1
|
Wenta T, Nastaly P, Lipinska B, Manninen A. Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression. Matrix Biol 2024; 134:197-219. [PMID: 39500383 DOI: 10.1016/j.matbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals. The ECM architecture is dynamically modulated by multiple serine proteases that process both structural and signaling proteins to regulate physiological processes such as organogenesis and tissue homeostasis but they also contribute to pathological events, especially cancer progression. Here, we review the current literature regarding the role of ECM remodeling by serine proteases (KLKs, uPA, furin, HtrAs, granzymes, matriptase, hepsin) in tumorigenesis.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Paulina Nastaly
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
2
|
Manou D, Golfinopoulou MA, Alharbi SND, Alghamdi HA, Alzahrani FM, Theocharis AD. The Expression of Serglycin Is Required for Active Transforming Growth Factor β Receptor I Tumorigenic Signaling in Glioblastoma Cells and Paracrine Activation of Stromal Fibroblasts via CXCR-2. Biomolecules 2024; 14:461. [PMID: 38672477 PMCID: PMC11048235 DOI: 10.3390/biom14040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFβRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFβ signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFβRI associated with lower responsiveness to the manipulation of TGFβ/TGFβRI pathway and the regulation of pro-tumorigenic properties. Active TGFβRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1β, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.
Collapse
Affiliation(s)
- Dimitra Manou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (D.M.); (M.-A.G.)
| | - Maria-Angeliki Golfinopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (D.M.); (M.-A.G.)
| | - Sara Naif D. Alharbi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (S.N.D.A.); (H.A.A.); (F.M.A.)
| | - Hind A. Alghamdi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (S.N.D.A.); (H.A.A.); (F.M.A.)
| | - Fatimah Mohammed Alzahrani
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (S.N.D.A.); (H.A.A.); (F.M.A.)
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece; (D.M.); (M.-A.G.)
| |
Collapse
|
3
|
Henriet E, Abdallah F, Laurent Y, Guimpied C, Clement E, Simon M, Pichon C, Baril P. Targeting TGF-β1/miR-21 pathway in keratinocytes reveals protective effects of silymarin on imiquimod-induced psoriasis mouse model. JID INNOVATIONS 2022; 3:100175. [PMID: 36968096 PMCID: PMC10034514 DOI: 10.1016/j.xjidi.2022.100175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Epidermal cells integrate multiple signals that activate the signaling pathways involved in skin homeostasis. TGF-β1 signaling pathway upregulates microRNA (miR)-21-5p in keratinocytes and is often deregulated in skin diseases. To identify the bioactive compounds that enable to modulate the TGF-β1/miR-21-5p signaling pathway, we screened a library of medicinal plant extracts using our miR-ON RILES luciferase reporter system placed under the control of the miR-21-5p in keratinocytes treated with TGF-β1. We identified silymarin, a mixture of flavonolignans extracted from Silybum marianum (L.) Gaertn., as the most potent regulator of miR-21-5p expression. Using Argonaute 2 immunoprecipitation and RT-qPCR, we showed that silymarin regulates the expression of miR-21-5p through a noncanonical TGF-β1 signaling pathway, whereas RNA-sequencing analysis revealed three unexpected transcriptomic signatures associated with keratinocyte differentiation, cell cycle, and lipid metabolism. Mechanistically, we demonstrated that SM blocks cell cycle progression, inhibits keratinocyte differentiation through repression of Notch3 expression, stimulates lipid synthesis via activation of PPARγ signaling and inhibits inflammatory responses by suppressing the transcriptional activity of NF-κB. We finally showed that topical application of silymarin alleviates the development of imiquimod-induced psoriasiform lesions in mice by abrogating the altered expression levels of markers involved in inflammation, proliferation, differentiation, and lipid metabolism.
Collapse
|
4
|
Tagirasa R, Yoo E. Role of Serine Proteases at the Tumor-Stroma Interface. Front Immunol 2022; 13:832418. [PMID: 35222418 PMCID: PMC8873516 DOI: 10.3389/fimmu.2022.832418] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 01/19/2023] Open
Abstract
During tumor development, invasion and metastasis, the intimate interaction between tumor and stroma shapes the tumor microenvironment and dictates the fate of tumor cells. Stromal cells can also influence anti-tumor immunity and response to immunotherapy. Understanding the molecular mechanisms that govern this complex and dynamic interplay, thus is important for cancer diagnosis and therapy. Proteolytic enzymes that are expressed and secreted by both cancer and stromal cells play important roles in modulating tumor-stromal interaction. Among, several serine proteases such as fibroblast activation protein, urokinase-type plasminogen activator, kallikrein-related peptidases, and granzymes have attracted great attention owing to their elevated expression and dysregulated activity in the tumor microenvironment. This review highlights the role of serine proteases that are mainly derived from stromal cells in tumor progression and associated theranostic applications.
Collapse
|
5
|
Experimental and Clinical Evidence Supports the Use of Urokinase Plasminogen Activation System Components as Clinically Relevant Biomarkers in Gastroesophageal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13164097. [PMID: 34439251 PMCID: PMC8393967 DOI: 10.3390/cancers13164097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Patients with gastric and oesophageal adenocarcinomas (GOCs) have short life expectancies as their tumours spread to other sites early. This is facilitated by the increased expression of the urokinase plasminogen activation system (uPAS); a feature of the majority of GOCs. There is increasing appreciation of the importance of uPAS expression in a range of cell types within the tumour microenvironment. Abundant clinical evidence indicates that altered expression of uPAS proteins is associated with worse outcomes, including time to tumour recurrence and patient survival. Emerging technologies, including liquid biopsy, suggest a role of uPAS for the detection of circulating tumour cells, which are responsible for the dissemination of cancers. We review and summarise pre-clinical and clinical data that supports the use of uPAS as a biomarker in GOC. Abstract Gastric and oesophageal cancers (GOCs) are lethal cancers which metastasise early and recur frequently, even after definitive surgery. The urokinase plasminogen activator system (uPAS) is strongly implicated in the invasion and metastasis of many aggressive tumours including GOCs. Urokinase plasminogen activator (uPA) interaction with its receptor, urokinase plasminogen activator receptor (uPAR), leads to proteolytic activation of plasminogen to plasmin, a broad-spectrum protease which enables tumour cell invasion and dissemination to distant sites. uPA, uPAR and the plasminogen activator inhibitor type 1 (PAI-1) are overexpressed in some GOCs. Accumulating evidence points to a causal role of activated receptor tyrosine kinase pathways enhancing uPAS expression in GOCs. Expression of these components are associated with poorer clinicopathological features and patient survival. Stromal cells, including tumour-associated macrophages and myofibroblasts, also express the key uPAS proteins, supporting the argument of stromal involvement in GOC progression and adverse effect on patient survival. uPAS proteins can be detected on circulating leucocytes, circulating tumour cells and within the serum; all have the potential to be developed into circulating biomarkers of GOC. Herein, we review the experimental and clinical evidence supporting uPAS expression as clinical biomarker in GOC, with the goal of developing targeted therapeutics against the uPAS.
Collapse
|
6
|
Santibanez JF, Obradović H, Kukolj T, Krstić J. Transforming growth factor-β, matrix metalloproteinases, and urokinase-type plasminogen activator interaction in the cancer epithelial to mesenchymal transition. Dev Dyn 2017; 247:382-395. [PMID: 28722327 DOI: 10.1002/dvdy.24554] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 12/20/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a pleiotropic factor that acts as a tumor suppressor in the early stages, while it exerts tumor promoting activities in advanced stages of cancer development. One of the hallmarks of cancer progression is the capacity of cancer cells to migrate and invade surrounding tissues with subsequent metastasis to different organs. Matrix metalloproteinases (MMPs) together with urokinase-type plasminogen activator (uPA) and its receptor (uPAR), whose main original function described is the proteolytic degradation of the extracellular matrix, play key cellular roles in the enhancement of cell malignancy during cancer progression. TGF-β tightly regulates the expression of several MMPs and uPA/uPAR in cancer cells, which in return can participate in TGF-β activation, thus contributing to tumor malignancy. TGF-β is one of the master factors in the induction of cancer-associated epithelial to mesenchymal transition (EMT), and recently both MMPs and uPA/uPAR have also been shown to be implicated in the cancer-associated EMT process. In this review, we analyze the main molecular mechanisms underlying MMPs and uPA/uPAR regulation by TGF-β, as well as their mutual implication in the development of EMT in cancer cells. Developmental Dynamics 247:382-395, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juan F Santibanez
- Group for Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Jelena Krstić
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia.,Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| |
Collapse
|
7
|
Abstract
Transforming Growth Factor-β1 (TGF-β1) plays a key role in connective tissue remodeling and inflammation. Under pathological conditions, like periodontal disease, fibroblasts may display an altered response to this growth factor. To investigate this question, we have studied whether TGF-β1 may differentially regulate the expression of urokinase at the protein level in primary cultures of fibroblasts derived from healthy gingiva, granulation tissue from gingival wounds, and chronic periodontal disease. We observed that TGF-β1 may repress urokinase expression in healthy gingival fibroblasts and promote its production in granulation-tissue fibroblasts. A significant correlation was found between expression of the myofibroblast marker α-smooth-muscle actin and stimulation of urokinase production by TGF-β1. Immunostaining of gingival wounds showed that myofibroblasts were involved in urokinase production. TGF-β1-stimulated urokinase expression was blocked after inhibition of the c-jun-NH2 terminal kinase signaling pathway. We propose that stimulation of urokinase production by TGF-β1 is involved in the responses of activated fibroblasts to tissue injury.
Collapse
Affiliation(s)
- P C Smith
- Faculty of Odontology, Institute of Nutrition and Food Technology (INTA), University of Chile, Olivos 943, Casilla 1903, Santiago, Chile.
| | | |
Collapse
|
8
|
Shukla P, Vogl C, Wallner B, Rigler D, Müller M, Macho-Maschler S. High-throughput mRNA and miRNA profiling of epithelial-mesenchymal transition in MDCK cells. BMC Genomics 2015; 16:944. [PMID: 26572553 PMCID: PMC4647640 DOI: 10.1186/s12864-015-2036-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is an important process in embryonic development, especially during gastrulation and organ formation. Furthermore EMT is widely observed in pathological conditions, e.g., fibrosis, tumor progression and metastasis. Madin-Darby Canine Kidney (MDCK) cells are widely used for studies of EMT and epithelial plasticity. MDCK cells show an epithelial phenotype, while oncogenic Ras-transformed MDCK (MDCK-Ras) cells undergo EMT and show a mesenchymal phenotype. METHODS RNA-Seq and miRNA-Seq analyses were performed on MDCK and MDCK-Ras cells. Data were validated by qRT-PCR. Gene signature analyses were carried out to identify pathways and gene ontology terms. For selected miRNAs target prediction was performed. RESULTS With RNA-Seq, mRNAs of approximately half of the genes known for dog were detected. These were screened for differential regulation during Ras-induced EMT. We went further and performed gene signature analyses and found Gene Ontology (GO) terms and pathways important for epithelial polarity and implicated in EMT. Among the identified pathways, TGFβ1 emerged as a central signaling factor in many EMT related pathways and biological processes. With miRNA-Seq, approximately half of the known canine miRNAs were found expressed in MDCK and MDCK-Ras cells. Furthermore, among differentially expressed miRNAs, miRNAs that are known to be important regulators of EMT were detected and new candidates were predicted. New dog miRNAs were discovered after aligning our reads to that of other species in miRBase. Importantly, we could identify 25 completely novel miRNAs with a stable hairpin structure. Two of these novel miRNAs were differentially expressed. We validated the two novel miRNAs with the highest read counts by RT-qPCR. Target prediction of a particular novel miRNA highly expressed in mesenchymal MDCK-Ras cells revealed that it targets components of epithelial cell junctional complexes. Combining target prediction for the most upregulated miRNAs and validation of the targets in MDCK-Ras cells with pathway analysis allowed us to identify two novel pathways, e.g., JAK/STAT signaling and pancreatic cancer pathways. These pathways could not be detected solely by gene set enrichment analyses of RNA-Seq data. CONCLUSION With deep sequencing data of mRNAs and miRNAs of MDCK cells and of Ras-induced EMT in MDCK cells, differentially regulated mRNAs and miRNAs are identified. Many of the identified genes are within pathways known to be involved in EMT. Novel differentially upregulated genes in MDCK cells are interferon stimulated genes and genes involved in Slit and Netrin signaling. New pathways not yet linked to these processes were identified. A central pathway in Ras induced EMT is TGFβ signaling, which leads to differential regulation of many target genes, including miRNAs. With miRNA-Seq we identified miRNAs involved in either epithelial cell biology or EMT. Finally, we describe completely novel miRNAs and their target genes.
Collapse
Affiliation(s)
- Priyank Shukla
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Wallner
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Doris Rigler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sabine Macho-Maschler
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Lopez-Bergami P. The role of mitogen- and stress-activated protein kinase pathways in melanoma. Pigment Cell Melanoma Res 2014; 24:902-21. [PMID: 21914141 DOI: 10.1111/j.1755-148x.2011.00908.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent discoveries have increased our comprehension of the molecular signaling events critical for melanoma development and progression. Many oncogenes driving melanoma have been identified, and most of them exert their oncogenic effects through the activation of the RAF/MEK/ERK mitogen-activated protein kinase (MAPK) pathway. The c-Jun N-terminal kinase (JNK) and p38 MAPK pathways are also important in melanoma, but their precise role is not clear yet. This review summarizes our current knowledge on the role of the three main MAPK pathways, extracellular regulated kinase (ERK), JNK, and p38, and their impact on melanoma biology. Although the results obtained with BRAF inhibitors in melanoma patients are impressive, several mechanisms of acquired resistance have emerged. To overcome this obstacle constitutes the new challenge in melanoma therapy. Given the major role that MAPKs play in melanoma, understanding their functions and the interconnection among them and with other signaling pathways represents a step forward toward this goal.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Instituto de Medicina y Biología Experimental, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Transforming growth factor-Beta and urokinase-type plasminogen activator: dangerous partners in tumorigenesis-implications in skin cancer. ISRN DERMATOLOGY 2013; 2013:597927. [PMID: 23984088 PMCID: PMC3732602 DOI: 10.1155/2013/597927] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 06/18/2013] [Indexed: 01/01/2023]
Abstract
Transforming growth factor-beta (TGF-β) is a pleiotropic factor, with several different roles in health and disease. TGF-β has been postulated as a dual factor in tumor progression, since it represses epithelial tumor development in early stages, whereas it stimulates tumor progression in advanced stages. During tumorigenesis, cancer cells acquire the capacity to migrate and invade surrounding tissues and to metastasize different organs. The urokinase-type plasminogen activator (uPA) system, comprising uPA, the uPA cell surface receptor, and plasminogen-plasmin, is involved in the proteolytic degradation of the extracellular matrix and regulates key cellular events by activating intracellular signal pathways, which together allow cancer cells to survive, thus, enhancing cell malignance during tumor progression. Due to their importance, uPA and its receptor are tightly transcriptionally regulated in normal development, but are deregulated in cancer, when their activity and expression are related to further development of cancer. TGF-β regulates uPA expression in cancer cells, while uPA, by plasminogen activation, may activate the secreted latent TGF-β, thus, producing a pernicious cycle which contributes to the enhancement of tumor progression. Here we review the specific roles and the interplay between TGF-β and uPA system in cancer cells and their implication in skin cancer.
Collapse
|
11
|
Kocic J, Bugarski D, Santibanez JF. SMAD3 is essential for transforming growth factor-β1-induced urokinase type plasminogen activator expression and migration in transformed keratinocytes. Eur J Cancer 2011; 48:1550-7. [PMID: 21798735 DOI: 10.1016/j.ejca.2011.06.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/03/2011] [Accepted: 06/17/2011] [Indexed: 11/24/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) stimulates the extracellular matrix degrading proteases expression and cell migration in order to enhance cancer cells malignancy. In the present study, we analysed the role of TGF-β1-induced Smad3 activation in the urokinase type plasminogen activator (uPA) production, as well as in cell migration and E-cadherin downregulation in transformed PDV keratinocyte cell line. TGF-β1 signalling was interfered by the chemical inhibitor of the TGF-β1-receptor 1 (ALK5), SB505124, and the specific Smad3 inhibitor, SiS3. Our results showed that TGF-β1 stimulates uPA expression directly through ALK5 activation. The inhibition of Smad3 strongly reduced the capacity of TGF-β1 to stimulate uPA expression, in parallel decreasing the uPA inhibitor plasminogen activator inhibitor type 1 (PAI-1) expression. In addition, the transient expression of dominant negative Smad3 mutant inhibited the TGF-β1-induced uPA promoter transactivation. Moreover, Smad3-/- mouse embryonic fibroblasts were refractory to the induction of uPA by TGF-β1. The inhibition of both ALK5 and Smad3 dramatically blocked the TGF-β1-stimulated E-cadherin downregulation, F-actin reorganisation and migration of PDV cells. Taken together, our results suggest that the TGF-β1-induced activation of Smad3 is the critical step for the uPA upregulation and E-cadherin downregulation, which are the key events preceding the induction of cell migration by TGF-β1 in transformed cells.
Collapse
Affiliation(s)
- Jelena Kocic
- Laboratory for Experimental Hematology, Institute for Medical Research, University of Belgrade, Dr. Subotica 4, PO Box 102, 11129 Belgrade, Serbia
| | | | | |
Collapse
|
12
|
SKIP is required for TGF-β1-induced epithelial mesenchymal transition and migration in transformed keratinocytes. FEBS Lett 2010; 584:4586-92. [DOI: 10.1016/j.febslet.2010.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 10/04/2010] [Accepted: 10/11/2010] [Indexed: 11/18/2022]
|
13
|
Santibanez JF, Pérez-Gómez E, Fernandez-L A, Garrido-Martin EM, Carnero A, Malumbres M, Vary CPH, Quintanilla M, Bernabéu C. The TGF-beta co-receptor endoglin modulates the expression and transforming potential of H-Ras. Carcinogenesis 2010; 31:2145-54. [PMID: 20884686 DOI: 10.1093/carcin/bgq199] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endoglin is a coreceptor for transforming growth factor-β (TGF-β) that acts as a suppressor of malignancy during mouse skin carcinogenesis. Because in this model system H-Ras activation drives tumor initiation and progression, we have assessed the effects of endoglin on the expression of H-Ras in transformed keratinocytes. We found that TGF-β1 increases the expression of H-Ras at both messenger RNA and protein levels. The TGF-β1-induced H-Ras promoter transactivation was Smad4 independent but mediated by the activation of the TGF-β type I receptor ALK5 and the Ras-mitogen-activated protein kinase (MAPK) pathway. Endoglin attenuated stimulation by TGF-β1 of both MAPK signaling activity and H-Ras gene expression. Moreover, endoglin inhibited the Ras/MAPK pathway in transformed epidermal cells containing an H-Ras oncogene, as evidenced by the levels of Ras-guanosine triphosphate, phospho-MAPK kinase (MEK) and phospho-extracellular signal-regulated kinase (ERK) as well as the expression of c-fos, a MAPK downstream target gene. Interestingly, in spindle carcinoma cells, that have a hyperactivated Ras/MAPK pathway, endoglin inhibited ERK phosphorylation without affecting MEK or Ras activity. The mechanism for this effect is unknown but strongly depends on the endoglin extracellular domain. Because the MAPK pathway is a downstream mediator of the transforming potential of Ras, the effect of endoglin on the oncogenic function of H-Ras was assessed. Endoglin inhibited the transforming capacity of H-Ras(Q61K) and H-Ras(G12V) oncogenes in a NIH3T3 focus formation assay. The ability to interfere with the expression and oncogenic potential of H-Ras provides a new face of the suppressor role exhibited by endoglin in H-Ras-driven carcinogenesis.
Collapse
Affiliation(s)
- Juan F Santibanez
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC) and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Villar V, Kocić J, Santibanez JF. Spred2 inhibits TGF-beta1-induced urokinase type plasminogen activator expression, cell motility and epithelial mesenchymal transition. Int J Cancer 2010; 127:77-85. [PMID: 19908229 DOI: 10.1002/ijc.25045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
TGF-beta1 is a potent inductor of malignance in cancer cells. TGF-beta1 stimulates the expression of extracellular matrix degrading proteases, cell migration and it is also involved in the epithelial-mesenchymal transition (EMT). In the present work, we analyzed the role of Spred2 in the urokinase-type plasminogen activator (uPA) stimulation, EMT and cell migration by TGF-beta1. We found that both the expression of mRNA and the protein level of Spred2 were lower in transformed keratinocytes PDV compared with immortalized keratinocytes MCA-3D. The transient ectopic expression of Spred2 in PDV cells inhibited the TGF-beta1-transactivated SRE-Luc reporter which is related with the ERK1,2 signal. The stable ectopic expression of Spred2 in PDV cells (SP cells) led to the loss of ERK 1,2 activation by TGF-beta1, although Smad2 activation was not affected, and the knockdown of Spred2 enhanced the activation of ERK1,2 signal by TGF-beta1. The increment of uPA expression induced by TGF-beta1 was suppressed in SP cells. In contrast, the stimulus on PAI-1 expression was not affected and comparable to parental PDV cells. SP cells under TGF-beta1 treatment were unable to display the EMT, since the overexpression of Spred2 abolished the TGF-beta1-induced disruption of the E-cadherin cell to cell interactions, reorganization of the actin cytoskeleton and upregulation of the mesenchymal marker vimentin. Finally, SP cells could not respond to the TGF-beta1 stimulus on cell migration. Taken together, the data in the present study suggests that Spred2 is a regulator of TGF-beta1-induced malignance in transformed keratinocytes.
Collapse
Affiliation(s)
- Victor Villar
- Cellular Biology Laboratory, Nutrition and Food Technology Institute, INTA, Universidad de Chile, Chile
| | | | | |
Collapse
|
15
|
Santibáñez JF, Kocić J, Fabra A, Cano A, Quintanilla M. Rac1 modulates TGF-β1-mediated epithelial cell plasticity and MMP9 production in transformed keratinocytes. FEBS Lett 2010; 584:2305-10. [DOI: 10.1016/j.febslet.2010.03.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 02/27/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
|
16
|
Tobar N, Villar V, Santibanez JF. ROS-NFkappaB mediates TGF-beta1-induced expression of urokinase-type plasminogen activator, matrix metalloproteinase-9 and cell invasion. Mol Cell Biochem 2010; 340:195-202. [PMID: 20204677 DOI: 10.1007/s11010-010-0418-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 02/10/2010] [Indexed: 12/27/2022]
Abstract
TGF-beta1 has been postulated as a pro-oncogenic factor in the late step of the tumoral progression. In transformed cells, TGF-beta1 enhances the capacity to degrade the extracellular matrix, cell invasiveness and epithelial-mesenchymal transition, which are crucial steps for metastasis. Urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) are critical components in cell migration and invasion induced by TGF-beta1, however, the exact mechanism by which TGF-beta1 regulates uPA and MMP-9 is not well elucidated so far. In the present study, we analyzed the role of ROS-NFkappaB, signal as mediator in the cell malignity enhancement by TGF-beta1. We found that TGF-beta1 activates NFkappaB, through Rac1-NOXs-ROS-dependent mechanism. Our results shows that TGF-beta1 stimulation of uPA and MMP-9 expression involve NOXs-dependent ROS and NFkappaB, activation, demonstrated by using DPI, NOXs inhibitor, ROS scavenger N-acetylcysteine and SN50, an NFkb inhibitor. Furthermore, we found that the inhibition of ROS and NFkappaB, abrogates TGF-beta1 stimulation of EMT, cell motility and invasion. Thus, ROS-NFkappaB acts as the crucial signal in TGF-beta1-induced uPA and MMP-9 expression thereby mediating the enhancement of cellular malignity by TGF-beta1.
Collapse
Affiliation(s)
- Nicolas Tobar
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimentos, (INTA), Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
17
|
Suer S, Ampasala D, Walsh MF, Basson MD. Role of ERK/mTOR signaling in TGFbeta-modulated focal adhesion kinase mRNA stability and protein synthesis in cultured rat IEC-6 intestinal epithelial cells. Cell Tissue Res 2009; 336:213-223. [PMID: 19340459 PMCID: PMC5702499 DOI: 10.1007/s00441-009-0776-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 02/02/2009] [Indexed: 12/14/2022]
Abstract
Increasing evidence is available showing the importance of the FAK (focal adhesion kinase) protein level in the migration and homeostasis of intestinal cells. TGFbeta (transforming growth factor beta) modulates FAK protein expression in a complex fashion not only by inducing the activation of p38 and Smad signaling resulting in increased fak promoter activity and increased FAK protein levels, but also by activating ERK (extracellular signal regulated kinases), p38, and the Smad pathway. We show that the blockade of ERK signaling by a specific MEK (MAPK kinase) inhibitor attenuates TGFbeta-induced FAK mRNA stability and reduces FAK protein levels in rat IEC-6 intestinal epithelial cells. The mTOR (mammalian target of rapamycin)-specific inhibitor rapamycin and small interfering RNAs for mTOR and p70(S6) kinase also block TGFbeta-induced FAK protein synthesis. Furthermore, we have found that a TGFbeta-induced increase in wound closures in monolayers of these cells is abolished in the presence ERK or mTOR inhibition. Thus, TGFbeta also modulates FAK protein levels in cultured rat IEC-6 intestinal epithelial cells via ERK activation, acting at the transcriptional level to complement Smad signaling and at on the translational level via the mTOR pathway downstream of ERK, which in turn promotes intestinal epithelial cell migration.
Collapse
Affiliation(s)
- Silke Suer
- Department of Surgery, Michigan State University, Lansing, MI 48912, USA
| | | | | | | |
Collapse
|
18
|
Kanies CL, Smith JJ, Kis C, Schmidt C, Levy S, Khabar KSA, Morrow J, Deane N, Dixon DA, Beauchamp RD. Oncogenic Ras and transforming growth factor-beta synergistically regulate AU-rich element-containing mRNAs during epithelial to mesenchymal transition. Mol Cancer Res 2008; 6:1124-36. [PMID: 18644977 DOI: 10.1158/1541-7786.mcr-07-2095] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Colon cancer progression is characterized by activating mutations in Ras and by the emergence of the tumor-promoting effects of transforming growth factor-beta (TGF-beta) signaling. Ras-inducible rat intestinal epithelial cells (RIE:iRas) undergo a well-described epithelial to mesenchymal transition and invasive phenotype in response to H-RasV12 expression and TGF-beta treatment, modeling tumor progression. We characterized global gene expression profiles accompanying Ras-induced and TGF-beta-induced epithelial to mesenchymal transition in RIE:iRas cells by microarray analysis and found that the regulation of gene expression by the combined activation of Ras and TGF-beta signaling was associated with enrichment of a class of mRNAs containing 3' AU-rich element (ARE) motifs known to regulate mRNA stability. Regulation of ARE-containing mRNA transcripts was validated at the mRNA level, including genes important for tumor progression. Ras and TGF-beta synergistically increased the expression and mRNA stability of vascular endothelial growth factor (VEGF), a key regulator of tumor angiogenesis, in both RIE:iRas cells and an independent cell culture model (young adult mouse colonocyte). Expression profiling of human colorectal cancers (CRC) further revealed that many of these genes, including VEGF and PAI-1, were differentially expressed in stage IV human colon adenocarcinomas compared with adenomas. Furthermore, genes differentially expressed in CRC are also significantly enriched with ARE-containing transcripts. These studies show that oncogenic Ras and TGF-beta synergistically regulate genes containing AREs in cultured rodent intestinal epithelial cells and suggest that posttranscriptional regulation of gene expression is an important mechanism involved in cellular transformation and CRC tumor progression.
Collapse
Affiliation(s)
- Cindy L Kanies
- Department of Surgery, Vanderbilt University Medical Center, D-4316 Medical Center North, Nashville, TN 37232-2730, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Barden CA, Chandler HL, Lu P, Bomser JA, Colitz CMH. Effect of grape polyphenols on oxidative stress in canine lens epithelial cells. Am J Vet Res 2008; 69:94-100. [DOI: 10.2460/ajvr.69.1.94] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Abstract
Understanding regulatory pathways involved in melanoma development and progression has advanced significantly in recent years. It is now appreciated that melanoma is the result of complex changes in multiple signaling pathways that affect growth control, metabolism, motility and the ability to escape cell death programs. Here we review the major signaling pathways currently known to be deregulated in melanoma with an implication to its development and progression. Among these pathways are Ras, B-Raf, MEK, PTEN, phosphatidylinositol-3 kinase (PI3Ks) and Akt which are constitutively activated in a significant number of melanoma tumors, in most cases due to genomic change. Other pathways discussed in this review include the [Janus kinase/signal transducer and activator of transcription (JAK/STAT), transforming growth factor-beta pathways which are also activated in melanoma, although the underlying mechanism is not yet clear. As a paradigm for remodeled signaling pathways, melanoma also offers a unique opportunity for targeted drug development.
Collapse
Affiliation(s)
- Pablo Lopez-Bergami
- Signal Transduction Program, Burnham Institute for Medical Research, La Jolla, CA, USA
| | | | | |
Collapse
|
21
|
Massicotte F, Aubry I, Martel-Pelletier J, Pelletier JP, Fernandes J, Lajeunesse D. Abnormal insulin-like growth factor 1 signaling in human osteoarthritic subchondral bone osteoblasts. Arthritis Res Ther 2007; 8:R177. [PMID: 17129375 PMCID: PMC1794522 DOI: 10.1186/ar2087] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 10/20/2006] [Accepted: 11/27/2006] [Indexed: 11/10/2022] Open
Abstract
Insulin-like growth factor (IGF)-1 is a key factor in bone homeostasis and could be involved in bone tissue sclerosis as observed in osteoarthritis (OA). Here, we compare the key signaling pathways triggered in response to IGF-1 stimulation between normal and OA osteoblasts (Obs). Primary Obs were prepared from the subchondral bone of tibial plateaus of OA patients undergoing knee replacement or from normal individuals at autopsy. Phenotypic characterization of Obs was evaluated with alkaline phosphatase and osteocalcin release. The effect of IGF-1 on cell proliferation, alkaline phosphatase and collagen synthesis was evaluated in the presence or not of 50 ng/ml IGF-1, whereas signaling was studied with proteins separated by SDS-PAGE before western blot analysis. We also used immunoprecipitation followed by western blot analysis to detect interactions between key IGF-1 signaling elements. IGF-1 receptor (IGF-1R), Shc, Grb2, insulin receptor substrate (IRS)-1, and p42/44 mitogen-activated protein kinase (MAPK) levels were similar in normal and OA Obs in the presence or absence of IGF-1. After IGF-1 stimulation, the phosphorylation of IGF-1R in normal and OA Obs was similar; however, the phosphorylation of IRS-1 was reduced in OA Ob. In addition, the PI3K pathway was activated similarly in normal and OA Obs while that for p42/44 MAPK was higher in OA Obs compared to normal. p42/44 MAPK can be triggered via an IRS-1/Syp or Grb2/Shc interaction. Interestingly, Syp was poorly phosphorylated under basal conditions in normal Obs and was rapidly phosphorylated upon IGF-1 stimulation, yet Syp showed a poor interaction with IRS-1. In contrast, Syp was highly phosphorylated in OA Obs and its interaction with IRS-1 was very strong initially, yet rapidly dropped with IGF-1 treatments. The interaction of Grb2 with IRS-1 progressively increased in response to IGF-1 in OA Obs whereas this was absent in normal Ob. IGF-1 stimulation altered alkaline phosphatase in Ob, an effect reduced in the presence of PD98059, an inhibitor of p42/44 MAPK signaling, whereas neither IGF-1 nor PD98059 had any significant effect on collagen synthesis. In contrast, cell proliferation was higher in OA Obs compared to normal under basal conditions, and IGF-1 stimulated more cell proliferation in OA Obs than in normal Ob, an effect totally dependent on p42/44 MAPK activiy. The altered response of OA Obs to IGF-1 may be due to abnormal IGF-1 signaling in these cells. This is mostly linked with abnormal IRS-1/Syp and IRS-1/Grb2 interaction in these cells.
Collapse
Affiliation(s)
- Frédéric Massicotte
- Unité de recherche en arthrose, Centre de recherche du centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Montréal, Québec, Canada
| | - Isabelle Aubry
- Unité de recherche en arthrose, Centre de recherche du centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Montréal, Québec, Canada
| | - Johanne Martel-Pelletier
- Unité de recherche en arthrose, Centre de recherche du centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Montréal, Québec, Canada
| | - Jean-Pierre Pelletier
- Unité de recherche en arthrose, Centre de recherche du centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Montréal, Québec, Canada
| | - Julio Fernandes
- Centre de recherche, Hôpital Sacré-Cœur, Montréal, Québec, Canada
| | - Daniel Lajeunesse
- Unité de recherche en arthrose, Centre de recherche du centre hospitalier de l'Université de Montréal, Hôpital Notre-Dame, Montréal, Québec, Canada
| |
Collapse
|
22
|
Wang XJ, Han G, Owens P, Siddiqui Y, Li AG. Role of TGF beta-mediated inflammation in cutaneous wound healing. J Investig Dermatol Symp Proc 2006; 11:112-7. [PMID: 17069018 DOI: 10.1038/sj.jidsymp.5650004] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among many molecules known to influence wound healing, transforming growth factor beta 1 (TGF beta 1) has the broadest spectrum of actions, affecting all cell types that are involved in all stages of wound healing. Both positive and negative effects of TGF beta 1 on wound healing have been reported. However, the underlying mechanisms are largely unknown. We observed that endogenous TGF beta 1 was elevated in a narrow window of time after injury, and transgenic mice constitutively overexpressing wild-type TGF beta 1 in keratinocytes (K5.TGF beta 1wt) exhibited a significant delay in full-thickness wound healing as compared to non-transgenic mice. Delayed wound healing was associated with profound inflammation throughout all stages of wound healing in K5.TGF beta 1wt mice. Our data suggest that excessive and prolonged TGF beta 1 at the wound site does not benefit wound healing, which is partially owing to its pro-inflammatory effect. Future studies need to be conducted to assess whether tightly regulated TGF beta 1 expression will benefit wound healing. To this end, we have developed a gene-switch TGF beta 1 transgenic system that allows TGF beta 1 induction in keratinocytes temporally with desired levels. These mice will provide a tool to study stage-specific effects of TGF beta 1 on cutaneous wound healing.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Department of Otolaryngology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | | | | | |
Collapse
|
23
|
Santibañez JF. JNK mediates TGF-beta1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes. FEBS Lett 2006; 580:5385-91. [PMID: 16989819 DOI: 10.1016/j.febslet.2006.09.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 08/29/2006] [Accepted: 09/01/2006] [Indexed: 11/24/2022]
Abstract
In this study we analyzed the role of the c-Jun N-terminal kinases (JNK) pathway in the TGF-beta1 stimulation of urokinase-type plasminogen activator (uPA), initial stages of epithelial-mesenchymal transdifferentiation (EMT) and cell migration. TGF-beta1 induces JNK phosphorylation, c-Jun transactivation and AP1 activation. The involvement of JNK was evaluated using dominant negative mutants SEK-1 AL, JNK and cJun, depletion of JNK1,2 proteins by treatment of cells with antisense oligonucleotides, as well as the chemical inhibitor SP600125. Our results demonstrated that the JNK pathway is required in the TGF-beta1 enhancement of uPA, fibronectin, E-cadherin delocalization, actin re-organization and vimentin expression, concomitant with the induction of cell migration. These results allow us to suggest a role of JNK in the TGF-beta1 induction of EMT in relation with the stimulation of malignant properties of mouse transformed keratinocytes.
Collapse
Affiliation(s)
- Juan F Santibañez
- Laboratorio de Biologia Celular, Instituto de Nutrición y Tecnología de los Alimentos, INTA, Universidad de Chile, Casilla 138, Santiago 11, Chile.
| |
Collapse
|
24
|
Davies M, Robinson M, Smith E, Huntley S, Prime S, Paterson I. Induction of an epithelial to mesenchymal transition in human immortal and malignant keratinocytes by TGF-beta1 involves MAPK, Smad and AP-1 signalling pathways. J Cell Biochem 2005; 95:918-31. [PMID: 15861394 DOI: 10.1002/jcb.20458] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent data indicate that transforming growth factor-beta1 (TGF-beta1) can act to promote tumour progression in the late stages of carcinogenesis. The mechanism by which this occurs is unknown although a ligand-induced epithelial-mesenchymal transition (EMT) is thought to be important. In this study, we demonstrate that active Ras is required for TGF-beta1-induced EMT in human keratinocytes and that epidermal growth factor (EGF) can substitute for mutant Ras. EMT was reversed by the removal of TGF-beta1. Under conditions of TGF-beta1-induced EMT, cells were growth inhibited by the ligand resulting in G1 arrest. In cells containing normal Ras, TGF-beta1-activated ERK and p38 mitogen-activated protein kinases (MAPKs), and levels of activation were further increased by co-treatment with EGF. Inhibition of MAPK pathways and Smad2/3 signalling blocked the induction of EMT by TGF-beta1. Further, inhibition of the AP-1 transcriptional complex by [6]-Gingerol, or by the ectopic expression of JDP2, blocked TGF-beta1-induced EMT and conversely, stimulation of AP-1 by 12-O-tetradecanoylphorbol 13-acetate (TPA) substituted for EGF in the induction of EMT by TGF-beta1 in cells containing normal Ras. The presence of oncogenic Ras, the treatment of cells with EGF, or the treatment of cells with TPA to activate AP-1, potentiated TGF-beta1-induced Smad-dependent transcription, an effect that was attenuated by the inhibition of MAPKs and AP-1. The results demonstrate that active Ras and TGF-beta1 co-operate to reversibly induce EMT in human keratinocytes by mechanisms that involve MAPKs, Smad2/3 and AP-1. Further we demonstrate that MAPK/AP-1 signalling enhances Smad transcriptional activity under conditions associated with TGF-beta1-induced EMT.
Collapse
Affiliation(s)
- Maria Davies
- Department of Oral and Dental Science, University of Bristol, Bristol BS1 2LY, United Kingdom.
| | | | | | | | | | | |
Collapse
|
25
|
Xie L, Law BK, Chytil AM, Brown KA, Aakre ME, Moses HL. Activation of the Erk pathway is required for TGF-beta1-induced EMT in vitro. Neoplasia 2005; 6:603-10. [PMID: 15548370 PMCID: PMC1531665 DOI: 10.1593/neo.04241] [Citation(s) in RCA: 421] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transforming growth factor-beta1 (TGF-beta1) can be tumor-suppressive through the activation of the Smad-mediated signaling pathway. TGF-beta1 can also enhance tumor progression by stimulating epithelial-to-mesenchymal transition (EMT) through additional pathways. EMT is characterized by the acquisition of a fibroblast-like cell morphology, dissolution of tight junctions, disruption of adherence junctions, and formation of actin stress fibers. There is evidence linking the activation of mitogen-activated protein kinase pathways to the induction of TGF-beta1-mediated EMT. However, the role of Erk in the induction of TGF-beta1-mediated EMT remains unclear. TGF-beta1 treatment of normal murine mammary gland (NMuMG) epithelial cells resulted in increased gene expression of Ras, Raf, MEK1/2, and Erk1/2, as shown by microarray analysis and real-time polymerase chain reaction. Upon 24 and 48 hours of treatment with TGF-beta1, NMuMG and mouse cortical tubule (MCT) epithelial cells underwent EMT as shown by changes in cell morphology, delocalization of zonula occludens-1 and E-cadherin from cell-cell junctions, and formation of actin stress fibers. TGF-beta1 treatment also resulted in increased levels of phosphorylated Erk and Erk kinase activity. Treatment with an MEK inhibitor, U0126, inhibited increased Erk phosphorylation and kinase activity, and blocked TGF-beta1-induced EMT in both cell lines. These data show that TGF-beta1 induces the activation of the Erk signaling pathway, which is required for TGF-beta1-mediated EMT in vitro.
Collapse
Affiliation(s)
- Lu Xie
- Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue South, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
26
|
Desrosiers RR, Cusson MH, Turcotte S, Béliveau R. Farnesyltransferase inhibitor SCH-66336 downregulates secretion of matrix proteinases and inhibits carcinoma cell migration. Int J Cancer 2005; 114:702-12. [PMID: 15609318 DOI: 10.1002/ijc.20807] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The ras oncogenes are among those most frequently found in human cancers. Blocking Ras farnesylation is a promising strategy for arresting cancer growth. Ras activates several signaling pathways with key roles in cellular proliferation, invasion, metastasis and angiogenesis. Furthermore, proteolytic activities of matrix proteinases such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs) are regulated by Ras isoforms. Thus, we investigated the effects of SCH-66336, a farnesyltransferase inhibitor, on secretion of components of the plasminogen activation system as well as on the gelatinases MMP-2 and MMP-9, which play pivotal roles in matrix remodeling. SCH-66336 up to 5 microM did not significantly alter the viability of prostate (PC-3) and renal (Caki-1) cancer cells incubated in serum-depleted medium. SCH-66336 partly inhibited the processing of H-Ras, while levels of mature N-Ras and K-Ras remained unaffected. Under these noncytotoxic conditions, uPA and tPA levels were lowered in culture medium but raised in cell lysates, suggesting inhibition of trafficking pathways. In contrast, SCH-66336 had no effect on uPAR expression or on secreted PAI-1 levels. As expected, the reduction of uPA and tPA activities by SCH-66336 inhibited the conversion of plasminogen to plasmin by about 25% in PC-3 cells. SCH-66336 also inhibited the levels of secreted pro-MMP-2 and pro-MMP-9 as well as the release of their inhibitors TIMP-1 and TIMP-2. SCH-66336 decreased both the adhesion and even more so the migration of PC-3 cells on gelatin. Thus, SCH-66336 inhibited farnesylation in both cancer cell types, and H-Ras functions should be reduced by the drug. In addition, the lower levels of secreted proteinases in the presence of SCH-66336 suggest that reduced matrix remodeling and cell migration should occur in treated tumors.
Collapse
Affiliation(s)
- Richard R Desrosiers
- Laboratoire de médecine moléculaire, Hôpital Sainte-Justine, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
27
|
Sumimoto H, Miyagishi M, Miyoshi H, Yamagata S, Shimizu A, Taira K, Kawakami Y. Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 2005; 23:6031-9. [PMID: 15208655 DOI: 10.1038/sj.onc.1207812] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oncogenic mutations of molecules involved in the mitogen-activated protein kinase (MAPK) pathways provide signals mediating both tumor growth and invasion in various cancers including melanomas. BRAF somatic mutations, found in 66% of melanomas, have NIH3T3 transforming ability with the elevated kinase activity in vitro. We attempted to mediate RNA interference (RNAi) with HIV lentiviral vectors specific for either wild type or the most frequently mutated form of BRAF (V599E) in 10 melanoma cell lines, and found that RNAi inhibited the growth of most melanoma cell lines in vitro as well as in vivo, which was accompanied by decrease of both BRAF protein and ERK phosphorylation. Interestingly, the mutated BRAF (V599E)-specific siRNA inhibited the growth and MAPK activity of only melanoma cell lines with this mutation. Furthermore, BRAF RNAi inhibited matrigel invasion of melanoma cells accompanied with a decrease of matrix metalloproteinase activity and beta(1) integrin expression. These results clarify that the mutated BRAF (V599E) is essentially involved in malignant phenotype of melanoma cells through the MAPK activation and is an attractive molecular target for melanoma treatment. The lentivirus-mediated RNAi specific for oncogenic mutations may be a powerful technique for gene therapy of cancer.
Collapse
Affiliation(s)
- Hidetoshi Sumimoto
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Yue J, Sun B, Liu G, Mulder KM. Requirement of TGF-beta receptor-dependent activation of c-Jun N-terminal kinases (JNKs)/stress-activated protein kinases (Sapks) for TGF-beta up-regulation of the urokinase-type plasminogen activator receptor. J Cell Physiol 2004; 199:284-292. [PMID: 15040011 DOI: 10.1002/jcp.10469] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have previously demonstrated that activation of the Ras/Mapk pathways is required for transforming growth factor beta (TGF-beta) induction of TGF-beta(1) expression. Here we examined the role of the Ras/Mapk pathways in TGF-beta induction of urokinase-type plasminogen activator receptor (uPAR) expression in untransformed intestinal epithelial cells (IECs). TGF-beta activated the stress-activated protein kinases (Sapk)/c-Jun N-terminal kinases (JNKs) within 5-10 min, an effect that preceeded TGF-beta induction of uPAR expression in these cells. TGF-beta induction of both JNK1 activity and JunD phosphorylation was blocked by expression of a dominant-negative mutant of the type II TGF-beta receptor (DN TbetaRII), a dominant-negative mutant of MKK4 (DN MKK4), or a dominant-negative mutant of Ras (RasN17), or by the addition of the JNK inhibitor SP600125. TGF-beta also induced AP-1 complex formation at the distal AP-1 site (-184 to -178) of the uPAR promoter within 2 h of TGF-beta addition, consistent with the time-dependent up-regulation of uPAR expression. The primary components present in the TGF-beta-stimulated AP-1 complex bound to the uPAR promoter were Jun D and Fra-2. Moreover, addition of SP600125, or expression of DN MKK4 or DN TbetaRII, blocked TGF-beta up-regulation of uPAR in IECs. Accordingly, our results indicate that TGF-beta activates the Ras/MKK4/JNK1 signaling cascade, leading to induction of AP-1 activity, which, in turn, up-regulates uPAR expression. Our results also indicate that the type II TGF-beta receptor (RII) is required for TGF-beta activation of JNK1 and the resulting up-regulation of uPAR expression.
Collapse
Affiliation(s)
- Jianbo Yue
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
29
|
Santibáñez JF, Olivares D, Guerrero J, Martínez J. Cyclic AMP inhibits TGFbeta1-induced cell-scattering and invasiveness in murine-transformed keratinocytes. Int J Cancer 2004; 107:715-20. [PMID: 14566820 DOI: 10.1002/ijc.11457] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mouse-transformed keratinocytes cultured in the presence of transforming growth factor beta1 (TGF-beta1) acquire an array of morphologic and functional properties that give rise to a migratory phenotype that expresses mesenchymal molecular markers. This cellular conversion involves activation of the Ras-ERK pathway, enhancement of urokinase (uPA) and matrix metalloproteinase-9 (MMP-9) expression and induction of invasiveness. In our present work, we demonstrate that cAMP and forskolin are able to prevent the expression of these mesenchymal properties, probably due to blockade of the Ras-ERK pathway. Our results also show that cAMP and forskolin are able to abolish the TGF-beta1-induced reorganization of the actin cytoskeleton that is characteristic of the mesenchymal phenotype and also inhibits the disruption of the E-cadherin cell to cell interactions. The latter responses seem to depend on the activity of protein kinase A, as demonstrated by the activation of the Ras-ERK pathway by specific protein kinase A inhibitors.
Collapse
Affiliation(s)
- Juan F Santibáñez
- Laboratorio de Biología Celular INTA, Universidad de Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
30
|
Guerrero J, Santibañez JF, González A, Martínez J. EGF receptor transactivation by urokinase receptor stimulus through a mechanism involving Src and matrix metalloproteinases. Exp Cell Res 2004; 292:201-8. [PMID: 14720519 DOI: 10.1016/j.yexcr.2003.08.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Urokinase-type plasminogen activator receptor (uPAR) and epidermal growth factor receptor (EGFR) are ubiquitous receptors involved in the control of a variety of cellular processes frequently found altered in cancer cells. The EGFR has been recently described to play a transduction role of uPAR stimuli, mediating uPA-induced proliferation in highly malignant cells that overexpress uPAR. In the present work, we found for the first time that uPAR stimulation with the amino-terminal fragment (ATF) of urokinase devoid of proteolytic activity transactivates the EGFR in mammary MCF-7 cells through a mechanism involving Src and a metalloproteinase, as indicated by its sensitivity to selected inhibitors. In these cells, which express low levels of uPAR and malignancy, both ATF and EGF stimuli induced an interaction of the EGFR with uPAR and ERK activation. However, EGFR activation by uPAR stimuli mediated cellular invasion rather than proliferation, while EGFR activation by EGF led to a proliferative response. These results revealed a complex modulation of EGFR function toward different cellular responses according to the status of uPAR activity. On the other hand, we also found that MMP-mediated activation of EGFR can occur in an autocrine manner in cells which secrete uPA. All this reveals novel regulatory systems operating through autocrine loops involving uPAR stimuli, Src, MMP and EGFR activation which could mediate fine control of physiological processes as well as contribute to the expression of proliferative and invasive phenotypes of cancerous cells.
Collapse
Affiliation(s)
- Javier Guerrero
- Laboratorio de Biología Celular, INTA, Universidad de Chile, Santiago 11, Chile
| | | | | | | |
Collapse
|
31
|
Caldini R, Barletta E, Del Rosso M, Giovannelli L, Chevanne M. FGF2-mediated upregulation of urokinase-type plasminogen activator expression requires a MAP-kinase dependent activation of poly(ADP-ribose) polymerase. J Cell Physiol 2004; 202:125-34. [PMID: 15389540 DOI: 10.1002/jcp.20096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification of protein occurring in the nucleus by poly(ADP-ribose) polymerase enzyme activity. The main role of poly(ADP-ribose) polymerase system as "nick sensor" and DNA breaks repair is based on its activation via DNA strand breaks. Furthermore, poly(ADP-ribose) polymerase modifies the binding to DNA of several transcriptional factors by poly(ADP-ribosyl)ation, thereby regulating also transcriptional gene expression. We have analyzed whether poly(ADP-ribose) polymerase activity is involved in basic fibroblast growth factor (FGF2)-mediated upregulation of urokinase-type plasminogen activator (uPA) mRNA. We demonstrated that specific inhibition of poly(ADP-ribose) polymerase activity via 3-aminobenzamide (3ABA) or NAD+ deprivation prevents FGF2-mediated uPA mRNA over-expression and cell-associated plasminogen activator (PA) production in GM7373 endothelial cell line. We verified that FGF2 stimulates poly(ADP-ribose) polymerase activity by a DNA strand breaks-independent manner which involves a mitogen-activated protein kinases (MAPK)-dependent pathway, as confirmed by using PD98059 inhibitor and anisomycin stimulation. Poly(ADP-ribose) polymerase involved in this mechanism is mainly the 60 kDa molecular mass isoform, that presents an increase in serine phosphorylation in the presence of FGF2.
Collapse
Affiliation(s)
- Riccardo Caldini
- Department of Experimental Pathology and Oncology, University of Florence, Italy
| | | | | | | | | |
Collapse
|
32
|
Kobayashi H, Suzuki M, Kanayama N, Terao T. Genetic down-regulation of phosphoinositide 3-kinase by bikunin correlates with suppression of invasion and metastasis in human ovarian cancer HRA cells. J Biol Chem 2003; 279:6371-9. [PMID: 14597629 DOI: 10.1074/jbc.m305749200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Using a cDNA microarray analysis, we previously found that exposure of a highly invasive ovarian cancer cell line HRA with bikunin, a Kunitz-type protease inhibitor, or bikunin gene overexpression markedly reduced phosphoinositide kinase (PI3K) p85 gene expression, demonstrating that PI3K may be a candidate bikunin target gene. To clarify how reduced levels of PI3K may confer repressed invasiveness, we transfected HRA cells with PI3K p85 antisense-oligodeoxynucleotide (AS-ODN) and compared the properties of the transfected cells with those of parental cells and sense (S)-ODN cells. We have also demonstrated previously that transforming growth factor-beta1 (TGF-beta1) stimulates urokinase-type plasminogen activator (uPA)-dependent invasion and metastasis of HRA cells. Here, we show that 1) TGF-beta1 induced a rapid increase of the PI3K activity that was accompanied by increased expression (5-fold) of the uPA mRNA; 2) pharmacological inhibition of PI3K or AS-PI3K ODN transfection inhibited TGF-beta1-stimulated Akt phosphorylation; 3) both PI3K pharmacological inhibitors and forced expression of AS-PI3K ODN reduced TGF-beta1-stimulated uPA mRNA and protein expression by approximately 70% compared with controls; 4) concentrations of PI3K inhibitors, sufficient to inhibit uPA up-regulation, inhibited TGF-beta1-dependent HRA cell invasion; 5) the AS-PI3K ODN cells had a decreased ability to invade the extracellular matrix layer as compared with controls; and 6) when the AS-PI3K ODN cells were injected intraperitoneally into nude mice, the mice developed smaller intraperitoneal tumors and showed longer survival. We conclude that PI3K plays an essential role in promoting uPA-mediated invasive phenotype in HRA cells. Our data identify a novel role for PI3K as a bikunin target gene on uPA up-regulation and invasion.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Handayama 1-20-1, Hamamatsu, Shizuoka, 431-3192, Japan.
| | | | | | | |
Collapse
|
33
|
Giusti C, Desruisseau S, Ma L, Calvo F, Martin PM, Berthois Y. Transforming growth factor beta-1 and amphiregulin act in synergy to increase the production of urokinase-type plasminogen activator in transformed breast epithelial cells. Int J Cancer 2003; 105:769-78. [PMID: 12767061 DOI: 10.1002/ijc.11158] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Amphireguline (AR) is an epidermal growth factor (EGF)-related peptide that seems to play an important role in breast cancer progression. We have demonstrated recently that suppression of AR expression in transformed breast epithelial cells considerably reduced both size and neovascularization of tumors developed in nude mice. We show that the reduction of AR expression allowed to an important decrease of the levels of urokinase-type plasminogen activator (uPA) and transforming growth factor-beta1 (TGFbeta1). According to these data, exogenous AR (10(-10) M-10(-8) M) stimulated the production of uPA and TGFbeta1 in AR antisense-transfected A2-15 and A2-P17F25 cells. The addition of 2 x 10(-10) M TGFbeta1 into culture medium increased the level of uPA produced by AR-expressing parental cells but not by A2-15 and A2-P17F25 cell clones. Whereas AR alone stimulated uPA production to 200% of control, combined AR and TGFbeta1 treatment increased protease level in A2-15 and A2-P17F25 cells to 500-600% of control, demonstrating a synergism between TGFbeta1 and AR. This was accompanied by an important augmentation of the number of tumoral cells that invaded matrigel in vitro. The synergistic induction of uPA protein resulted of an early and transient augmentation of steady state mRNA level and was blocked in the presence of the MAP kinase kinase inhibitor PD098059, strongly suggesting that synergistic effect of AR and TGFbeta1 on uPA expression required MAPK pathway. This data demonstrates concerted action between AR and TGFbeta1 that may have profound effect on protease production and consequently on breast cancer progression.
Collapse
Affiliation(s)
- Corinne Giusti
- Laboratoire de Cancérologie Expérimentale EA2671, IFR Jean-Roche, Faculté de Médecine Secteur Nord, Marseille, France
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
During the process of oncogenic transformation, melanoma cells escape from normal growth-control mechanisms and acquire the ability to invade surrounding tissues and organs. The Ras/Raf/MEK/ERK pathway is a major pathway involved in the control of growth signals, cell survival and invasion. Melanomas are known to harbour activating mutations of both Ras and BRAF, suggesting that the downstream effector ERK may be playing a major role in the oncogenic behaviour of these tumours. The past few years have seen a growth in the understanding of the role of ERK and the MAP kinase pathway in melanoma. The aim of the current review is to assess the role of ERK in melanoma behaviour and to determine whether modulation of these kinases could offer new therapeutic opportunities.
Collapse
Affiliation(s)
- Keiran S M Smalley
- Section of Medicine, Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
35
|
Govinden R, Bhoola KD. Genealogy, expression, and cellular function of transforming growth factor-beta. Pharmacol Ther 2003; 98:257-65. [PMID: 12725873 DOI: 10.1016/s0163-7258(03)00035-4] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The transforming growth factor-beta (TGF-beta) gene superfamily expresses a large set of structurally and functionally related polypeptides. Three TGF-beta isoforms are regulated by specific genes and have been identified in mammals (TGF-beta1, -beta2, and -beta3). All three-protein isoforms are observed abundantly during development and display overlapping and distinct spatial and temporal patterns of expressions. Each isoform plays a distinct role, the nature of which depends on the cell type, its state of differentiation, and growth conditions, and on the other growth factors present. TGF-beta regulates many of the processes common to both tissue repair and disease, including angiogenesis, chemotoxins, fibroblast proliferation and the controlled synthesis, and degradation of matrix proteins, such as collagen and fibronectin. This review will examine the genealogy and mode of actions of TGF-beta on the cell types involved in inflammation and repair, as well as in carcinoma.
Collapse
Affiliation(s)
- R Govinden
- HIV Prevention Research Unit, Medical Research Council, Durban, South Africa
| | | |
Collapse
|
36
|
Eckert RL, Efimova T, Dashti SR, Balasubramanian S, Deucher A, Crish JF, Sturniolo M, Bone F. Keratinocyte survival, differentiation, and death: many roads lead to mitogen-activated protein kinase. J Investig Dermatol Symp Proc 2002; 7:36-40. [PMID: 12518790 DOI: 10.1046/j.1523-1747.2002.19634.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The epidermis is a dynamic and continually renewing surface that provides and maintains a life-sustaining interface with the environment. The epidermal keratinocyte, the major cell type of the epidermis, undergoes a complex and carefully choreographed program of differentiation. This process requires a balance between keratinocyte proliferation, differentiation, and apoptosis. This overview will concentrate on cascades that regulate the balance between keratinocyte cell proliferation and survival, and apoptosis and cell differentiation, with a particular emphasis on the role of the mitogen-activated protein kinase cascades. A summary of the literature suggests that extracellular regulated kinases function to promote keratinocyte proliferation and survival, whereas p38 mitogen-activated protein kinase functions to promote differentiation and apoptosis.
Collapse
Affiliation(s)
- Richard L Eckert
- Case Western Reserve University School of Medicine, Department of Physiology and Biophysics, Cleveland, Ohio 44106-4970, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Santibáñez JF, Guerrero J, Quintanilla M, Fabra A, Martínez J. Transforming growth factor-beta1 modulates matrix metalloproteinase-9 production through the Ras/MAPK signaling pathway in transformed keratinocytes. Biochem Biophys Res Commun 2002; 296:267-73. [PMID: 12163012 DOI: 10.1016/s0006-291x(02)00864-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mouse transformed keratinocytes cultured in the presence of transforming growth factor-beta1 (TGF-beta1) acquire a set of morphological and functional properties giving rise to a more motile phenotype that expresses mesenchymal markers. In this work, we present evidence showing that TGF-beta1 stimulates cellular production of MMP-9 (Gelatinase B), a metalloproteinase that plays an important role in tumoral invasion. Our results demonstrate that TGF-beta1stimulates MMP-9 production and MMP-9 promoter activity in a process that depends of the activation of the Ras-ERK1,2 MAP kinase pathway. The latter was demonstrated by cellular transfection of TGF-beta1-sensitive cells with a RasN17 mutant gene, using PD 098059, a MEK 1,2 inhibitor, and treating cells with anti-sense oligodeoxinucleotides. The enhanced MMP-9 production proved to be an important factor in the acquisition of migratory and invasive properties as shown by the use of a specific inhibitor of MMP-9 (GM6001) that inhibits the TGF-beta1-stimulated invasive and migratory properties of these transformed keratinocytes.
Collapse
|
38
|
van Golen KL, Bao LW, Pan Q, Miller FR, Wu ZF, Merajver SD. Mitogen activated protein kinase pathway is involved in RhoC GTPase induced motility, invasion and angiogenesis in inflammatory breast cancer. Clin Exp Metastasis 2002; 19:301-11. [PMID: 12090470 DOI: 10.1023/a:1015518114931] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inflammatory breast cancer (IBC) is the most lethal form of locally advanced breast cancer known. IBC carries a guarded prognosis primarily due to rapid onset of disease, typically within six months, and the propensity of tumor emboli to invade the dermal lymphatics and spread systemically. Although the clinical manifestations of IBC have been well documented, until recently little was known about the genetic mechanisms underlying the disease. In a comprehensive study aimed at identifying the molecular mechanisms responsible for the unique IBC phenotype, our laboratory identified overexpression of RhoC GTPase in over 90% of IBC tumors in contrast to 36% of stage-matched non-IBC tumors. We also demonstrated that overexpression of RhoC GTPase in human mammary epithelial (HME) cells nearly recapitulated the IBC phenotype with regards to invasion, motility and angiogenesis. In the current study we sought to delineate which signaling pathways were responsible for each aspect of the IBC phenotype. Using well-established inhibitors to the mitogen activated protein kinase (MAPK) and phosphatidylinositol-3 kinase (PI3K) pathways. We found that activation of the MAPK pathway was responsible for motility, invasion and production of angiogenic factors. In contrast, growth under anchorage independent conditions was dependent on the PI3K pathway.
Collapse
Affiliation(s)
- Kenneth L van Golen
- Department of Internal Medicine, University of Michigan Comprehensive Cancer Center, Ann Arbor 48109-0948, USA
| | | | | | | | | | | |
Collapse
|
39
|
Santibáñez JF, Quintanilla M, Martínez J. TGF-beta(1) and Smad4 overexpression induce a less invasive phenotype in highly invasive spindle carcinoma cells. FEBS Lett 2002; 520:171-6. [PMID: 12044892 DOI: 10.1016/s0014-5793(02)02760-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have examined the effect of transforming growth factor beta(1) (TGF-beta(1)) and overexpression of the Smad4 gene on the phenotype of Car C, a ras mutated highly malignant spindle carcinoma cell line. TGF-beta(1)-treated Car C cells overexpressing Smad4 spread with a flattened morphology with membrane ruffles abundant in vinculin and show a reduction in their invasive abilities. TGF-beta(1) treatment and overexpression of Smad4 also enhanced the production of PAI-1 measured by the activation of the p3TP-lux reporter gene containing a PAI-1-related promoter. This activation was abolished with a dominant-negative Smad4 construct. These results lead us to conclude that both TGF-beta(1) and Smad4 overexpression reduce the invasive potential of Car C cells, probably via the Smad pathway.
Collapse
|
40
|
Ge X, Fu YM, Meadows GG. U0126, a mitogen-activated protein kinase kinase inhibitor, inhibits the invasion of human A375 melanoma cells. Cancer Lett 2002; 179:133-40. [PMID: 11888667 DOI: 10.1016/s0304-3835(02)00004-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The anti-invasive ability of the mitogen-activated protein kinase (MAPK) kinase inhibitor, U0126, was examined in human A375 melanoma cells in vitro. The effect was compared to that of PD98059, another commonly used MEK (MAPK kinase) inhibitor. U0126 or PD98059 showed a dose-dependent inhibition of A375 cell invasion through growth factor-reduced Matrigel. U0126 was more potent than PD98059 in suppressing tumor cell invasion. Both compounds significantly decreased urokinase plasminogen activator (uPA) and matrix metalloproteinases-9 (MMP-9) concentrations in conditioned media. At 5 microM, U0126 inhibited phosphorylation of the MEK 1/2 to a non-detectable level within 24 h. The phosphorylation of extracellular signal-related kinase 1/2 was also dramatically suppressed by the treatment with 10 microM U0126 or 40 microM PD98059. Both compounds suppressed the protein expression of c-Jun, but not c-Fos. The expression of uPA and MMP-9 was also inhibited. Our data suggest that U0126 is an effective agent in inhibiting human A375 melanoma cell invasion and that the effect is partially due to the decreased production of uPA and MMP-9.
Collapse
Affiliation(s)
- Xiaokang Ge
- The Cancer Prevention and Research Center, Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, WA 99164-6510, USA
| | | | | |
Collapse
|
41
|
Ahmed N, Pansino F, Baker M, Rice G, Quinn M. Association between alphavbeta6 integrin expression, elevated p42/44 kDa MAPK, and plasminogen-dependent matrix degradation in ovarian cancer. J Cell Biochem 2002; 84:675-86. [PMID: 11835393 DOI: 10.1002/jcb.10080] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Altered expression of alphav integrins plays a critical role in tumor growth, invasion, and metastasis. In this study, we show that normal human epithelial ovarian cell line, HOSE, and ovarian cancer cell lines, OVCA 429, OVCA 433, and OVHS-1, expressed alphav integrin and associated beta1, beta3, and beta5 subunits, but only ovarian cancer cell lines OVCA 429 and OVCA 433 expressed alphavbeta6 integrin. The expression of alphavbeta6 in OVCA 429 and OVCA 433 was far higher than alphavbeta3 and alphavbeta5 integrin and correlated with high p42/p44 mitogen activated protein kinase (MAPK) activity and high secretion of high molecular weight urokinase plasminogen activator (HMW-uPA), pro-metalloproteinase 2 and 9 (pro-MMP-9 and pro-MMP-2). In contrast to HOSE and OVHS 1, OVCA 433 and OVCA 429 exhibited approximately 2-fold more plasminogen-dependent [3H]-collagen type IV degradation. Plasminogen-dependent [3H]-collagen IV degradation was inhibited by inhibitor of uPA (amiloride) and MMP (phenanthroline) and by antibodies against uPA or MMP-9 or alphavbeta6 integrin, indicating the involvement of alphavbeta6 integrin, uPA and MMP-9 in the process. The alphavbeta6 correlated increase in HMW-uPA and pro-MMP secretion could be inhibited by tyrosine kinase inhibitor genistein or the MEK 1 inhibitor U0126, consistent with a role of active p42/44 MAPK in the elevation of uPA, MMP-9, and MMP-2 secretion. Under similar conditions, genistein and U0126 inhibited plasminogen-dependent [3H]-collagen type IV degradation. These data suggest that sustained elevation of p42/44 MAPK activity may be required for the co-expression of alphavbeta6 integrin, which in turn may regulate the malignant potential of ovarian cancer cells via proteolytic mechanisms.
Collapse
Affiliation(s)
- Nuzhat Ahmed
- Gynaecological Cancer Research Centre, University of Melbourne & Royal Women's Hospital, Victoria, Australia.
| | | | | | | | | |
Collapse
|
42
|
Abstract
Transforming growth factor (TGF) beta1 is a potent growth inhibitor, with tumor-suppressing activity. Cancers are often refractile to this growth inhibition either because of genetic loss of TGF-beta signaling components or, more commonly, because of downstream perturbation of the signaling pathway, such as by Ras activation. Carcinomas often secrete excess TGF-beta1 and respond to it by enhanced invasion and metastasis. Therapeutic approaches should aim to inhibit the TGF-beta-induced invasive phenotype, but also to retain its growth-inhibitory and apoptosis-inducing effects.
Collapse
Affiliation(s)
- R J Akhurst
- Mt Zion Cancer Research Institute, University of California at San Francisco, San Francisco, CA 94143-0875, USA.
| | | |
Collapse
|
43
|
Abstract
The introduction of the anti-cancer drugs Mitomycin and 5-fluorouracil as anti-scarring agents within the last decade, has greatly improved surgical results of glaucoma filtration surgery. However, a number of problems associated with their use have emerged. At the same time, the transforming growth factor-beta (TGF-beta) has been identified as an important component of wound healing, particularly in the conjunctival scarring response. Recent developments in molecular therapy offer exciting prospects for the modulation of wound healing, specifically those targeting TGF-beta. As TGF-beta is such a potent stimulant of scarring, this review examines its biology and role in ocular wound healing and repair, and discusses promising new approaches to modifying its activity.
Collapse
Affiliation(s)
- M Francesca Cordeiro
- Department of Pathology, Institute of Ophthalmology and Moorfields Eye Hospital, Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
44
|
Abstract
Transforming growth factor (TGF) beta1 is a potent growth inhibitor, with tumor-suppressing activity. Cancers are often refractile to this growth inhibition either because of genetic loss of TGF-beta signaling components or, more commonly, because of downstream perturbation of the signaling pathway, such as by Ras activation. Carcinomas often secrete excess TGF-beta1 and respond to it by enhanced invasion and metastasis. Therapeutic approaches should aim to inhibit the TGF-beta-induced invasive phenotype, but also to retain its growth-inhibitory and apoptosis-inducing effects.
Collapse
Affiliation(s)
- R J Akhurst
- Mt Zion Cancer Research Institute, University of California at San Francisco, San Francisco, CA 94143-0875, USA.
| | | |
Collapse
|
45
|
Lee CG, Homer RJ, Zhu Z, Lanone S, Wang X, Koteliansky V, Shipley JM, Gotwals P, Noble P, Chen Q, Senior RM, Elias JA. Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 2001; 194:809-21. [PMID: 11560996 PMCID: PMC2195954 DOI: 10.1084/jem.194.6.809] [Citation(s) in RCA: 727] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Accepted: 08/07/2001] [Indexed: 12/11/2022] Open
Abstract
Interleukin (IL)-13 is a key mediator of tissue fibrosis caused by T helper cell type 2 inflammation. We hypothesized that the fibrogenic effects of IL-13 are mediated by transforming growth factor (TGF)-beta. To test this hypothesis we compared the regulation of TGF-beta in lungs from wild-type mice and CC10-IL-13 mice in which IL-13 overexpression causes pulmonary fibrosis. IL-13 selectively stimulated TGF-beta(1) production in transgenic animals and macrophages were the major site of TGF-beta(1) production and deposition in these tissues. IL-13 also activated TGF-beta(1) in vivo. This activation was associated with decreased levels of mRNA encoding latent TGF-beta-binding protein-1 and increased mRNA encoding urinary plasminogen activator, matrix metalloproteinase (MMP)-9, and CD44. TGF-beta(1) activation was abrogated by the plasmin/serine protease antagonist aprotinin. It was also decreased in progeny of crosses of CC10-IL-13 mice and MMP-9 null mice but was not altered in crosses with CD44 null animals. IL-13-induced fibrosis was also significantly ameliorated by treatment with the TGF-beta antagonist soluble TGFbetaR-Fc (sTGFbetaR-Fc). These studies demonstrate that IL-13 is a potent stimulator and activator of TGF-beta(1) in vivo. They also demonstrate that this activation is mediated by a plasmin/serine protease- and MMP-9-dependent and CD44-independent mechanism(s) and that the fibrogenic effects of IL-13 are mediated, in great extent, by this TGF-beta pathway.
Collapse
Affiliation(s)
- Chun Geun Lee
- Yale University School of Medicine, Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Robert J. Homer
- Department of Pathology, New Haven, CT 06520
- Pathology and Laboratory Medicine Service, VA-CT Health Care System, West Haven, CT 06516
| | - Zhou Zhu
- Yale University School of Medicine, Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Sophie Lanone
- Yale University School of Medicine, Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Xiaoman Wang
- Yale University School of Medicine, Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | | | - J. Michael Shipley
- Washington University School of Medicine, Section of Pulmonary and Critical Care Medicine, Barnes-Jewish Hospital, St. Louis, MO 63110
| | | | - Paul Noble
- Yale University School of Medicine, Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Qingsheng Chen
- Yale University School of Medicine, Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| | - Robert M. Senior
- Washington University School of Medicine, Section of Pulmonary and Critical Care Medicine, Barnes-Jewish Hospital, St. Louis, MO 63110
| | - Jack A. Elias
- Yale University School of Medicine, Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine
| |
Collapse
|
46
|
Blanchette F, Rivard N, Rudd P, Grondin F, Attisano L, Dubois CM. Cross-talk between the p42/p44 MAP kinase and Smad pathways in transforming growth factor beta 1-induced furin gene transactivation. J Biol Chem 2001; 276:33986-94. [PMID: 11448947 DOI: 10.1074/jbc.m100093200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Furin, a predominant convertase of the cellular constitutive secretory pathway, is known to be involved in the maturation of a number of growth/differentiation factors, but the mechanisms governing its expression remain elusive. We have previously demonstrated that transforming growth factor (TGF) beta 1, through the activation of Smad transducers, regulates its own converting enzyme, furin, creating a unique activation/regulation loop of potential importance in a variety of cell fate and functions. Here we studied the involvement of the p42/p44 MAPK pathway in such regulation. Using HepG2 cells transfected with fur P1 LUC (luciferase) promoter construct, we observed that forced expression of a dominant negative mutant form of the small G protein p21(ras) (RasN17) inhibited TGF beta 1-induced fur gene transcription, suggesting the involvement of the p42/p44 MAPK cascade. In addition, TGF beta induced sustained activation/phosphorylation of endogenous p42/p44 MAPK. Further-more, the role of MAPK cascade in fur gene transcription was highlighted by the use of the MEK1/2 inhibitors, PD98059 or U0126, or co-expression of a p44 antisense construct that repressed the induction of fur promoter transactivation. Conversely, overexpression of a constitutively active form of MEK1 increased unstimulated, TGF beta 1-stimulated, and Smad2-stimulated promoter P1 transactivation, and the universal Smad inhibitor, Smad7, inhibited this effect. Activation of Smad2 by MEK1 or TGF beta 1 resulted in an enhanced nuclear localization of Smad2, which was inhibited upon blocking MEK1 activity. Our findings clearly show that the activation of the p42/p44 MAPK pathway is involved in fur gene expression and led us to propose a co-operative model whereby TGF beta 1-induced receptor activation stimulates not only a Smad pathway but also a parallel p42/p44 MAPK pathway that targets Smad2 for an increased nuclear translocation and enhanced fur gene transactivation. Such an uncovered mechanism may be a key determinant for the regulation of furin in embryogenesis and growth-related physiopathological conditions.
Collapse
Affiliation(s)
- F Blanchette
- Immunology Division, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec J1H 5N4, Canada
| | | | | | | | | | | |
Collapse
|
47
|
Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP. Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci U S A 2001; 98:6686-91. [PMID: 11390996 PMCID: PMC34413 DOI: 10.1073/pnas.111614398] [Citation(s) in RCA: 437] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transitions (EMTs) are an essential manifestation of epithelial cell plasticity during morphogenesis, wound healing, and tumor progression. Transforming growth factor-beta (TGF-beta) modulates epithelial plasticity in these physiological contexts by inducing EMT. Here we report a transcriptome screen of genetic programs of TGF-beta-induced EMT in human keratinocytes and propose functional roles for extracellular response kinase (ERK) mitogen-activated protein kinase signaling in cell motility and disruption of adherens junctions. We used DNA arrays of 16,580 human cDNAs to identify 728 known genes regulated by TGF-beta within 4 hours after treatment. TGF-beta-stimulated ERK signaling mediated regulation of 80 target genes not previously associated with this pathway. This subset is enriched for genes with defined roles in cell-matrix interactions, cell motility, and endocytosis. ERK-independent genetic programs underlying the onset of EMT involve key pathways and regulators of epithelial dedifferentiation, undifferentiated transitional and mesenchymal progenitor phenotypes, and mediators of cytoskeletal reorganization. The gene expression profiling approach delineates complex context-dependent signaling pathways and transcriptional events that determine epithelial cell plasticity controlled by TGF-beta. Investigation of the identified pathways and genes will advance the understanding of molecular mechanisms that underlie tumor invasiveness and metastasis.
Collapse
Affiliation(s)
- J Zavadil
- Departments of Medicine and Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cieslik K, Abrams CS, Wu KK. Up-regulation of endothelial nitric-oxide synthase promoter by the phosphatidylinositol 3-kinase gamma /Janus kinase 2/MEK-1-dependent pathway. J Biol Chem 2001; 276:1211-9. [PMID: 11042169 DOI: 10.1074/jbc.m005305200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our recent study indicates that lysophosphatidylcholine (LPC) enhances Sp1 binding and Sp1-dependent endothelial nitric oxide synthase (eNOS) promoter activity via the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 (MEK-1) signaling pathway (Cieslik, K., Lee, C.-M., Tang, J.-L., and Wu, K. K. (1999) J. Biol. Chem. 274, 34669-34675). To identify upstream signaling molecules, we transfected human endothelial cells with dominant negative and active mutants of Ras and evaluated their effects on eNOS promoter activity. Neither mutant altered the basal or LPC-induced eNOS promoter function. By contrast, a dominant negative mutant of phosphatidylinositol 3-kinase gamma (PI-3Kgamma) blocked the promoter activity induced by LPC. Wortmannin and LY 294002 had a similar effect. AG-490, a selective inhibitor of Janus kinase 2 (Jak2), also reduced the LPC-induced Sp1 binding and eNOS promoter activity to the basal level. LPC induced Jak2 phosphorylation, which was abolished by LY 294002 and the dominant negative mutant of PI-3Kgamma. LY 294002 and AG-490 abrogated MEK-1 phosphorylation induced by LPC but had no effect on Raf-1. These results indicate that PI-3Kgamma and Jak2 are essential for LPC-induced eNOS promoter activity. This signaling pathway was sensitive to pertussis toxin, suggesting the involvement of a G(i) protein in PI-3Kgamma activation. These results indicate that LPC enhances Sp1-dependent eNOS promoter activity by a pertussis toxin-sensitive, Ras-independent novel pathway, PI-3Kgamma/Jak2/MEK-1/ERK1/2.
Collapse
Affiliation(s)
- K Cieslik
- Vascular Biology Research Center and Division of Hematology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | |
Collapse
|
49
|
Wakefield LM, Piek E, Böttinger EP. TGF-beta signaling in mammary gland development and tumorigenesis. J Mammary Gland Biol Neoplasia 2001; 6:67-82. [PMID: 11467453 DOI: 10.1023/a:1009568532177] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ligands of the TGF-beta superfamily are unique in that they signal through transmembrane receptor serine-threonine kinases, rather than tyrosine kinases. The receptor complex couples to a signal transduction pathway involving a novel family of proteins, the Smads. On phosphorylation, Smads translocate to the nucleus where they modulate transcriptional responses. However, TGF-betas can also activate the mitogen-activated protein kinase (MAPK)4 pathway, and the different biological responses to TGF-beta depend to varying degrees on activation of either or both of these two pathways. The Smad pathway is a nexus for cross-talk with other signal transduction pathways and for modulation by many different interacting proteins. Despite compelling evidence that TGF-beta has tumor suppressor activity in the mammary gland, neither TGF-beta receptors nor Smads are genetically inactivated in human breast cancer, though receptor expression is reduced. Possible reasons are discussed in relation to the dual role of TGF-beta as tumor suppressor and oncogene.
Collapse
Affiliation(s)
- L M Wakefield
- Laboratory of Cell Regulation and Carcinogenesis, National Cancer Institute, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
50
|
Iglesias M, Frontelo P, Gamallo C, Quintanilla M. Blockade of Smad4 in transformed keratinocytes containing a Ras oncogene leads to hyperactivation of the Ras-dependent Erk signalling pathway associated with progression to undifferentiated carcinomas. Oncogene 2000; 19:4134-45. [PMID: 10962574 DOI: 10.1038/sj.onc.1203764] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Smad4 functions as a transcription factor in TGF-beta signalling. We have investigated the role of Smad4 in the TGF-beta1 cell responses of transformed PDV keratinocytes, which contain a Ras oncogene, and of non-tumorigenic MCA3D keratinocytes, by transfecting both cell lines with a dominant-negative Smad4 construct. Smad4 mediates TGF-beta1-induced up-regulation of p21Cip1 and growth arrest in MCA3D cells. However, in PDV keratinocytes, Smad4 is only partially involved in TGF-beta1-induced growth inhibition, and does not mediate enhancement of p21Cip1 levels by the growth factor. TGF-beta1 activates Ras/Erk signalling activity in both cell lines. PD098059, a specific inhibitor of MEK, disminishes TGF-beta1-induced p21Cip1 levels in PDV but not in MCA3D cells, suggesting an involvement of Erk in up-regulation of p21Cip1 by TGF-beta1 in PDV cells. PDV dominant-negative Smad4 cell transfectants, but not MCA3D transfectants, showed constitutive hyperactivation of the Ras/Erk signalling pathway, increased secretion of urokinase, higher motility properties, and a change to a fibroblastoid cell morphology associated in vivo with the transition from a well differentiated to a poorly differentiated tumour phenotype. Infection of MCA3D control and dominant negative Smad4 cell transfectants with retroviruses carrying a Ras oncogene led to enhanced p21Cip1 and urokinase secreted levels, independently of TGF-beta1 stimulation, that were reduced by PD098059. These results suggest that Smad4 acts inhibiting Ras-dependent Erk signalling activity in Ras-transformed keratinocytes. Loss of Smad4 function in these cells results in hyperactivation of Erk signalling and progression to undifferentiated carcinomas. Oncogene (2000) 19, 4134 - 4145
Collapse
Affiliation(s)
- M Iglesias
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Arturo Duperier 4, 28029-Madrid, Spain
| | | | | | | |
Collapse
|