1
|
Sigurdsson SA, Yu Z, Lee J, Nurmikko A. A method for large-scale implantation of 3D microdevice ensembles into brain and soft tissue. MICROSYSTEMS & NANOENGINEERING 2020; 6:97. [PMID: 34567706 PMCID: PMC8433454 DOI: 10.1038/s41378-020-00210-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/11/2020] [Accepted: 08/07/2020] [Indexed: 05/16/2023]
Abstract
Wireless networks of implantable electronic sensors and actuators at the microscale (sub-mm) level are being explored for monitoring and modulation of physiological activity for medical diagnostics and therapeutic purposes. Beyond the requirement of integrating multiple electronic or chemical functions within small device volumes, a key challenge is the development of high-throughput methods for the implantation of large numbers of microdevices into soft tissues with minimal damage. To that end, we have developed a method for high-throughput implantation of ~100-200 µm size devices, which are here simulated by proxy microparticle ensembles. While generally applicable to subdermal tissue, our main focus and experimental testbed is the implantation of microparticles into the brain. The method deploys a scalable delivery tool composed of a 2-dimensional array of polyethylene glycol-tipped microneedles that confine the microparticle payloads. Upon dissolution of the bioresorbable polyethylene glycol, the supporting array structure is retrieved, and the microparticles remain embedded in the tissue, distributed spatially and geometrically according to the design of the microfabricated delivery tool. We first evaluated the method in an agarose testbed in terms of spatial precision and throughput for up to 1000 passive spherical and planar microparticles acting as proxy devices. We then performed the same evaluations by implanting particles into the rat cortex under acute conditions and assessed the tissue injury produced by our method of implantation under chronic conditions.
Collapse
Affiliation(s)
| | - Zeyang Yu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Joonhee Lee
- Department of Physics and Astronomy, West Virginia University, Morgantown, WV 26506 USA
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506 USA
| | - Arto Nurmikko
- School of Engineering, Brown University, Providence, RI 02912 USA
| |
Collapse
|
2
|
Peking P, Koller U, Murauer EM. Functional therapies for cutaneous wound repair in epidermolysis bullosa. Adv Drug Deliv Rev 2018; 129:330-343. [PMID: 29248480 DOI: 10.1016/j.addr.2017.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/07/2017] [Accepted: 12/09/2017] [Indexed: 12/20/2022]
Abstract
Chronic wounding as a result of recurrent skin blistering in the painful genetic skin disease epidermolysis bullosa, may lead to life-threatening infections, increased risk of tumor formation, and other serious medical complications. Therefore, epidermolysis bullosa patients have an urgent need for optimal wound care and tissue regeneration. Therapeutic strategies using gene-, protein-, and cell-therapies are being developed to improve clinical symptoms, and some of them have already been investigated in early clinical trials. The most favorable options of functional therapies include gene replacement, gene editing, RNA targeting, and harnessing natural gene therapy. This review describes the current progress of the different approaches targeting autologous skin cells, and will discuss the benefits and challenges of their application.
Collapse
|
3
|
Zhang D, Rielly CD, Das DB. Microneedle-assisted microparticle delivery by gene guns: experiments and modeling on the effects of particle characteristics. Drug Deliv 2014; 22:335-50. [PMID: 24524342 DOI: 10.3109/10717544.2014.887158] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microneedles (MNs) have been shown to enhance the penetration depths of microparticles delivered by gene gun. This study aims to investigate the penetration of model microparticle materials, namely, tungsten (<1 μm diameter) and stainless steel (18 and 30 μm diameters) into a skin mimicking agarose gel to determine the effects of particle characteristics (mainly particle size). A number of experiments have been processed to analyze the passage percentage and the penetration depth of these microparticles in relation to the operating pressures and MN lengths. A comparison between the stainless steel and tungsten microparticles has been discussed, e.g. passage percentage, penetration depth. The passage percentage of tungsten microparticles is found to be less than the stainless steel. It is worth mentioning that the tungsten microparticles present unfavourable results which show that they cannot penetrate into the skin mimicking agarose gel without the help of MN due to insufficient momentum due to the smaller particle size. This condition does not occur for stainless steel microparticles. In order to further understand the penetration of the microparticles, a mathematical model has been built based on the experimental set up. The penetration depth of the microparticles is analyzed in relation to the size, operating pressure and MN length for conditions that cannot be obtained in the experiments. In addition, the penetration depth difference between stainless steel and tungsten microparticles is studied using the developed model to further understand the effect of an increased particle density and size on the penetration depth.
Collapse
Affiliation(s)
- Dongwei Zhang
- Department of Chemical Engineering, Loughborough University , Loughborough , UK
| | | | | |
Collapse
|
4
|
Zhang D, Das DB, Rielly CD. Microneedle assisted micro-particle delivery from gene guns: experiments using skin-mimicking agarose gel. J Pharm Sci 2014; 103:613-27. [PMID: 24399616 DOI: 10.1002/jps.23835] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 11/11/2013] [Accepted: 12/10/2013] [Indexed: 11/07/2022]
Abstract
A set of laboratory experiments has been carried out to determine if micro-needles (MNs) can enhance penetration depths of high-speed micro-particles delivered by a type of gene gun. The micro-particles were fired into a model target material, agarose gel, which was prepared to mimic the viscoelastic properties of porcine skin. The agarose gel was chosen as a model target as it can be prepared as a homogeneous and transparent medium with controllable and reproducible properties allowing accurate determination of penetration depths. Insertions of various MNs into gels have been analysed to show that the length of the holes increases with an increase in the agarose concentration. The penetration depths of micro-particle were analysed in relation to a number of variables, namely the operating pressure, the particle size, the size of a mesh used for particle separation and the MN dimensions. The results suggest that the penetration depths increase with an increase of the mesh pore size, because of the passage of large agglomerates. As these particles seem to damage the target surface, then smaller mesh sizes are recommended; here, a mesh with a pore size of 178 μm was used for the majority of the experiments. The operating pressure provides a positive effect on the penetration depth, that is it increases as pressure is increased. Further, as expected, an application of MNs maximises the micro-particle penetration depth. The maximum penetration depth is found to increase as the lengths of the MNs increase, for example it is found to be 1272 ± 42, 1009 ± 49 and 656 ± 85 μm at 4.5 bar pressure for spherical micro-particles of 18 ± 7 μm diameter when we used MNs of 1500, 1200 and 750 μm length, respectively.
Collapse
Affiliation(s)
- Dongwei Zhang
- Department of Chemical Engineering, Loughborough University, Loughborough, LE113TU, UK
| | | | | |
Collapse
|
5
|
Zhang D, Das DB, Rielly CD. Potential of microneedle-assisted micro-particle delivery by gene guns: a review. Drug Deliv 2013; 21:571-87. [PMID: 24313864 DOI: 10.3109/10717544.2013.864345] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CONTEXT Gene guns have been used to deliver deoxyribonucleic acid (DNA) loaded micro-particle and breach the muscle tissue to target cells of interest to achieve gene transfection. OBJECTIVE This article aims to discuss the potential of microneedle (MN) assisted micro-particle delivery from gene guns, with a view to reducing tissue damage. METHODS Using a range of sources, the main gene guns for micro-particle delivery are reviewed along with the primary features of their technology, e.g. their design configurations, the material selection of the micro-particle, the driving gas type and pressure. Depending on the gene gun system, the achieved penetration depths in the skin are discussed as a function of the gas pressure, the type of the gene gun system and particle size, velocity and density. The concept of MN-assisted micro-particles delivery which consists of three stages (namely, acceleration, separation and decoration stage) is discussed. In this method, solid MNs are inserted into the skin to penetrate the epidermis/dermis layer and create holes for particle injection. Several designs of MN array are discussed and the insertion mechanism is explored, as it determines the feasibility of the MN-based system for particle transfer. RESULTS This review suggests that one of the problems of gene guns is that they need high operating pressures, which may result in direct or indirect tissue/cells damage. MNs seem to be a promising method which if combined with the gene guns may reduce the operating pressures for these devices and reduce tissue/cell damages. CONCLUSIONS There is sufficient potential for MN-assisted particle delivery systems.
Collapse
Affiliation(s)
- Dongwei Zhang
- Department of Chemical Engineering, Loughborough University , Loughborough, Leicestershire , UK
| | | | | |
Collapse
|
6
|
Gene therapy and DNA delivery systems. Int J Pharm 2013; 459:70-83. [PMID: 24286924 DOI: 10.1016/j.ijpharm.2013.11.041] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/31/2013] [Accepted: 11/19/2013] [Indexed: 12/29/2022]
Abstract
Gene therapy is a promising new technique for treating many serious incurable diseases, such as cancer and genetic disorders. The main problem limiting the application of this strategy in vivo is the difficulty of transporting large, fragile and negatively charged molecules like DNA into the nucleus of the cell without degradation. The key to success of gene therapy is to create safe and efficient gene delivery vehicles. Ideally, the vehicle must be able to remain in the bloodstream for a long time and avoid uptake by the mononuclear phagocyte system, in order to ensure its arrival at the desired targets. Moreover, this carrier must also be able to transport the DNA efficiently into the cell cytoplasm, avoiding lysosomal degradation. Viral vehicles are the most commonly used carriers for delivering DNA and have long been used for their high efficiency. However, these vehicles can trigger dangerous immunological responses. Scientists need to find safer and cheaper alternatives. Consequently, the non-viral carriers are being prepared and developed until techniques for encapsulating DNA can be found. This review highlights gene therapy as a new promising technique used to treat many incurable diseases and the different strategies used to transfer DNA, taking into account that introducing DNA into the cell nucleus without degradation is essential for the success of this therapeutic technique.
Collapse
|
7
|
O'Brien JA, Lummis SCR. Biolistic transfection of neurons in organotypic brain slices. Methods Mol Biol 2013; 940:157-66. [PMID: 23104341 DOI: 10.1007/978-1-62703-110-3_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Transfection of postmitotic neurons is one of the most challenging goals in the field of gene delivery. Currently most procedures use dissociated cell cultures but organotypic slice preparations have significant advantages as an experimental system; they preserve the three-dimensional architecture and local environment of neurons, yet still allow access for experimental manipulations and observations. However exploring the effects of novel genes in these preparations requires a technique that can efficiently transfect cells deep into tissues. Here we show that biolistic transfection is an effective and straightforward technique with which to transfect such cells.
Collapse
Affiliation(s)
- John A O'Brien
- Division of Neurobiology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
8
|
Li X, Uchida M, Alpar HO, Mertens P. Biolistic transfection of human embryonic kidney (HEK) 293 cells. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 940:119-32. [PMID: 23104338 DOI: 10.1007/978-1-62703-110-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Due to its excellent transfectability, the human embryonic kidney (HEK) 293 cell line is widely used as an in vitro model system for transfection experiments. Particle bombardment, or biolistics technology, provides a physical transfection approach that can deliver transgene materials efficiently into many different cell lines. Transfection of 293 cells by gene gun, allows examination of transgene expression in epithelial cells, as well as studies concerning a variety of questions in neurobiology. The present study of transfection of HEK 293 cells by biolistics technology uses the plasmids gWIZ-luc encoding luciferase and gWIZ-GFP encoding green fluorescence protein (GFP) as model transgenes. This system can be routinely used at varying bombarding conditions that can be adjusted according to experimental requirements and purpose, such as gene gun helium pressure, the sizes and the amount of the gold particles and the length of the spacer. The results obtained show that the Bio-Rad spacer for the gene gun should be optimized for travel distance and spreading of gold particles over a relatively small area, when used for biolistic transfection of cells dispersed in multi-well plate.
Collapse
Affiliation(s)
- Xiongwei Li
- Department of Pharmaceutics, School of Pharmacy, University of London, London, UK
| | | | | | | |
Collapse
|
9
|
|
10
|
O'Brien JA, Lummis SCR. Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles. BMC Biotechnol 2011; 11:66. [PMID: 21663596 PMCID: PMC3144454 DOI: 10.1186/1472-6750-11-66] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 06/10/2011] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Biolistic transfection is proving an increasingly popular method of incorporating DNA or RNA into cells that are difficult to transfect using traditional methods. The technique routinely uses 'microparticles', which are ~1 μm diameter projectiles, fired into tissues using pressurised gas. These microparticles are efficient at delivering DNA into cells, but cannot efficiently transfect small cells and may cause significant tissue damage, thus limiting their potential usefulness. Here we describe the use of 40 nm diameter projectiles--nanoparticles--in biolistic transfections to determine if they are a suitable alternative to microparticles. RESULTS Examination of transfection efficiencies in HEK293 cells, using a range of conditions including different DNA concentrations and different preparation procedures, reveals similar behaviour of microparticles and nanoparticles. The use of nanoparticles, however, resulted in ~30% fewer damaged HEK293 cells following transfection. Biolistic transfection of mouse ear tissue revealed similar depth penetration for the two types of particles, and also showed that < 10% of nuclei were damaged in nanoparticle-transfected samples, compared to > 20% in microparticle-transfected samples. Visualising details of small cellular structures was also considerably enhanced when using nanoparticles. CONCLUSIONS We conclude that nanoparticles are as efficient for biolistic transfection as microparticles, and are more appropriate for use in small cells, when examining cellular structures and/or where tissue damage is a problem.
Collapse
Affiliation(s)
- John A O'Brien
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | - Sarah CR Lummis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| |
Collapse
|
11
|
Jinturkar KA, Rathi MN, Misra A. Gene Delivery Using Physical Methods. CHALLENGES IN DELIVERY OF THERAPEUTIC GENOMICS AND PROTEOMICS 2011:83-126. [DOI: 10.1016/b978-0-12-384964-9.00003-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
12
|
Fay F, Quinn DJ, Gilmore BF, McCarron PA, Scott CJ. Gene delivery using dimethyldidodecylammonium bromide-coated PLGA nanoparticles. Biomaterials 2010; 31:4214-22. [DOI: 10.1016/j.biomaterials.2010.01.143] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 01/29/2010] [Indexed: 02/07/2023]
|
13
|
Kawakami S, Higuchi Y, Hashida M. Nonviral approaches for targeted delivery of plasmid DNA and oligonucleotide. J Pharm Sci 2008; 97:726-45. [PMID: 17823947 DOI: 10.1002/jps.21024] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Successful gene therapy depends on the development of efficient delivery systems. Although pDNA and ODN are novel candidates for nonviral gene therapy, their clinical applications are generally limited owing to their rapid degradation by nucleases in serum and rapid clearance. A great deal of effort had been devoted to developing gene delivery systems, including physical methods and carrier-mediated methods. Both methods could improve transfection efficacy and achieve high gene expression in vitro and in vivo. As for carrier-mediated delivery in vivo, since gene expression depends on the particle size, charge ratio, and interaction with blood components, these factors must be optimized. Furthermore, a lack of cell-selectivity limits the wide application to gene therapy; therefore, the use of ligand-modified carriers is a promising strategy to achieve well-controlled gene expression in target cells. In this review, we will focus on the in vivo targeted delivery of pDNA and ODN using nonviral carriers.
Collapse
Affiliation(s)
- Shigeru Kawakami
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
14
|
Bergen JM, Park IK, Horner PJ, Pun SH. Nonviral approaches for neuronal delivery of nucleic acids. Pharm Res 2007; 25:983-98. [PMID: 17932730 PMCID: PMC2292496 DOI: 10.1007/s11095-007-9439-5] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 08/20/2007] [Indexed: 12/23/2022]
Abstract
The delivery of therapeutic nucleic acids to neurons has the potential to treat neurological disease and spinal cord injury. While select viral vectors have shown promise as gene carriers to neurons, their potential as therapeutic agents is limited by their toxicity and immunogenicity, their broad tropism, and the cost of large-scale formulation. Nonviral vectors are an attractive alternative in that they offer improved safety profiles compared to viruses, are less expensive to produce, and can be targeted to specific neuronal subpopulations. However, most nonviral vectors suffer from significantly lower transfection efficiencies than neurotropic viruses, severely limiting their utility in neuron-targeted delivery applications. To realize the potential of nonviral delivery technology in neurons, vectors must be designed to overcome a series of extra- and intracellular barriers. In this article, we describe the challenges preventing successful nonviral delivery of nucleic acids to neurons and review strategies aimed at overcoming these challenges.
Collapse
Affiliation(s)
- Jamie M Bergen
- Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | |
Collapse
|
15
|
Balaban AT, Ilies MA. Recent developments in cationic lipid-mediated gene delivery and gene therapy. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.11.11.1729] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
da Cruz MTG, Simões S, de Lima MCP. Improving lipoplex-mediated gene transfer into C6 glioma cells and primary neurons. Exp Neurol 2004; 187:65-75. [PMID: 15081589 DOI: 10.1016/j.expneurol.2003.12.013] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Revised: 12/11/2003] [Accepted: 12/19/2003] [Indexed: 11/16/2022]
Abstract
The development of methodologies for gene transfer into the central nervous system is crucial for gene therapy of neurological disorders. In this study, different cationic liposome formulations were used to transfer DNA into C6 glioma cells and primary hippocampal and cortical neurons by varying the nature of the helper lipid (DOPE, Chol) or a mixture of DOPE and cholesterol (Chol) associated to DOTAP. In addition, the effect of the lipid/DNA (+/-) charge ratio, the association of the ligand transferrin to the lipoplexes, and the stage of differentiation of the primary cells on the levels of transfection activity, transfection efficiency, and duration of gene expression were evaluated. Mechanistic studies were also performed to investigate the route of delivery of the complexes into neurons. Our results indicate that DOTAP:Chol (1:1 mol ratio) was the best formulation to transfer a reporter gene into C6 glioma cells, primary hippocampal neurons, and primary cortical neurons. The use of transferrin-associated lipoplexes resulted in a significant enhancement of transfection activity, as compared to plain lipoplexes, which can be partially attributed to the promotion of their internalization mediated by transferrin. While for hippocampal neurons the levels of luciferase gene expression are very low, for primary cortical neurons the levels of transgene expression are high and relatively stable, although only 4% of the cells has been transfected. The stage of cell differentiation revealed to be critical to the levels of gene expression. Consistent with previous findings on the mechanisms of cell internalization, the experiments with inhibitors of the endocytotic pathway clearly indicate that transferrin-associated lipoplexes are internalized into primary neurons by endocytosis. Promising results were obtained in terms of the levels and duration of gene expression, particularly in cortical neurons when transfected with the Tf-associated lipoplexes, this finding suggesting the usefulness of these lipid-based carriers to deliver genes within the CNS.
Collapse
Affiliation(s)
- M Teresa Girão da Cruz
- Department of Biochemistry, Faculty of Sciences and Technology, University of Coimbra, Apartado 3126, 3001-401, Coimbra, Portugal
| | | | | |
Collapse
|
17
|
Wintzer M, Mladinic M, Lazarevic D, Casseler C, Cattaneo A, Nicholls J. Strategies for identifying genes that play a role in spinal cord regeneration. J Anat 2004; 204:3-11. [PMID: 14690473 PMCID: PMC1571237 DOI: 10.1111/j.1469-7580.2004.00258.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A search for genes that promote or block CNS regeneration requires numerous approaches; for example, tests can be made on individual candidate molecules. Here, however, we describe methods for comprehensive identification of genes up- and down-regulated in neurons that can and cannot regenerate after injury. One problem concerns identification of low-abundance genes out of the 30,000 or so genes expressed by neurons. Another difficulty is knowing whether a single gene or multiple genes are necessary. When microchips and subtractive differential display are used to identify genes turned on or off, the numbers are still too great to test which molecules are actually important for regeneration. Candidates are genes coding for trophic, inhibitory, receptor and extracellular matrix molecules, as well as unknown genes. A preparation useful for narrowing the search is the neonatal opossum. The spinal cord and optic nerve can regenerate after injury at 9 days but cannot at 12 days after birth. This narrow window allows genes responsible for the turning off of regeneration to be identified. As a next step, sites at which they are expressed (forebrain, midbrain, spinal cord, neurons or glia, intracellular or extracellular) must be determined. An essential step is to characterize proteins, their levels of expression, and their importance for regeneration. Comprehensive searches for molecular mechanisms represent a lengthy series of experiments that could help in devising strategies for repairing injured spinal cord.
Collapse
|
18
|
Abstract
Recent improvements in the biolistic technique and devices have increased its usefulness for transfection of neurons. With these recent advances, both dissociated and slice cultures can be transfected at reasonably high rates. This chapter focuses on the parameters that determine the successful biolistic transfection of neurons in both types of cultures.
Collapse
Affiliation(s)
- Paul C Bridgman
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
19
|
Lawler C, Suk WA, Pitt BR, Croix CMS, Watkins SC. Multimodal optical imaging. Am J Physiol Lung Cell Mol Physiol 2003; 285:L269-80. [PMID: 12851207 DOI: 10.1152/ajplung.00424.2002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The recent resurgence of interest in the use of intravital microscopy in lung research is a manifestation of extraordinary progress in visual imaging and optical microscopy. This review evaluates the tools and instrumentation available for a number of imaging modalities, with particular attention to recent technological advances, and addresses recent progress in use of optical imaging techniques in basic pulmonary research.1 Limitations of existing methods and anticipated future developments are also identified. Although there have also been major advances made in the use of magnetic resonance imaging, positron emission tomography, and X-ray and computed tomography to image intact lungs and while these technologies have been instrumental in advancing the diagnosis and treatment of patients, the purpose of this review is to outline developing optical methods that can be evaluated for use in basic research in pulmonary biology.
Collapse
Affiliation(s)
- Cindy Lawler
- National Institute of Environmental Health Sciences, Research Traingle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
20
|
Lau DT, Saeed-Kothe A, Parker SK, William Detrich H. Adaptive Evolution of Gene Expression in Antarctic Fishes: Divergent Transcription of the 5′-to-5′ Linked Adult α1- and β-Globin Genes of the Antarctic TeleostNotothenia coriicepsis Controlled by Dual Promoters and Intergenic Enhancers1. ACTA ACUST UNITED AC 2001. [DOI: 10.1668/0003-1569(2001)041[0113:aeogei]2.0.co;2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Adaptive Evolution of Gene Expression in Antarctic Fishes: Divergent Transcription of the 5′-to-5′ Linked Adult α1- and β-Globin Genes of the Antarctic TeleostNotothenia coriicepsis Controlled by Dual Promoters and Intergenic Enhancers. ACTA ACUST UNITED AC 2001. [DOI: 10.1093/icb/41.1.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|