1
|
Nandha SR, Checker R, Patwardhan RS, Sharma D, Sandur SK. Anti-oxidants as therapeutic agents for oxidative stress associated pathologies: future challenges and opportunities. Free Radic Res 2025; 59:61-85. [PMID: 39764687 DOI: 10.1080/10715762.2025.2450504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/13/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Free radicals have been implicated in the pathogenesis of cancer along with cardiovascular, neurodegenerative, pulmonary and inflammatory disorders. Further, the relationship between oxidative stress and disease is distinctively established. Clinical trials using anti-oxidants for the prevention of disease progression have indicated some beneficial effects. However, these trials failed to establish anti-oxidants as therapeutic agents due to lack of efficacy. This is attributed to the fact that living systems are under dynamic redox control wherein their redox behavior is compartmentalized and simple aggregation of redox couples, distributed throughout the system, is of miniscule importance while determining their overall redox state. Further, free radical metabolism is intriguingly complex as they play plural roles segregated in a spatio-temporal manner. Depending on quality, quantity and site of generation, free radicals exhibit beneficial or harmful effects. Use of nonspecific, non-targeted, general ROS scavengers lead to systemic elimination of all types of ROS and interferes in cellular signaling. Failure of anti-oxidants to act as therapeutic agents lies in this oversimplification of extremely dynamic cellular redox environment as a static and non-compartmentalized redox state. Rather than generalizing the term "oxidative stress" if we can identify the "type of oxidative stress" in different types of diseases, a targeted and more specific anti-oxidant therapy may be developed. In this review, we discuss the concept of redox dynamics, role and type of oxidative stress in disease conditions, and current status of anti-oxidants as therapeutic agents. Further, we probe the possibility of developing novel, targeted and efficacious anti-oxidants with drug-like properties.
Collapse
Affiliation(s)
- Shivani R Nandha
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Raghavendra S Patwardhan
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-science Group, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Zheng X, Yang H, Zou J, Jin W, Qi Z, Yang P, Yu J, Zhou J. SnRK1α1-mediated RBOH1 phosphorylation regulates reactive oxygen species to enhance tolerance to low nitrogen in tomato. THE PLANT CELL 2024; 37:koae321. [PMID: 39667074 DOI: 10.1093/plcell/koae321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Nitrogen is essential for plant growth and development. SNF1-related protein kinase 1 (SnRK1) is an evolutionarily conserved protein kinase pivotal for regulating plant responses to nutrient deficiency. Here, we discovered that the expression and activity of the SnRK1 α-catalytic subunit (SnRK1α1) increased in response to low-nitrogen stress. SnRK1α1 overexpression enhanced seedling tolerance, nitrate uptake capacity, apoplastic reactive oxygen species (ROS) accumulation, and NADPH oxidase activity in tomato (Solanum lycopersicum L.) under low-nitrogen stress compared to wild type plants, while snrk1α1 mutants exhibited the opposite phenotypes. Mutation of the NADPH oxidase gene Respiratory burst oxidase homolog 1 (RBOH1) suppressed numerous nitrate uptake and metabolism genes during low-nitrogen stress. rboh1 mutants displayed lower NADPH oxidase activity, apoplastic ROS production, and seedling tolerance to low nitrogen. Silencing RBOH1 expression also compromised SnRK1α1-mediated seedling tolerance to low-nitrogen stress. SnRK1α1 interacts with and activates RBOH1 through phosphorylation of three N-terminal serine residues, leading to increased apoplastic ROS production and enhanced tolerance to low nitrogen conditions. Furthermore, RBOH1-dependent ROS oxidatively modified the transcription factor TGA4 at residue Cys-334, which increased NRT1.1 and NRT2.1 expression under low-nitrogen stress. These findings reveal a SnRK1α1-mediated signaling pathway and highlight the essential role of RBOH1-dependent ROS production in enhancing plant tolerance to low nitrogen.
Collapse
Affiliation(s)
- Xuelian Zheng
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Hongfei Yang
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Jinping Zou
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Weiduo Jin
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Zhenyu Qi
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Ping Yang
- Agricultural Experiment Station, Zhejiang University, Hangzhou 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| | - Jie Zhou
- Department of Horticulture, Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310058, China
| |
Collapse
|
3
|
Wang P, Song J, Du M, Wen C, Zhou Y. Storage causes protein oxidation of soybean meal and affects antioxidant status, digestive performance and meat quality of broilers. Anim Biosci 2024; 37:2126-2136. [PMID: 39210822 PMCID: PMC11541012 DOI: 10.5713/ab.24.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE This study investigated the protein oxidation of soybean meal (SBM) stored in a warehouse and the effects of SBM on growth performance, antioxidant status, digestive performance, intestinal morphology, and breast muscle quality of broilers. METHODS In total, 160 one-day-old Arbor Acres Plus broilers (half male and half female) were randomly divided into two groups with ten replicates of eight birds each: The control group was served with a basal diet including SBM stored at -20°C (FSBM), and the experimental group was served with a basal diet including SBM stored in a warehouse at room temperature for 45 days (RSBM). RESULTS Compared with FSBM, the protein carbonyl level in RSBM was increased, the free and total thiol levels and in vitro digestibility of protein were decreased. The RSBM decreased the serum glutathione (GSH) level and the hepatic total superoxide dismutase (T-SOD) activity at days 21 and 42 when compared with FSBM. Further, RSBM reduced the duodenal T-SOD activity, jejunal catalase (CAT), and T-SOD activities at day 21, and decreased the duodenal CAT and T-SOD activities, jejunal T-SOD activity, and ileal GSH level and T-SOD activity at days 21 and 42 when compared with FSBM. Besides, the trypsin activity and the ratio of villus height to crypt depth in small intestines of broilers at days 21 and 42 were reduced when fed with a RSBM-contained diet. Compared with FSBM, the 24-h drip loss, shear force, and 24- and 48-h cooking loss of breast muscle were increased of RSBM group, the opposite result was observed for muscle lightness at 48 h. CONCLUSION Room temperature storage for 45 days led a protein oxidation and decreased in vitro digestibility in SBM, and fed RSBM impaired growth performance, antioxidant status, and meat quality, reduced trypsin activity, and affected the small intestine morphology in broilers.
Collapse
Affiliation(s)
- Peng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| | - Juanjuan Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| | - Mingfang Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| | - Chao Wen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| | - Yanmin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095,
China
| |
Collapse
|
4
|
Tran N, Mills EL. Redox regulation of macrophages. Redox Biol 2024; 72:103123. [PMID: 38615489 PMCID: PMC11026845 DOI: 10.1016/j.redox.2024.103123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024] Open
Abstract
Redox signaling, a mode of signal transduction that involves the transfer of electrons from a nucleophilic to electrophilic molecule, has emerged as an essential regulator of inflammatory macrophages. Redox reactions are driven by reactive oxygen/nitrogen species (ROS and RNS) and redox-sensitive metabolites such as fumarate and itaconate, which can post-translationally modify specific cysteine residues in target proteins. In the past decade our understanding of how ROS, RNS, and redox-sensitive metabolites control macrophage function has expanded dramatically. In this review, we discuss the latest evidence of how ROS, RNS, and metabolites regulate macrophage function and how this is dysregulated with disease. We highlight the key tools to assess redox signaling and important questions that remain.
Collapse
Affiliation(s)
- Nhien Tran
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Evanna L Mills
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Lu B, Wang S, Feng H, Wang J, Zhang K, Li Y, Wu P, Zhang M, Xia Y, Peng C, Li C. FERONIA-mediated TIR1/AFB2 oxidation stimulates auxin signaling in Arabidopsis. MOLECULAR PLANT 2024; 17:772-787. [PMID: 38581129 DOI: 10.1016/j.molp.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
The phytohormone auxin plays a pivotal role in governing plant growth and development. Although the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) receptors function in both the nucleus and cytoplasm, the mechanism governing the distribution of TIR1/AFBs between these cellular compartments remains unknown. In this study, we demonstrate that auxin-mediated oxidation of TIR1/AFB2 is essential for their targeting to the nucleus. We showed that small active molecules, reactive oxygen species (ROS) and nitric oxide (NO), are indispensable for the nucleo-cytoplasmic distribution of TIR1/AFB2 in trichoblasts and root hairs. Further studies revealed that this process is regulated by the FERONIA receptor kinase-NADPH oxidase signaling pathway. Interestingly, ROS and NO initiate oxidative modifications in TIR1C140/516 and AFB2C135/511, facilitating their subsequent nuclear import. The oxidized forms of TIR1C140/516 and AFB2C135/511 play a crucial role in enhancing the function of TIR1 and AFB2 in transcriptional auxin responses. Collectively, our study reveals a novel mechanism by which auxin stimulates the transport of TIR1/AFB2 from the cytoplasm to the nucleus, orchestrated by the FERONIA-ROS signaling pathway.
Collapse
Affiliation(s)
- Baiyan Lu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shengnan Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hanqian Feng
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jing Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Kaixing Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yilin Li
- National Facility for Protein Science Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ping Wu
- National Facility for Protein Science Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Minmin Zhang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yanshu Xia
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chao Peng
- National Facility for Protein Science Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Chao Li
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
6
|
Ding ZJ, Xu C, Yan JY, Wang YX, Cui MQ, Yuan JJ, Wang YN, Li GX, Wu JX, Wu YR, Xu JM, Li CX, Shi YZ, Mao CZ, Guo JT, Zhou JM, Benhamed M, Harberd NP, Zheng SJ. The LRR receptor-like kinase ALR1 is a plant aluminum ion sensor. Cell Res 2024; 34:281-294. [PMID: 38200278 PMCID: PMC10978910 DOI: 10.1038/s41422-023-00915-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Plant survival requires an ability to adapt to differing concentrations of nutrient and toxic soil ions, yet ion sensors and associated signaling pathways are mostly unknown. Aluminum (Al) ions are highly phytotoxic, and cause severe crop yield loss and forest decline on acidic soils which represent ∼30% of land areas worldwide. Here we found an Arabidopsis mutant hypersensitive to Al. The gene encoding a leucine-rich-repeat receptor-like kinase, was named Al Resistance1 (ALR1). Al ions binding to ALR1 cytoplasmic domain recruits BAK1 co-receptor kinase and promotes ALR1-dependent phosphorylation of the NADPH oxidase RbohD, thereby enhancing reactive oxygen species (ROS) generation. ROS in turn oxidatively modify the RAE1 F-box protein to inhibit RAE1-dependent proteolysis of the central regulator STOP1, thus activating organic acid anion secretion to detoxify Al. These findings establish ALR1 as an Al ion receptor that confers resistance through an integrated Al-triggered signaling pathway, providing novel insights into ion-sensing mechanisms in living organisms, and enabling future molecular breeding of acid-soil-tolerant crops and trees, with huge potential for enhancing both global food security and forest restoration.
Collapse
Affiliation(s)
- Zhong Jie Ding
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chen Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Xuan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meng Qi Cui
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Jie Yuan
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ya Nan Wang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Gui Xin Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Xiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yun Rong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ji Ming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chun Xiao Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuan Zhi Shi
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chuan Zao Mao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiang Tao Guo
- Medical School, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Min Zhou
- Center for Genome Biology and State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, France
| | - Nicholas P Harberd
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Biology, University of Oxford, Oxford, UK
| | - Shao Jian Zheng
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong, China.
- Institute of Ecological Civilization, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Wei X, Zhu Y, Xie W, Ren W, Zhang Y, Zhang H, Dai S, Huang CF. H2O2 negatively regulates aluminum resistance via oxidation and degradation of the transcription factor STOP1. THE PLANT CELL 2024; 36:688-708. [PMID: 37936326 PMCID: PMC10896299 DOI: 10.1093/plcell/koad281] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023]
Abstract
Aluminum (Al) stress triggers the accumulation of hydrogen peroxide (H2O2) in roots. However, whether H2O2 plays a regulatory role in aluminum resistance remains unclear. In this study, we show that H2O2 plays a crucial role in regulation of Al resistance, which is modulated by the mitochondrion-localized pentatricopeptide repeat protein REGULATION OF ALMT1 EXPRESSION 6 (RAE6). Mutation in RAE6 impairs the activity of complex I of the mitochondrial electron transport chain, resulting in the accumulation of H2O2 and increased sensitivity to Al. Our results suggest that higher H2O2 concentrations promote the oxidation of SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1), an essential transcription factor that promotes Al resistance, thereby promoting its degradation by enhancing the interaction between STOP1 and the F-box protein RAE1. Conversely, decreasing H2O2 levels or blocking the oxidation of STOP1 leads to greater STOP1 stability and increased Al resistance. Moreover, we show that the thioredoxin TRX1 interacts with STOP1 to catalyze its chemical reduction. Thus, our results highlight the importance of H2O2 in Al resistance and regulation of STOP1 stability in Arabidopsis (Arabidopsis thaliana).
Collapse
Affiliation(s)
- Xiang Wei
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yifang Zhu
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenxiang Xie
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weiwei Ren
- Development Center of Plant Germplasm Resources and Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yang Zhang
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hui Zhang
- Development Center of Plant Germplasm Resources and Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources and Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chao-Feng Huang
- National Key Laboratory of Plant Molecular Genetics, Key Laboratory of Plant Design, Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Li H, Liu Y, Wang Y, Li J, Li Y, Zhang G, Zhang C, Shuang S, Dong C. A near infrared fluorescence probe with dual-site for hydrogen sulfide and sulfur dioxide detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123523. [PMID: 37857073 DOI: 10.1016/j.saa.2023.123523] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Both hydrogen sulfide (H2S) and sulfur dioxide (SO2) are regarded as double-edged swords. They are toxic gases at high concentration, and at low concentration they are beneficial to the human. Therefore, it is of great significance to develop single chemosensor which enable to detect them with different fluorescence signal changes. In this work, a novel dual-site fluorescence probe (AMN-SSPy) with near infrared emission (675 nm) was designed, which realized quantitative detection for H2S and SO2 by fluorescence enhancement and fluorescence quenching, respectively. AMN-SSPy showed advantages such as excellent selectivity to H2S and SO2, strong anti-interference ability, high sensitivity for H2S (LOD 1.03 µM for H2S and 77.08 µM for SO2) and low toxicity. In addition, AMN-SSPy possessed the capacity to successfully image the endogenous and exogenous H2S, and it was also used to demonstrate that Ca2+ could induce accumulation of H2S in cell and zebrafish. Finally, the rapid detection of SO2 by AMN-SSPy in real samples was also established.
Collapse
Affiliation(s)
- Haoyang Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ying Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuhang Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinshan Li
- Chumin College, Shanxi University, Taiyuan 030006, China
| | - Yang Li
- Chumin College, Shanxi University, Taiyuan 030006, China
| | - Guomei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Caihong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
9
|
Rezazadeh F, Mahdavi D, Fassihi N, Sedarat H, Tayebi Khorami E, Tabesh A. Evaluation of the salivary level of glutathione reductase, catalase and free thiol in patients with oral lichen planus. BMC Oral Health 2023; 23:547. [PMID: 37559066 PMCID: PMC10413704 DOI: 10.1186/s12903-023-03242-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
OBJECTIVE Oral lichen planus (OLP) is a usual chronic inflammatory disease of the oral mucosa with malignant capacity, whose pathogenesis is not yet well known. Free radicals and reactive oxygen species may have a vital role in the pathogenesis of oral lichen planus. This study aimed to assess Glutathione reductase, catalase, and free thiol levels in the saliva of OLP patients and compare it with healthy people. METHODS In this cross-sectional study, 35 patients with OLP and 20 healthy people were involved. Five mL of whole, unstimulated saliva samples were collected in the morning, and the salivary levels of antioxidants were measured by ELISA technique. In this experiment, sex, age and OLP types were also evaluated. RESULTS There was a significant decrease in the patients' salivary level of Glutathione reductase (0.2043 mU/ml in patients and 0.3901 mU/ml in the control group) and catalase (0.1525 mU/ml in patients and 0.2700 mU/ml in the control group) (p = 0.001). But there were no differences between the two groups regarding free-thiol levels (0.0586 mU/ml in patients and 0.0569 mU/ml in the control group) (p = 0.7). However, there was no correlation between age and gender with the antioxidants' contents. There was a significant decrease in glutathione reductase and catalase in the erosive type than in the non-erosive type. CONCLUSIONS In this study, we found that the salivary levels of Glutathione reductase and Catalase were lower in OLP patients than in the healthy group, which means these antioxidants were affected by OLP and also associated with the type of it. So salivary Glutathione reductase and Catalase levels may be used as biomarkers for OLP monitoring and treatment.
Collapse
Affiliation(s)
- Fahimeh Rezazadeh
- Dept. of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Dorsa Mahdavi
- Student research committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Fassihi
- Student research committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Sedarat
- Undergraduate medical Student, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Elham Tayebi Khorami
- Student research committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Amir Tabesh
- Student research committee, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Xiao W, Chen Y, Wang C. Quantitative Chemoproteomic Methods for Reactive Cysteinome Profiling. Isr J Chem 2023. [DOI: 10.1002/ijch.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Weidi Xiao
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| | - Ying Chen
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center Beijing National Laboratory for Molecular Sciences Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry and Molecular Engineering Peking University 100871 Peking China
- Peking-Tsinghua Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
| |
Collapse
|
11
|
Nguyen Huu T, Park J, Zhang Y, Duong Thanh H, Park I, Choi JM, Yoon HJ, Park SC, Woo HA, Lee SR. The Role of Oxidative Inactivation of Phosphatase PTEN and TCPTP in Fatty Liver Disease. Antioxidants (Basel) 2023; 12:antiox12010120. [PMID: 36670982 PMCID: PMC9854873 DOI: 10.3390/antiox12010120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
Alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) are becoming increasingly prevalent worldwide. Despite the different etiologies, their spectra and histological feature are similar, from simple steatosis to more advanced stages such as steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Studies including peroxiredoxin knockout models revealed that oxidative stress is crucial in these diseases, which present as consequences of redox imbalance. Protein tyrosine phosphatases (PTPs) are a superfamily of enzymes that are major targets of reactive oxygen species (ROS) because of an oxidation-susceptible nucleophilic cysteine in their active site. Herein, we review the oxidative inactivation of two tumor suppressor PTPs, phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and T-cell protein tyrosine phosphatase (TCPTP), and their contribution to the pathogenicity of ALD and NAFLD, respectively. This review might provide a better understanding of the pathogenic mechanisms of these diseases and help develop new therapeutic strategies to treat fatty liver disease.
Collapse
Affiliation(s)
- Thang Nguyen Huu
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
| | - Jiyoung Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Ying Zhang
- Department of Cell Biology, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Hien Duong Thanh
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Hwasun 58 128, Republic of Korea
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Iha Park
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jin Myung Choi
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hyun Joong Yoon
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Sang Chul Park
- The Future Life and Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea
| | - Hyun Ae Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- Correspondence: ; Tel.: +82-61-379-2775; Fax: +82-61-379-2782
| |
Collapse
|
12
|
Rezaei M, Kalhor HR. Amyloid fibril reduction through covalently modified lysine in HEWL and insulin. Arch Biochem Biophys 2022; 727:109350. [PMID: 35830943 DOI: 10.1016/j.abb.2022.109350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
Proteins possess a variety of nucleophiles, which can carry out different reactions in the functioning cells. Proteins endogenously and synthetically can be modified through their nucleophilic sites. The roles of these chemical modifications have not been completely revealed. These modifications can alter the protein folding process. Protein folding directly affects the function of proteins. If an error in protein folding occurs, it may cause protein malfunction leading to several neurodegenerative disorders such as Alzheimer's and Parkinson's. In this study, Hen Egg White Lysozyme (HEWL) and bovine insulin, as model proteins for studying the amyloid formation, were covalently attached with 5(6)-thiophenolfluorescein. The amyloid formation of the covalently labeled lysozyme and insulin were compared with the native proteins. Interestingly, the results indicated that the covalent attachment of fluorescein slowed down the amyloid formation of HEWL and insulin significantly. The amyloid formation was examined using Thioflavin T (ThT) fluorescence assay, circular dichroism, FTIR, and gel electrophoresis. Tandem mass spectrometry was employed to identify the sites of covalent modifications in HEWL. It turned out that two surface lysine residues (K97 and K 116) in HEWL were modified. Computational studies, including docking and molecular simulations, revealed that 5(6)-thiophenolfluorescein makes several non-covalent interactions with HEWL residues, including Lys 97, leading to the reduction of the β-sheet in the protein. Additionally, AFM analysis confirmed the amyloid fibril reduction of lysine-modified bovine insulin and HEWL. Altogether, our results expand mechanistic insights into preventing amyloid formation by providing an approach for reducing amyloid formation by modifying specific lysine residues in the proteins.
Collapse
Affiliation(s)
- Mohsen Rezaei
- Biochemistry and Chemical Biology Research Laboratory, Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran
| | - Hamid Reza Kalhor
- Biochemistry and Chemical Biology Research Laboratory, Chemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran.
| |
Collapse
|
13
|
Tosca NJ, Agee CB, Cockell CS, Glavin DP, Hutzler A, Marty B, McCubbin FM, Regberg AB, Velbel MA, Kminek G, Meyer MA, Beaty DW, Carrier BL, Haltigin T, Hays LE, Busemann H, Cavalazzi B, Debaille V, Grady MM, Hauber E, Pratt LM, Smith AL, Smith CL, Summons RE, Swindle TD, Tait KT, Udry A, Usui T, Wadhwa M, Westall F, Zorzano MP. Time-Sensitive Aspects of Mars Sample Return (MSR) Science. ASTROBIOLOGY 2022; 22:S81-S111. [PMID: 34904889 DOI: 10.1089/ast.2021.0115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Samples returned from Mars would be placed under quarantine at a Sample Receiving Facility (SRF) until they are considered safe to release to other laboratories for further study. The process of determining whether samples are safe for release, which may involve detailed analysis and/or sterilization, is expected to take several months. However, the process of breaking the sample tube seal and extracting the headspace gas will perturb local equilibrium conditions between gas and rock and set in motion irreversible processes that proceed as a function of time. Unless these time-sensitive processes are understood, planned for, and/or monitored during the quarantine period, scientific information expected from further analysis may be lost forever. At least four processes underpin the time-sensitivity of Mars returned sample science: (1) degradation of organic material of potential biological origin, (2) modification of sample headspace gas composition, (3) mineral-volatile exchange, and (4) oxidation/reduction of redox-sensitive materials. Available constraints on the timescales associated with these processes supports the conclusion that an SRF must have the capability to characterize attributes such as sample tube headspace gas composition, organic material of potential biological origin, as well as volatiles and their solid-phase hosts. Because most time-sensitive investigations are also sensitive to sterilization, these must be completed inside the SRF and on timescales of several months or less. To that end, we detail recommendations for how sample preparation and analysis could complete these investigations as efficiently as possible within an SRF. Finally, because constraints on characteristic timescales that define time-sensitivity for some processes are uncertain, future work should focus on: (1) quantifying the timescales of volatile exchange for core material physically and mineralogically similar to samples expected to be returned from Mars, and (2) identifying and developing stabilization or temporary storage strategies that mitigate volatile exchange until analysis can be completed. Executive Summary Any samples returned from Mars would be placed under quarantine at a Sample Receiving Facility (SRF) until it can be determined that they are safe to release to other laboratories for further study. The process of determining whether samples are safe for release, which may involve detailed analysis and/or sterilization, is expected to take several months. However, the process of breaking the sample tube seal and extracting the headspace gas would perturb local equilibrium conditions between gas and rock and set in motion irreversible processes that proceed as a function of time. Unless these processes are understood, planned for, and/or monitored during the quarantine period, scientific information expected from further analysis may be lost forever. Specialist members of the Mars Sample Return Planning Group Phase 2 (MSPG-2), referred to here as the Time-Sensitive Focus Group, have identified four processes that underpin the time-sensitivity of Mars returned sample science: (1) degradation of organic material of potential biological origin, (2) modification of sample headspace gas composition, (3) mineral-volatile exchange, and (4) oxidation/reduction of redox-sensitive materials (Figure 2). Consideration of the timescales and the degree to which these processes jeopardize scientific investigations of returned samples supports the conclusion that an SRF must have the capability to characterize: (1) sample tube headspace gas composition, (2) organic material of potential biological origin, (3) volatiles bound to or within minerals, and (4) minerals or other solids that host volatiles (Table 4). Most of the investigations classified as time-sensitive in this report are also sensitive to sterilization by either heat treatment and/or gamma irradiation (Velbel et al., 2022). Therefore, these investigations must be completed inside biocontainment and on timescales that minimize the irrecoverable loss of scientific information (i.e., several months or less; Section 5). To that end, the Time-Sensitive Focus Group has outlined a number of specific recommendations for sample preparation and instrumentation in order to complete these investigations as efficiently as possible within an SRF (Table 5). Constraints on the characteristic timescales that define time-sensitivity for different processes can range from relatively coarse to uncertain (Section 4). Thus, future work should focus on: (1) quantifying the timescales of volatile exchange for variably lithified core material physically and mineralogically similar to samples expected to be returned from Mars, and (2) identifying and developing stabilization strategies or temporary storage strategies that mitigate volatile exchange until analysis can be completed. List of Findings FINDING T-1: Aqueous phases, and oxidants liberated by exposure of the sample to aqueous phases, mediate and accelerate the degradation of critically important but sensitive organic compounds such as DNA. FINDING T-2: Warming samples increases reaction rates and destroys compounds making biological studies much more time-sensitive. MAJOR FINDING T-3: Given the potential for rapid degradation of biomolecules, (especially in the presence of aqueous phases and/or reactive O-containing compounds) Sample Safety Assessment Protocol (SSAP) and parallel biological analysis are time sensitive and must be carried out as soon as possible. FINDING T-4: If molecules or whole cells from either extant or extinct organisms have persisted under present-day martian conditions in the samples, then it follows that preserving sample aliquots under those same conditions (i.e., 6 mbar total pressure in a dominantly CO2 atmosphere and at an average temperature of -80°C) in a small isolation chamber is likely to allow for their continued persistence. FINDING T-5: Volatile compounds (e.g., HCN and formaldehyde) have been lost from Solar System materials stored under standard curation conditions. FINDING T-6: Reactive O-containing species have been identified in situ at the martian surface and so may be present in rock or regolith samples returned from Mars. These species rapidly degrade organic molecules and react more rapidly as temperature and humidity increase. FINDING T-7: Because the sample tubes would not be closed with perfect seals and because, after arrival on Earth, there will be a large pressure gradient across that seal such that the probability of contamination of the tube interiors by terrestrial gases increases with time, the as-received sample tubes are considered a poor choice for long-term gas sample storage. This is an important element of time sensitivity. MAJOR FINDING T-8: To determine how volatiles may have been exchanged with headspace gas during transit to Earth, the composition of martian atmosphere (in a separately sealed reservoir and/or extracted from the witness tubes), sample headspace gas composition, temperature/time history of the samples, and mineral composition (including mineral-bound volatiles) must all be quantified. When the sample tube seal is breached, mineral-bound volatile loss to the curation atmosphere jeopardizes robust determination of volatile exchange history between mineral and headspace. FINDING T-9: Previous experiments with mineral powders show that sulfate minerals are susceptible to H2O loss over timescales of hours to days. In addition to volatile loss, these processes are accompanied by mineralogical transformation. Thus, investigations targeting these minerals should be considered time-sensitive. FINDING T-10: Sulfate minerals may be stabilized by storage under fixed relative-humidity conditions, but only if the identity of the sulfate phase(s) is known a priori. In addition, other methods such as freezing may also stabilize these minerals against volatile loss. FINDING T-11: Hydrous perchlorate salts are likely to undergo phase transitions and volatile exchange with ambient surroundings in hours to days under temperature and relative humidity ranges typical of laboratory environments. However, the exact timescale over which these processes occur is likely a function of grain size, lithification, and/or cementation. FINDING T-12: Nanocrystalline or X-ray amorphous materials are typically stabilized by high proportions of surface adsorbed H2O. Because this surface adsorbed H2O is weakly bound compared to bulk materials, nanocrystalline materials are likely to undergo irreversible ripening reactions in response to volatile loss, which in turn results in decreases in specific surface area and increases in crystallinity. These reactions are expected to occur over the timescale of weeks to months under curation conditions. Therefore, the crystallinity and specific surface area of nanocrystalline materials should be characterized and monitored within a few months of opening the sample tubes. These are considered time-sensitive measurements that must be made as soon as possible. FINDING T-13: Volcanic and impact glasses, as well as opal-CT, are metastable in air and susceptible to alteration and volatile exchange with other solid phases and ambient headspace. However, available constraints indicate that these reactions are expected to proceed slowly under typical laboratory conditions (i.e., several years) and so analyses targeting these materials are not considered time sensitive. FINDING T-14: Surface adsorbed and interlayer-bound H2O in clay minerals is susceptible to exchange with ambient surroundings at timescales of hours to days, although the timescale may be modified depending on the degree of lithification or cementation. Even though structural properties of clay minerals remain unaffected during this process (with the exception of the interlayer spacing), investigations targeting H2O or other volatiles bound on or within clay minerals should be considered time sensitive upon opening the sample tube. FINDING T-15: Hydrated Mg-carbonates are susceptible to volatile loss and recrystallization and transformation over timespans of months or longer, though this timescale may be modified by the degree of lithification and cementation. Investigations targeting hydrated carbonate minerals (either the volatiles they host or their bulk mineralogical properties) should be considered time sensitive upon opening the sample tube. MAJOR FINDING T-16: Current understanding of mineral-volatile exchange rates and processes is largely derived from monomineralic experiments and systems with high surface area; lithified sedimentary rocks (accounting for some, but not all, of the samples in the cache) will behave differently in this regard and are likely to be associated with longer time constants controlled in part by grain boundary diffusion. Although insufficient information is available to quantify this at the present time, the timescale of mineral-volatile exchange in lithified samples is likely to overlap with the sample processing and curation workflow (i.e., 1-10 months; Table 4). This underscores the need to prioritize measurements targeting mineral-hosted volatiles within biocontainment. FINDING T-17: The liberation of reactive O-species through sample treatment or processing involving H2O (e.g., rinsing, solvent extraction, particle size separation in aqueous solution, or other chemical extraction or preparation protocols) is likely to result in oxidation of some component of redox-sensitive materials in a matter of hours. The presence of reactive O-species should be examined before sample processing steps that seek to preserve or target redox-sensitive minerals. Electron paramagnetic resonance spectroscopy (EPR) is one example of an effective analytical method capable of detecting and characterizing the presence of reactive O-species. FINDING T-18: Environments that maintain anoxia under inert gas containing <<1 ppm O2 are likely to stabilize redox-sensitive minerals over timescales of several years. MAJOR FINDING T-19: MSR investigations targeting organic macromolecular or cellular material, mineral-bound volatile compounds, redox sensitive minerals, and/or hydrous carbonate minerals can become compromised at the timescale of weeks (after opening the sample tube), and scientific information may be completely lost within a time timescale of a few months. Because current considerations indicate that completion of SSAP, sample sterilization, and distribution to investigator laboratories cannot be completed in this time, these investigations must be completed within the Sample Receiving Facility as soon as possible.
Collapse
Affiliation(s)
- Nicholas J Tosca
- University of Cambridge, Department of Earth Sciences, Cambridge, UK
| | - Carl B Agee
- University of New Mexico, Institute of Meteoritics, Albuquerque, New Mexico, USA
| | - Charles S Cockell
- University of Edinburgh, Centre for Astrobiology, School of Physics and Astronomy, Edinburgh, UK
| | - Daniel P Glavin
- NASA Goddard Space Flight Center, Solar System Exploration Division, Greenbelt, Maryland, USA
| | | | | | - Francis M McCubbin
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Aaron B Regberg
- NASA Johnson Space Center, Astromaterials Research and Exploration Science Division, Houston, Texas, USA
| | - Michael A Velbel
- Michigan State University, Earth and Environmental Sciences, East Lansing, Michigan, USA
- Smithsonian Institution, Department of Mineral Sciences, National Museum of Natural History, Washington, DC, USA
| | | | - Michael A Meyer
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - David W Beaty
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Brandi L Carrier
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | | | - Lindsay E Hays
- NASA Headquarters, Mars Sample Return Program, Washington, DC, USA
| | - Henner Busemann
- ETH Zürich, Institute of Geochemistry and Petrology, Zürich, Switzerland
| | - Barbara Cavalazzi
- Università di Bologna, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Bologna, Italy
| | | | | | - Ernst Hauber
- German Aerospace Center (DLR), Institute of Planetary Research, Berlin, Germany
| | - Lisa M Pratt
- Indiana University Bloomington, Earth and Atmospheric Sciences, Bloomington, Indiana, USA
| | - Alvin L Smith
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Caroline L Smith
- Natural History Museum, Department of Earth Sciences, London, UK
- University of Glasgow, School of Geographical and Earth Sciences, Glasgow, UK
| | - Roger E Summons
- Massachusetts Institute of Technology, Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA
| | - Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | - Kimberly T Tait
- Royal Ontario Museum, Department of Natural History, Toronto, Ontario, Canada
| | - Arya Udry
- University of Nevada Las Vegas, Las Vegas, Nevada, USA
| | - Tomohiro Usui
- Japan Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical Science (ISAS), Chofu, Tokyo, Japan
| | - Meenakshi Wadhwa
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Arizona State University, Tempe, Arizona, USA
| | - Frances Westall
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Orléans, France
| | - Maria-Paz Zorzano
- Centro de Astrobiologia (CSIC-INTA), Torrejon de Ardoz, Spain
- University of Aberdeen, Department of Planetary Sciences, School of Geosciences, King's College, Aberdeen, UK
| |
Collapse
|
14
|
Habibi N, Mauser A, Ko Y, Lahann J. Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104012. [PMID: 35077010 PMCID: PMC8922121 DOI: 10.1002/advs.202104012] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/12/2021] [Indexed: 05/16/2023]
Abstract
Protein nanoparticles, PNPs, have played a long-standing role in food and industrial applications. More recently, their potential in nanomedicine has been more widely pursued. This review summarizes recent trends related to the preparation, application, and chemical construction of nanoparticles that use proteins as major building blocks. A particular focus has been given to emerging trends related to applications in nanomedicine, an area of research where PNPs are poised for major breakthroughs as drug delivery carriers, particle-based therapeutics or for non-viral gene therapy.
Collapse
Affiliation(s)
- Nahal Habibi
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Ava Mauser
- Biointerfaces InstituteDepartment of Biomedical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Yeongun Ko
- Biointerfaces InstituteDepartment of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Joerg Lahann
- Biointerfaces InstituteDepartments of Chemical EngineeringMaterial Science and EngineeringBiomedical Engineeringand Macromolecular Science and EngineeringUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
15
|
Hipper E, Blech M, Hinderberger D, Garidel P, Kaiser W. Photo-Oxidation of Therapeutic Protein Formulations: From Radical Formation to Analytical Techniques. Pharmaceutics 2021; 14:72. [PMID: 35056968 PMCID: PMC8779573 DOI: 10.3390/pharmaceutics14010072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022] Open
Abstract
UV and ambient light-induced modifications and related degradation of therapeutic proteins are observed during manufacturing and storage. Therefore, to ensure product quality, protein formulations need to be analyzed with respect to photo-degradation processes and eventually protected from light exposure. This task usually demands the application and combination of various analytical methods. This review addresses analytical aspects of investigating photo-oxidation products and related mediators such as reactive oxygen species generated via UV and ambient light with well-established and novel techniques.
Collapse
Affiliation(s)
- Elena Hipper
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Michaela Blech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Dariush Hinderberger
- Institute of Chemistry, Martin-Luther-Universität Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany; (E.H.); (D.H.)
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| | - Wolfgang Kaiser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany;
| |
Collapse
|
16
|
Yang RS, Xu F, Wang YM, Zhong WS, Dong L, Shi YN, Tang TJ, Sheng HJ, Jackson D, Yang F. Glutaredoxins regulate maize inflorescence meristem development via redox control of TGA transcriptional activity. NATURE PLANTS 2021; 7:1589-1601. [PMID: 34907313 DOI: 10.1038/s41477-021-01029-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
Glutaredoxins (GRXs) are small oxidoreductases that can modify target protein activities through control of the redox (reduction/oxidation) state by reducing or glutathionylating disulfide bridges. Although CC-type GRXs are plant specific and play important roles in many processes, the mechanisms by which they modulate the activity of target proteins in vivo are unknown. In this study, we show that a maize CC-type GRX, MALE STERILE CONVERTED ANTHER1 (MSCA1), acts redundantly with two paralogues, ZmGRX2 and ZmGRX5, to modify the redox state and the activity of its putative target, the TGA transcription factor FASCIATED EAR4 (FEA4) that acts as a negative regulator of inflorescence meristem development. We used CRISPR-Cas9 to create a GRX triple knockout, resulting in severe suppression of meristem, ear and tassel growth and reduced plant height. We further show that GRXs regulate the redox state, DNA accessibility and transcriptional activities of FEA4, which acts downstream of MSCA1 and its paralogues to control inflorescence development. Our findings reveal the function of GRXs in meristem development, and also provide direct evidence for GRX-mediated redox modification of target proteins in plants.
Collapse
Affiliation(s)
- R S Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - F Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Y M Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - W S Zhong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - L Dong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Y N Shi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - T J Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - H J Sheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - D Jackson
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| | - F Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
17
|
He Z, Sun X, Wang S, Bai D, Zhao X, Han Y, Hao P, Liu XS. Ggct (γ-glutamyl cyclotransferase) plays an important role in erythrocyte antioxidant defense and red blood cell survival. Br J Haematol 2021; 195:267-275. [PMID: 34409610 DOI: 10.1111/bjh.17775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/26/2022]
Abstract
The expression of GGCT (γ-glutamyl cyclotransferase) is upregulated in various human cancers. γ-glutamyl cyclotransferase enzyme activity was originally purified from human red blood cells (RBCs), but the physiological function of GGCT in RBCs is still not clear. Here we reported that Ggct deletion in mice leads to splenomegaly and progressive anaemia phenotypes, due to elevated oxidative damage and the shortened life span of Ggct-/- RBCs. Ggct-/- RBCs have increased reactive oxygen species (ROS), and are more sensitive to H2 O2 -induced damage compared to control RBCs. Glutathione (GSH) and GSH synthesis precursor l-cysteine are decreased in Ggct-/- RBCs. Our study suggests a critical function of Ggct in RBC redox balance and life span maintenance through regulating GSH metabolism.
Collapse
Affiliation(s)
- Zaoke He
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoqin Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shixiang Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dongsheng Bai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiangyu Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying Han
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xue-Song Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
18
|
Chhunchha B, Kubo E, Kompella UB, Singh DP. Engineered Sumoylation-Deficient Prdx6 Mutant Protein-Loaded Nanoparticles Provide Increased Cellular Defense and Prevent Lens Opacity. Antioxidants (Basel) 2021; 10:antiox10081245. [PMID: 34439493 PMCID: PMC8389307 DOI: 10.3390/antiox10081245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant Sumoylation-mediated protein dysfunction is involved in a variety of oxidative and aging pathologies. We previously reported that Sumoylation-deficient Prdx6K(lysine)122/142R(Arginine) linked to the TAT-transduction domain gained stability and protective efficacy. In the present study, we formulated wild-type TAT-HA-Prdx6WT and Sumoylation-deficient Prdx6-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles (NPs) to further enhance stability, protective activities, and sustained delivery. We found that in vitro and subconjuctival delivery of Sumoylation-deficient Prdx6-NPs provided a greater protection of lens epithelial cells (LECs) derived from human and Prdx6-/--deficient mouse lenses against oxidative stress, and it also delayed the lens opacity in Shumiya cataract rats (SCRs) than TAT-HA-Prdx6WT-NPs. The encapsulation efficiencies of TAT-HA-Prdx6-NPs were ≈56%-62%. Dynamic light scattering (DLS) and atomic force microscopy (AFM) analyses showed that the NPs were spherical, with a size of 50-250 nm and a negative zeta potential (≈23 mV). TAT-HA-Prdx6 analog-NPs released bioactive TAT-HA-Prdx6 (6%-7%) within 24 h. Sumoylation-deficient TAT-HA-Prdx6-NPs provided 35% more protection by reducing the oxidative load of LECs exposed to H2O2 compared to TAT-HA-Prdx6WT-NPs. A subconjuctival delivery of TAT-HA-Prdx6 analog-NPs demonstrated that released TAT-HA-Prdx6K122/142R could reduce lens opacity by ≈60% in SCRs. Collectively, our results demonstrate for the first time that the subconjuctival delivery of Sumoylation-deficient Prdx6-NPs is efficiently cytoprotective and provide a proof of concept for potential use to delay cataract and oxidative-related pathobiology in general.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (B.C.); (D.P.S.)
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa 9200265, Ishikawa, Japan;
| | - Uday B. Kompella
- Departments of Pharmaceutical Sciences, Ophthalmology, and Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Dhirendra P. Singh
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Correspondence: (B.C.); (D.P.S.)
| |
Collapse
|
19
|
Activation of Nm23-H1 to suppress breast cancer metastasis via redox regulation. Exp Mol Med 2021; 53:346-357. [PMID: 33753879 PMCID: PMC8080780 DOI: 10.1038/s12276-021-00575-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/21/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
Non-metastatic protein 23 H1 (Nm23-H1), a housekeeping enzyme, is a nucleoside diphosphate kinase-A (NDPK-A). It was the first identified metastasis suppressor protein. Nm23-H1 prolongs disease-free survival and is associated with a good prognosis in breast cancer patients. However, the molecular mechanisms underlying the role of Nm23-H1 in biological processes are still not well understood. This is a review of recent studies focusing on controlling NDPK activity based on the redox regulation of Nm23-H1, structural, and functional changes associated with the oxidation of cysteine residues, and the relationship between NDPK activity and cancer metastasis. Further understanding of the redox regulation of the NDPK function will likely provide a new perspective for developing new strategies for the activation of NDPK-A in suppressing cancer metastasis.
Collapse
|
20
|
Miyabe H. Aryne-Mediated Synthesis of Oxygen Heterocycles and Application to Cysteine-Selective Trapping. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Abstract
Dr. Sue Goo Rhee is recognized as a Redox Pioneer because he has published five articles in the field of antioxidants and redox signaling that have been cited >1000 times and 69 of his articles in this field have been cited between 100 and 1000 times. Dr. Rhee is known for his discovery of the first three prototypical members of the phospholipase C family, and for the discovery of the ubiquitously expressed peroxiredoxins. Peroxiredoxin catalyzes the thiol-mediated reduction of H2O2. These enzymes protect cellular molecules from oxidative damage. Importantly, they also regulate cell signaling by modulating the intracellular levels of H2O2 that are induced by signaling agonists. He elucidated the mechanism by which the peroxiredoxins participate in signaling by H2O2: Dr. Rhee demonstrated that growth agonists such as epidermal growth factor induce a transient elevation of intracellular H2O2 that oxidize the catalytically essential cysteine residue of protein tyrosine phosphatases. The oxidation inactivates the phosphatases, allowing enhanced protein tyrosine phosphorylation to mediate cell signaling. In addition, he established that peroxiredoxins are exquisitely regulated through phosphorylation, glutathionylation, and hyperoxidation of their active site cysteine to cysteine sulfinic acid. Dr. Rhee showed that cysteine oxidation to its sulfinic acid derivative is not irreversible as previously thought. The reduction of hyperoxidized peroxiredoxin is catalyzed by sulfiredoxin. His further investigations implicated cyclic hyperoxidation and reduction of peroxiredoxin in the regulation of certain circadian rhythms.
Collapse
Affiliation(s)
- Rodney L Levine
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - P Boon Chock
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| |
Collapse
|
22
|
Hadj-Moussa H, Wade SC, Childers CL, Storey KB. Mind the GAP: Purification and characterization of urea resistant GAPDH during extreme dehydration. Proteins 2020; 89:544-557. [PMID: 33368595 DOI: 10.1002/prot.26038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/24/2020] [Accepted: 12/12/2020] [Indexed: 11/12/2022]
Abstract
The African clawed frog (Xenopus laevis) withstands prolonged periods of extreme whole-body dehydration that lead to impaired blood flow, global hypoxia, and ischemic stress. During dehydration, these frogs shift from oxidative metabolism to a reliance on anaerobic glycolysis. In this study, we purified the central glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to electrophoretic homogeneity and investigated structural, kinetic, subcellular localization, and post-translational modification properties between control and 30% dehydrated X. laevis liver. GAPDH from dehydrated liver displayed a 25.4% reduction in maximal velocity and a 55.7% increase in its affinity for GAP, as compared to enzyme from hydrated frogs. Under dehydration mimicking conditions (150 mM urea and 1% PEG), GAP affinity was reduced with a Km value 53.8% higher than controls. Frog dehydration also induced a significant increase in serine phosphorylation, methylation, acetylation, beta-N-acetylglucosamination, and cysteine nitrosylation, post-translational modifications (PTMs). These modifications were bioinformatically predicted and experimentally validated to govern protein stability, enzymatic activity, and nuclear translocation, which increased during dehydration. These dehydration-responsive protein modifications, however, did not appear to affect enzymatic thermostability as GAPDH melting temperatures remained unchanged when tested with differential scanning fluorimetry. PTMs could promote extreme urea resistance in dehydrated GAPDH since the enzyme from dehydrated animals had a urea I50 of 7.3 M, while the I50 from the hydrated enzyme was 5.3 M. The physiological consequences of these dehydration-induced molecular modifications of GAPDH likely suppress GADPH glycolytic functions during the reduced circulation and global hypoxia experienced in dehydrated X. laevis.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Canada
| | - Steven C Wade
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Canada
| | - Christine L Childers
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Canada.,National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Canada
| |
Collapse
|
23
|
Rashdan NA, Shrestha B, Pattillo CB. S-glutathionylation, friend or foe in cardiovascular health and disease. Redox Biol 2020; 37:101693. [PMID: 32912836 PMCID: PMC7767732 DOI: 10.1016/j.redox.2020.101693] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/27/2022] Open
Abstract
Glutathione is a low molecular weight thiol that is present at high levels in the cell. The high levels of glutathione in the cell make it one of the most abundant antioxidants contributing to cellular redox homeostasis. As a general rule, throughout cardiovascular disease and progression there is an imbalance in redox homeostasis characterized by reactive oxygen species overproduction and glutathione underproduction. As research into these imbalances continues, glutathione concentrations are increasingly being observed to drive various physiological and pathological signaling responses. Interestingly in addition to acting directly as an antioxidant, glutathione is capable of post translational modifications (S-glutathionylation) of proteins through both chemical interactions and enzyme mediated events. This review will discuss both the chemical and enzyme-based S-glutathionylation of proteins involved in cardiovascular pathologies and angiogenesis.
Collapse
Affiliation(s)
- N A Rashdan
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA
| | - B Shrestha
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA
| | - C B Pattillo
- Department of Cellular and Molecular Physiology, Louisiana State Health Science Center, Shreveport, LA, USA.
| |
Collapse
|
24
|
Carnes ME, Gonyea CR, Mooney RG, Njihia JW, Coburn JM, Pins GD. Horseradish Peroxidase-Catalyzed Crosslinking of Fibrin Microthread Scaffolds. Tissue Eng Part C Methods 2020; 26:317-331. [PMID: 32364015 PMCID: PMC7310227 DOI: 10.1089/ten.tec.2020.0083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/30/2020] [Indexed: 11/13/2022] Open
Abstract
Horseradish peroxidase (HRP) has been investigated as a catalyst to crosslink tissue-engineered hydrogels because of its mild reaction conditions and ability to modulate the mechanical properties of the matrix. Here, we report the results of the first study investigating the use of HRP to crosslink fibrin scaffolds. We examined the effect of varying HRP and hydrogen peroxide (H2O2) incorporation strategies on the resulting crosslink density and structural properties of fibrin in a microthread scaffold format. Primary (1°) and secondary (2°) scaffold modification techniques were evaluated to crosslink fibrin microthread scaffolds. A primary scaffold modification technique was defined as incorporating crosslinking agents into the microthread precursor solutions during extrusion. A secondary scaffold modification technique was defined as incubating the microthreads in a postprocessing crosslinker bath. Fibrin microthreads were enzymatically crosslinked through primary, secondary, or a combination of both approaches. All fibrin microthread scaffolds crosslinked with HRP and H2O2 via primary and/or secondary methods exhibited an increase in dityrosine crosslink density compared with uncrosslinked control microthreads, demonstrated by scaffold fluorescence. Fourier transform infrared spectroscopy indicated the formation of isodityrosine bonds in 1° HRP crosslinked microthreads. Characterization of tensile mechanical properties revealed that all HRP crosslinked microthreads were significantly stronger than control microthreads. Primary (1°) HRP crosslinked microthreads also demonstrated significantly slower degradation than control microthreads, suggesting that incorporating HRP and H2O2 during extrusion yields scaffolds with increased resistance to proteolytic degradation. Finally, cells seeded on HRP crosslinked microthreads retained a high degree of viability, demonstrating that HRP crosslinking yields biocompatible scaffolds that are suitable for tissue engineering. The goal of this work was to facilitate the logical design of enzymatically crosslinked fibrin microthreads with tunable structural properties, enabling their application for engineered tissue constructs with varied mechanical and structural properties.
Collapse
Affiliation(s)
- Meagan E. Carnes
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Cailin R. Gonyea
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Rebecca G. Mooney
- Department of Biomedical Engineering, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Jane W. Njihia
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Jeannine M. Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - George D. Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
25
|
|
26
|
Diurnal oscillations of endogenous H 2O 2 sustained by p66 Shc regulate circadian clocks. Nat Cell Biol 2019; 21:1553-1564. [PMID: 31768048 DOI: 10.1038/s41556-019-0420-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/01/2019] [Indexed: 02/04/2023]
Abstract
Redox balance, an essential feature of healthy physiological steady states, is regulated by circadian clocks, but whether or how endogenous redox signalling conversely regulates clockworks in mammals remains unknown. Here, we report circadian rhythms in the levels of endogenous H2O2 in mammalian cells and mouse livers. Using an unbiased method to screen for H2O2-sensitive transcription factors, we discovered that rhythmic redox control of CLOCK directly by endogenous H2O2 oscillations is required for proper intracellular clock function. Importantly, perturbations in the rhythm of H2O2 levels induced by the loss of p66Shc, which oscillates rhythmically in the liver and suprachiasmatic nucleus (SCN) of mice, disturb the rhythmic redox control of CLOCK function, reprogram hepatic transcriptome oscillations, lengthen the circadian period in mice and modulate light-induced clock resetting. Our findings suggest that redox signalling rhythms are intrinsically coupled to the circadian system through reversible oxidative modification of CLOCK and constitute essential mechanistic timekeeping components in mammals.
Collapse
|
27
|
Borisova-Mubarakshina MM, Vetoshkina DV, Ivanov BN. Antioxidant and signaling functions of the plastoquinone pool in higher plants. PHYSIOLOGIA PLANTARUM 2019; 166:181-198. [PMID: 30706486 DOI: 10.1111/ppl.12936] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 05/25/2023]
Abstract
The review covers data representing the plastoquinone pool as the component integrated in plant antioxidant defense and plant signaling. The main goal of the review is to discuss the evidence describing the plastoquinone-involved biochemical reactions, which are incorporated in maintaining the sustainability of higher plants to stress conditions. In this context, the analysis of the reactions of various redox forms of plastoquinone with oxygen species is presented. The review describes how these reactions can constitute both the antioxidant and signaling functions of the pool. Special attention is paid to the reaction of superoxide anion radicals with plastohydroquinone molecules, producing hydrogen peroxide as signal molecules. Attention is also given to the processes affecting the redox state of the plastoquinone pool because the redox state of the pool is of special importance for antioxidant defense and signaling.
Collapse
Affiliation(s)
| | - Daria V Vetoshkina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino, Russia
| | - Boris N Ivanov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
28
|
Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat Commun 2019; 10:1076. [PMID: 30842418 PMCID: PMC6403250 DOI: 10.1038/s41467-019-09046-8] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/07/2019] [Indexed: 12/13/2022] Open
Abstract
Phagocytes, including neutrophils and macrophages, have been suggested to function in a cooperative way in the initial phase of inflammatory responses, but their interaction and integration in the resolution of inflammation and tissue repair remain unclear. Here we show that neutrophils have crucial functions in liver repair by promoting the phenotypic conversion of pro-inflammatory Ly6ChiCX3CR1lo monocytes/macrophages to pro-resolving Ly6CloCX3CR1hi macrophages. Intriguingly, reactive oxygen species (ROS), expressed predominantly by neutrophils, are important mediators that trigger this phenotypic conversion to promote liver repair. Moreover, this conversion is prevented by the depletion of neutrophils via anti-Ly6G antibody, genetic deficiency of granulocyte colony-stimulating factor, or genetic deficiency of NADPH oxidase 2 (Nox2). By contrast, adoptive transfer of WT rather than Nox2−/− neutrophils rescues the impaired phenotypic conversion of macrophages in neutrophil-depleted mice. Our findings thus identify an intricate cooperation between neutrophils and macrophages that orchestrate resolution of inflammation and tissue repair. Neutrophils and macrophages are both involved in the initiation of inflammation, but whether and how they may participate in inflammation resolution is unclear. Here the authors show that neutrophils may mediate the conversion of macrophage into a pro-resolution phenotype via reactive oxygen species production to promote liver repair.
Collapse
|
29
|
Goc Z, Kapusta E, Formicki G, Martiniaková M, Omelka R. Effect of taurine on ethanol-induced oxidative stress in mouse liver and kidney. CHINESE J PHYSIOL 2019; 62:148-156. [DOI: 10.4103/cjp.cjp_28_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
30
|
Talbi W, Ghazouani T, Braconi D, Ben Abdallah R, Raboudi F, Santucci A, Fattouch S. Effects of selenium on oxidative damage and antioxidant enzymes of eukaryotic cells: wine Saccharomyces cerevisiae. J Appl Microbiol 2018; 126:555-566. [PMID: 30408278 DOI: 10.1111/jam.14150] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/20/2018] [Accepted: 10/29/2018] [Indexed: 01/10/2023]
Abstract
AIM To clarify the effects of selenium (Se), parameters related to oxidative issues, as well as the antioxidant response were investigated on an autochthonous wine yeast strain. METHODS AND RESULTS Antioxidant enzyme activity, gel electrophoresis, Western blot and MDA level were used to investigate the effects of different concentration of Se in wine yeast. We found that Se is able to affect the enzymatic activities of catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD). An increase in lipid peroxidation was observed in a dose-dependent manner of (Se), thus, indicating the occurrence of cell membrane damage. Additionally, Se induced post-translational oxidative modifications of proteins, especially oxidation of thiol groups (both reversible and irreversible) and protein carbonylation (irreversible oxidation). CONCLUSION These results obtained could further the understanding the effect of different concentration of Se in wine yeast strain with which Se affect the enzymatic activities and induces some post-translational modifications of proteins. SIGNIFICANCE AND IMPACT OF THE STUDY The understanding of mechanisms regulating the response of wine yeast to Se is important for future work using selenized yeast as enriched Se supplements in human nutrition.
Collapse
Affiliation(s)
- W Talbi
- Department of Chemical and Biological Engineering, National Institute of Applied Sciences and Technology (INSAT), Tunis, Tunisia.,Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| | - T Ghazouani
- Department of Chemical and Biological Engineering, National Institute of Applied Sciences and Technology (INSAT), Tunis, Tunisia
| | - D Braconi
- Dipartimento di Biotecnologie, Università degli Studi di Siena, Siena, Italy
| | - R Ben Abdallah
- Department of Chemical and Biological Engineering, National Institute of Applied Sciences and Technology (INSAT), Tunis, Tunisia
| | - F Raboudi
- ISAJC, Bir El Bey, University of Tunis, Tunis, Tunisia
| | - A Santucci
- Dipartimento di Biotecnologie, Università degli Studi di Siena, Siena, Italy
| | - S Fattouch
- Department of Chemical and Biological Engineering, National Institute of Applied Sciences and Technology (INSAT), Tunis, Tunisia
| |
Collapse
|
31
|
Borisova-Mubarakshina MM, Ivanov BN, Orekhova NI, Osochuk SS. Antioxidant Properties of Plastoquinone and Prospects of its Practical Application. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918060040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
32
|
Espinosa B, Arnér ESJ. Thioredoxin-related protein of 14 kDa as a modulator of redox signalling pathways. Br J Pharmacol 2018; 176:544-553. [PMID: 30129655 DOI: 10.1111/bph.14479] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/15/2022] Open
Abstract
Thioredoxin-related protein of 14 kDa (TRP14; also named TXNDC17 for thioredoxin domain-containing protein 17) is a highly conserved and ubiquitously expressed oxidoreductase. It is expressed in parallel with thioredoxin 1 (Trx1, TXN; TXN1), an efficient substrate for the mammalian cytosolic selenoprotein thioredoxin reductase 1 (TrxR1; TXNRD1). However, TRP14, in sharp contrast to Trx1, cannot support the activities of ribonucleotide reductase, peroxiredoxins or methionine sulfoxide reductases, thus is unable to directly support cell proliferation or antioxidant defence through these pathways. However, TRP14 has been shown to efficiently reduce l-cystine, which thereby indirectly supports glutathione synthesis. TRP14 can also suppress NF-κB signalling, is functionally linked to STAT3 signalling, and can directly reactivate oxidized protein-tyrosine phosphatase PTP1B. Furthermore, TRP14 can efficiently reduce persulfidated or nitrosylated cysteine residues in many proteins, thereby having the capacity to modulate signalling through hydrogen sulfide or NO. Additional bioinformatics analyses and observations suggest further roles for TRP14; therefore, further studies of its functions are warranted. Collectively, the results available suggest that TRP14 is a member of the thioredoxin system dedicated to the control of cellular redox signalling pathways. LINKED ARTICLES: This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc.
Collapse
Affiliation(s)
- Belén Espinosa
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Scalcon V, Salmain M, Folda A, Top S, Pigeon P, Shirley Lee HZ, Jaouen G, Bindoli A, Vessières A, Rigobello MP. Tamoxifen-like metallocifens target the thioredoxin system determining mitochondrial impairment leading to apoptosis in Jurkat cells. Metallomics 2018. [PMID: 28636040 DOI: 10.1039/c7mt00121e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tamoxifen-like metallocifens (TLMs) of the group-8 metals (Fe, Ru, and Os) show strong anti-proliferative activity on cancer cell lines resistant to apoptosis, owing to their unique redox properties. In contrast, the thioredoxin system, which is involved in cellular redox balance, is often overexpressed in cancer cells, especially in tumour types resistant to standard chemotherapies. Therefore, we investigated the effect of these three TLMs on the thioredoxin system and evaluated the input of the metallocene unit in comparison with structurally related organic tamoxifens. In vitro, all three TLMs became strong inhibitors of the cytosolic (TrxR1) and mitochondrial (TrxR2) isoforms of thioredoxin reductase after enzymatic oxidation with HRP/H2O2 while none of the organic analogues was effective. In Jurkat cells, TLMs inhibited mainly TrxR2, resulting in the accumulation of oxidized thioredoxin 2 and cell redox imbalance. Overproduction of ROS resulted in a strong decrease in the mitochondrial membrane potential, translocation of cytochrome c to the cytosol and activation of caspase 3, thus leading to apoptosis. None of these events occurred with organic tamoxifens. The mitochondrial fraction of cells exposed to TLMs contained a high amount of the corresponding metal, as quantified by ICP-OES. The lipophilic and cationic character associated with the singular redox properties of the TLMs could explain why they alter the mitochondrial function. These results provide new insights into the mechanism of action of tamoxifen-like metallocifens, underlying their prodrug behaviour and the pivotal role played by the metallocenic entity in their cytotoxic activity associated with the induction of apoptosis.
Collapse
Affiliation(s)
- Valeria Scalcon
- Dipartimento di Scienze Biomediche, Università di Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Affiliation(s)
- Yanjing Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
35
|
Tian Y, Fan M, Qin Z, Lv H, Wang M, Zhang Z, Zhou W, Zhao N, Li X, Han C, Ding Z, Wang W, Wang ZY, Bai MY. Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor. Nat Commun 2018. [PMID: 29540799 PMCID: PMC5852159 DOI: 10.1038/s41467-018-03463-x] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hydrogen peroxide (H2O2) is an important signaling molecule in plant developmental processes and stress responses. However, whether H2O2-mediated signaling crosstalks with plant hormone signaling is largely unclear. Here, we show that H2O2 induces the oxidation of the BRASSINAZOLE-RESISTANT1 (BZR1) transcription factor, which functions as a master regulator of brassinosteroid (BR) signaling. Oxidative modification enhances BZR1 transcriptional activity by promoting its interaction with key regulators in the auxin-signaling and light-signaling pathways, including AUXIN RESPONSE FACTOR6 (ARF6) and PHYTOCHROME INTERACTING FACTOR4 (PIF4). Genome-wide analysis shows that H2O2-dependent regulation of BZR1 activity plays a major role in modifying gene expression related to several BR-mediated biological processes. Furthermore, we show that the thioredoxin TRXh5 can interact with BZR1 and catalyzes its reduction. We conclude that reversible oxidation of BZR1 connects H2O2-mediated and thioredoxin-mediated redox signaling to BR signaling to regulate plant development. Hydrogen peroxide and brassinosteroids (BR) both regulate plant development and stress responses. Here Tian et al. show that hydrogen peroxide can trigger oxidation of the BR-responsive BZR1 transcription factor and promote its transcriptional activity, thereby linking BR and redox signaling.
Collapse
Affiliation(s)
- Yanchen Tian
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Min Fan
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Zhaoxia Qin
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Hongjun Lv
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Minmin Wang
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Zhe Zhang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenying Zhou
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Na Zhao
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Xiaohui Li
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Chao Han
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Zhaojun Ding
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China
| | - Wenfei Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Ming-Yi Bai
- Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Jinan, China.
| |
Collapse
|
36
|
Wani R, Murray BW. Analysis of Cysteine Redox Post-Translational Modifications in Cell Biology and Drug Pharmacology. Methods Mol Biol 2018; 1558:191-212. [PMID: 28150239 DOI: 10.1007/978-1-4939-6783-4_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Reversible cysteine oxidation is an emerging class of protein post-translational modification (PTM) that regulates catalytic activity, modulates conformation, impacts protein-protein interactions, and affects subcellular trafficking of numerous proteins. Redox PTMs encompass a broad array of cysteine oxidation reactions with different half-lives, topographies, and reactivities such as S-glutathionylation and sulfoxidation. Recent studies from our group underscore the lesser known effect of redox protein modifications on drug binding. To date, biological studies to understand mechanistic and functional aspects of redox regulation are technically challenging. A prominent issue is the lack of tools for labeling proteins oxidized to select chemotype/oxidant species in cells. Predictive computational tools and curated databases of oxidized proteins are facilitating structural and functional insights into regulation of the network of oxidized proteins or redox proteome. In this chapter, we discuss analytical platforms for studying protein oxidation, suggest computational tools currently available in the field to determine redox sensitive proteins, and begin to illuminate roles of cysteine redox PTMs in drug pharmacology.
Collapse
Affiliation(s)
- Revati Wani
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, CA, 92121, USA
| | - Brion W Murray
- Oncology Research Unit, Pfizer Worldwide Research and Development, 10770 Science Center Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
37
|
Alcock LJ, Perkins MV, Chalker JM. Chemical methods for mapping cysteine oxidation. Chem Soc Rev 2018; 47:231-268. [DOI: 10.1039/c7cs00607a] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Methods to characterise oxidative modifications of cysteine help clarify their role in protein function in both healthy and diseased cells.
Collapse
Affiliation(s)
- Lisa J. Alcock
- College of Science and Engineering
- Flinders University
- South Australia
- Australia
| | - Michael V. Perkins
- College of Science and Engineering
- Flinders University
- South Australia
- Australia
| | - Justin M. Chalker
- College of Science and Engineering
- Flinders University
- South Australia
- Australia
| |
Collapse
|
38
|
Bódi B, Tóth EP, Nagy L, Tóth A, Mártha L, Kovács Á, Balla G, Kovács T, Papp Z. Titin isoforms are increasingly protected against oxidative modifications in developing rat cardiomyocytes. Free Radic Biol Med 2017; 113:224-235. [PMID: 28943453 DOI: 10.1016/j.freeradbiomed.2017.09.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Abstract
During the perinatal adaptation process N2BA titin isoforms are switched for N2B titin isoforms leading to an increase in cardiomyocyte passive tension (Fpassive). Here we attempted to reveal how titin isoform composition and oxidative insults (i.e. sulfhydryl (SH)-group oxidation or carbonylation) influence Fpassive of left ventricular (LV) cardiomyocytes during rat heart development. Moreover, we also examined a hypothetical protective role for titin associated small heat shock proteins (sHSPs), Hsp27 and αB-crystallin in the above processes. Single, permeabilized LV cardiomyocytes of the rat (at various ages following birth) were exposed either to 2,2'-dithiodipyridine (DTDP) to provoke SH-oxidation or Fenton reaction reagents (iron(II), hydrogen peroxide (H2O2), ascorbic acid) to induce protein carbonylation of cardiomyocytes in vitro. Thereafter, cardiomyocyte force measurements for Fpassive determinations and Western immunoblot assays were carried out for the semiquantitative determination of oxidized SH-groups or carbonyl-groups of titin isoforms and to monitor sHSPs' expressions. DTDP or Fenton reagents increased Fpassive in 0- and 7-day-old rats to relatively higher extents than in 21-day-old and adult animals. The degrees of SH-group oxidation or carbonylation declined with cardiomyocyte age to similar extents for both titin isoforms. Moreover, the above characteristics were mirrored by increasing levels of HSP27 and αB-crystallin expressions during cardiomyocyte development. Our data implicate a gradual build-up of a protective mechanism against titin oxidation through the upregulation of HSP27 and αB-crystallin expressions during postnatal cardiomyocyte development.
Collapse
Affiliation(s)
- Beáta Bódi
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Enikő Pásztorné Tóth
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Nagy
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary
| | - Lilla Mártha
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Árpád Kovács
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary; Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Kovács
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian Academy of Sciences, Debrecen, Hungary.
| |
Collapse
|
39
|
Zhang Y, Igwe OJ. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage. Biochem Pharmacol 2017; 147:104-118. [PMID: 29175419 DOI: 10.1016/j.bcp.2017.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023]
Abstract
Disturbances in redox equilibrium in tissue can lead to inflammatory state, which is a mediatory factor in many human diseases. The mechanism(s) by which exogenous oxidants may activate an inflammatory response is not fully understood. Emerging evidence suggests that oxidant-induced Toll-like receptor 4 (TLR4) activation plays a major role in "sterile" inflammation. In the present study, we used murine macrophage RAW-Blue cells, which are chromosomally integrated with secreted embryonic alkaline phosphatase (SEAP) inducible by NF-κB. We confirmed the expression of TLR4 mRNA and protein in RAW-Blue cells by RT-PCR and Western blot, respectively. We showed that oxidants increased intracellular reactive oxygen species production and lipid peroxidation, which resulted in decreased intracellular total antioxidant capacity. Consistent with the actions of TLR4-specific agonist LPS-EK, exogenous oxidants increased transcriptional activity of NF-κB p65 with subsequent release of NF-κB reporter gene SEAP. These effects were blocked by pretreatment with TLR4 neutralizing pAb and TLR4 signaling inhibitor CLI-095. In addition, oxidants decreased the expression of IκBα with enhanced phosphorylation at the Tyr42 residue. Finally, oxidants and LPS-EK increased TNFα production, but did not affect IL-10 production, which may cause imbalance between pro- and anti-inflammatory processes, which CLI-095 inhibited. For biological relevance, we confirmed that oxidants increased release of TNFα and IL-6 in primary macrophages derived from TLR4-WT and TLR4-KO mice. Our results support the involvement of TLR4 mediated oxidant-induced inflammatory phenotype through NF-κB activation in macrophages. Thus exogenous oxidants may play a role in activating inflammatory phenotypes that propagate and maintain chronic disease states.
Collapse
Affiliation(s)
- Yan Zhang
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology & Toxicology, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| | - Orisa J Igwe
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology & Toxicology, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
40
|
Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep 2017; 7:14130. [PMID: 29074861 PMCID: PMC5658327 DOI: 10.1038/s41598-017-14520-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Upon oxidative stress and aging, Nrf2 (NFE2-related factor2) triggers antioxidant defense genes to defends against homeostatic failure. Using human(h) or rat(r) lens epithelial cells (LECs) and aging human lenses, we showed that a progressive increase in oxidative load during aging was linked to a decline in Prdx6 expression. DNA binding experiments using gel-shift and ChIP assays demonstrated a progressive reduction in Nrf2/ARE binding (-357/-349) of Prdx6 promoter. The promoter (-918) with ARE showed a marked reduction in young vs aged hLECs, which was directly correlated to decreased Nrf2/ARE binding. A Nrf2 activator, Sulforaphane (SFN), augmented Prdx6, catalase and GSTπ expression in dose-dependent fashion, and halted Nrf2 dysregulation of these antioxidants. SFN reinforced Nrf2/DNA binding and increased promoter activities by enhancing expression and facilitating Nrf2 translocalization in nucleus. Conversely, promoter mutated at ARE site did not respond to SFN, validating the SFN-mediated restoration of Nrf2/ARE signaling. Furthermore, SFN rescued cells from UVB-induced toxicity in dose-dependent fashion, which was consistent with SFN's dose-dependent activation of Nrf2/ARE interaction. Importantly, knockdown of Prdx6 revealed that Prdx6 expression was prerequisite for SFN-mediated cytoprotection. Collectively, our results suggest that loss of Prdx6 caused by dysregulation of ARE/Nrf2 can be attenuated through a SFN, to combat diseases associated with aging.
Collapse
Affiliation(s)
- Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa, Japan.
| | - Bhavana Chhunchha
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, NE, Omaha, USA
| | - Prerna Singh
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, NE, Omaha, USA
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa, Japan
| | - Dhirendra P Singh
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, NE, Omaha, USA.
| |
Collapse
|
41
|
Yanykin DV, Khorobrykh AA, Terentyev VV, Klimov VV. Two pathways of photoproduction of organic hydroperoxides on the donor side of photosystem 2 in subchloroplast membrane fragments. PHOTOSYNTHESIS RESEARCH 2017; 133:129-138. [PMID: 28349346 DOI: 10.1007/s11120-017-0373-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
Earlier the catalase-insensitive formation of organic hydroperoxides (via the interaction of organic radicals produced due to redox activity of P680+· (or TyrZ·) with molecular oxygen) has been found in Mn-depleted PS2 preparations (apo-WOC-PS2) by Khorobrykh et al. (Biochemistry 50:10658-10665, 2011). The present work describes a second pathway of the photoproduction of organic peroxides on the donor side of PS2. It was shown that illumination of CaCl2-treated PS2 membranes (deprived of the PS2 extrinsic proteins without removal of the Mn-containing water-oxidizing complex) (CaCl2-PS2) led to the photoproduction of highly lipophilic organic hydroperoxides (LP-OOH) (in amount corresponding to 1.5 LP-OOH per one reaction center of PS2) which significantly increased upon the addition of exogenous electron acceptor potassium ferricyanide (to 4.2 LP-OOH per one reaction center). Addition of catalase (200 U/ml) before illumination inhibited ferricyanide-induced photoproduction of hydroperoxides while no effect was obtained by adding catalase after illumination or by adding inactivated catalase before illumination. The hydroperoxide photoproduction was inhibited by the addition of exogenous electron donor for PS2, diphenylcarbazide or diuron (inhibitor of the electron transfer in PS2). The addition of exogenous hydrogen peroxide to the CaCl2-PS2 led to the production of highly lipophilic organic hydroperoxides in the dark (3.2 LP-OOH per one reaction center). We suggest that the photoproduction of highly lipophilic organic hydroperoxides in CaCl2-PS2 preparations occurs via redox activity of H2O2 produced on the donor side of PS2.
Collapse
Affiliation(s)
- D V Yanykin
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
| | - A A Khorobrykh
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - V V Terentyev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| | - V V Klimov
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290
| |
Collapse
|
42
|
Shao FY, Wang S, Li HY, Chen WB, Wang GC, Ma DL, Wong NS, Xiao H, Liu QY, Zhou GX, Li YL, Li MM, Wang YF, Liu Z. EM23, a natural sesquiterpene lactone, targets thioredoxin reductase to activate JNK and cell death pathways in human cervical cancer cells. Oncotarget 2017; 7:6790-808. [PMID: 26758418 PMCID: PMC4872749 DOI: 10.18632/oncotarget.6828] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/26/2015] [Indexed: 12/26/2022] Open
Abstract
Sesquiterpene lactones (SLs) are the active constituents of a variety of medicinal plants and found to have potential anticancer activities. However, the intracellular molecular targets of SLs and the underlying molecular mechanisms have not been well elucidated. In this study, we observed that EM23, a natural SL, exhibited anti-cancer activity in human cervical cancer cell lines by inducing apoptosis as indicated by caspase 3 activation, XIAP downregulation and mitochondrial dysfunction. Mechanistic studies indicated that EM23-induced apoptosis was mediated by reactive oxygen species (ROS) and the knockdown of thioredoxin (Trx) or thioredoxin reductase (TrxR) resulted in a reduction in apoptosis. EM23 attenuated TrxR activity by alkylation of C-terminal redox-active site Sec498 of TrxR and inhibited the expression levels of Trx/TrxR to facilitate ROS accumulation. Furthermore, inhibition of Trx/TrxR system resulted in the dissociation of ASK1 from Trx and the downstream activation of JNK. Pretreatment with ASK1/JNK inhibitors partially rescued cells from EM23-induced apoptosis. Additionally, EM23 inhibited Akt/mTOR pathway and induced autophagy, which was observed to be proapoptotic and mediated by ROS. Together, these results reveal a potential molecular mechanism for the apoptotic induction observed with SL compound EM23, and emphasize its putative role as a therapeutic agent for human cervical cancer.
Collapse
Affiliation(s)
- Fang-Yuan Shao
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China.,Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Sheng Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Hong-Yu Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wen-Bo Chen
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Guo-Cai Wang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Dong-Lei Ma
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Nai Sum Wong
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Hao Xiao
- University of The Chinese Academy of Sciences, Beijing, China
| | - Qiu-Ying Liu
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | | | - Yao-Lan Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Man-Mei Li
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yi-Fei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| | - Zhong Liu
- Guangzhou Jinan Biomedicine Research and Development Center, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
43
|
Kim JH, Noh HY, Kim GH, Ahn SJ, Hong GE, Kim SK, Lee CH. Physicochemical and sensory properties of dry-cured ham with dietary processed-sulfur supplementation. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an14556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The aim of the present study was to explore the changes in physicochemical and sensory properties of dry-cured ham (from pigs that received a dietary supplement of processed sulfur, PS), as a function of the level of dietary PS. The following three groups were tested: (1) commercial basal feed (control, CON); (2) 0.1% of PS in the control diet (T1); and (3) 0.3% of PS in the control diet (T2). Dry-cured ham from T2 pigs had a higher moisture content and lower fat concentration than did that from the control pigs. Dry-cured ham T1 and T2 samples showed excellent lipid oxidation stability during storage and showed positive aroma scores in comparison with CON samples. Nonetheless, the total microbial plate count of dry-cured ham T1 (or T2) samples was significantly lower than that of CON samples, and volatile basic nitrogen of T1 (or T2) samples was higher than that of CON samples (P < 0.05). Concentrations of total free amino acids and sulfur-containing amino acids of ham T1 or T2 samples were significantly (P < 0.05) higher than those of control samples. Concentrations of polyunsaturated fatty acids of ham T1 and T2 samples were significantly higher than that of CON samples, whereas concentration of saturated fatty acids of CON samples was significantly higher. Thus, dry-cured ham from pigs receiving 0.3% PS in the diet showed the lowest fat concentration, increased nutrient quality and extended shelf life.
Collapse
|
44
|
Chou WK, Brynildsen MP. A biochemical engineering view of the quest for immune-potentiating anti-infectives. Curr Opin Chem Eng 2016. [DOI: 10.1016/j.coche.2016.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Global and Targeted Proteomics of Prostate Cancer Cell Secretome: Combination of 2-Dimensional Image-Converted Analysis of Liquid Chromatography and Mass Spectrometry and In Silico Selection Selected Reaction Monitoring Analysis. J Pharm Sci 2016; 105:3440-3452. [DOI: 10.1016/j.xphs.2016.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 01/22/2023]
|
46
|
Abstract
The field of redox proteomics focuses to a large extent on analyzing cysteine oxidation in proteins under different experimental conditions and states of diseases. The identification and localization of oxidized cysteines within the cellular milieu is critical for understanding the redox regulation of proteins under physiological and pathophysiological conditions, and it will in turn provide important information that are potentially useful for the development of novel strategies in the treatment and prevention of diseases associated with oxidative stress. Antioxidant enzymes that catalyze oxidation/reduction processes are able to serve as redox biomarkers in various human diseases, and they are key regulators controlling the redox state of functional proteins. Redox regulators with antioxidant properties related to active mediators, cellular organelles, and the surrounding environments are all connected within a network and are involved in diseases related to redox imbalance including cancer, ischemia/reperfusion injury, neurodegenerative diseases, as well as normal aging. In this review, we will briefly look at the selected aspects of oxidative thiol modification in antioxidant enzymes and thiol oxidation in proteins affected by redox control of antioxidant enzymes and their relation to disease. [BMB Reports 2015; 48(4): 200-208]
Collapse
Affiliation(s)
- Hee-Young Yang
- Department of Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 500-757, Korea
| | - Tae-Hoon Lee
- Department of Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju 500-757, Korea
| |
Collapse
|
47
|
Vilas-Boas F, Bagulho A, Tenente R, Teixeira VH, Martins G, da Costa G, Jerónimo A, Cordeiro C, Machuqueiro M, Real C. Hydrogen peroxide regulates cell adhesion through the redox sensor RPSA. Free Radic Biol Med 2016; 90:145-57. [PMID: 26603095 DOI: 10.1016/j.freeradbiomed.2015.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/28/2015] [Accepted: 11/12/2015] [Indexed: 02/06/2023]
Abstract
To become metastatic, a tumor cell must acquire new adhesion properties that allow migration into the surrounding connective tissue, transmigration across endothelial cells to reach the blood stream and, at the site of metastasis, adhesion to endothelial cells and transmigration to colonize a new tissue. Hydrogen peroxide (H2O2) is a redox signaling molecule produced in tumor cell microenvironment with high relevance for tumor development. However, the molecular mechanisms regulated by H2O2 in tumor cells are still poorly known. The identification of H2O2-target proteins in tumor cells and the understanding of their role in tumor cell adhesion are essential for the development of novel redox-based therapies for cancer. In this paper, we identified Ribosomal Protein SA (RPSA) as a target of H2O2 and showed that RPSA in the oxidized state accumulates in clusters that contain specific adhesion molecules. Furthermore, we showed that RPSA oxidation improves cell adhesion efficiency to laminin in vitro and promotes cell extravasation in vivo. Our results unravel a new mechanism for H2O2-dependent modulation of cell adhesion properties and identify RPSA as the H2O2 sensor in this process. This work indicates that high levels of RPSA expression might confer a selective advantage to tumor cells in an oxidative environment.
Collapse
Affiliation(s)
- Filipe Vilas-Boas
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Ana Bagulho
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Rita Tenente
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Vitor H Teixeira
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Gabriel Martins
- Instituto Gulbenkian de Ciência, R. Quinta Grande 6, 2780-156 Oeiras, Portugal; CE3C - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Gonçalo da Costa
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Ana Jerónimo
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Carlos Cordeiro
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Carla Real
- Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| |
Collapse
|
48
|
Lennicke C, Rahn J, Heimer N, Lichtenfels R, Wessjohann LA, Seliger B. Redox proteomics: Methods for the identification and enrichment of redox-modified proteins and their applications. Proteomics 2015; 16:197-213. [PMID: 26508685 DOI: 10.1002/pmic.201500268] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/14/2015] [Accepted: 10/15/2015] [Indexed: 01/24/2023]
Abstract
PTMs are defined as covalent additions to functional groups of amino acid residues in proteins like phosphorylation, glycosylation, S-nitrosylation, acetylation, methylation, lipidation, SUMOylation as well as oxidation. Oxidation of proteins has been characterized as a double-edged sword. While oxidative modifications, in particular of cysteine residues, are widely involved in the regulation of cellular homeostasis, oxidative stress resulting in the oxidation of biomolecules along with the disruption of their biological functions can be associated with the development of diseases, such as cancer, diabetes, and neurodegenerative diseases, respectively. This is also the case for advanced glycation end products, which result from chemical reactions of keto compounds such as oxidized sugars with proteins. The role of oxidative modifications under physiological and pathophysiological conditions remains largely unknown. Recently, novel technologies have been established that allow the enrichment, identification, and characterization of specific oxidative PTMs (oxPTMs). This is essential to develop strategies to prevent and treat diseases that are associated with oxidative stress. Therefore this review will focus on (i) the methods and technologies, which are currently applied for the detection, identification, and quantification of oxPTMs including the design of high throughput approaches and (ii) the analyses of oxPTMs related to physiological and pathological conditions.
Collapse
Affiliation(s)
- Claudia Lennicke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Jette Rahn
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Nadine Heimer
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Rudolf Lichtenfels
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | | | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
49
|
Borisova-Mubarakshina MM, Ivanov BN, Vetoshkina DV, Lubimov VY, Fedorchuk TP, Naydov IA, Kozuleva MA, Rudenko NN, Dall'Osto L, Cazzaniga S, Bassi R. Long-term acclimatory response to excess excitation energy: evidence for a role of hydrogen peroxide in the regulation of photosystem II antenna size. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7151-64. [PMID: 26324464 DOI: 10.1093/jxb/erv410] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Higher plants possess the ability to trigger a long-term acclimatory response to different environmental light conditions through the regulation of the light-harvesting antenna size of photosystem II. The present study provides an insight into the molecular nature of the signal which initiates the high light-mediated response of a reduction in antenna size. Using barley (Hordeum vulgare) plants, it is shown (i) that the light-harvesting antenna size is not reduced in high light with a low hydrogen peroxide content in the leaves; and (ii) that a decrease in the antenna size is observed in low light in the presence of an elevated concentration of hydrogen peroxide in the leaves. In particular, it has been demonstrated that the ability to reduce the antenna size of photosystem II in high light is restricted to photosynthetic apparatus with a reduced level of the plastoquinone pool and with a low hydrogen peroxide content. Conversely, the reduction of antenna size in low light is induced in photosynthetic apparatus possessing elevated hydrogen peroxide even when the reduction level of the plastoquinone pool is low. Hydrogen peroxide affects the relative abundance of the antenna proteins that modulate the antenna size of photosystem II through a down-regulation of the corresponding lhcb mRNA levels. This work shows that hydrogen peroxide contributes to triggering the photosynthetic apparatus response for the reduction of the antenna size of photosystem II by being the molecular signal for the long-term acclimation of plants to high light.
Collapse
Affiliation(s)
| | - Boris N Ivanov
- Institute of Basic Biological Problems RAS, 142290 Pushchino, Moscow Region, Russia
| | - Daria V Vetoshkina
- Institute of Basic Biological Problems RAS, 142290 Pushchino, Moscow Region, Russia
| | - Valeriy Y Lubimov
- Institute of Basic Biological Problems RAS, 142290 Pushchino, Moscow Region, Russia
| | - Tatyana P Fedorchuk
- Institute of Basic Biological Problems RAS, 142290 Pushchino, Moscow Region, Russia
| | - Ilya A Naydov
- Institute of Basic Biological Problems RAS, 142290 Pushchino, Moscow Region, Russia
| | - Marina A Kozuleva
- Institute of Basic Biological Problems RAS, 142290 Pushchino, Moscow Region, Russia
| | - Natalia N Rudenko
- Institute of Basic Biological Problems RAS, 142290 Pushchino, Moscow Region, Russia
| | - Luca Dall'Osto
- Dipartimento Biotecnologie, Strada Le Grazie 15, 37134 Verona, Italy
| | - Stefano Cazzaniga
- Dipartimento Biotecnologie, Strada Le Grazie 15, 37134 Verona, Italy
| | - Roberto Bassi
- Dipartimento Biotecnologie, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
50
|
Koniev O, Wagner A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem Soc Rev 2015; 44:5495-551. [PMID: 26000775 DOI: 10.1039/c5cs00048c] [Citation(s) in RCA: 414] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bioconjugation methodologies have proven to play a central enabling role in the recent development of biotherapeutics and chemical biology approaches. Recent endeavours in these fields shed light on unprecedented chemical challenges to attain bioselectivity, biocompatibility, and biostability required by modern applications. In this review the current developments in various techniques of selective bond forming reactions of proteins and peptides were highlighted. The utility of each endogenous amino acid-selective conjugation methodology in the fields of biology and protein science has been surveyed with emphasis on the most relevant among reported transformations; selectivity and practical use have been discussed.
Collapse
Affiliation(s)
- Oleksandr Koniev
- Laboratory of Functional Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France.
| | | |
Collapse
|