1
|
Proft J, Weiss N. G protein regulation of neuronal calcium channels: back to the future. Mol Pharmacol 2015; 87:890-906. [PMID: 25549669 DOI: 10.1124/mol.114.096008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/30/2014] [Indexed: 11/22/2022] Open
Abstract
Neuronal voltage-gated calcium channels have evolved as one of the most important players for calcium entry into presynaptic endings responsible for the release of neurotransmitters. In turn, and to fine-tune synaptic activity and neuronal communication, numerous neurotransmitters exert a potent negative feedback over the calcium signal provided by G protein-coupled receptors. This regulation pathway of physiologic importance is also extensively exploited for therapeutic purposes, for instance in the treatment of neuropathic pain by morphine and other μ-opioid receptor agonists. However, despite more than three decades of intensive research, important questions remain unsolved regarding the molecular and cellular mechanisms of direct G protein inhibition of voltage-gated calcium channels. In this study, we revisit this particular regulation and explore new considerations.
Collapse
Affiliation(s)
- Juliane Proft
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Norbert Weiss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
2
|
Velázquez-Marrero CM, Marrero HG, Lemos JR. Voltage-dependent kappa-opioid modulation of action potential waveform-elicited calcium currents in neurohypophysial terminals. J Cell Physiol 2010; 225:223-32. [PMID: 20506396 DOI: 10.1002/jcp.22247] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Release of neurotransmitter is activated by the influx of calcium. Inhibition of Ca(2+) channels results in less calcium influx into the terminals and presumably a reduction in transmitter release. In the neurohypophysis (NH), Ca(2+) channel kinetics, and the associated Ca(2+) influx, is primarily controlled by membrane voltage and can be modulated, in a voltage-dependent manner, by G-protein subunits interacting with voltage-gated calcium channels (VGCCs). In this series of experiments we test whether the kappa- and micro-opioid inhibition of Ca(2+) currents in NH terminals is voltage-dependent. Voltage-dependent relief of G-protein inhibition of VGCC can be achieved with either a depolarizing square pre-pulse or by action potential waveforms. Both protocols were tested in the presence and absence of opioid agonists targeting the kappa- and micro-receptors in neurohypophysial terminals. The kappa-opioid VGCC inhibition is relieved by such pre-pulses, suggesting that this receptor is involved in a voltage-dependent membrane delimited pathway. In contrast, micro-opioid inhibition of VGCC is not relieved by such pre-pulses, indicating a voltage-independent diffusible second-messenger signaling pathway. Furthermore, relief of kappa-opioid inhibition during a physiologic action potential (AP) burst stimulation indicates the possibility of activity-dependent modulation in vivo. Differences in the facilitation of Ca(2+) channels due to specific G-protein modulation during a burst of APs may contribute to the fine-tuning of Ca(2+)-dependent neuropeptide release in other CNS terminals, as well.
Collapse
Affiliation(s)
- Cristina M Velázquez-Marrero
- Department of Physiology and Program in Neuroscience, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
3
|
Yang SK, Parkington HC, Epelbaum J, Keating DJ, Chen C. Somatostatin decreases voltage-gated Ca2+ currents in GH3 cells through activation of somatostatin receptor 2. Am J Physiol Endocrinol Metab 2007; 292:E1863-70. [PMID: 17327372 DOI: 10.1152/ajpendo.00047.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The secretion of growth hormone (GH) is inhibited by hypothalamic somatostatin (SRIF) in somatotropes through five subtypes of the somatostatin receptor (SSTR1-SSTR5). We aimed to characterize the subtype(s) of SSTRs involved in the Ca2+ current reduction in GH3 somatotrope cells using specific SSTR subtype agonists. We used nystatin-perforated patch clamp to record voltage-gated Ca2+ currents, using a holding potential of -80 mV in the presence of K+ and Na+ channel blockers. We first established the presence of T-, L-, N-, and P/Q-type Ca2+ currents in GH3 cells using a variety of channel blockers (Ni+, nifedipine, omega-conotoxin GVIA, and omega-agatoxin IVA). SRIF (200 nM) reduced L- and N-type but not T- or P/Q-type currents in GH3 cells. A range of concentrations of each specific SSTR agonist was tested on Ca2+ currents to find the maximal effective concentration. Activation of SSTR2 with 10(-7) and 10(-8) M L-797,976 decreased the voltage-gated Ca2+ current and abolished any further decrease by SRIF. SSTR1, SSTR3, SSTR4, and SSTR5 agonists at 10(-7) M did not modify the voltage-gated Ca2+ current and did not affect the Ca2+ current response to SRIF. These results indicate that SSTR2 is involved mainly in regulating voltage-gated Ca2+ currents by SRIF, which contributes to the decrease in intracellular Ca2+ concentration and GH secretion by SRIF.
Collapse
Affiliation(s)
- Seung-Kwon Yang
- Prince Henry's Institute of Medical Research, PO Box 5152, Clayton, Victoria 3168, Australia
| | | | | | | | | |
Collapse
|
4
|
Kohlmeier KA, Leonard CS. Transmitter modulation of spike-evoked calcium transients in arousal related neurons: muscarinic inhibition of SNX-482-sensitive calcium influx. Eur J Neurosci 2006; 23:1151-62. [PMID: 16553779 DOI: 10.1111/j.1460-9568.2006.04640.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide synthase (NOS)-containing cholinergic neurons in the laterodorsal tegmentum (LDT) influence behavioral and motivational states through their projections to the thalamus, ventral tegmental area and a brainstem 'rapid eye movement (REM)-induction' site. Action potential-evoked intracellular calcium transients dampen excitability and stimulate NO production in these neurons. In this study, we investigated the action of several arousal-related neurotransmitters and the role of specific calcium channels in these LDT Ca(2+)-transients by simultaneous whole-cell recording and calcium imaging in mouse (P14-P30) brain slices. Carbachol, noradrenaline and adenosine inhibited spike-evoked Ca(2+)-transients, while histamine, t-ACPD, a metabotropic glutamate receptor agonist, and orexin-A did not. Carbachol inhibition was blocked by atropine, was insensitive to blockade of G-protein-coupled inward rectifier (GIRK) channels and was not inhibited by nifedipine, omega-conotoxin GVIA or omega-agatoxin IVA, which block L-, N- and P/Q-type calcium channels, respectively. In contrast, SNX-482 (100 nm), a selective antagonist of R-type calcium channels containing the alpha1E (Cav2.3) subunit, attenuated carbachol inhibition of the somatic spike-evoked calcium transient. To our knowledge, this is the first demonstration of muscarinic inhibition of native SNX-482-sensitive R-channels. Our findings indicate that muscarinic modulation of these channels plays an important role in the feedback control of cholinergic LDT neurons and that inhibition of spike-evoked Ca(2+)-transients is a common action of neurotransmitters that also activate GIRK channels in these neurons. Because spike-evoked calcium influx dampens excitability, our findings suggest that these 'inhibitory' transmitters could boost firing rate and enhance responsiveness to excitatory inputs during states of high firing, such as waking and REM sleep.
Collapse
Affiliation(s)
- Kristi A Kohlmeier
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA
| | | |
Collapse
|
5
|
Toro-Castillo C, Thapliyal A, Gonzalez-Ochoa H, Adams BA, Meza U. Muscarinic modulation of Cav2.3 (R-type) calcium channels is antagonized by RGS3 and RGS3T. Am J Physiol Cell Physiol 2006; 292:C573-80. [PMID: 16855219 DOI: 10.1152/ajpcell.00219.2006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ca(2+) influx through voltage-gated R-type (Ca(V)2.3) Ca(2+) channels is important for hormone and neurotransmitter secretion and other cellular events. Previous studies have shown that Ca(V)2.3 is both inhibited and stimulated through signaling mechanisms coupled to muscarinic ACh receptors. We previously demonstrated that muscarinic stimulation of Ca(V)2.3 is blocked by regulator of G protein signaling (RGS) 2. Here we investigated whether muscarinic inhibition of Ca(V)2.3 is antagonized by RGS3. RGS3 is particularly interesting because it contains a lengthy ( approximately 380 residue) amino-terminal domain of uncertain physiological function. Ca(V)2.3, M(2) muscarinic ACh receptors (M(2)R), and various deletion mutants of RGS3, including its native isoform RGS3T, were expressed in HEK293 cells, and agonist-dependent inhibition of Ca(V)2.3 was quantified using whole cell patch-clamp recordings. Full-length RGS3, RGS3T, and the core domain of RGS3 were equally effective in antagonizing inhibition of Ca(V)2.3 through M(2)R. These results identify RGS3 and RGS3T as potential physiological regulators of R-type Ca(2+) channels. Furthermore, they suggest that the signaling activity of RGS3 is unaffected by its extended amino-terminal domain. Confocal microscopy was used to examine the intracellular locations of four RGS3-enhanced green fluorescent protein fusion proteins. The RGS3 core domain was uniformly distributed throughout both cytoplasm and nucleus. By contrast, full-length RGS3, RGS3T, and the amino-terminal domain of RGS3 were restricted to the cytoplasm. These observations suggest that the amino terminus of RGS3 may serve to confine it to the cytoplasmic compartment where it can interact with cell surface receptors, heterotrimeric G proteins, and other signaling proteins.
Collapse
Affiliation(s)
- Carmen Toro-Castillo
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, San Luis Potosí, SLP, 78210 México
| | | | | | | | | |
Collapse
|
6
|
Denson DD, Li J, Wang X, Eaton DC. Activation of BK channels in GH3 cells by a c-PLA2-dependent G-protein signaling pathway. J Neurophysiol 2005; 93:3146-56. [PMID: 15647401 DOI: 10.1152/jn.00865.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BK-channels in GH3 cells are activated by arachidonic acid produced by c-PLA2. beta-adrenergic agonists also activate BK channels and were presumed to do so via production of cAMP. We, however, show for the first time in GH3 cells that a beta-adrenergic agonist activates a pertussis-toxin-sensitive G protein that activates c-PLA2. The arachidonic acid produced by c-PLA2 then activates BK channels. We examined BK channels in cell-attached patches and in excised patches from untreated GH3 cells and from GH3 cells exposed to c-PLA2 antisense oligonucleotides. For the cell-attached patch experiments, physiologic pipette and bath solutions were used. For the excised patches, 150 mM KCl was used in both the pipette and bath solutions, and the cytosolic surface contained 1 microM free Ca2+ (buffered with 5 mM K2EGTA). Treatment of GH3 cells with the G protein activator, fluoroaluminate, (AlF4-) produced an increase in the Po of BK channels of 177 +/- 41% (mean +/- SD) in cell-attached patches. Because G proteins are membrane associated, we also added an activator of G proteins, 100 microM GTP-gamma-S, to the cytosolic surface of excised patches. This treatment leads to an increase in Po of 50 +/- 9%. Similar treatment of excised patches with GDP-beta-S had no effect on Po. Isoproterenol (1 microM), an activator of beta-adrenergic receptors and, consequently, some G proteins, increased BK channel activity 229 +/- 37% in cell-attached patches from cultured GH3 cells. Western blot analysis showed that GH3 cells have beta-adrenergic receptor protein and that isoproterenol acts through these receptors because the beta-adrenergic receptor antagonist, propanolol, blocks the action of isoproterenol. To test whether G protein activation of BK channels involves c-PLA2, we studied the effects of GTP-gamma-S on excised patches and isoproterenol on cell attached patches from GH3 cells previously treated with c-PLA2 antisense oligonucleotides or pharmacological inhibitors of c-PLA2. Neither isoproterenol nor GTP-gamma-S had any effect on Po in these patches. Similarly, neither isoproterenol nor GTP-gamma-S had any effect on Po in cultured GH3 cells pretreated with pertussis toxin. Isoproterenol also significantly increased the rate of arachidonic production in GH3 cells. These results show that some receptor-linked, pertussis-toxin-sensitive G protein in GH3 cells can activate c-PLA2 to increase the amount of arachidonic acid present and ultimately increase BK-channel activity.
Collapse
Affiliation(s)
- D D Denson
- Dept. of Anesthesiology, Emory University School of Medicine, 3B-South Emory University Hospital, 1364 Clifton Rd., Atlanta, GA 30322, USA.
| | | | | | | |
Collapse
|
7
|
Abstract
Calcium influx into any cell requires fine tuning to guarantee the correct balance between activation of calcium-dependent processes, such as muscle contraction and neurotransmitter release, and calcium-induced cell damage. G protein-coupled receptors play a critical role in negative feedback to modulate the activity of the CaV2 subfamily of the voltage-dependent calcium channels, which are largely situated on neuronal and neuro-endocrine cells. The basis for the specificity of the relationships among membrane receptors, G proteins, and effector calcium channels will be discussed, as well as the mechanism by which G protein-mediated inhibition is thought to occur. The inhibition requires free G beta gamma dimers, and the cytoplasmic linker between domains I and II of the CaV2 alpha 1 subunits binds G beta gamma dimers, whereas the intracellular N terminus of CaV2 alpha 1 subunits provides essential determinants for G protein modulation. Evidence suggests a key role for the beta subunits of calcium channels in the process of G protein modulation, and the role of a class of proteins termed "regulators of G protein signaling" will also be described.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Pharmacology, University College London, Gower St., London WC1E 6BT, UK.
| |
Collapse
|
8
|
Møller LN, Stidsen CE, Hartmann B, Holst JJ. Somatostatin receptors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2003; 1616:1-84. [PMID: 14507421 DOI: 10.1016/s0005-2736(03)00235-9] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In 1972, Brazeau et al. isolated somatostatin (somatotropin release-inhibiting factor, SRIF), a cyclic polypeptide with two biologically active isoforms (SRIF-14 and SRIF-28). This event prompted the successful quest for SRIF receptors. Then, nearly a quarter of a century later, it was announced that a neuropeptide, to be named cortistatin (CST), had been cloned, bearing strong resemblance to SRIF. Evidence of special CST receptors never emerged, however. CST rather competed with both SRIF isoforms for specific receptor binding. And binding to the known subtypes with affinities in the nanomolar range, it has therefore been acknowledged to be a third endogenous ligand at SRIF receptors. This review goes through mechanisms of signal transduction, pharmacology, and anatomical distribution of SRIF receptors. Structurally, SRIF receptors belong to the superfamily of G protein-coupled (GPC) receptors, sharing the characteristic seven-transmembrane-segment (STMS) topography. Years of intensive research have resulted in cloning of five receptor subtypes (sst(1)-sst(5)), one of which is represented by two splice variants (sst(2A) and sst(2B)). The individual subtypes, functionally coupled to the effectors of signal transduction, are differentially expressed throughout the mammalian organism, with corresponding differences in physiological impact. It is evident that receptor function, from a physiological point of view, cannot simply be reduced to the accumulated operations of individual receptors. Far from being isolated functional units, receptors co-operate. The total receptor apparatus of individual cell types is composed of different-ligand receptors (e.g. SRIF and non-SRIF receptors) and co-expressed receptor subtypes (e.g. sst(2) and sst(5) receptors) in characteristic proportions. In other words, levels of individual receptor subtypes are highly cell-specific and vary with the co-expression of different-ligand receptors. However, the question is how to quantify the relative contributions of individual receptor subtypes to the integration of transduced signals, ultimately the result of collective receptor activity. The generation of knock-out (KO) mice, intended as a means to define the contributions made by individual receptor subtypes, necessarily marks but an approximation. Furthermore, we must now take into account the stunning complexity of receptor co-operation indicated by the observation of receptor homo- and heterodimerisation, let alone oligomerisation. Theoretically, this phenomenon adds a novel series of functional megareceptors/super-receptors, with varied pharmacological profiles, to the catalogue of monomeric receptor subtypes isolated and cloned in the past. SRIF analogues include both peptides and non-peptides, receptor agonists and antagonists. Relatively long half lives, as compared to those of the endogenous ligands, have been paramount from the outset. Motivated by theoretical puzzles or the shortcomings of present-day diagnostics and therapy, investigators have also aimed to produce subtype-selective analogues. Several have become available.
Collapse
Affiliation(s)
- Lars Neisig Møller
- Department of Medical Physiology, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | |
Collapse
|
9
|
Parnell SC, Magenheimer BS, Maser RL, Zien CA, Frischauf AM, Calvet JP. Polycystin-1 activation of c-Jun N-terminal kinase and AP-1 is mediated by heterotrimeric G proteins. J Biol Chem 2002; 277:19566-72. [PMID: 11912216 DOI: 10.1074/jbc.m201875200] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Functional analysis of polycystin-1, the product of the gene most frequently mutated in autosomal dominant polycystic kidney disease, has revealed that this protein is involved in the regulation of diverse signaling pathways such as the activation of the transcription factor AP-1 and modulation of Wnt signaling. However, the initial steps involved in the activation of such cascades have remained unclear. We demonstrated previously that the C-terminal cytosolic tail of polycystin-1 binds and activates heterotrimeric G proteins in vitro. To test if polycystin-1 can activate cellular signaling cascades via heterotrimeric G protein subunits, polycystin-1 C-terminal tail-mediated c-Jun N-terminal kinase (JNK) and AP-1 activities were assayed in transiently transfected 293T cells in the presence of dominant-negative, G protein inhibiting constructs, and in the presence of cotransfected Galpha subunits. The results showed that polycystin-1-mediated JNK/AP-1 activation is mediated by Galpha and Gbetagamma subunits. Polycystin-1-mediated AP-1 activity could be significantly augmented by cotransfected Galpha(i), Galpha(q), and Galpha(12/13) subunits, suggesting that polycystin-1 can couple with and activate several heterotrimeric G protein families.
Collapse
Affiliation(s)
- Stephen C Parnell
- Department of Biochemistry and Molecular Biology and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | |
Collapse
|
10
|
Vajna R, Klöckner U, Pereverzev A, Weiergräber M, Chen X, Miljanich G, Klugbauer N, Hescheler J, Perez-Reyes E, Schneider T. Functional coupling between 'R-type' Ca2+ channels and insulin secretion in the insulinoma cell line INS-1. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1066-75. [PMID: 11179973 DOI: 10.1046/j.1432-1327.2001.01969.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among voltage-gated Ca2+ channels the non-dihydropyridine-sensitive alpha1E subunit is functionally less well characterized than the structurally related alpha1A (omega-agatoxin-IVA sensitive, P- /Q-type) and alpha1B (omega-conotoxin-GVIA sensitive, N-type) subunits. In the rat insulinoma cell line, INS-1, a tissue-specific splice variant of alpha1E (alpha1Ee) has been characterized at the mRNA and protein levels, suggesting that INS-1 cells are a suitable model for investigating the function of alpha1Ee. In alpha1E-transfected human embryonic kidney (HEK-293) cells the alpha1E-selective peptide antagonist SNX-482 (100 nM) reduces alpha1Ed- and alpha1Ee-induced Ba2+ inward currents in the absence and presence of the auxiliary subunits beta3 and alpha2delta-2 by more than 80%. The inhibition is fast and only partially reversible. No effect of SNX-482 was detected on the recombinant T-type Ca2+ channel subunits alpha1G, alpha1H, and alpha1I showing that the toxin from the venom of Hysterocrates gigas is useful as an alpha1E-selective antagonist. After blocking known components of Ca2+ channel inward current in INS-1 cells by 2 microM (+/-)-isradipine plus 0.5 microM omega-conotoxin-MVIIC, the remaining current is reduced by 100 nM SNX-482 from -12.4 +/- 1.2 pA/pF to -7.6 +/- 0.5 pA/pF (n = 9). Furthermore, in INS-1 cells, glucose- and KCl-induced insulin release are reduced by SNX-482 in a dose-dependent manner leading to the conclusion that alpha1E, in addition to L-type and non-L-type (alpha1A-mediated) Ca2+ currents, is involved in Ca2+ dependent insulin secretion of INS-1 cells.
Collapse
Affiliation(s)
- R Vajna
- Institute of Neurophysiology, University of Cologne, Köln, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tateyama M, Zong S, Tanabe T, Ochi R. Properties of voltage-gated Ca(2+) channels in rabbit ventricular myocytes expressing Ca(2+) channel alpha(1E) cDNA. Am J Physiol Cell Physiol 2001; 280:C175-82. [PMID: 11121389 DOI: 10.1152/ajpcell.2001.280.1.c175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using the whole-cell patch-clamp technique, we have studied the properties of alpha(1E) Ca(2+) channel transfected in cardiac myocytes. We have also investigated the effect of foreign gene expression on the intrinsic L-type current (I(Ca,L)). Expression of green fluorescent protein significantly decreased the I(Ca,L). By contrast, expression of alpha(1E) with beta(2b) and alpha(2)/delta significantly increased the total Ca(2+) current, and in these cells a Ca(2+) antagonist, PN-200-110 (PN), only partially blocked the current. The remaining PN-resistant current was abolished by the application of a low concentration of Ni(2+) and was little affected by changing the charge carrier from Ca(2+) to Ba(2+) or by beta-adrenergic stimulation. On the basis of its voltage range for activation, this channel was classified as a high-voltage activated channel. Thus the expression of alpha(1E) did not generate T-like current in cardiac myocytes. On the other hand, expression of alpha(1E) decreased I(Ca,L) and slowed the I(Ca,L) inactivation. This inactivation slowing was attenuated by the beta(2b) coexpression, suggesting that the alpha(1E) may slow the inactivation of I(Ca,L) by scrambling with alpha(1C) for intrinsic auxiliary beta.
Collapse
MESH Headings
- Animals
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Channels, L-Type/ultrastructure
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Cells, Cultured/ultrastructure
- DNA, Complementary/metabolism
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Genes, Reporter/physiology
- Green Fluorescent Proteins
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Heart Ventricles/ultrastructure
- Indicators and Reagents/metabolism
- Isoproterenol/pharmacology
- Isradipine/pharmacology
- Luminescent Proteins/genetics
- Myocardium/metabolism
- Myocardium/ultrastructure
- Nickel/pharmacology
- Rabbits
- Receptors, Adrenergic, beta-1/drug effects
- Receptors, Adrenergic, beta-1/metabolism
Collapse
Affiliation(s)
- M Tateyama
- Department of Physiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | | | | | | |
Collapse
|
12
|
Foehring RC, Mermelstein PG, Song WJ, Ulrich S, Surmeier DJ. Unique properties of R-type calcium currents in neocortical and neostriatal neurons. J Neurophysiol 2000; 84:2225-36. [PMID: 11067968 DOI: 10.1152/jn.2000.84.5.2225] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whole cell recordings from acutely dissociated neocortical pyramidal neurons and striatal medium spiny neurons exhibited a calcium-channel current resistant to known blockers of L-, N-, and P/Q-type Ca(2+) channels. These R-type currents were characterized as high-voltage-activated (HVA) by their rapid deactivation kinetics, half-activation and half-inactivation voltages, and sensitivity to depolarized holding potentials. In both cell types, the R-type current activated at potentials relatively negative to other HVA currents in the same cell type and inactivated rapidly compared with the other HVA currents. The main difference between cell types was that R-type currents in neocortical pyramidal neurons inactivated at more negative potentials than R-type currents in medium spiny neurons. Ni(2+) sensitivity was not diagnostic for R-type currents in either cell type. Single-cell RT-PCR revealed that both cell types expressed the alpha1E mRNA, consistent with this subunit being associated with the R-type current.
Collapse
Affiliation(s)
- R C Foehring
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis, Tennessee 38163, USA.
| | | | | | | | | |
Collapse
|
13
|
Biphasic, opposing modulation of cloned neuronal alpha1E Ca channels by distinct signaling pathways coupled to M2 muscarinic acetylcholine receptors. J Neurosci 1999. [PMID: 10436038 DOI: 10.1523/jneurosci.19-16-06806.1999] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal alpha1E subunits are thought to form R-type Ca channels. When expressed in human embryonic kidney cells with M2 muscarinic acetylcholine receptors, Ca channels encoded by rabbit alpha1E exhibit striking biphasic modulation. Receptor activation first produces rapid inhibition of current amplitude and activation rate. However, in the continued presence of agonist, alpha1E currents subsequently increase. Kinetic slowing persists during this secondary stimulation phase. After receptor deactivation, kinetic slowing is quickly relieved, and current amplitude over-recovers before returning toward control levels. These features indicate that inhibition and stimulation of alpha1E are separate processes, with stimulation superimposed on inhibition. Pertussis toxin eliminates inhibition without affecting stimulation, demonstrating that inhibition and stimulation involve distinct signaling pathways. Neither inhibition nor stimulation is altered by coexpression of Ca channel beta2a or beta3 subunits. Stimulation is abolished by staurosporine and reduced by intracellular 5'-adenylylimidodiphosphate, suggesting that phosphorylation is required. However, stimulation does not seem to involve cAMP-dependent protein kinase, protein kinase C, cGMP-dependent protein kinase, tyrosine kinases, or phosphoinositide 3-kinases. Stimulation does not require a Ca signal, because it is not specifically altered by varying intracellular Ca buffering or by substituting Ba as the charge carrier. In contrast to those formed by alpha1E, Ca channels formed by alpha1A or alpha1B display only inhibition and no stimulation during prolonged activation of M2 receptors. The dual modulation of alpha1E may confer unique physiological properties on native R-type Ca channels. As one possibility, R-type channels may continue to mediate Ca influx during steady inhibition of N-type and P/Q-type channels by muscarinic or other receptors.
Collapse
|
14
|
Identification of residues in the N terminus of alpha1B critical for inhibition of the voltage-dependent calcium channel by Gbeta gamma. J Neurosci 1999. [PMID: 10436043 DOI: 10.1523/jneurosci.19-16-06855.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To examine the role of the intracellular N terminus in the G-protein modulation of the neuronal voltage-dependent calcium channel (VDCC) alpha1B, we have pursued two routes of investigation. First, we made chimeric channels between alpha1B and alpha1C, the latter not being modulated by Gbeta gamma subunits. VDCC alpha1 subunit constructs were coexpressed with accessory alpha2delta and beta2a subunits in Xenopus oocytes and mammalian (COS-7) cells. G-protein modulation of expressed alpha1 subunits was induced by activation of coexpressed dopamine (D2) receptors with quinpirole in oocytes, or by cotransfection of Gbeta1gamma2 subunits in COS-7 cells. For the chimeric channels, only those with the N terminus of alpha1B showed any G-protein modulation; further addition of the first transmembrane domain and I-II intracellular linker of alpha1B increased the degree of modulation. To determine the amino acids within the alpha1B N terminus, essential for G-protein modulation, we made mutations of this sequence and identified three amino acids (S48, R52, and R54) within an 11 amino acid sequence as being critical for G-protein modulation, with I49 being involved to a lesser extent. This sequence may comprise an essential part of a complex Gbeta gamma-binding site or be involved in its subsequent action.
Collapse
|
15
|
Melliti K, Meza U, Fisher R, Adams B. Regulators of G protein signaling attenuate the G protein-mediated inhibition of N-type Ca channels. J Gen Physiol 1999; 113:97-110. [PMID: 9874691 PMCID: PMC2222986 DOI: 10.1085/jgp.113.1.97] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Regulators of G protein signaling (RGS) proteins bind to the alpha subunits of certain heterotrimeric G proteins and greatly enhance their rate of GTP hydrolysis, thereby determining the time course of interactions among Galpha, Gbetagamma, and their effectors. Voltage-gated N-type Ca channels mediate neurosecretion, and these Ca channels are powerfully inhibited by G proteins. To determine whether RGS proteins could influence Ca channel function, we recorded the activity of N-type Ca channels coexpressed in human embryonic kidney (HEK293) cells with G protein-coupled muscarinic (m2) receptors and various RGS proteins. Coexpression of full-length RGS3T, RGS3, or RGS8 significantly attenuated the magnitude of receptor-mediated Ca channel inhibition. In control cells expressing alpha1B, alpha2, and beta3 Ca channel subunits and m2 receptors, carbachol (1 microM) inhibited whole-cell currents by approximately 80% compared with only approximately 55% inhibition in cells also expressing exogenous RGS protein. A similar effect was produced by expression of the conserved core domain of RGS8. The attenuation of Ca current inhibition resulted primarily from a shift in the steady state dose-response relationship to higher agonist concentrations, with the EC50 for carbachol inhibition being approximately 18 nM in control cells vs. approximately 150 nM in RGS-expressing cells. The kinetics of Ca channel inhibition were also modified by RGS. Thus, in cells expressing RGS3T, the decay of prepulse facilitation was slower, and recovery of Ca channels from inhibition after agonist removal was faster than in control cells. The effects of RGS proteins on Ca channel modulation can be explained by their ability to act as GTPase-accelerating proteins for some Galpha subunits. These results suggest that RGS proteins may play important roles in shaping the magnitude and kinetics of physiological events, such as neurosecretion, that involve G protein-modulated Ca channels.
Collapse
Affiliation(s)
- K Melliti
- Department of Physiology and Biophysics, University of Iowa, College of Medicine, Iowa City, Iowa 52242-1109, USA
| | | | | | | |
Collapse
|
16
|
Receptor-Mediated Modulation of Voltage-Dependent Ca2+ Channels via Heterotrimeric G-proteins in Neurons. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0021-5198(19)30742-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Abstract
Modulation of neuronal voltage-gated Ca channels has important implications for synaptic function. To investigate the mechanisms of Ca channel modulation, we compared the G-protein-dependent facilitation of three neuronal Ca channels. alpha1A, alpha1B, or alpha1E subunits were transiently coexpressed with alpha2-deltab and beta3 subunits in HEK293 cells, and whole-cell currents were recorded. After intracellular dialysis with GTPgammaS, strongly depolarized conditioning pulses facilitated currents mediated by each Ca channel type. The magnitude of facilitation depended on current density, with low-density currents being most strongly facilitated and high-density currents often lacking facilitation. Facilitating depolarizations speeded channel activation approximately 1.7-fold for alpha1A and alpha1B and increased current amplitudes by the same proportion, demonstrating equivalent facilitation of G-protein-inhibited alpha1A and alpha1B channels. Inactivation typically obscured facilitation of alpha1E current amplitudes, but the activation kinetics of alpha1E currents showed consistent and pronounced G-protein-dependent facilitation. The onset and decay of facilitation had the same kinetics for alpha1A, alpha1B, and alpha1E, suggesting that Gbeta gamma dimers dissociate from and reassociate with these Ca channels at very similar rates. To investigate the structural basis for N-type Ca channel modulation, we expressed a mutant of alpha1B missing large segments of the II-III loop and C terminus. This deletion mutant exhibited undiminished G-protein-dependent facilitation, demonstrating that a Gbeta gamma interaction site recently identified within the C terminus of alpha1E is not required for modulation of alpha1B.
Collapse
|
18
|
Identification of the amino terminus of neuronal Ca2+ channel alpha1 subunits alpha1B and alpha1E as an essential determinant of G-protein modulation. J Neurosci 1998. [PMID: 9634547 DOI: 10.1523/jneurosci.18-13-04815.1998] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have examined the basis for G-protein modulation of the neuronal voltage-dependent calcium channels (VDCCs) alpha1E and alpha1B. A novel PCR product of alpha1E was isolated from rat brain. This contained an extended 5' DNA sequence and was subcloned onto the previously cloned isoform rbEII, giving rise to alpha1Elong whose N terminus was extended by 50 amino acids. VDCC alpha1 subunit constructs were co-expressed with the accessory alpha2-delta and beta2a subunits in Xenopus oocytes and mammalian (COS-7) cells. The alpha1Elong showed biophysical properties similar to those of rbEII; however, when G-protein modulation of expressed alpha1 subunits was induced by activation of co-expressed dopamine (D2) receptors with quinpirole (100 nM) in oocytes, or by co-transfection of Gbeta1gamma2 subunits in COS-7 cells, alpha1Elong, unlike alpha1E(rbEII), was found to be G-protein-modulated, in terms of both a slowing of activation kinetics and a reduction in current amplitude. However, alpha1Elong showed less modulation than alpha1B, and substitution of the alpha1E1-50 with the corresponding region of alpha1B1-55 produced a chimera alpha1bEEEE, with G-protein modulation intermediate between alpha1Elong and alpha1B. Furthermore, deletion of the N-terminal 1-55 sequence from alpha1B produced alpha1BDeltaN1-55, which could not be modulated, thus identifying the N-terminal domain as essential for G-protein modulation. Taken together with previous studies, these results indicate that the intracellular N terminus of alpha1E1-50 and alpha1B1-55 is likely to contribute to a multicomponent site, together with the intracellular I-II loop and/or the C-terminal tail, which are involved in Gbetagamma binding and/or in subsequent modulation of channel gating.
Collapse
|
19
|
Abstract
Dihydropyridine-insensitive Ca channels are subject to direct receptor G-protein-mediated inhibition to differing extents. alpha1B channels are much more strongly modulated than alpha1E channels. To understand the structural basis for this difference, we have constructed and expressed various alpha1B and alpha1E chimeric Ca channels and examined their regulation by kappa-opioid receptors. Replacement of the first membrane-spanning domain of alpha1E with the corresponding region of alpha1B resulted in a chimeric Ca channel that was modulated by kappa-opioid receptors to a significantly greater extent than alpha1E. Transfer of the N terminus and I/II loop from alpha1B in addition to domain I resulted in a chimeric channel that was modulated to the same extent as alpha1B. Other regions of the molecule do not appear to contribute significantly to the degree of inhibition obtained, although the C terminus may contribute to facilitation.
Collapse
|
20
|
Ottolia M, Platano D, Qin N, Noceti F, Birnbaumer M, Toro L, Birnbaumer L, Stefani E, Olcese R. Functional coupling between human E-type Ca2+ channels and mu opioid receptors expressed in Xenopus oocytes. FEBS Lett 1998; 427:96-102. [PMID: 9613607 DOI: 10.1016/s0014-5793(98)00401-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neuronal alpha1E Ca2+ channels were expressed in Xenopus laevis oocytes alone and in combination with the mu opioid receptor. Macroscopic currents were recorded under voltage clamp conditions. The stimulation of the morphine receptor by the synthetic [D-Ala2,N-Me-Phe4,Gly-ol5] enkephalin (DAMGO) produced a 20% reduction in the alpha1E ionic current. This effect was associated with a large change in the decay phase of the Ba2+ current. The effect of 1 microM DAMGO was fully antagonized by the universal mu opioid receptor antagonist naloxone and by the selective antagonist beta-funaltrexamine. The ionic current inhibition induced by DAMGO was partially recovered by preceding strong depolarizations. The injection of the catalytic subunit of pertussis toxin (A-protomer) abolished the effect of DAMGO, suggesting the involvement of a GTP binding protein in the alpha1E modulation. The coexpression of the regulatory beta2a Ca2a channel subunit, together with the alpha1E subunit and the mu opioid receptor, prevented the reduction of the ionic current following the receptor stimulation with DAMGO, whereas the coexpression with the beta3 subunit reduced by approximately 50% the modulatory effect of DAMGO. The effect produced by the stimulation of the opioid receptor could be mimicked by coexpressing the alpha1E channel with the G-protein betagamma subunits.
Collapse
Affiliation(s)
- M Ottolia
- Department of Anesthesiology, University of California Los Angeles, 90095-1778, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Jeong SW, Wurster RD. Muscarinic receptor activation modulates Ca2+ channels in rat intracardiac neurons via a PTX- and voltage-sensitive pathway. J Neurophysiol 1997; 78:1476-90. [PMID: 9310437 DOI: 10.1152/jn.1997.78.3.1476] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
With use of the whole cell patch-clamp technique, effects of the potent muscarinic agonist oxotremorine methiodide (oxo-M) on voltage-activated Ca2+ channel currents were investigated in acutely dissociated adult rat intracardiac neurons. In all tested neurons oxo-M reversibly inhibited the peak Ba2+ current. Inhibition of the peak Ba2+ current by oxo-M was associated with slowing of activation kinetics and was concentration dependent. The concentration of oxo-M necessary to produce a half-maximal inhibition of current and the maximal inhibition were 40.8 nM and 75.9%, respectively. Inhibitory effect of oxo-M was completely abolished by atropine. Among different muscarinic receptor antagonists, methoctramine (100 and 300 nM) significantly antagonized the current inhibition by oxo-M, with a negative logarithm of dissociation constant of 8.3 in adult rat intracardiac neurons. Internal dialysis of neurons with guanosine 5'-(thio)triphosphate (GTPgammaS, 0.5 mM) could mimic the muscarinic inhibition of the peak Ba2+ current and significantly occlude inhibitory effects of oxo-M. In addition, the internal dialysis of guanosine-5'-O-(2-thiodiphosphate) (GDPbetaS, 2 mM) also significantly reduced the muscarinic inhibition of the peak Ba2+ current by oxo-M. Inhibitory effects of oxo-M were significantly abolished by pertussis toxin (PTX, 200 and 400 ng/ml) but not by cholera toxin (400 ng/ml). Furthermore, the bath application of N-ethylmaleimide (50 microM) significantly reduced the inhibition of the peak Ba2+ current by oxo-M. The oxo-M shifted the activation curve derived from measurments of tail currents toward more positive potentials. A strong conditioning prepulse to +100 mV significantly relieved the muscarinic inhibition of peak Ba2+ currents by oxo-M and the GTPgammaS-induced current inhibition. In a series of experiments, changes in intracellular concentration of bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid and protein kinase activities failed to mimic or occlude the current inhibition by oxo-M. The dihydropyridine antagonist nifedipine (10 microM) was not able to occlude any of the inhibitory effects of oxo-M, and oxo-M (3 microM) failed to reduce the slow tail currents induced by the L-type agonist methyl 2,5-dimethyl-4-[2-(phenylmethyl)benzoyl]-1H-pyrrole-3-carboxylate (FPL 64176; 2 microM). However, omega-conotoxin (omega-CgTX) GVIA (1 microM) significantly occluded the muscarinic inhibition of the Ba2+ currents. In the presence of omega-CgTX GVIA (1 microM) and nifedipine (10 microM), oxo-M could further inhibit approximately 20% of the total Ca2+ current. After complete removal of N-, Q-, and L-type currents with use of omega-CgTX GVIA, omega-agatoxin IVA, and nifedipine, 70% of the R-type current (approximately 6-7% of the total current) was inhibited by oxo-M (3 microM). In conclusion, the M2 muscarinic receptor activation selectively inhibits N-, Q-, and R-type Ca2+ channel currents, sparing L-type Ca2+ channel currents mainly via a PTX- and voltage-sensitive pathway in adult rat intracardiac neurons.
Collapse
Affiliation(s)
- S W Jeong
- Department of Physiology, Loyola Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | |
Collapse
|
22
|
Shekter LR, Taussig R, Gillard SE, Miller RJ. Regulation of human neuronal calcium channels by G protein betagamma subunits expressed in human embryonic kidney 293 cells. Mol Pharmacol 1997; 52:282-91. [PMID: 9271351 DOI: 10.1124/mol.52.2.282] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We examined the ability of different G protein subunits to inhibit the activity of human alpha1B and alpha1E Ca2+ channels stably expressed in human embryonic kidney (HEK) 293 cells together with beta1B and alpha2Bdelta Ca2+ channel subunits. Under normal conditions, Ca2+ currents in alpha1B-expressing cells showed little facilitation after a depolarizing prepulse. However, when we overexpressed the beta2gamma2 subunits of heterotrimeric G proteins, the time course of activation of the Ca2+ currents was considerably slowed and a depolarizing prepulse produced a large facilitation of the current as well as an acceleration in its time course of activation. Similar effects were not observed when cells were transfected with constitutively active mutants of the G protein alpha subunits alpha s, alpha i1, and alpha o or with the G protein beta2 and gamma2 subunits alone. Studies carried out in cells expressing alpha1E currents showed that overexpression of beta2gamma2 subunits produced pre-pulse facilitation, although this was of lesser magnitude than that observed with Ca2+ currents in alpha1B-expressing cells. The subunits beta2 and gamma2 alone produced no effects, nor did constitutively active alpha s, alpha i1, and alpha o subunits. Phorbol esters enhanced alpha1E Ca2+ currents but had no effect on alpha1B currents, suggesting that protein kinase C activation was not responsible for the observed effects. When alpha1E Ca2+ currents were expressed without their beta subunits, they exhibited prepulse facilitation. These results demonstrate that alpha1E Ca2+ currents are less susceptible to direct modulation by G proteins than alpha1B currents and illustrate the antagonistic interactions between Ca2+ channel beta subunits and G proteins.
Collapse
Affiliation(s)
- L R Shekter
- Department of Pharmacological and Physiological Sciences, The University of Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
23
|
Mehrke G, Pereverzev A, Grabsch H, Hescheler J, Schneider T. Receptor-mediated modulation of recombinant neuronal class E calcium channels. FEBS Lett 1997; 408:261-70. [PMID: 9188773 DOI: 10.1016/s0014-5793(97)00437-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The modulation of a cloned neuronal calcium channel was studied in a human embryonic kidney cell line (HEK293). The HEK293 cells were stably transfected with the alpha1Ed cDNA, containing the pore forming subunit of a neuronal class E calcium channel. Inward currents of 25 +/- 1.9 pA/pF (n = 79) were measured with the cloned alpha1Ed-subunit. The application of the peptide hormone somatostatin, carbachol, ATP or adenosine reduced the amplitude of Ca2+ and Ba2+ inward currents and exhibited a slowing of inactivation. This inhibitory effect by somatostatin was significantly impaired after pre-incubating the transfected cell line with pertussis toxin (PTX). Internal perfusion of the cells with the G-protein-inactivating agent GDP-beta-S or with the permanently activating agent GTP-gamma-S also attenuated the somatostatin effect. The inhibition indicates that modulation of the alpha1Ed-mediated Ca2+ current involves pertussis toxin-sensitive G-proteins. The block of Ca2+ and Ba2+ inward currents by somatostatin is also found in cells expressing a truncated alpha1Ed-subunit which lacks a 129-bp fragment in the C-terminus. This fragment corresponds to the major structural difference between two native human alpha1E splice variants. As somatostatin inhibits inward currents through both, the cloned alpha1Ed- and the truncated alpha1Ed-DEL-subunit, the hormone-mediated modulation is independent from the presence of the 129-bp insertion in the C-terminus.
Collapse
Affiliation(s)
- G Mehrke
- Institute of Neurophysiology, University of Köln, Germany
| | | | | | | | | |
Collapse
|
24
|
The intracellular loop between domains I and II of the B-type calcium channel confers aspects of G-protein sensitivity to the E-type calcium channel. J Neurosci 1997. [PMID: 9006976 DOI: 10.1523/jneurosci.17-04-01330.1997] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal voltage-dependent calcium channels undergo inhibitory modulation by G-protein activation, generally involving both kinetic slowing and steady-state inhibition. We have shown previously that the beta-subunit of neuronal calcium channels plays an important role in this process, because when it is absent, greater receptor-mediated inhibition is observed (). We therefore hypothesized that the calcium channel beta-subunits normally may occlude G-protein-mediated inhibition. Calcium channel beta-subunits bind to the cytoplasmic loop between transmembrane domains I and II of the alpha1-subunits (). We have examined the hypothesis that this loop is involved in G-protein-mediated inhibition by making chimeras containing the I-II loop of alpha1B or alpha1A inserted into alpha1E (alpha1EBE and alpha1EAE, respectively). This strategy was adopted because alpha1B (the molecular counterpart of N-type channels) and, to a lesser extent, alpha1A (P/Q-type) are G-protein-modulated, whereas this has not been observed to any great extent for alpha1E. Although alpha1B, coexpressed with alpha2-delta and beta1b transiently expressed in COS-7 cells, showed both kinetic slowing and steady-state inhibition when recorded with GTPgammaS in the patch pipette, both of which were reversed with a depolarizing prepulse, the chimera alpha1EBE (and, to a smaller extent, alpha1EAE) showed only kinetic slowing in the presence of GTPgammaS, and this also was reversed by a depolarizing prepulse. These results indicate that the I-II loop may be the molecular substrate of kinetic slowing but that the steady-state inhibition shown by alpha1B may involve a separate site on this calcium channel.
Collapse
|
25
|
De Waard M, Liu H, Walker D, Scott VE, Gurnett CA, Campbell KP. Direct binding of G-protein betagamma complex to voltage-dependent calcium channels. Nature 1997; 385:446-50. [PMID: 9009193 DOI: 10.1038/385446a0] [Citation(s) in RCA: 364] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Voltage-dependent Ca2+ channels play a central role in controlling neurotransmitter release at the synapse. They can be inhibited by certain G-protein-coupled receptors, acting by a pathway intrinsic to the membrane. Here we show that this inhibition results from a direct interaction between the G-protein betagamma complex and the pore-forming alpha1 subunits of several types of these channels. The interaction is mediated by the cytoplasmic linker connecting the first and second transmembrane repeats. Within this linker, binding occurs both in the alpha1 interaction domain (AID), which also mediates the interaction between the alpha1 and beta subunits of the channel, and in a second downstream sequence. Further analysis of the binding site showed that several amino-terminal residues in the AID are critical for Gbetagamma binding, defining a site distinct from the carboxy-terminal residues shown to be essential for binding the beta-subunit of the Ca2+ channel. Mutation of an arginine residue within the N-terminal motif abolished betagamma binding and rendered the channel refractory to G-protein modulation when expressed in Xenopus oocytes, showing that the interaction is indeed responsible for G-protein-dependent modulation of Ca2+ channel activity.
Collapse
Affiliation(s)
- M De Waard
- Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City 52242, USA
| | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- T Schneider
- Institute of Neurophysiology, University of Cologne, Germany
| | | | | |
Collapse
|