings of this review, vitamin D appears to have a reciprocal relationship with AKI. Acute renal injury, among other factors, can cause hypo- or hypervitaminosis D. Conversely, AKI can also be caused by vitamin D deficiency and toxicity. Even though hypovitaminosis D is associated with AKI, it is uncertain how it impacts AKI outcomes in distinct clinical scenarios. Newer therapeutic options might emerge as a result of understanding these challenges. Vitamin D supplementation may ameliorate renal injury but needs further validation. Furthermore, hypervitaminosis D has also been implicated in AKI by causing hypercalcemia and hyperphosphatemia. It is crucial to avoid prolonged, uncontrolled, and unsupervised supraphysiological vitamin D administration, especially intramuscular injection.
Collapse
Affiliation(s)
| | - Pragasam Viswanathan
- Renal Research Lab, Pearl Research Park, School of Biosciences and Technology, VIT, Vellore 632014, Tamil Nadu, India;
| |
Collapse
|
3
|
Dallavalasa S, Tulimilli SV, Bettada VG, Karnik M, Uthaiah CA, Anantharaju PG, Nataraj SM, Ramashetty R, Sukocheva OA, Tse E, Salimath PV, Madhunapantula SV. Vitamin D in Cancer Prevention and Treatment: A Review of Epidemiological, Preclinical, and Cellular Studies. Cancers (Basel) 2024; 16:3211. [PMID: 39335182 PMCID: PMC11430526 DOI: 10.3390/cancers16183211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Inhibition of human carcinomas has previously been linked to vitamin D due to its effects on cancer cell proliferation, migration, angiogenesis, and apoptosis induction. The anticancer activity of vitamin D has been confirmed by several studies, which have shown that increased cancer incidence is associated with decreased vitamin D and that dietary supplementation of vitamin D slows down the growth of xenografted tumors in mice. Vitamin D inhibits the growth of cancer cells by the induction of apoptosis as well as by arresting the cells at the G0/G1 (or) G2/M phase of the cell cycle. Aim and Key Scientific Concepts of the Review: The purpose of this article is to thoroughly review the existing information and discuss and debate to conclude whether vitamin D could be used as an agent to prevent/treat cancers. The existing empirical data have demonstrated that vitamin D can also work in the absence of vitamin D receptors (VDRs), indicating the presence of multiple mechanisms of action for this sunshine vitamin. Polymorphism in the VDR is known to play a key role in tumor cell metastasis and drug resistance. Although there is evidence that vitamin D has both therapeutic and cancer-preventive properties, numerous uncertainties and concerns regarding its use in cancer treatment still exist. These include (a) increased calcium levels in individuals receiving therapeutic doses of vitamin D to suppress the growth of cancer cells; (b) hyperglycemia induction in certain vitamin D-treated study participants; (c) a dearth of evidence showing preventive or therapeutic benefits of cancer in clinical trials; (d) very weak support from proof-of-principle studies; and (e) the inability of vitamin D alone to treat advanced cancers. Addressing these concerns, more potent and less toxic vitamin D analogs have been created, and these are presently undergoing clinical trial evaluation. To provide key information regarding the functions of vitamin D and VDRs, this review provided details of significant advancements in the functional analysis of vitamin D and its analogs and VDR polymorphisms associated with cancers.
Collapse
Affiliation(s)
- Siva Dallavalasa
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence—ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India; (S.D.); (S.V.T.); (V.G.B.); (M.K.); (C.A.U.); (P.G.A.); (S.M.N.)
| | - SubbaRao V. Tulimilli
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence—ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India; (S.D.); (S.V.T.); (V.G.B.); (M.K.); (C.A.U.); (P.G.A.); (S.M.N.)
| | - Vidya G. Bettada
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence—ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India; (S.D.); (S.V.T.); (V.G.B.); (M.K.); (C.A.U.); (P.G.A.); (S.M.N.)
| | - Medha Karnik
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence—ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India; (S.D.); (S.V.T.); (V.G.B.); (M.K.); (C.A.U.); (P.G.A.); (S.M.N.)
| | - Chinnappa A. Uthaiah
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence—ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India; (S.D.); (S.V.T.); (V.G.B.); (M.K.); (C.A.U.); (P.G.A.); (S.M.N.)
| | - Preethi G. Anantharaju
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence—ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India; (S.D.); (S.V.T.); (V.G.B.); (M.K.); (C.A.U.); (P.G.A.); (S.M.N.)
| | - Suma M. Nataraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence—ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India; (S.D.); (S.V.T.); (V.G.B.); (M.K.); (C.A.U.); (P.G.A.); (S.M.N.)
| | - Rajalakshmi Ramashetty
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India;
| | - Olga A. Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Port Rd., Adelaide, SA 5000, Australia;
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Port Rd., Adelaide, SA 5000, Australia;
| | | | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory (DST-FIST Supported Center and ICMR Collaborating Center of Excellence—ICMR-CCoE), Department of Biochemistry (DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India; (S.D.); (S.V.T.); (V.G.B.); (M.K.); (C.A.U.); (P.G.A.); (S.M.N.)
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysuru 570015, Karnataka, India
| |
Collapse
|
4
|
Fernández-Villabrille S, Martín-Vírgala J, Martín-Carro B, Baena-Huerta F, González-García N, Gil-Peña H, Rodríguez-García M, Fernández-Gómez JM, Fernández-Martín JL, Alonso-Montes C, Naves-Díaz M, Carrillo-López N, Panizo S. RANKL, but Not R-Spondins, Is Involved in Vascular Smooth Muscle Cell Calcification through LGR4 Interaction. Int J Mol Sci 2024; 25:5735. [PMID: 38891922 PMCID: PMC11172097 DOI: 10.3390/ijms25115735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Vascular calcification has a global health impact that is closely linked to bone loss. The Receptor Activator of Nuclear Factor Kappa B (RANK)/RANK ligand (RANKL)/osteoprotegerin (OPG) system, fundamental for bone metabolism, also plays an important role in vascular calcification. The Leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4), a novel receptor for RANKL, regulates bone remodeling, and it appears to be involved in vascular calcification. Besides RANKL, LGR4 interacts with R-spondins (RSPOs), which are known for their roles in bone but are less understood in vascular calcification. Studies were conducted in rats with chronic renal failure fed normal or high phosphorus diets for 18 weeks, with and without control of circulating parathormone (PTH) levels, resulting in different degrees of aortic calcification. Additionally, vascular smooth muscle cells (VSMCs) were cultured under non-calcifying (1 mM phosphate) and calcifying (3 mM phosphate) media with different concentrations of PTH. To explore the role of RANKL in VSMC calcification, increasing concentrations of soluble RANKL were added to non-calcifying and calcifying media. The effects mediated by RANKL binding to its receptor LGR4 were investigated by silencing the LGR4 receptor in VSMCs. Furthermore, the gene expression of the RANK/RANKL/OPG system and the ligands of LGR4 was assessed in human epigastric arteries obtained from kidney transplant recipients with calcification scores (Kauppila Index). Increased aortic calcium in rats coincided with elevated systolic blood pressure, upregulated Lgr4 and Rankl gene expression, downregulated Opg gene expression, and higher serum RANKL/OPG ratio without changes in Rspos gene expression. Elevated phosphate in vitro increased calcium content and expression of Rankl and Lgr4 while reducing Opg. Elevated PTH in the presence of high phosphate exacerbated the increase in calcium content. No changes in Rspos were observed under the conditions employed. The addition of soluble RANKL to VSMCs induced genotypic differentiation and calcification, partly prevented by LGR4 silencing. In the epigastric arteries of individuals presenting vascular calcification, the gene expression of RANKL was higher. While RSPOs show minimal impact on VSMC calcification, RANKL, interacting with LGR4, drives osteogenic differentiation in VSMCs, unveiling a novel mechanism beyond RANKL-RANK binding.
Collapse
MESH Headings
- RANK Ligand/metabolism
- RANK Ligand/genetics
- Animals
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Rats
- Humans
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteoprotegerin/metabolism
- Osteoprotegerin/genetics
- Parathyroid Hormone/metabolism
- Cells, Cultured
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Sara Fernández-Villabrille
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Julia Martín-Vírgala
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Beatriz Martín-Carro
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Francisco Baena-Huerta
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Nerea González-García
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Helena Gil-Peña
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- AGC de la Infancia y Adolescencia, Hospital Universitario Central de Asturias (HUCA), Instituto de Investigación Sanitaria del Princiado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Minerva Rodríguez-García
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
| | | | - José Luis Fernández-Martín
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Cristina Alonso-Montes
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
| | - Manuel Naves-Díaz
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Natalia Carrillo-López
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Sara Panizo
- Metabolismo Óseo, Vascular y Enfermedades Inflamatorias Crónicas, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RICORS2040 (Kidney Disease), 33011 Oviedo, Spain
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Department of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
5
|
Tian E, Rothermel C, Michel Z, de Castro LF, Lee J, Kilts T, Kent T, Collins MT, Ten Hagen KG. Loss of the glycosyltransferase Galnt11 affects vitamin D homeostasis and bone composition. J Biol Chem 2024; 300:107164. [PMID: 38484798 PMCID: PMC11001633 DOI: 10.1016/j.jbc.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024] Open
Abstract
O-glycosylation is a conserved posttranslational modification that impacts many aspects of organismal viability and function. Recent studies examining the glycosyltransferase Galnt11 demonstrated that it glycosylates the endocytic receptor megalin in the kidneys, enabling proper binding and reabsorption of ligands, including vitamin D-binding protein (DBP). Galnt11-deficient mice were unable to properly reabsorb DBP from the urine. Vitamin D plays an essential role in mineral homeostasis and its deficiency is associated with bone diseases such as rickets, osteomalacia, and osteoporosis. We therefore set out to examine the effects of the loss of Galnt11 on vitamin D homeostasis and bone composition. We found significantly decreased levels of serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, consistent with decreased reabsorption of DBP. This was accompanied by a significant reduction in blood calcium levels and a physiologic increase in parathyroid hormone (PTH) in Galnt11-deficient mice. Bones in Galnt11-deficient mice were smaller and displayed a decrease in cortical bone accompanied by an increase in trabecular bone and an increase in a marker of bone formation, consistent with PTH-mediated effects on bone. These results support a unified model for the role of Galnt11 in bone and mineral homeostasis, wherein loss of Galnt11 leads to decreased reabsorption of DBP by megalin, resulting in a cascade of disrupted mineral and bone homeostasis including decreased circulating vitamin D and calcium levels, a physiological increase in PTH, an overall loss of cortical bone, and an increase in trabecular bone. Our study elucidates how defects in O-glycosylation can influence vitamin D and mineral homeostasis and the integrity of the skeletal system.
Collapse
Affiliation(s)
- E Tian
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Rothermel
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Zachary Michel
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Luis Fernandez de Castro
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeeyoung Lee
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Tina Kilts
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Tristan Kent
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael T Collins
- Skeletal Disorders and Mineral Homeostasis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
6
|
Yu WX, Poon CCW, Zhou LP, Wong KY, Cao SS, Lam CY, Lee WYW, Wong MS. Oleanolic acid exerts bone anabolic effects via activation of osteoblastic 25-hydroxyvitamin D 1-alpha hydroxylase. Biomed Pharmacother 2024; 173:116402. [PMID: 38471277 DOI: 10.1016/j.biopha.2024.116402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/25/2024] [Accepted: 03/06/2024] [Indexed: 03/14/2024] Open
Abstract
Oleanolic acid (OA) is previously shown to exert bone protective effects in aged animals. However, its role in regulating osteoblastic vitamin D bioactivation, which is one of major causes of age-related bone loss, remains unclear. Our results revealed that treatment of OA significantly increased skeletal CYP27B1 expression and circulating 1,25(OH)2D3 in ovariectomized mice (p <0.01). Moreover, OA upregulated CYP27B1 protein expression and activity, as well as the vitamin D-responsive bone markers alkaline phosphatase (ALP) activity and osteopontin (OPN) protein expression, in human osteoblast-like MG-63 cells (p<0.05). CYP27B1 expression increased along with the osteoblastic differentiation of human bone marrow derived mesenchymal stem cells (hMSCs). CYP27B1 expression and cellular 1,25(OH)2D3 production were further potentiated by OA in cells at mature osteogenic stages. Notably, our study suggested that the osteogenic actions of OA were CYP27B1 dependent. In summary, the bone protective effects of OA were associated with the induction of CYP27B1 activity and expression in bone tissues and osteoblastic lineages. Hence, OA might be a potential approach for management of age-related bone loss.
Collapse
Affiliation(s)
- Wen-Xuan Yu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Shenzhen Research Institute of The Hong Kong Polytechnic University, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China
| | - Christina Chui-Wa Poon
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Shenzhen Research Institute of The Hong Kong Polytechnic University, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Li-Ping Zhou
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ka-Ying Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Shenzhen Research Institute of The Hong Kong Polytechnic University, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China
| | - Si-Si Cao
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Chung-Yan Lam
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Man-Sau Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China; Shenzhen Research Institute of The Hong Kong Polytechnic University, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen, China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
7
|
Yoon SH, Meyer MB, Arevalo C, Tekguc M, Zhang C, Wang JS, Castro Andrade CD, Strauss K, Sato T, Benkusky NA, Lee SM, Berdeaux R, Foretz M, Sundberg TB, Xavier RJ, Adelmann CH, Brooks DJ, Anselmo A, Sadreyev RI, Rosales IA, Fisher DE, Gupta N, Morizane R, Greka A, Pike JW, Mannstadt M, Wein MN. A parathyroid hormone/salt-inducible kinase signaling axis controls renal vitamin D activation and organismal calcium homeostasis. J Clin Invest 2023; 133:e163627. [PMID: 36862513 PMCID: PMC10145948 DOI: 10.1172/jci163627] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The renal actions of parathyroid hormone (PTH) promote 1,25-vitamin D generation; however, the signaling mechanisms that control PTH-dependent vitamin D activation remain unknown. Here, we demonstrated that salt-inducible kinases (SIKs) orchestrated renal 1,25-vitamin D production downstream of PTH signaling. PTH inhibited SIK cellular activity by cAMP-dependent PKA phosphorylation. Whole-tissue and single-cell transcriptomics demonstrated that both PTH and pharmacologic SIK inhibitors regulated a vitamin D gene module in the proximal tubule. SIK inhibitors increased 1,25-vitamin D production and renal Cyp27b1 mRNA expression in mice and in human embryonic stem cell-derived kidney organoids. Global- and kidney-specific Sik2/Sik3 mutant mice showed Cyp27b1 upregulation, elevated serum 1,25-vitamin D, and PTH-independent hypercalcemia. The SIK substrate CRTC2 showed PTH and SIK inhibitor-inducible binding to key Cyp27b1 regulatory enhancers in the kidney, which were also required for SIK inhibitors to increase Cyp27b1 in vivo. Finally, in a podocyte injury model of chronic kidney disease-mineral bone disorder (CKD-MBD), SIK inhibitor treatment stimulated renal Cyp27b1 expression and 1,25-vitamin D production. Together, these results demonstrated a PTH/SIK/CRTC signaling axis in the kidney that controls Cyp27b1 expression and 1,25-vitamin D synthesis. These findings indicate that SIK inhibitors might be helpful for stimulation of 1,25-vitamin D production in CKD-MBD.
Collapse
Affiliation(s)
- Sung-Hee Yoon
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark B. Meyer
- Department of Nutritional Sciences, University of Wisconsin — Madison, Madison, Wisconsin, USA
| | - Carlos Arevalo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Murat Tekguc
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Chengcheng Zhang
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jialiang S. Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Katelyn Strauss
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tadatoshi Sato
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nancy A. Benkusky
- Department of Nutritional Sciences, University of Wisconsin — Madison, Madison, Wisconsin, USA
| | - Seong Min Lee
- Department of Nutritional Sciences, University of Wisconsin — Madison, Madison, Wisconsin, USA
| | - Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Marc Foretz
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Daniel J. Brooks
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ruslan I. Sadreyev
- Department of Molecular Biology, and
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy A. Rosales
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David E. Fisher
- Cutaneous Biology Research Center, Department of Dermatology
| | - Navin Gupta
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - J. Wesley Pike
- Department of Biochemistry, University of Wisconsin — Madison, Madison, Wisconsin, USA
| | - Michael Mannstadt
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Wang M, Zhang J, Kalantar-Zadeh K, Chen J. Focusing on Phosphorus Loads: From Healthy People to Chronic Kidney Disease. Nutrients 2023; 15:nu15051236. [PMID: 36904234 PMCID: PMC10004810 DOI: 10.3390/nu15051236] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Phosphorus is an essential micromineral with a key role in cellular metabolism and tissue structure. Serum phosphorus is maintained in a homeostatic range by the intestines, bones, and kidneys. This process is coordinated by the endocrine system through the highly integrated actions of several hormones, including FGF23, PTH, Klotho, and 1,25D. The excretion kinetics of the kidney after diet phosphorus load or the serum phosphorus kinetics during hemodialysis support that there is a "pool" for temporary phosphorus storage, leading to the maintenance of stable serum phosphorus levels. Phosphorus overload refers to a state where the phosphorus load is higher than is physiologically necessary. It can be caused by a persistently high-phosphorus diet, renal function decline, bone disease, insufficient dialysis, and inappropriate medications, and includes but is not limited to hyperphosphatemia. Serum phosphorus is still the most commonly used indicator of phosphorus overload. Trending phosphorus levels to see if they are chronically elevated is recommended instead of a single test when judging phosphorus overload. Future studies are needed to validate the prognostic role of a new marker or markers of phosphorus overload.
Collapse
Affiliation(s)
- Mengjing Wang
- Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jiaying Zhang
- Nutritional Department, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, University of California Irvine Medical Center, Orange, CA 92868, USA
- Fielding School of Public Health at UCLA, Los Angeles, CA 90095, USA
- Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA 90502, USA
| | - Jing Chen
- Nephrology, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
- Correspondence: ; Tel.: +86-021-52889387
| |
Collapse
|
9
|
Sinclair-Black M, Garcia RA, Ellestad LE. Physiological regulation of calcium and phosphorus utilization in laying hens. Front Physiol 2023; 14:1112499. [PMID: 36824471 PMCID: PMC9942826 DOI: 10.3389/fphys.2023.1112499] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Commercial laying hens can produce one egg approximately every 24 h. During this process, regulatory systems that control vitamin D3 metabolism, calcium and phosphorus homeostasis, and intestinal uptake of these minerals work in concert to deliver components required for eggshell calcification and bone mineralization. Commercial production cycles have been extended in recent years to last through 100 weeks of age, and older hens often exhibit an increased prevalence of skeletal fractures and poor eggshell quality. Issues such as these arise, in part, through imbalances that occur in calcium and phosphorus utilization as hens age. As a result, an in-depth understanding of the mechanisms that drive calcium and phosphorus uptake and utilization is required to develop solutions to these welfare and economic challenges. This paper reviews factors that influence calcium and phosphorus homeostasis in laying hens, including eggshell formation and development and roles of cortical and medullary bone. Metabolism and actions of vitamin D3 and physiological regulation of calcium and phosphorus homeostasis in key tissues are also discussed. Areas that require further research in avian species, such as the role of fibroblast growth factor 23 in these processes and the metabolism and action of bioactive vitamin D3, are highlighted and the importance of using emerging technologies and establishing in vitro systems to perform functional and mechanistic studies is emphasized.
Collapse
Affiliation(s)
| | | | - Laura E. Ellestad
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
10
|
Rapid genomic changes by mineralotropic hormones and kinase SIK inhibition drive coordinated renal Cyp27b1 and Cyp24a1 expression via CREB modules. J Biol Chem 2022; 298:102559. [DOI: 10.1016/j.jbc.2022.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
|
11
|
Yoon SH, Tang CC, Wein MN. Salt inducible kinases and PTH1R action. VITAMINS AND HORMONES 2022; 120:23-45. [PMID: 35953111 DOI: 10.1016/bs.vh.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parathyroid hormone is a central regulator of calcium homeostasis. PTH protects the organism from hypocalcemia through its actions in bone and kidney. Recent physiologic studies have revealed key target genes for PTH receptor (PTH1R) signaling in these target organs. However, the complete signal transduction cascade used by PTH1R to accomplish these physiologic actions has remained poorly defined. Here we will review recent studies that have defined an important role for salt inducible kinases downstream of PTH1R in bone, cartilage, and kidney. PTH1R signaling inhibits the activity of salt inducible kinases. Therefore, direct SIK inhibitors represent a promising novel strategy to mimic PTH actions using small molecules. Moreover, a detailed understanding of the molecular circuitry used by PTH1R to exert its biologic effects will afford powerful new models to better understand the diverse actions of this important G protein coupled receptor in health and disease.
Collapse
Affiliation(s)
- Sung-Hee Yoon
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cheng-Chia Tang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
12
|
Young K, Beggs MR, Grimbly C, Alexander RT. Regulation of 1 and 24 hydroxylation of vitamin D metabolites in the proximal tubule. Exp Biol Med (Maywood) 2022; 247:1103-1111. [PMID: 35482362 PMCID: PMC9335508 DOI: 10.1177/15353702221091982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Calcium and phosphate are critical for numerous physiological processes. Consequently, the plasma concentration of these ions are tightly regulated. Calcitriol, the active form of vitamin D, is a positive modulator of mineralization as well as calcium and phosphate metabolism. The molecular and physiological effects of calcitriol are well documented. Calcitriol increases blood calcium and phosphate levels by increasing absorption from the intestine, and resorption of bone. Calcitriol synthesis is a multistep process. A precursor is first made via skin exposure to UV, it is then 25-hydroxylated in the liver to form 25-hydroxyitamin D. The next hydroxylation step occurs in the renal proximal tubule via the 1-αhydroxylase enzyme (encoded by CYP27B1) thereby generating 1,25-dihydroxyvitamin D, that is, calcitriol. At the same site, the 25-hydroxyvitamin D 24-hydroxlase enzyme encoded by CYP24A1 can hydroxylate 25-hydroxyvitamin D or calcitriol to deactivate the hormone. Plasma calcitriol levels are primarily determined by the regulated expression of CYP27B1 and CYP24A1. This occurs in response to parathyroid hormone (increases CYP27B1), calcitriol itself (decreases CYP27B1 and increases CYP24A1), calcitonin (increases or decreases CYP24A1 and increases CYP27B1), FGF23 (decreases CYP27B1 and increases CYP24A1) and potentially plasma calcium and phosphate levels themselves (mixed effects). Herein, we review the regulation of CYP27B1 and CYP24A1 transcription in response to the action of classic phophocalciotropic hormones and explore the possibility of direct regulation by plasma calcium.
Collapse
Affiliation(s)
- Kennedi Young
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada,Women and Children’s Health Institute, Edmonton, AB T6G 1C9, Canada
| | - Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada,Women and Children’s Health Institute, Edmonton, AB T6G 1C9, Canada
| | - Chelsey Grimbly
- Department of Paediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada,Women and Children’s Health Institute, Edmonton, AB T6G 1C9, Canada,Department of Paediatrics, University of Alberta, Edmonton, AB T6G 1C9, Canada,R Todd Alexander.
| |
Collapse
|
13
|
Bendarska-Czerwińska A, Zmarzły N, Morawiec E, Panfil A, Bryś K, Czarniecka J, Ostenda A, Dziobek K, Sagan D, Boroń D, Michalski P, Pallazo-Michalska V, Grabarek BO. Endocrine disorders and fertility and pregnancy: An update. Front Endocrinol (Lausanne) 2022; 13:970439. [PMID: 36733805 PMCID: PMC9887196 DOI: 10.3389/fendo.2022.970439] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
It is estimated that more and more couples suffer from fertility and pregnancy maintenance disorders. It is associated with impaired androgen secretion, which is influenced by many factors, ranging from genetic to environmental. It is also important to remember that fertility disorders can also result from abnormal anatomy of the reproductive male and female organ (congenital uterine anomalies - septate, unicornuate, bicornuate uterus; acquired defects of the uterus structure - fibroids, polyps, hypertrophy), disturbed hormonal cycle and obstruction of the fallopian tubes resulting from the presence of adhesions due to inflammation, endometriosis, and surgery, abnormal rhythm of menstrual bleeding, the abnormal concentration of hormones. There are many relationships between the endocrine organs, leading to a chain reaction when one of them fails to function properly. Conditions in which the immune system is involved, including infections and autoimmune diseases, also affect fertility. The form of treatment depends on infertility duration and the patient's age. It includes ovulation stimulation with clomiphene citrate or gonadotropins, metformin use, and weight loss interventions. Since so many different factors affect fertility, it is important to correctly diagnose what is causing the problem and to modify the treatment regimen if necessary. This review describes disturbances in the hormone secretion of individual endocrine organs in the context of fertility and the maintenance of pregnancy.
Collapse
Affiliation(s)
- Anna Bendarska-Czerwińska
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- American Medical Clinic, Katowice, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| | - Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| | - Emilia Morawiec
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Microbiology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Agata Panfil
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Kamil Bryś
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Justyna Czarniecka
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | | | | | - Dorota Sagan
- Medical Center Dormed Medical SPA, Busko-Zdroj, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
| | | | | | - Beniamin Oskar Grabarek
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| |
Collapse
|
14
|
Vanhevel J, Verlinden L, Loopmans S, Doms S, Janssens I, Bevers S, Stegen S, Wildiers H, Verstuyf A. The Combination of the CDK4/6 Inhibitor, Palbociclib, With the Vitamin D 3 Analog, Inecalcitol, Has Potent In Vitro and In Vivo Anticancer Effects in Hormone-Sensitive Breast Cancer, But Has a More Limited Effect in Triple-Negative Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:886238. [PMID: 35784555 PMCID: PMC9248359 DOI: 10.3389/fendo.2022.886238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022] Open
Abstract
Active vitamin D3, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], and its synthetically derived analogs possess potent anticancer properties. In breast cancer (BC) cells, 1,25(OH)2D3 blocks cell proliferation and induces apoptosis through different cell-type specific mechanisms. In this study, we evaluated if the combination of the potent vitamin D3 analog, inecalcitol, with a selective CDK4/6 inhibitor, palbociclib, enhanced the antiproliferative effects of both single compounds in hormone-sensitive (ER+) BC, for which palbociclib treatment is already approved, but also in triple-negative BC (TNBC). Inecalcitol and palbociclib combination treatment decreased cell proliferation in both ER+ (T47D-MCF7) and TNBC (BT20-HCC1143-Hs578T) cells, with a more pronounced antiproliferative effect in the former. In ER+ BC cells, the combination therapy downregulated cell cycle regulatory proteins (p)-Rb and (p)-CDK2 and blocked G1-S phase transition of the cell cycle. Combination treatment upregulated p-mTOR and p-4E-BP1 protein expression in MCF7 cells, whereas it suppressed expression of these proteins in BT20 cells. Cell survival was decreased after inecalcitol treatment either alone or combined in MCF7 cells. Interestingly, the combination therapy upregulated mitochondrial ROS and mitotracker staining in both cell lines. Furthermore, in vivo validation in a MCF7 cell line-derived xenograft mouse model decreased tumor growth and cell cycle progression after combination therapy, but not in a TNBC BT20 cell line-derived xenograft model. In conclusion, we show that addition of a potent vitamin D3 analog to selective CDK4/6 inhibitor treatment results in increased antiproliferative effects in ER+ BC both in vitro and in vivo.
Collapse
Affiliation(s)
- Justine Vanhevel
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Shauni Loopmans
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Stefanie Doms
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Iris Janssens
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Sien Bevers
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Hans Wildiers
- Department of General Medical Oncology and Multidisciplinary Breast Center Leuven, University Hospitals (UV) Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- *Correspondence: Annemieke Verstuyf,
| |
Collapse
|
15
|
Enhancing the production of physiologically active vitamin D 3 by engineering the hydroxylase CYP105A1 and the electron transport chain. World J Microbiol Biotechnol 2021; 38:14. [PMID: 34877634 DOI: 10.1007/s11274-021-03193-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
In this study, the conversion of vitamin D3 (VD3) to its two active forms 25(OH)VD3 and 1α, 25(OH)2VD3 was carried out by engineering the hydroxylase CYP105A1 and its redox partners Fdx and Fdr. CYP105A1 and Fdx-Fdr were respectively expressed in E. coli BL21(DE3) and purified. The electron transport chain Fdx-Fdr had higher selectivity for the coenzyme NADH than NADPH. HPLC analysis showed that CYP105A1 could hydroxylate the C25 and C1α sites of VD3 and convert VD3 to its active forms. Finally, a one-bacterium-multi-enzyme system was constructed and used in whole-cell catalytic experiments. The results indicated that 2.491 mg/L of 25(OH)VD3 and 0.698 mg/L of 1α, 25(OH)2VD3 were successfully produced under the condition of 1.0% co-solvent DMSO, 1 mM coenzyme NADH and 35 g/L biocatalyst loading. This study contributes to a basis for the industrial production of active VD3 in future.
Collapse
|
16
|
Clarke KE, Hurst EA, Mellanby RJ. Vitamin D metabolism and disorders in dogs and cats. J Small Anim Pract 2021; 62:935-947. [PMID: 34323302 DOI: 10.1111/jsap.13401] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/05/2021] [Accepted: 06/19/2021] [Indexed: 12/20/2022]
Abstract
Vitamin D plays an important role in regulating calcium metabolism and in the development and maintenance of skeletal health of companion animals. There is also a growing interest in understanding the role vitamin D plays in non-skeletal health in both human and veterinary patients. This review provides an update of our current understanding of vitamin D biology in dogs and cats and gives an overview of how vitamin D metabolism can be assessed in companion animals. Congenital and acquired vitamin D disorders are then summarised before the review concludes with a summary of recent studies which have explored the role of vitamin D in the development and outcomes of non-skeletal diseases of dogs and cats.
Collapse
Affiliation(s)
- K E Clarke
- Davies Veterinary Specialists, Manor Farm Business Park, Higham Gobion, Hertfordshire, UK
| | - E A Hurst
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, The University of Edinburgh, Easter Bush Campus, Roslin, Midlothian, UK
| | - R J Mellanby
- Royal (Dick) School of Veterinary Studies and the Roslin Institute, The University of Edinburgh, Easter Bush Campus, Roslin, Midlothian, UK
| |
Collapse
|
17
|
Riccardi C, Perrone L, Napolitano F, Sampaolo S, Melone MAB. Understanding the Biological Activities of Vitamin D in Type 1 Neurofibromatosis: New Insights into Disease Pathogenesis and Therapeutic Design. Cancers (Basel) 2020; 12:E2965. [PMID: 33066259 PMCID: PMC7602022 DOI: 10.3390/cancers12102965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D is a fat-soluble steroid hormone playing a pivotal role in calcium and phosphate homeostasis as well as in bone health. Vitamin D levels are not exclusively dependent on food intake. Indeed, the endogenous production-occurring in the skin and dependent on sun exposure-contributes to the majority amount of vitamin D present in the body. Since vitamin D receptors (VDRs) are ubiquitous and drive the expression of hundreds of genes, the interest in vitamin D has tremendously grown and its role in different diseases has been extensively studied. Several investigations indicated that vitamin D action extends far beyond bone health and calcium metabolism, showing broad effects on a variety of critical illnesses, including cancer, infections, cardiovascular and autoimmune diseases. Epidemiological studies indicated that low circulating vitamin D levels inversely correlate with cutaneous manifestations and bone abnormalities, clinical hallmarks of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumour predisposition syndrome causing significant pain and morbidity, for which limited treatment options are available. In this context, vitamin D or its analogues have been used to treat both skin and bone lesions in NF1 patients, alone or combined with other therapeutic agents. Here we provide an overview of vitamin D, its characteristic nutritional properties relevant for health benefits and its role in NF1 disorder. We focus on preclinical and clinical studies that demonstrated the clinical correlation between vitamin D status and NF1 disease, thus providing important insights into disease pathogenesis and new opportunities for targeted therapy.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II, via Cintia 21, I-80126 Naples, Italy;
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Lorena Perrone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Filomena Napolitano
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Simone Sampaolo
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
| | - Mariarosa Anna Beatrice Melone
- Department of Advanced Medical and Surgical Sciences, 2nd Division of Neurology, Center for Rare Diseases and InterUniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, via Sergio Pansini 5, I-80131 Naples, Italy; (L.P.); (F.N.); (S.S.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, BioLife Building (015-00), 1900 North 12th Street, Philadelphia, PA 19122-6078, USA
| |
Collapse
|
18
|
Annamalai C, Ganesh RN, Viswanathan P. Ferrotoxicity and its amelioration by endogenous vitamin D in experimental acute kidney injury. Exp Biol Med (Maywood) 2020; 245:1474-1489. [PMID: 32741217 PMCID: PMC7553091 DOI: 10.1177/1535370220946271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/08/2020] [Indexed: 02/05/2023] Open
Abstract
This work provides in-depth insights on catalytic iron-induced cytotoxicity and the resultant triggering of endogenous vitamin D synthesis in experimental acute kidney injury. Our results reveal significantly elevated levels of catalytic iron culminating in oxidant-mediated renal injury and a concomitant increase in 1,25-dihdyroxyvitamin D3 levels. Also, changes in other iron-related proteins including transferrin, ferritin, and hepcidin were observed both in the serum as well as in their mRNA expression. We consider all these findings vital since no connection between catalytic iron and vitamin D has been established so far. Furthermore, we believe that this work provides new and interesting results, with catalytic iron emerging as an important target in ameliorating renal cellular injury, possibly by timely administration of vitamin D. It also needs to be seen if these observations made in rats could be translated to humans by means of robust clinical trials.
Collapse
Affiliation(s)
- Chandrashekar Annamalai
- Renal Research Lab, Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, India
| | - Rajesh N Ganesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605 006, India
| | - Pragasam Viswanathan
- Renal Research Lab, Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, India
| |
Collapse
|
19
|
Hurst EA, Homer NZ, Mellanby RJ. Vitamin D Metabolism and Profiling in Veterinary Species. Metabolites 2020; 10:E371. [PMID: 32942601 PMCID: PMC7569877 DOI: 10.3390/metabo10090371] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/17/2022] Open
Abstract
The demand for vitamin D analysis in veterinary species is increasing with the growing knowledge of the extra-skeletal role vitamin D plays in health and disease. The circulating 25-hydroxyvitamin-D (25(OH)D) metabolite is used to assess vitamin D status, and the benefits of analysing other metabolites in the complex vitamin D pathway are being discovered in humans. Profiling of the vitamin D pathway by liquid chromatography tandem mass spectrometry (LC-MS/MS) facilitates simultaneous analysis of multiple metabolites in a single sample and over wide dynamic ranges, and this method is now considered the gold-standard for quantifying vitamin D metabolites. However, very few studies report using LC-MS/MS for the analysis of vitamin D metabolites in veterinary species. Given the complexity of the vitamin D pathway and the similarities in the roles of vitamin D in health and disease between humans and companion animals, there is a clear need to establish a comprehensive, reliable method for veterinary analysis that is comparable to that used in human clinical practice. In this review, we highlight the differences in vitamin D metabolism between veterinary species and the benefits of measuring vitamin D metabolites beyond 25(OH)D. Finally, we discuss the analytical challenges in profiling vitamin D in veterinary species with a focus on LC-MS/MS methods.
Collapse
Affiliation(s)
- Emma A. Hurst
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG, UK;
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, The University of Edinburgh, Little France Crescent, Edinburgh, Scotland EH16 4TJ, UK;
| | - Natalie Z. Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen’s Medical Research Institute, The University of Edinburgh, Little France Crescent, Edinburgh, Scotland EH16 4TJ, UK;
| | - Richard J. Mellanby
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Midlothian, Edinburgh, Scotland EH25 9RG, UK;
| |
Collapse
|
20
|
Annamalai C, Ganesh RN, Viswanathan P. Ferrotoxicity and its amelioration by endogenous vitamin D in experimental acute kidney injury. Exp Biol Med (Maywood) 2020. [DOI: https://doi.org/10.1177/1535370220946271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acute kidney injury causes significant morbidity and mortality. This experimental animal study investigated the simultaneous impact of iron and vitamin D on acute kidney injury induced by iohexol, an iodinated, non-ionic monomeric radiocontrast agent in Wistar rats. Out of 36 healthy male Wistar rats, saline was injected into six control rats (group 1) and iohexol into the remaining 30 experimental rats (groups 2 to 6 comprising six rats each). Biochemical, renal histological changes, and gene expression of iron-regulating proteins and 1 α-hydroxylase were analyzed. Urinary neutrophil gelatinase-associated lipocalin (NGAL), serum creatinine, urine protein, serum and urine catalytic iron, 25-hydroxyvitamin D3, 1,25-dihydroxyvitamin D3, and tissue lipid peroxidation were assayed. Rats injected with iohexol showed elevated urinary NGAL (11.94 ± 6.79 ng/mL), serum creatinine (2.92 ± 0.91 mg/dL), and urinary protein levels (11.03 ± 9.68 mg/mg creatinine) together with histological evidence of tubular injury and iron accumulation. Gene expression of iron-regulating proteins and 1 α-hydroxylase was altered. Serum and urine catalytic iron levels were elevated (0.57 ± 0.17; 48.95 ± 29.13 µmol/L) compared to controls (0.49 ± 0.04; 20.7 ± 2.62 µmol/L, P < 0.001). Urine catalytic iron positively correlated with tissue peroxidation (r = 0.469, CI 0.122 to 0.667, P = 0.004) and urinary NGAL (r = 0.788, CI 0.620 to 0.887, P < 0.001). 25-hydroxyvitamin D3 (61.58 ± 9.60 ng/mL) and 1,25-dihydroxyvitamin D3 (50.44 ± 19.76 pg/mL) levels increased simultaneously. In a multivariate linear regression analysis, serum iron, urine catalytic iron, and tissue lipid peroxidation independently and positively predicted urinary NGAL, an acute kidney injury biomarker. This study highlights the nephrotoxic potential of catalytic iron besides demonstrating a concurrent induction of vitamin D endogenously for possible renoprotection in acute kidney injury.Impact statementThis work provides in-depth insights on catalytic iron-induced cytotoxicity and the resultant triggering of endogenous vitamin D synthesis in experimental acute kidney injury. Our results reveal significantly elevated levels of catalytic iron culminating in oxidant-mediated renal injury and a concomitant increase in 1,25-dihdyroxyvitamin D3 levels. Also, changes in other iron-related proteins including transferrin, ferritin, and hepcidin were observed both in the serum as well as in their mRNA expression. We consider all these findings vital since no connection between catalytic iron and vitamin D has been established so far. Furthermore, we believe that this work provides new and interesting results, with catalytic iron emerging as an important target in ameliorating renal cellular injury, possibly by timely administration of vitamin D. It also needs to be seen if these observations made in rats could be translated to humans by means of robust clinical trials.
Collapse
Affiliation(s)
- Chandrashekar Annamalai
- Renal Research Lab, Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, India
| | - Rajesh N Ganesh
- Department of Pathology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605 006, India
| | - Pragasam Viswanathan
- Renal Research Lab, Centre for Biomedical Research, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, India
| |
Collapse
|
21
|
Kikuyama T, Susa T, Tamamori-Adachi M, Iizuka M, Akimoto M, Okinaga H, Fujigaki Y, Uchida S, Shibata S, Okazaki T. 25(OH)D 3 stimulates the expression of vitamin D target genes in renal tubular cells when Cyp27b1 is abrogated. J Steroid Biochem Mol Biol 2020; 199:105593. [PMID: 31945466 DOI: 10.1016/j.jsbmb.2020.105593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/28/2022]
Abstract
Recently, it was reported that 25(OH)D3 (25D3) has physiological bioactivity in certain tissues derived from Cyp27b1 knockout mice. To investigate the function of 25D3 in the kidney as an informational crossroad of various calciotropic substances, we employed the CRISPR-Cas9 system to knock out Cyp27b1 in the mouse renal distal tubular mDCT cell line. Unlike the previously reported mice in which Cyp27b1 was targeted systemically, Cyp27b1 knockout mDCT cells did not produce any measurable 1α,25(OH)2D3 (1,25D3) after 25D3 administration. As was seen with treatment of Cyp27b1 knockout mDCT cells with ≥10-8 M of 1,25D3, the administration of 10-7 M of 25D3 translocated the vitamin D3 receptor (VDR) into the nucleus and promoted the expression of the representative 1,25D3-responsive gene Cyp24a1. The exhaustive target gene profiles of 25D3 were similar to those of 1,25D3. Subsequently, we confirmed that 25D3 induced the expression of the calcium reabsorption-related gene calbindin-D9K, in a way similar to 1,25D3. We also found that 1,25D3 and 25D3 induced the expression of the megalin gene. A chromatin immunoprecipitation assay identified two vitamin D response elements in the upstream region of the megalin gene that seemed to contribute to its expression. Together, we surmise that the ability of 25D3 to stimulate VDR target genes may provide a novel perspective for its role in certain tissues.
Collapse
Affiliation(s)
- Takahiro Kikuyama
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takao Susa
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan.
| | | | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Miho Akimoto
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshihide Fujigaki
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shunya Uchida
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Shigeru Shibata
- Division of Nephrology, Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan.
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Noh K, Yang QJ, Sekhon L, Quach HP, Chow ECY, Pang KS. Noteworthy idiosyncrasies of 1α,25-dihydroxyvitamin D 3 kinetics for extrapolation from mouse to man: Commentary. Biopharm Drug Dispos 2020; 41:126-148. [PMID: 32319119 DOI: 10.1002/bdd.2223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/30/2020] [Accepted: 03/06/2020] [Indexed: 12/17/2022]
Abstract
Calcitriol or 1,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ] is the active ligand of the vitamin D receptor (VDR) that plays a vital role in health and disease. Vitamin D is converted to the relatively inactive metabolite, 25-hydroxyvitamin D3 [25(OH)D3 ], by CYP27A1 and CYP2R1 in the liver, then to 1,25(OH)2 D3 by a specific, mitochondrial enzyme, CYP27B1 (1α-hydroxylase) that is present primarily in the kidney. The degradation of both metabolites is mostly carried out by the more ubiquitous mitochondrial enzyme, CYP24A1. Despite the fact that calcitriol inhibits its formation and degradation, allometric scaling revealed strong interspecies correlation of the net calcitriol clearance (CL estimated from dose/AUC∞ ), production rate (PR), and basal, plasma calcitriol concentration with body weight (BW). PBPK-PD (physiologically based pharmacokinetic-pharmacodynamic) modeling confirmed the dynamic interactions between calcitriol and Cyp27b1/Cyp24a1 on the decrease in the PR and increase in CL in mice. Close scrutiny of the literature revealed that basal levels of calcitriol had not been taken into consideration for estimating the correct AUC∞ and CL after exogenous calcitriol dosing in both animals and humans, leading to an overestimation of AUC∞ and underestimation of the plasma CL. In humans, CL was decreased in chronic kidney disease but increased in cancer. Collectively, careful pharmacokinetic data analysis and improved definition are achieved with PBPK-PD modeling, which embellishes the complexity of dose, enzyme regulation, and disease conditions. Allometric scaling and PBPK-PD modeling were applied successfully to extend the PBPK model to predict calcitriol kinetics in cancer patients.
Collapse
Affiliation(s)
- Keumhan Noh
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Qi Joy Yang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Lavtej Sekhon
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Holly P Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - Edwin C Y Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, M5S 3M2, Canada
| |
Collapse
|
23
|
A Narrative Role of Vitamin D and Its Receptor: With Current Evidence on the Gastric Tissues. Int J Mol Sci 2019; 20:ijms20153832. [PMID: 31387330 PMCID: PMC6695859 DOI: 10.3390/ijms20153832] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Vitamin D is a major steroid hormone that is gaining attention as a therapeutic molecule. Due to the general awareness of its importance for the overall well-being, vitamin D deficiency (VDD) is now recognized as a major health issue. The main reason for VDD is minimal exposure to sunlight. The vitamin D receptor (VDR) is a member of the steroid hormone receptors that induces a cascade of cell signaling to maintain healthy Ca2+ levels that serve to regulate several biological functions. However, the roles of vitamin D and its metabolism in maintaining gastric homeostasis have not yet been completely elucidated. Currently, there is a need to increase the vitamin D status in individuals worldwide as it has been shown to improve musculoskeletal health and reduce the risk of chronic illnesses, including some cancers, autoimmune and infectious diseases, type 2 diabetes mellitus, neurocognitive disorders, and general mortality. The role of vitamin D in gastric homeostasis is crucial and unexplored. This review attempts to elucidate the central role of vitamin D in preserving and maintaining the overall health and homeostasis of the stomach tissue.
Collapse
|
24
|
Cantorna MT, Rogers CJ, Arora J. Aligning the Paradoxical Role of Vitamin D in Gastrointestinal Immunity. Trends Endocrinol Metab 2019; 30:459-466. [PMID: 31122825 PMCID: PMC6588413 DOI: 10.1016/j.tem.2019.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder characterized by inflammation of the gastrointestinal tract and an immune-mediated attack against the commensal microbiota. Vitamin D is an essential vitamin that not only promotes calcium and phosphate absorption but also regulates immune function. The active form of vitamin D [1,25(OH)2D] has been shown to suppress symptoms of IBD by inhibiting T cell responses. Host protection from gastrointestinal infection depends on T cells. Paradoxically, vitamin D deficiency increases susceptibility to IBD and gastrointestinal infection. Here we review the roles of vitamin D in immune cells using a kinetic model of the vitamin D-mediated effects on infection to explain the sometimes paradoxical effects of vitamin D on gastrointestinal immunity.
Collapse
Affiliation(s)
- Margherita T Cantorna
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802, USA; Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Connie J Rogers
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA; Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Juhi Arora
- Department of Veterinary and Biomedical Science, The Pennsylvania State University, University Park, PA 16802, USA; Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
25
|
Cito G, Cocci A, Micelli E, Gabutti A, Russo GI, Coccia ME, Franco G, Serni S, Carini M, Natali A. Vitamin D and Male Fertility: An Updated Review. World J Mens Health 2019; 38:164-177. [PMID: 31190482 PMCID: PMC7076312 DOI: 10.5534/wjmh.190057] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/14/2019] [Accepted: 04/22/2019] [Indexed: 12/14/2022] Open
Abstract
To date, the key role of vitamin D in male reproductive system has been suggested, since the expression of vitamin D receptors and metabolizing enzymes was demonstrated in the testis and spermatozoa. Nevertheless, a general consensus about the role of vitamin D in male fertility is still debated. The aim of this review is to provide an updated systematic revision of the current available literature, discussing the experimental and clinical evidence on the role of vitamin D in the regulation of testis hormone production, seminal parameters and male fertility. The consequences of vitamin D deficiency on serum levels of testicular hormones have been analysed by several observational and interventional studies, with controversial results. Equally, the experimental researches not were able to state a certain relationship between vitamin D status and testis hormone production. Possible bias, including age, body mass index, and baseline vitamin D status justified the differences among studies. As well as concerning the effect of vitamin D on semen parameters, most of the studies agreed in the possibility that vitamin D might have a positive effect on human male fertility potential, particularly through better sperm motility. Regarding pregnancy outcomes, normal level of vitamin D seems to be related to better pregnancies. However, all the previous studies displayed a wide heterogeneity in study design, population, methodology, and cut off values used for the evaluation of vitamin D status. Future studies are needed to better clarify the exact role of vitamin D on hormonal and seminal panel in both fertile and infertile men.
Collapse
Affiliation(s)
- Gianmartin Cito
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy.
| | - Andrea Cocci
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Elisabetta Micelli
- Department of Gynecology and Obstetrics, St. Claire Hospital, University of Pisa, Pisa, Italy
| | - Alejandro Gabutti
- Department of Radiology, Salvador Zubirán National Institute of Health Sciences and Nutrition, Mexico City, Mexico
| | - Giorgio Ivan Russo
- Department of Urology, Vittorio Emanuele II, University of Catania, Catania, Italy
| | - Maria Elisabetta Coccia
- Assisted Reproductive Technology Centre, Careggi Hospital, University of Florence, Florence, Italy
| | - Giorgio Franco
- Department of Urology, "La Sapienza" University of Rome, Rome, Italy
| | - Sergio Serni
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Marco Carini
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| | - Alessandro Natali
- Department of Urology, Careggi Hospital, University of Florence, Florence, Italy
| |
Collapse
|
26
|
Meyer MB, Benkusky NA, Kaufmann M, Lee SM, Redfield RR, Jones G, Pike JW. Targeted genomic deletions identify diverse enhancer functions and generate a kidney-specific, endocrine-deficient Cyp27b1 pseudo-null mouse. J Biol Chem 2019; 294:9518-9535. [PMID: 31053643 DOI: 10.1074/jbc.ra119.008760] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Vitamin D3 is terminally bioactivated in the kidney to 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) via cytochrome P450 family 27 subfamily B member 1 (CYP27B1), whose gene is regulated by parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and 1,25(OH)2D3 Our recent genomic studies in the mouse have revealed a complex kidney-specific enhancer module within the introns of adjacent methyltransferase-like 1 (Mettl1) and Mettl21b that mediate basal and PTH-induced expression of Cyp27b1 and FGF23- and 1,25(OH)2D3-mediated repression. Gross deletion of these segments in mice has severe effects on Cyp27b1 regulation and skeletal phenotype but does not affect Cyp27b1 expression in nonrenal target cells (NRTCs). Here, we report a bimodal activity in the Mettl1 intronic enhancer with components responsible for PTH-mediated Cyp27b1 induction and 1,25(OH)2D3-mediated repression and additional activities, including FGF23 repression, within the Mettl21b enhancers. Deletion of both submodules eliminated basal Cyp27b1 expression and regulation in the kidney, leading to systemic and skeletal phenotypes similar to those of Cyp27b1-null mice. However, basal expression and lipopolysaccharide-induced regulation of Cyp27b1 in NRTCs was unperturbed. Importantly, dietary normalization of calcium, phosphate, PTH, and FGF23 rescued the skeletal phenotype of this mutant mouse, creating an ideal in vivo model to study nonrenal 1,25(OH)2D3 production in health and disease. Finally, we confirmed a conserved chromatin landscape in human kidney that is similar to that in mouse. These findings define a finely balanced homeostatic mechanism involving PTH and FGF23 together with protection from 1,25(OH)2D3 toxicity that is responsible for both adaptive vitamin D metabolism and mineral regulation.
Collapse
Affiliation(s)
- Mark B Meyer
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706,
| | - Nancy A Benkusky
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Martin Kaufmann
- the Departments of Biomedical and Molecular Sciences and.,Surgery, Queen's University, Kingston, Ontario K7L 3N6, Canada, and
| | - Seong Min Lee
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Robert R Redfield
- the Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53706
| | | | - J Wesley Pike
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
27
|
Jacquillet G, Unwin RJ. Physiological regulation of phosphate by vitamin D, parathyroid hormone (PTH) and phosphate (Pi). Pflugers Arch 2019; 471:83-98. [PMID: 30393837 PMCID: PMC6326012 DOI: 10.1007/s00424-018-2231-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/20/2018] [Accepted: 10/25/2018] [Indexed: 01/05/2023]
Abstract
Inorganic phosphate (Pi) is an abundant element in the body and is essential for a wide variety of key biological processes. It plays an essential role in cellular energy metabolism and cell signalling, e.g. adenosine and guanosine triphosphates (ATP, GTP), and in the composition of phospholipid membranes and bone, and is an integral part of DNA and RNA. It is an important buffer in blood and urine and contributes to normal acid-base balance. Given its widespread role in almost every molecular and cellular function, changes in serum Pi levels and balance can have important and untoward effects. Pi homoeostasis is maintained by a counterbalance between dietary Pi absorption by the gut, mobilisation from bone and renal excretion. Approximately 85% of total body Pi is present in bone and only 1% is present as free Pi in extracellular fluids. In humans, extracellular concentrations of inorganic Pi vary between 0.8 and 1.2 mM, and in plasma or serum Pi exists in both its monovalent and divalent forms (H2PO4- and HPO42-). In the intestine, approximately 30% of Pi absorption is vitamin D regulated and dependent. To help maintain Pi balance, reabsorption of filtered Pi along the renal proximal tubule (PT) is via the NaPi-IIa and NaPi-IIc Na+-coupled Pi cotransporters, with a smaller contribution from the PiT-2 transporters. Endocrine factors, including, vitamin D and parathyroid hormone (PTH), as well as newer factors such as fibroblast growth factor (FGF)-23 and its coreceptor α-klotho, are intimately involved in the control of Pi homeostasis. A tight regulation of Pi is critical, since hyperphosphataemia is associated with increased cardiovascular morbidity in chronic kidney disease (CKD) and hypophosphataemia with rickets and growth retardation. This short review considers the control of Pi balance by vitamin D, PTH and Pi itself, with an emphasis on the insights gained from human genetic disorders and genetically modified mouse models.
Collapse
Affiliation(s)
- Grégory Jacquillet
- Centre for Nephrology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Robert J Unwin
- Centre for Nephrology, University College London (UCL), Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
- AstraZeneca IMED ECD CVRM R&D, Gothenburg, Sweden.
| |
Collapse
|
28
|
Cao S, Tian XL, Yu WX, Zhou LP, Dong XL, Favus MJ, Wong MS. Oleanolic Acid and Ursolic Acid Improve Bone Properties and Calcium Balance and Modulate Vitamin D Metabolism in Aged Female Rats. Front Pharmacol 2018; 9:1435. [PMID: 30564129 PMCID: PMC6288304 DOI: 10.3389/fphar.2018.01435] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 11/19/2018] [Indexed: 11/25/2022] Open
Abstract
Oleanolic acid (OA) and ursolic acid (UA) are the major chemical constituents in Fructus Ligustri Lucidi (FLL), a kidney-tonifying Chinese herb that is previously shown to improve bone properties and enhance calcium balance in aged female rats. The present study was designed to study if OA and UA act as the active ingredients in FLL to exert the positive effects on bone and mineral metabolism in aged rats. Aged (13-month-old) Sprague-Dawley female rats were randomly assigned to four groups with oral administration of drug or vehicle treatment for 12 weeks: medium calcium diet (MCD, 0.6% calcium), high calcium diet (HCD, 1.2% calcium), MCD + FLL (700 mg/kg/day), MCD + OA (23.6 mg/kg/day) + UA (8.6 mg/kg/day). A group of mature (3-month-old) female rats fed with MCD was included as positive control. The results demonstrated that FLL and OA+UA increased bone mineral density and improved microarchitectural properties of aged female rats. The osteoprotective effects of FLL and OA+UA might be, at least in part, associated with their actions on enhancing calcium balance and suppressing age-induced secondary hyperparathyroidism in aged female rats. FLL and OA+UA also significantly induced renal CYP27B1 protein expression and OA+UA treatment decreased CYP24A1 mRNA and protein expressions in aged female rats. In addition, FLL and OA+UA significantly increased the promoter activity, mRNA and protein expressions of renal CYP27B1 in vitro in human proximal tubule HKC-8 cells. The present findings suggest that OA+UA can be regarded as the active ingredients of FLL and might be a potential drug candidate for prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xue-Lian Tian
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Wen-Xuan Yu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Li-Ping Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiao-Li Dong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Murray J Favus
- Section of Endocrinology, Department of Medicine, The University of Chicago, Chicago, IL, United States
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China.,Shenzhen Key Laboratory of Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
29
|
Lu CL, Yeih DF, Hou YC, Jow GM, Li ZY, Liu WC, Zheng CM, Lin YF, Shyu JF, Chen R, Huang CY, Lu KC. The Emerging Role of Nutritional Vitamin D in Secondary Hyperparathyroidism in CKD. Nutrients 2018; 10:nu10121890. [PMID: 30513912 PMCID: PMC6316278 DOI: 10.3390/nu10121890] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/18/2022] Open
Abstract
In chronic kidney disease (CKD), hyperphosphatemia induces fibroblast growth factor-23 (FGF-23) expression that disturbs renal 1,25-dihydroxy vitamin D (1,25D) synthesis; thereby increasing parathyroid hormone (PTH) production. FGF-23 acts on the parathyroid gland (PTG) to increase 1α-hydroxylase activity and results in increase intra-gland 1,25D production that attenuates PTH secretion efficiently if sufficient 25D are available. Interesting, calcimimetics can further increase PTG 1α-hydroxylase activity that emphasizes the demand for nutritional vitamin D (NVD) under high PTH status. In addition, the changes in hydroxylase enzyme activity highlight the greater parathyroid 25-hydroxyvitmain D (25D) requirement in secondary hyperparathyroidism (SHPT); the higher proportion of oxyphil cells as hyperplastic parathyroid progression; lower cytosolic vitamin D binding protein (DBP) content in the oxyphil cell; and calcitriol promote vitamin D degradation are all possible reasons supports nutritional vitamin D (NVD; e.g., Cholecalciferol) supplement is crucial in SHPT. Clinically, NVD can effectively restore serum 25D concentration and prevent the further increase in PTH level. Therefore, NVD might have the benefit of alleviating the development of SHPT in early CKD and further lowering PTH in moderate to severe SHPT in dialysis patients.
Collapse
Affiliation(s)
- Chien-Lin Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Dong-Feng Yeih
- Division of Cardiology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Yi-Chou Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 23155, Taiwan.
| | - Guey-Mei Jow
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Zong-Yu Li
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| | - Wen-Chih Liu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung City 433, Taiwan.
| | - Cai-Mei Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 235, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11103, Taiwan.
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City 235, Taiwan.
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11103, Taiwan.
| | - Jia-Fwu Shyu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan.
| | - Remy Chen
- Kidney Dialysis Center, Kamifukuoka General Hospital, Saitama 356, Japan.
| | - Chung-Yu Huang
- Department of Medicine, Show-Chwan Memorial Hospital, Changhua 50008, Taiwan.
| | - Kuo-Cheng Lu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan.
| |
Collapse
|
30
|
Wu W, Fan H, Jiang Y, Liao L, Li L, Zhao J, Zhang H, Shrestha C, Xie Z. Regulation of 25-hydroxyvitamin D-1-hydroxylase and 24-hydroxylase in keratinocytes by PTH and FGF23. Exp Dermatol 2018; 27:1201-1209. [PMID: 30066343 DOI: 10.1111/exd.13760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 06/26/2018] [Accepted: 07/19/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Wenlin Wu
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Hong Fan
- Department of Endocrinology and Metabolism; The Peace Hospital Attached to Chang-Zhi Medical College; Chang-Zhi China
| | - Yi Jiang
- Department of Pathology; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Liyan Liao
- Department of Pathology; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Lusha Li
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Juan Zhao
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Huiling Zhang
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Chandrama Shrestha
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| | - Zhongjian Xie
- Department of Endocrinology and Metabolism; The Second Xiang-Ya Hospital; Central South University; Changsha China
| |
Collapse
|
31
|
Selamet U, Katz R, Ginsberg C, Rifkin DE, Fried LF, Kritchevsky SB, Hoofnagle AN, Bibbins-Domingo K, Drew D, Harris T, Newman A, Gutiérrez OM, Sarnak MJ, Shlipak MG, Ix JH. Serum Calcitriol Concentrations and Kidney Function Decline, Heart Failure, and Mortality in Elderly Community-Living Adults: The Health, Aging, and Body Composition Study. Am J Kidney Dis 2018; 72:419-428. [PMID: 29885925 PMCID: PMC6245577 DOI: 10.1053/j.ajkd.2018.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/16/2018] [Indexed: 12/19/2022]
Abstract
RATIONALE & OBJECTIVES Lower 25-hydroxyvitamin D concentrations have been associated with risk for kidney function decline, heart failure, and mortality. However, 25-hydroxyvitamin D requires conversion to its active metabolite, calcitriol, for most biological effects. The associations of calcitriol concentrations with clinical events have not been well explored. STUDY DESIGN Case-cohort study. SETTING & PARTICIPANTS Well-functioning community-living older adults aged 70 to 79 years at inception who participated in the Health, Aging, and Body Composition (Health ABC) Study. PREDICTOR Serum calcitriol measured using positive ion electrospray ionization-tandem mass spectrometry. OUTCOMES Major kidney function decline (≥30% decline in estimated glomerular filtration rate from baseline), incident heart failure (HF), and all-cause mortality during 10 years of follow-up. ANALYTIC APPROACH Baseline calcitriol concentrations were measured in a random subcohort of 479 participants and also in cases with major kidney function decline [n=397]) and incident HF (n=207) during 10 years of follow-up. Associations of serum calcitriol concentrations with these end points were evaluated using weighted Cox regression to account for the case-cohort design, while associations with mortality were assessed in the subcohort alone using unweighted Cox regression. RESULTS During 8.6 years of mean follow-up, 212 (44%) subcohort participants died. In fully adjusted models, each 1-standard deviation lower calcitriol concentration was associated with 30% higher risk for major kidney function decline (95% CI, 1.03-1.65; P=0.03). Calcitriol was not significantly associated with incident HF (HR, 1.16; 95% CI, 0.94-1.47) or mortality (HR, 1.01; 95% CI, 0.81-1.26). We observed no significant interactions between calcitriol concentrations and chronic kidney disease status, baseline intact parathyroid or fibroblast factor 23 concentrations. LIMITATIONS Observational study design, calcitriol measurements at a single time point, selective study population of older adults only of white or black race. CONCLUSIONS Lower calcitriol concentrations are independently associated with kidney function decline in community-living older adults. Future studies will be needed to clarify whether these associations reflect lower calcitriol concentrations resulting from abnormal kidney tubule dysfunction or direct mechanisms relating lower calcitriol concentrations to more rapid loss of kidney function.
Collapse
Affiliation(s)
- Umut Selamet
- Division of Nephrology, Department of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Ronit Katz
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, WA
| | - Charles Ginsberg
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA; Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, CA
| | - Dena E Rifkin
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA; Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, CA; Division of Preventive Medicine, Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA
| | - Linda F Fried
- Nephrology Section, Veterans Affairs Hospital, University of Pittsburgh, Pittsburgh, PA; Division of Nephrology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA; Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | | | - Andrew N Hoofnagle
- Department of Laboratory Medicine, University of Washington, Seattle, WA; Department of Medicine, University of Washington, Seattle, WA
| | | | - David Drew
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA
| | - Tamara Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Bethesda, MD
| | - Anne Newman
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA
| | - Orlando M Gutiérrez
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL; Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Mark J Sarnak
- Division of Nephrology, Department of Medicine, Tufts Medical Center, Boston, MA
| | - Michael G Shlipak
- Kidney Health Research Collaborative, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, CA; Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA
| | - Joachim H Ix
- Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, San Diego, CA; Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, CA; Division of Preventive Medicine, Department of Family Medicine and Public Health, University of California San Diego, San Diego, CA.
| |
Collapse
|
32
|
Guo H, Guo J, Xie W, Yuan L, Sheng X. The role of vitamin D in ovarian cancer: epidemiology, molecular mechanism and prevention. J Ovarian Res 2018; 11:71. [PMID: 30157901 PMCID: PMC6114234 DOI: 10.1186/s13048-018-0443-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/15/2018] [Indexed: 12/19/2022] Open
Abstract
Vitamin D is a fat-soluble prohormone best known for its role in maintaining calcium homeostasis. Large numbers of epidemiological studies have shown that vitamin D plays an important role in cancer prevention by regulating cellular proliferation and metabolism. Studies of the cellular mechanism of vitamin D in ovarian cancer strongly suggest that it exhibits protective and antitumorigenic activities through genomic and nongenomic signal transduction pathways. These results indicate that vitamin D deficiency results in an increase in the risk of developing ovarian cancer and that vitamin supplements may potentially be an efficient way of preventing cancer. Consequently, this review describes the epidemiology, molecular mechanism and evidence linking vitamin D deficiency to ovarian cancer.
Collapse
Affiliation(s)
- Hui Guo
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jing Guo
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,School of Medicine and Life Sciences, University of Jinan, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenli Xie
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Shandong University, Jinan, Shandong, China
| | - Lingqin Yuan
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Xiugui Sheng
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong, China. .,Cancer Hospital Chinese Academy of Medical Sciences, Shenzhen Center, Guangdong, China.
| |
Collapse
|
33
|
Mazziotti G, Frara S, Giustina A. Pituitary Diseases and Bone. Endocr Rev 2018; 39:440-488. [PMID: 29684108 DOI: 10.1210/er.2018-00005] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Neuroendocrinology of bone is a new area of research based on the evidence that pituitary hormones may directly modulate bone remodeling and metabolism. Skeletal fragility associated with high risk of fractures is a common complication of several pituitary diseases such as hypopituitarism, Cushing disease, acromegaly, and hyperprolactinemia. As in other forms of secondary osteoporosis, pituitary diseases generally affect bone quality more than bone quantity, and fractures may occur even in the presence of normal or low-normal bone mineral density as measured by dual-energy X-ray absorptiometry, making difficult the prediction of fractures in these clinical settings. Treatment of pituitary hormone excess and deficiency generally improves skeletal health, although some patients remain at high risk of fractures, and treatment with bone-active drugs may become mandatory. The aim of this review is to discuss the physiological, pathophysiological, and clinical insights of bone involvement in pituitary diseases.
Collapse
Affiliation(s)
| | - Stefano Frara
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
34
|
Fader KA, Nault R, Raehtz S, McCabe LR, Zacharewski TR. 2,3,7,8-Tetrachlorodibenzo-p-dioxin dose-dependently increases bone mass and decreases marrow adiposity in juvenile mice. Toxicol Appl Pharmacol 2018; 348:85-98. [PMID: 29673856 PMCID: PMC5984050 DOI: 10.1016/j.taap.2018.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and other aryl hydrocarbon receptor (AhR) agonists have been shown to regulate bone development and remodeling in a species-, ligand-, and age-specific manner, however the underlying mechanisms remain poorly understood. In this study, we characterized the effect of 0.01-30 μg/kg TCDD on the femoral morphology of male and female juvenile mice orally gavaged every 4 days for 28 days and used RNA-Seq to investigate gene expression changes associated with the resultant phenotype. Micro-computed tomography revealed that TCDD dose-dependently increased trabecular bone volume fraction (BVF) 2.9- and 3.3-fold in male and female femurs, respectively. Decreased serum tartrate-resistant acid phosphatase (TRAP) levels, combined with a reduced osteoclast surface to bone surface ratio and repression of femoral proteases (cathepsin K, matrix metallopeptidase 13), suggests that TCDD impaired bone resorption. Increased osteoblast counts at the trabecular bone surface were consistent with a reciprocal reduction in the number of bone marrow adipocytes, suggesting AhR activation may direct mesenchymal stem cell differentiation towards osteoblasts rather than adipocytes. Notably, femoral expression of transmembrane glycoprotein NMB (Gpnmb; osteoactivin), a positive regulator of osteoblast differentiation and mineralization, was dose-dependently induced up to 18.8-fold by TCDD. Moreover, increased serum levels of 1,25-dihydroxyvitamin D3 were in accordance with the renal induction of 1α-hydroxylase Cyp27b1 and may contribute to impaired bone resorption. Collectively, the data suggest AhR activation tipped the bone remodeling balance towards bone formation, resulting in increased bone mass with reduced marrow adiposity.
Collapse
Affiliation(s)
- Kelly A Fader
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Rance Nault
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States
| | - Sandi Raehtz
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States
| | - Laura R McCabe
- Department of Physiology, Michigan State University, East Lansing, MI 48824, United States; Department of Radiology, Michigan State University, East Lansing, MI 48824, United States
| | - Timothy R Zacharewski
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824, United States; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
35
|
Kägi L, Bettoni C, Pastor-Arroyo EM, Schnitzbauer U, Hernando N, Wagner CA. Regulation of vitamin D metabolizing enzymes in murine renal and extrarenal tissues by dietary phosphate, FGF23, and 1,25(OH)2D3. PLoS One 2018; 13:e0195427. [PMID: 29771914 PMCID: PMC5957386 DOI: 10.1371/journal.pone.0195427] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/19/2018] [Indexed: 01/08/2023] Open
Abstract
Background The 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) together with parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) regulates calcium (Ca2+) and phosphate (Pi) homeostasis, 1,25(OH)2D3 synthesis is mediated by hydroxylases of the cytochrome P450 (Cyp) family. Vitamin D is first modified in the liver by the 25-hydroxylases CYP2R1 and CYP27A1 and further activated in the kidney by the 1α-hydroxylase CYP27B1, while the renal 24-hydroxylase CYP24A1 catalyzes the first step of its inactivation. While the kidney is the main organ responsible for circulating levels of active 1,25(OH)2D3, other organs also express some of these enzymes. Their regulation, however, has been studied less. Methods and results Here we investigated the effect of several Pi-regulating factors including dietary Pi, PTH and FGF23 on the expression of the vitamin D hydroxylases and the vitamin D receptor VDR in renal and extrarenal tissues of mice. We found that with the exception of Cyp24a1, all the other analyzed mRNAs show a wide tissue distribution. High dietary Pi mainly upregulated the hepatic expression of Cyp27a1 and Cyp2r1 without changing plasma 1,25(OH)2D3. FGF23 failed to regulate the expression of any of the studied hydroxylases at the used dosage and treatment length. As expected, renal mRNA expression of Cyp27b1 was reduced and Cyp24a1 was increased in response to 1,25(OH)2D3 treatment. However, the 25-hydroxylases were rather unaffected by 1,25(OH)2D3 treatment. Conclusions The analyzed vitamin D hydroxylases are regulated in a tissue and treatment-specific manner.
Collapse
Affiliation(s)
- Larissa Kägi
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center for Competence in Research NCCR Kidney.CH
| | - Carla Bettoni
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center for Competence in Research NCCR Kidney.CH
| | - Eva M. Pastor-Arroyo
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center for Competence in Research NCCR Kidney.CH
| | - Udo Schnitzbauer
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center for Competence in Research NCCR Kidney.CH
| | - Nati Hernando
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center for Competence in Research NCCR Kidney.CH
| | - Carsten A. Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- National Center for Competence in Research NCCR Kidney.CH
- * E-mail:
| |
Collapse
|
36
|
Rodney R, Martinez N, Block E, Hernandez L, Celi P, Nelson C, Santos J, Lean I. Effects of prepartum dietary cation-anion difference and source of vitamin D in dairy cows: Vitamin D, mineral, and bone metabolism. J Dairy Sci 2018; 101:2519-2543. [DOI: 10.3168/jds.2017-13737] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/14/2017] [Indexed: 01/06/2023]
|
37
|
Oleanolic Acid Exerts Osteoprotective Effects and Modulates Vitamin D Metabolism. Nutrients 2018; 10:nu10020247. [PMID: 29470404 PMCID: PMC5852823 DOI: 10.3390/nu10020247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/10/2018] [Accepted: 02/12/2018] [Indexed: 12/13/2022] Open
Abstract
Oleanolic acid (OA) is a triterpenoid with reported bone anti-resorption activities. The present study aimed to characterize its bone protective effects in vivo and to study its effects on vitamin D metabolism, both in vivo and in vitro. OA significantly increased bone mineral density, improved micro-architectural properties, reduced urinary Ca excretion, increased 1,25(OH)2D3 and renal CYP27B1 mRNA expression in mature C57BL/6 ovariectomised (OVX) mice. OA also improved bone properties, Ca balance, and exerted modulatory effects on renal CYP27B1 and CYP24A1 expressions in aged normal female Sprague–Dawley rats. In addition, OA significantly increased renal CYP27B1 mRNA and promoter activity, and suppressed CYP24A1 mRNA and protein expressions in human proximal tubule HKC-8 cells. OA exerted bone protective effects in mature OVX mice and aged female rats. This action on bone might be, at least in part, associated with its effects on Ca and vitamin D metabolism. The present findings suggest that OA is a potential drug candidate for the management of postmenopausal osteoporosis.
Collapse
|
38
|
Sunil Kumar BV, Singh S, Verma R. Anticancer potential of dietary vitamin D and ascorbic acid: A review. Crit Rev Food Sci Nutr 2018; 57:2623-2635. [PMID: 26479551 DOI: 10.1080/10408398.2015.1064086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancers have been the leading cause of death worldwide and poor diet and physical inactivity are major risk factors in cancer-related deaths. Micronutrients such as vitamins and minerals appear to have preventive properties against cancer. One important mechanism by which dietary changes can exert preventive effects on cancer is via the modulation of micronutrient concentrations in target tissues. Many of these micronutrients are available in the form of dietary supplements, and the intake of these supplements is prevalent in various parts of the world. However, in most cases, it is not known which micronutrient (or combination of micronutrients) is best when it comes to lowering the risk of cancer. The present review illustrates the effect of vitamin D and ascorbic acid intake on preventing cancer.
Collapse
Affiliation(s)
- B V Sunil Kumar
- a School of Animal Biotechnology , Guru Angad Dev Veterinary and Animal Sciences University , Ludhiana , India
| | - Satparkash Singh
- a School of Animal Biotechnology , Guru Angad Dev Veterinary and Animal Sciences University , Ludhiana , India
| | - Ramneek Verma
- a School of Animal Biotechnology , Guru Angad Dev Veterinary and Animal Sciences University , Ludhiana , India
| |
Collapse
|
39
|
Yang QJ, Bukuroshi P, Quach HP, Chow ECY, Pang KS. Highlighting Vitamin D Receptor-Targeted Activities of 1 α,25-Dihydroxyvitamin D 3 in Mice via Physiologically Based Pharmacokinetic-Pharmacodynamic Modeling. Drug Metab Dispos 2018; 46:75-87. [PMID: 29084783 DOI: 10.1124/dmd.117.077271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/26/2017] [Indexed: 01/09/2023] Open
Abstract
We expanded our published physiologically based pharmacokinetic model (PBPK) on 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], ligand of the vitamin D receptor (VDR), to appraise VDR-mediated pharmacodynamics in mice. Since 1,25(OH)2D3 kinetics was best described by a segregated-flow intestinal model (SFM) that described a low/partial intestinal (blood/plasma) flow to enterocytes, with feedback regulation of its synthesis (Cyp27b1) and degradation (Cyp24a1) enzymes, this PBPK(SFM) model was expanded to describe the VDR-mediated changes (altered/basal mRNA expression) of target genes/responses with the indirect response model. We examined data on 1) renal Trpv5 (transient receptor potential cation channel, subfamily V member 5) and Trpv6 and intestinal Trpv6 (calcium channels) for calcium absorption; 2) liver 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (Hmgcr) and cytochrome 7α-hydroxylase (Cyp7a1) for cholesterol synthesis and degradation, respectively; and 3) renal and brain Mdr1 (multidrug-resistance protein that encodes the P-glycoprotein) for digoxin disposition after repetitive intraperitoneal doses of 120 pmol 1,25(OH)2D3 Fitting, performed with modeling software, yielded reasonable prediction of a dominant role of intestinal Trpv6 in calcium absorption, circadian rhythm that is characterized by simple cosine models for Hmgcr and Cyp7a1 on liver cholesterol, and brain and renal Mdr1 on tissue efflux of digoxin. Fitted parameters on the Emax, EC50, and turnover rate constants of VDR-target genes [zero-order production (kin) and first-order degradation (kout) rate constants] showed low coefficients of variation and acceptable median prediction errors (4.5%-40.6%). Sensitivity analyses showed that the Emax and EC50 values are key parameters that could influence the pharmacodynamic responses. In conclusion, the PBPK(SFM)-pharmacodynamic model successfully characterized VDR gene activation and serves as a useful tool to predict the therapeutic effects of 1,25(OH)2D3.
Collapse
Affiliation(s)
- Qi Joy Yang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Paola Bukuroshi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Holly P Quach
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Edwin C Y Chow
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - K Sandy Pang
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Christakos S. In search of regulatory circuits that control the biological activity of vitamin D. J Biol Chem 2017; 292:17559-17560. [PMID: 29055009 DOI: 10.1074/jbc.h117.806901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although the cytochrome P450 CYP27B1 plays a critical role in vitamin D biology, the molecular mechanisms involved in regulation of CYP27B1 have remained undefined. A new study has identified a kidney-specific control module distal to the Cyp27b1 gene that mediates the basal activity and hormonal regulation of Cyp27b1 This work provides a novel mechanism indicating differential regulation of Cyp27b1 in renal and non-renal cells and has implications for vitamin D biology in multiple sclerosis and perhaps other autoimmune diseases as well.
Collapse
Affiliation(s)
- Sylvia Christakos
- From the Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, the State University of New Jersey, New Jersey Medical School, Newark, New Jersey 07103
| |
Collapse
|
41
|
de Angelis C, Galdiero M, Pivonello C, Garifalos F, Menafra D, Cariati F, Salzano C, Galdiero G, Piscopo M, Vece A, Colao A, Pivonello R. The role of vitamin D in male fertility: A focus on the testis. Rev Endocr Metab Disord 2017; 18:285-305. [PMID: 28667465 DOI: 10.1007/s11154-017-9425-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the last decade, vitamin D has emerged as a pleiotropic molecule with a multitude of autocrine, paracrine and endocrine functions, mediated by classical genomic as well as non-classical non-genomic actions, on multiple target organs and systems. The expression of vitamin D receptor and vitamin D metabolizing enzymes in male reproductive system, particularly in the testis, suggests the occurrence of vitamin D synthesis and regulation as well as function in the testis. The role of vitamin D in the modulation of testis functions, including hormone production and spermatogenesis, has been investigated in animals and humans. Experimental studies support a beneficial effect of vitamin D on male fertility, by modulating hormone production through genomic and non-genomic actions, and, particularly, by improving semen quality essentially through non-genomic actions. However, clinical studies in humans are controversial. Indeed, vitamin D seems to contribute to the modulation of the bioavailable rather than total testosterone. Moreover, although an increased prevalence or risk for testosterone deficiency was reported in men with vitamin D deficiency in observational studies, the majority of interventional studies demonstrated the lack of effect of vitamin D supplementation on circulating levels of testosterone. The most consistent effect of vitamin D was reported on semen quality. Indeed, vitamin D was shown to be positively associated to sperm motility, and to exert direct actions on spermatozoa, including non-genomic driven modulation of intracellular calcium homeostasis and activation of molecular pathways involved in sperm motility, capacitation and acrosome reaction. The current review provides a summary of current knowledge on the role of vitamin D in male fertility, by reporting clinical and experimental studies in humans and animals addressing the relationship between vitamin D and testis function.
Collapse
Affiliation(s)
| | | | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Francesco Garifalos
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Davide Menafra
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Federica Cariati
- CEINGE Biotecnologie Avanzate s.c.a r.l., Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università "Federico II" di Napoli, Naples, Italy
| | - Ciro Salzano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Giacomo Galdiero
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Mariangela Piscopo
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Alfonso Vece
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy.
| |
Collapse
|
42
|
Dhondup T, Qian Q. Electrolyte and Acid-Base Disorders in Chronic Kidney Disease and End-Stage Kidney Failure. Blood Purif 2017; 43:179-188. [PMID: 28114143 DOI: 10.1159/000452725] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The kidneys play a pivotal role in the regulation of electrolyte and acid-base balance. With progressive loss of kidney function, derangements in electrolytes and acid-base inevitably occur and contribute to poor patient outcomes. As chronic kidney disease (CKD) has become a worldwide epidemic, medical providers are increasingly confronted with such problems. Adequate diagnosis and treatment will minimize complications and can potentially be lifesaving. In this review, we discuss the current understanding of the disease process, clinical presentation, diagnosis and treatment strategies, integrating up-to-date knowledge in the field. Although electrolyte and acid-base derangements are significant causes of morbidity and mortality in CKD and end-stage renal disease patients, they can be effectively managed through a timely institution of combined preventive measures and pharmacological therapy. Exciting advances and several upcoming outcome trials will provide further information to guide treatment and improve patient outcomes.
Collapse
Affiliation(s)
- Tsering Dhondup
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, College of Medicine, Rochester, MN, USA
| | | |
Collapse
|
43
|
Vitamin D, calcium homeostasis and aging. Bone Res 2016; 4:16041. [PMID: 27790378 PMCID: PMC5068478 DOI: 10.1038/boneres.2016.41] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/31/2016] [Accepted: 09/04/2016] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is characterized by low bone mass and microarchitecture deterioration of bone tissue, leading to enhanced bone fragility and consequent increase in fracture risk. Evidence is accumulating for an important role of calcium deficiency as the process of aging is associated with disturbed calcium balance. Vitamin D is the principal factor that maintains calcium homeostasis. Increasing evidence indicates that the reason for disturbed calcium balance with age is inadequate vitamin D levels in the elderly. In this article, an overview of our current understanding of vitamin D, its metabolism, and mechanisms involved in vitamin D-mediated maintenance of calcium homeostasis is presented. In addition, mechanisms involved in age-related dysregulation of 1,25(OH)2D3 action, recommended daily doses of vitamin D and calcium, and the use of vitamin D analogs for the treatment of osteoporosis (which remains controversial) are reviewed. Elucidation of the molecular pathways of vitamin D action and modifications that occur with aging will be an active area of future research that has the potential to reveal new therapeutic strategies to maintain calcium balance.
Collapse
|
44
|
Dong XL, Cao SS, Zhou LP, Denney L, Wong MS, Feng HT. Ethanol Extract of Fructus ligustri lucidi Increased Circulating 1,25(OH)2D3Levels, but Did Not Improve Calcium Balance in Mature Ovariectomized Rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1237-1253. [DOI: 10.1142/s0192415x16500695] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our previous studies found that different extracts or fractions of Fructus ligustri lucidi (FLL) played different roles in altering the regulation of bone and mineral metabolism in different animal models. The present study was designed to compare the actions of FLL ethanol (EE) and water extracts (WE) on bone and mineral metabolism in a 6-month-old mature ovariectomized (OVX) rat model. Our results showed that FLL extracts did not significantly improve systematic Ca balance in mature OVX rats. However, EE, but not WE treatment, significantly increased serum 1,25(OH)2D3levels in mature OVX rats. An in vitro study using human proximal tubule (HKC-8) cells showed that EE, but not WE, significantly enhanced renal 25-dihydroxyvitamin D3-1[Formula: see text]-hydroxylase (1-OHase) mRNA expressions and simultaneously repressed renal 25-dihydroxyvitamin D3-24-hydroxylase (24-OHase) mRNA expressions. Further investigation indicated that EE could significantly induce the protein expression of 1-OHase, but did not alter 24-OHase expression in HKC-8 cells. Our results demonstrated that EE increased circulating 1,25(OH)2D3levels in OVX rats, possibly via upregulation of renal 1-OHase expressions in renal proximal tubule cells. Our study indicates that FLL is a natural oral agent that could directly regulate renal vitamin D metabolism in vivo and in vitro.
Collapse
Affiliation(s)
- Xiao-Li Dong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. China
| | - Si-Si Cao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. China
| | - Li-Ping Zhou
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. China
| | - Liya Denney
- Nestlé Research Centre, P. O. Box 44, 1000 Lausanne 26, Switzerland
| | - Man-Sau Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P.R. China
- Shenzhen Research Institute of The Hong Kong Polytechnic University, State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), Shenzhen 518057, P.R. China
| | - Hao-Tian Feng
- Nestlé Research Centre Beijing, No. 5 Dijin Road, Haidian District, Beijing, P.R. China
| |
Collapse
|
45
|
Khokhar A, Castells S, Perez-Colon S. Genetic Disorders of Vitamin D Metabolism: Case Series and Literature Review. Clin Pediatr (Phila) 2016; 55:404-14. [PMID: 26701718 DOI: 10.1177/0009922815623231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Aditi Khokhar
- SUNY Downstate Medical Center, Brooklyn, NY, USA Kings County Hospital Center, Brooklyn, NY, USA
| | | | - Sheila Perez-Colon
- SUNY Downstate Medical Center, Brooklyn, NY, USA Kings County Hospital Center, Brooklyn, NY, USA
| |
Collapse
|
46
|
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev 2016; 96:365-408. [PMID: 26681795 PMCID: PMC4839493 DOI: 10.1152/physrev.00014.2015] [Citation(s) in RCA: 1194] [Impact Index Per Article: 132.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1,25-Dihydroxvitamin D3 [1,25(OH)2D3] is the hormonally active form of vitamin D. The genomic mechanism of 1,25(OH)2D3 action involves the direct binding of the 1,25(OH)2D3 activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Numerous VDR co-regulatory proteins have been identified, and genome-wide studies have shown that the actions of 1,25(OH)2D3 involve regulation of gene activity at a range of locations many kilobases from the transcription start site. The structure of the liganded VDR/RXR complex was recently characterized using cryoelectron microscopy, X-ray scattering, and hydrogen deuterium exchange. These recent technological advances will result in a more complete understanding of VDR coactivator interactions, thus facilitating cell and gene specific clinical applications. Although the identification of mechanisms mediating VDR-regulated transcription has been one focus of recent research in the field, other topics of fundamental importance include the identification and functional significance of proteins involved in the metabolism of vitamin D. CYP2R1 has been identified as the most important 25-hydroxylase, and a critical role for CYP24A1 in humans was noted in studies showing that inactivating mutations in CYP24A1 are a probable cause of idiopathic infantile hypercalcemia. In addition, studies using knockout and transgenic mice have provided new insight on the physiological role of vitamin D in classical target tissues as well as evidence of extraskeletal effects of 1,25(OH)2D3 including inhibition of cancer progression, effects on the cardiovascular system, and immunomodulatory effects in certain autoimmune diseases. Some of the mechanistic findings in mouse models have also been observed in humans. The identification of similar pathways in humans could lead to the development of new therapies to prevent and treat disease.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Abstract
Traditionally, control of phosphorus in the body has been considered secondary to the tighter control of calcium by parathyroid hormone and vitamin D. However, over the past decade, substantial advances have been made in understanding the control of phosphorus by the so-called phosphatonin system, the lynchpin of which is fibroblast growth factor 23 (FGF23). FGF23 binds to the klotho/FGFR1c receptor complex in renal tubular epithelial cells, leading to upregulation of Na/Pi cotransporters and subsequent excretion of phosphorus from the body. In addition, FGF23 inhibits parathyroid hormone and the renal 1α-hydroxylase enzyme, while it stimulates 24-hydroxylase, leading to decreased 1,25-dihydroxyvitamin D3. FGF23 is intimately involved in the pathogenesis of a number of diseases, particularly the hereditary hypophosphatemic rickets group and chronic kidney disease, and is a target for the development of new treatments in human medicine. Little work has been done on FGF23 or the other phosphatonins in veterinary medicine, but increases in FGF23 are seen with chronic kidney disease in cats, and increased FGF23 expression has been found in soft tissue sarcomas in dogs.
Collapse
Affiliation(s)
- M. R. Hardcastle
- Gribbles Veterinary Pathology Ltd, Mt Wellington, Auckland, New Zealand
| | - K. E. Dittmer
- Animal and Biomedical Sciences, Institute of Veterinary, Massey University, Palmerston North, New Zealand
| |
Collapse
|
48
|
Quach HP, Yang QJ, Chow EC, Mager DE, Hoi SY, Pang KS. PKPD modelling to predict altered disposition of 1α,25-dihydroxyvitamin D3 in mice due to dose-dependent regulation of CYP27B1 on synthesis and CYP24A1 on degradation. Br J Pharmacol 2015; 172:3611-26. [PMID: 25829051 DOI: 10.1111/bph.13153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/03/2015] [Accepted: 03/25/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Concentrations of 1α,25-dihydroxyvitamin D3 [1,25(OH)2 D3 ], the active ligand of the vitamin D receptor, are tightly regulated by CYP27B1 for synthesis and CYP24A1 for degradation. However, the dose-dependent pharmacokinetic (PK)-pharmacodynamic (PD) relationship between these enzymes and 1,25(OH)2 D3 concentrations has not been characterized. EXPERIMENTAL APPROACH The pharmacokinetics of 1,25(OH)2 D3 were evaluated after administration of single (2, 60 and 120 pmol) and repeated (2 and 120 pmol q2d ×3) i.v. doses to male C57BL/6 mice. mRNA expression of CYP27B1 and CYP24A1 was examined by quantitative PCR and 1,25(OH)2 D3 concentrations were determined by enzyme immunoassay. KEY RESULTS CYP27B1 and CYP24A1 changes were absent for the 2 pmol dose and biexponential decay profiles showed progressively shorter terminal half-lives with increasing doses. Fitting with a two-compartment model revealed decreasing net synthesis rates and increasing total clearances with dose, consistent with a dose-dependent down-regulation of renal CYP27B1 and the induction of renal/intestinal CYP24A1 mRNA expression. Upon incorporation of PD parameters for inhibition of CYP27B1 and induction of CYP24A1 to the simple two-compartment model, fitting was significantly improved. Moreover, fitted estimates for the 2 pmol dose, together with the PD parameters as modifiers, were able to predict profiles reasonably well for the higher (60 and 120 pmol) doses. Lastly, an indirect response model, which considered the synthesis and degradation of enzymes, adequately described the PK and PD profiles. CONCLUSIONS AND IMPLICATIONS The unique PK of exogenously administered 1,25(OH)2 D3 led to changes in PD of CYP27B1 and CYP24A1, which hastened the clearance of 1,25(OH)2 D3 .
Collapse
Affiliation(s)
- Holly P Quach
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Qi J Yang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Edwin C Chow
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Donald E Mager
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Stacie Y Hoi
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
49
|
Park JM, Park CY, Han SN. High fat diet-Induced obesity alters vitamin D metabolizing enzyme expression in mice. Biofactors 2015; 41:175-82. [PMID: 25904060 DOI: 10.1002/biof.1211] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 03/16/2015] [Indexed: 11/12/2022]
Abstract
Low serum 25(OH)D concentrations have been reported in obese humans. Inadequate sun exposure and impaired hepatic 25-hydroxylation have been suggested as possible reasons for obesity-associated vitamin D deficiency; however, the underlying mechanism has not been elucidated. We investigated the effects of high fat diet-induced obesity on vitamin D status and vitamin D metabolizing enzyme expression. Male C57BL mice (4 weeks old) were fed control diet containing 10% energy from fat (control group) or high fat diet containing 45% energy from fat (obese group) for 18 weeks. There were no differences in serum 25(OH)D concentrations between two groups, while serum 1,25(OH)2 D concentrations were significantly higher in obese mice. Hepatic mRNA levels of 25-hydroxylases (Cyp2r1, Cyp27a1, and Cyp2j3) were lower in the obese group (31, 30, and 48% lower, respectively). Renal 1α-hydroxylase (Cyp27b1) mRNA levels were higher and 24-hydroxylase (Cyp24) mRNA levels were lower in the obese group. Serum 1,25(OH)2 D concentrations correlated positively with renal Cyp27b1 expression levels and negatively with renal Cyp24 expression levels. Serum PTH concentrations were higher in obese mice. In visceral adipose tissue, Cyp27a1, Cyp2j3, and vitamin D receptor mRNA levels were higher in obese mice. Overall, vitamin D metabolizing enzyme expression was influenced by high fat diet-induced obesity, which might partly explain the mechanisms of the altered vitamin D endocrine system associated with obesity. Higher serum PTH and 1,25(OH)2 D concentrations in obese mice suggest abnormal regulation of serum 1,25(OH)2 D concentrations due to hyperparathyroidism, which might have contributed to lower hepatic 25-hydroxylase mRNA levels.
Collapse
Affiliation(s)
- Jeong Min Park
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Chan Yoon Park
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Korea
| |
Collapse
|
50
|
Whole cell bioconversion of vitamin D3 to calcitriol using Pseudonocardia sp. KCTC 1029BP. Bioprocess Biosyst Eng 2015; 38:1281-90. [PMID: 25666830 DOI: 10.1007/s00449-015-1368-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
Abstract
Calcitriol is an important drug used for treating osteoporosis, which can be produced from vitamin D3. The current method of producing calcitriol from vitamin D3 during cultivation of microbial cells results in low yields of calcitriol and high purification costs. Therefore, in this study, the steps of cell cultivation and bioconversion of vitamin D3 to calcitriol were separated. Cells of Pseudonocardia sp. KCTC 1029BP were utilized as a whole cell catalyst to produce a high level and yield of calcitriol from vitamin D3. In addition, the effects of bioconversion buffers, cyclodextrins, and metal salts on the production of calcitriol were comparatively examined and selected for incorporation in the bioconversion medium, and their compositions were statistically optimized. The optimal bioconversion medium was determined as consisting of 15 mM Trizma base, 25 mM sodium succinate, 2 mM MgSO4, 0.08% β-cyclodextrin, 0.1% NaCl, 0.2% K2HPO4, and 0.03% MnCl2. Using this optimal bioconversion medium, 61.87 mg/L of calcitriol, corresponding to a 30.94% mass yield from vitamin D3, was produced in a 75-L fermentor after 9 days. This calcitriol yield was 3.6 times higher than that obtained using a bioconversion medium lacking β-cyclodextrin, NaCl, K2HPO4, and MnCl2. In conclusion, utilizing whole cells of Pseudonocardia sp. KCTC 1029BP together with the optimal bioconversion medium markedly enhanced the production of calcitriol from vitamin D3.
Collapse
|