1
|
Tralongo P, Policardo F, Vegni F, Feraco A, Padial Urtueta B, Zhang Q, Ferraro G, Navarra E, Santoro A, Mule A, Rossi ED. Diagnostic and Predictive Immunocytochemistry in Head and Neck Lesions. Acta Cytol 2024; 69:77-103. [PMID: 39715593 DOI: 10.1159/000543210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/14/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND The application of immunocytochemistry (ICC) as a diagnostic and predictive tool in the workup of head and neck lesions has followed the changes and progresses in the surgical pathology evaluation. The contribution of ICC has shown a significant role in head and neck cytology, demonstrating as its contribution can support the diagnosis of many lesions. Furthermore, its role has been evolving as an important adjuvant tool in targeted therapies. An additional useful role is defined by the recent introduction of ICC markers related to genetic alterations, which has opened the door to the adoption of a surrogate for molecular evaluation also on cytological material. SUMMARY The current review article analyzes the role of ICC in the field of head and neck cytology, showing that it might represent a valid diagnostic tool in difficult cases. The review will include all the different head and neck lesions, demonstrating how we could rely on organ-specific ICC markers but also on ICC markers able to discriminate between benign and malignant lesions. KEY MESSAGES The role of ICC represents a valid additional tool in the management of several difficult lesions, especially when morphology alone is not able to make a conclusive diagnosis. The support of ICC is likely to support the morphological findings leading to the definition of the diagnosis and the most appropriate management.
Collapse
Affiliation(s)
- Pietro Tralongo
- Division of Anatomic Pathology and Histology-Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Rome, Italy
| | - Federica Policardo
- Division of Anatomic Pathology and Histology-Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Rome, Italy
| | - Federica Vegni
- Division of Anatomic Pathology and Histology-Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Rome, Italy
| | - Angela Feraco
- Division of Anatomic Pathology and Histology-Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Rome, Italy
| | - Belen Padial Urtueta
- Division of Anatomic Pathology and Histology-Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Rome, Italy
| | - Qianqian Zhang
- Division of Anatomic Pathology and Histology-Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Rome, Italy
| | - Giulia Ferraro
- Division of Anatomic Pathology and Histology-Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Rome, Italy
| | - Elena Navarra
- Division of Anatomic Pathology and Histology-Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Rome, Italy
| | - Angela Santoro
- Division of Anatomic Pathology and Histology-Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Rome, Italy
| | - Antonino Mule
- Division of Anatomic Pathology and Histology-Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Rome, Italy
| | - Esther Diana Rossi
- Division of Anatomic Pathology and Histology-Fondazione Policlinico Universitario "Agostino Gemelli"-IRCCS, Rome, Italy
| |
Collapse
|
2
|
Hajian R, Javadirad SM, Kolahdouzan M. FOXE1 Gene is a Probable Tumor Suppressor Gene with Decreased Expression as Papillary Thyroid Cancers Grow, and is Absent in Anaplastic Thyroid Cancers. Biochem Genet 2024; 62:4317-4334. [PMID: 38296906 DOI: 10.1007/s10528-023-10642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/13/2023] [Indexed: 02/02/2024]
Abstract
Papillary thyroid carcinoma (PTC), the most prevalent cancer of the thyroid, is more common in women than in men. To uncover the expression profile of FOXE1 gene in PTC tumor etiology. Microarray and RNA sequencing data on PTC in humans were analyzed. Eleven PTC tumor tissue samples and their neighboring normal tissue samples were collected. RT-qPCR was performed. Data normality, ROC construction, and logistic regression analysis were conducted. PTC tumors, normal tissues surrounding tumors, patients of different sexes and ages, metastasizing tumors, and tumor variants were assessed for FOXE1 expression. Eleven PTC tissues were obtained from seven women and four men. Among the PTC subtypes, there were two FV-PTCs, four C-PTCs, one microcarcinoma, and four tissues with an unknown subtype. FOXE1 gene expression was significantly increased in PTC tumors with dimensions less than 10 mm (relative expression = 14.437, p = 0.050). A significant increase in FOXE1 gene expression was observed in the normal tissue adjacent to the tumor, which was less than 10 mm in size, compared to the normal tissue adjacent to the tumor, which was larger than 10 mm (relative expression = 41.760, p = 0.0001). Females diagnosed with PTC showed a significant reduction in FOXE1 mRNA levels compared to their male counterparts (relative expression = 0.081, p = 0.042). In contrast to adjacent normal tissue, there was a significant reduction in FOXE1 gene expression in FV-PTC (relative expression = 0.044 and p = 0.0001). PTC tumors under 10mm had higher FOXE1 gene expression than larger tumors; normal tissue adjacent to smaller tumors also had higher FOXE1 expression. Females with PTC, regardless of their subtype, expressed less FOXE1 mRNA than males. FV-PTC tissues exhibited lower expression of FOXE1 mRNA than their adjacent normal tissues.
Collapse
Affiliation(s)
- Roya Hajian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Seyed-Morteza Javadirad
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Mohsen Kolahdouzan
- Department of Surgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Raterman ST, Von Den Hoff JW, Dijkstra S, De Vriend C, Te Morsche T, Broekman S, Zethof J, De Vrieze E, Wagener FADTG, Metz JR. Disruption of the foxe1 gene in zebrafish reveals conserved functions in development of the craniofacial skeleton and the thyroid. Front Cell Dev Biol 2023; 11:1143844. [PMID: 36994096 PMCID: PMC10040582 DOI: 10.3389/fcell.2023.1143844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction: Mutations in the FOXE1 gene are implicated in cleft palate and thyroid dysgenesis in humans.Methods: To investigate whether zebrafish could provide meaningful insights into the etiology of developmental defects in humans related to FOXE1, we generated a zebrafish mutant that has a disruption in the nuclear localization signal in the foxe1 gene, thereby restraining nuclear access of the transcription factor. We characterized skeletal development and thyroidogenesis in these mutants, focusing on embryonic and larval stages.Results: Mutant larvae showed aberrant skeletal phenotypes in the ceratohyal cartilage and had reduced whole body levels of Ca, Mg and P, indicating a critical role for foxe1 in early skeletal development. Markers of bone and cartilage (precursor) cells were differentially expressed in mutants in post-migratory cranial neural crest cells in the pharyngeal arch at 1 dpf, at induction of chondrogenesis at 3 dpf and at the start of endochondral bone formation at 6 dpf. Foxe1 protein was detected in differentiated thyroid follicles, suggesting a role for the transcription factor in thyroidogenesis, but thyroid follicle morphology or differentiation were unaffected in mutants.Discussion: Taken together, our findings highlight the conserved role of Foxe1 in skeletal development and thyroidogenesis, and show differential signaling of osteogenic and chondrogenic genes related to foxe1 mutation.
Collapse
Affiliation(s)
- Sophie T. Raterman
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
- *Correspondence: Sophie T. Raterman,
| | - Johannes W. Von Den Hoff
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Sietske Dijkstra
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Cheyenne De Vriend
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Tim Te Morsche
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Sanne Broekman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Erik De Vrieze
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank A. D. T. G. Wagener
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| |
Collapse
|
4
|
Grassi ES, Rurale G, de Filippis T, Gentilini D, Carbone E, Coscia F, Uraghi S, Bullock M, Clifton-Bligh RJ, Gupta AK, Persani L. The length of FOXE1 polyalanine tract in congenital hypothyroidism: Evidence for a pathogenic role from familial, molecular and cohort studies. Front Endocrinol (Lausanne) 2023; 14:1127312. [PMID: 37008944 PMCID: PMC10060985 DOI: 10.3389/fendo.2023.1127312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
INTRODUCTION FOXE1 is required for thyroid function and its homozygous mutations cause a rare syndromic form of congenital hypothyroidism (CH). FOXE1 has a polymorphic polyalanine tract whose involvement in thyroid pathology is controversial. Starting from genetic studies in a CH family, we explored the functional role and involvement of FOXE1 variations in a large CH population. METHODS We applied NGS screening to a large CH family and a cohort of 1752 individuals and validated these results by in silico modeling and in vitro experiments. RESULTS A new heterozygous FOXE1 variant segregated with 14-Alanine tract homozygosity in 5 CH siblings with athyreosis. The p.L107V variant demonstrated to significantly reduce the FOXE1 transcriptional activity. The 14-Alanine-FOXE1 displayed altered subcellular localization and significantly impaired synergy with other transcription factors, when compared with the more common 16-Alanine-FOXE1. The CH group with thyroid dysgenesis was largely and significantly enriched with the 14-Alanine-FOXE1 homozygosity. DISCUSSION We provide new evidence that disentangle the pathophysiological role of FOXE1 polyalanine tract, thereby significantly broadening the perspective on the role of FOXE1 in the complex pathogenesis of CH. FOXE1 should be therefore added to the group of polyalanine disease-associated transcription factors.
Collapse
Affiliation(s)
- Elisa Stellaria Grassi
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giuditta Rurale
- Laboratory of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Tiziana de Filippis
- Laboratory of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Istituto Auxologico Italiano, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bioinformatics and Statistical Genomics Unit, Milano, Italy
| | - Erika Carbone
- Laboratory of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
| | | | - Sarah Uraghi
- Department of Health Science, University of Milan, Milan, Italy
| | - Martyn Bullock
- Cancer Genetics Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Roderick J. Clifton-Bligh
- Cancer Genetics Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Endocrinology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Abhinav K. Gupta
- Department of Diabetes and Endocrine Sciences, CK Birla Hospitals, Jaipur, Rajasthan, India
| | - Luca Persani
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Laboratory of Endocrine and Metabolic Research, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Auxologico Italiano, Milan, Italy
- *Correspondence: Luca Persani,
| |
Collapse
|
5
|
Zamboni M, Strimpakos G, Poggiogalle E, Donini LM, Civitareale D. Adipocyte signaling affects thyroid-specific gene expression via down-regulation of TTF-2/FOXE1. J Mol Endocrinol 2023; 70:e220129. [PMID: 36347053 DOI: 10.1530/jme-22-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
Obesity affects thyroid gland function. Hypothyroidism, thyroid nodules, goiter, and thyroid cancer are more frequent in patients with higher BMI values. Although these data are supported by many clinical and epidemiological studies, our knowledge is very scarce at the molecular level. In this study, we present the first experimental evidence that adipocyte signaling downregulates the expression of thyroid-specific transcription factor 2 (TTF-2/FoxE1). It plays a crucial role in thyroid development and thyroid homeostasis and it is strictly connected to thyroid cancer as well. We provide in vivo and in vitro evidence that inhibition of TTF-2/FoxE1 gene expression is mediated by adipocyte signaling.
Collapse
Affiliation(s)
- Michela Zamboni
- Institute of Biochemistry and Cell Biology, National Council of Research, Monterotondo, Rome, Italy
| | - Georgios Strimpakos
- Institute of Biochemistry and Cell Biology, National Council of Research, Monterotondo, Rome, Italy
| | - Eleonora Poggiogalle
- Department of Experimental Medicine - Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy
| | - Lorenzo M Donini
- Department of Experimental Medicine - Medical Pathophysiology, Food Science and Endocrinology Section, Sapienza University of Rome, Rome, Italy
| | - Donato Civitareale
- Institute of Biochemistry and Cell Biology, National Council of Research, Monterotondo, Rome, Italy
| |
Collapse
|
6
|
Jing L, Zhang Q. Intrathyroidal feedforward and feedback network regulating thyroid hormone synthesis and secretion. Front Endocrinol (Lausanne) 2022; 13:992883. [PMID: 36187113 PMCID: PMC9519864 DOI: 10.3389/fendo.2022.992883] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Thyroid hormones (THs), including T4 and T3, are produced and released by the thyroid gland under the stimulation of thyroid-stimulating hormone (TSH). The homeostasis of THs is regulated via the coordination of the hypothalamic-pituitary-thyroid axis, plasma binding proteins, and local metabolism in tissues. TH synthesis and secretion in the thyrocytes-containing thyroid follicles are exquisitely regulated by an elaborate molecular network comprising enzymes, transporters, signal transduction machineries, and transcription factors. In this article, we synthesized the relevant literature, organized and dissected the complex intrathyroidal regulatory network into structures amenable to functional interpretation and systems-level modeling. Multiple intertwined feedforward and feedback motifs were identified and described, centering around the transcriptional and posttranslational regulations involved in TH synthesis and secretion, including those underpinning the Wolff-Chaikoff and Plummer effects and thyroglobulin-mediated feedback regulation. A more thorough characterization of the intrathyroidal network from a systems biology perspective, including its topology, constituent network motifs, and nonlinear quantitative properties, can help us to better understand and predict the thyroidal dynamics in response to physiological signals, therapeutic interventions, and environmental disruptions.
Collapse
Affiliation(s)
- Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, Beijing, China
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| |
Collapse
|
7
|
Sox9 is involved in the thyroid differentiation program and is regulated by crosstalk between TSH, TGFβ and thyroid transcription factors. Sci Rep 2022; 12:2144. [PMID: 35140269 PMCID: PMC8828901 DOI: 10.1038/s41598-022-06004-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/21/2022] [Indexed: 11/09/2022] Open
Abstract
While the signaling pathways and transcription factors involved in the differentiation of thyroid follicular cells, both in embryonic and adult life, are increasingly well understood, the underlying mechanisms and potential crosstalk between the thyroid transcription factors Nkx2.1, Foxe1 and Pax8 and inductive signals remain unclear. Here, we focused on the transcription factor Sox9, which is expressed in Nkx2.1-positive embryonic thyroid precursor cells and is maintained from embryonic development to adulthood, but its function and control are unknown. We show that two of the main signals regulating thyroid differentiation, TSH and TGFβ, modulate Sox9 expression. Specifically, TSH stimulates the cAMP/PKA pathway to transcriptionally upregulate Sox9 mRNA and protein expression, a mechanism that is mediated by the binding of CREB to a CRE site within the Sox9 promoter. Contrastingly, TGFβ signals through Smad proteins to inhibit TSH-induced Sox9 transcription. Our data also reveal that Sox9 transcription is regulated by the thyroid transcription factors, particularly Pax8. Interestingly, Sox9 significantly increased the transcriptional activation of Pax8 and Foxe1 promoters and, consequently, their expression, but had no effect on Nkx2.1. Our study establishes the involvement of Sox9 in thyroid follicular cell differentiation and broadens our understanding of transcription factor regulation of thyroid function.
Collapse
|
8
|
FOXE1-Dependent Regulation of Macrophage Chemotaxis by Thyroid Cells In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22147666. [PMID: 34299284 PMCID: PMC8307198 DOI: 10.3390/ijms22147666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
Forkhead box E1 (FOXE1) is a lineage-restricted transcription factor involved in thyroid cancer susceptibility. Cancer-associated polymorphisms map in regulatory regions, thus affecting the extent of gene expression. We have recently shown that genetic reduction of FOXE1 dosage modifies multiple thyroid cancer phenotypes. To identify relevant effectors playing roles in thyroid cancer development, here we analyse FOXE1-induced transcriptional alterations in thyroid cells that do not express endogenous FOXE1. Expression of FOXE1 elicits cell migration, while transcriptome analysis reveals that several immune cells-related categories are highly enriched in differentially expressed genes, including several upregulated chemokines involved in macrophage recruitment. Accordingly, FOXE1-expressing cells induce chemotaxis of co-cultured monocytes. We then asked if FOXE1 was able to regulate macrophage infiltration in thyroid cancers in vivo by using a mouse model of cancer, either wild type or with only one functional FOXE1 allele. Expression of the same set of chemokines directly correlates with FOXE1 dosage, and pro-tumourigenic M2 macrophage infiltration is decreased in tumours with reduced FOXE1. These data establish a novel link between FOXE1 and macrophages recruitment in the thyroid cancer microenvironment, highlighting an unsuspected function of this gene in the crosstalk between neoplastic and immune cells that shape tumour development and progression.
Collapse
|
9
|
Meydan C, Madrer N, Soreq H. The Neat Dance of COVID-19: NEAT1, DANCR, and Co-Modulated Cholinergic RNAs Link to Inflammation. Front Immunol 2020; 11:590870. [PMID: 33163005 PMCID: PMC7581732 DOI: 10.3389/fimmu.2020.590870] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic exerts inflammation-related parasympathetic complications and post-infection manifestations with major inter-individual variability. To seek the corresponding transcriptomic origins for the impact of COVID-19 infection and its aftermath consequences, we sought the relevance of long and short non-coding RNAs (ncRNAs) for susceptibility to COVID-19 infection. We selected inflammation-prone men and women of diverse ages among the cohort of Genome Tissue expression (GTEx) by mining RNA-seq datasets from their lung, and blood tissues, followed by quantitative qRT-PCR, bioinformatics-based network analyses and thorough statistics compared to brain cell culture and infection tests with COVID-19 and H1N1 viruses. In lung tissues from 57 inflammation-prone, but not other GTEx donors, we discovered sharp declines of the lung pathology-associated ncRNA DANCR and the nuclear paraspeckles forming neuroprotective ncRNA NEAT1. Accompanying increases in the acetylcholine-regulating transcripts capable of controlling inflammation co-appeared in SARS-CoV-2 infected but not H1N1 influenza infected lung cells. The lung cells-characteristic DANCR and NEAT1 association with inflammation-controlling transcripts could not be observed in blood cells, weakened with age and presented sex-dependent links in GTEx lung RNA-seq dataset. Supporting active involvement in the inflammatory risks accompanying COVID-19, DANCR's decline associated with decrease of the COVID-19-related cellular transcript ACE2 and with sex-related increases in coding transcripts potentiating acetylcholine signaling. Furthermore, transcription factors (TFs) in lung, brain and cultured infected cells created networks with the candidate transcripts, indicating tissue-specific expression patterns. Supporting links of post-infection inflammatory and cognitive damages with cholinergic mal-functioning, man and woman-originated cultured cholinergic neurons presented differentiation-related increases of DANCR and NEAT1 targeting microRNAs. Briefly, changes in ncRNAs and TFs from inflammation-prone human lung tissues, SARS-CoV-2-infected lung cells and man and woman-derived differentiated cholinergic neurons reflected the inflammatory pathobiology related to COVID-19. By shifting ncRNA differences into comparative diagnostic and therapeutic profiles, our RNA-sequencing based Resource can identify ncRNA regulating candidates for COVID-19 and its associated immediate and predicted long-term inflammation and neurological complications, and sex-related therapeutics thereof. Our findings encourage diagnostics of involved tissue, and further investigation of NEAT1-inducing statins and anti-cholinergic medications in the COVID-19 context.
Collapse
Affiliation(s)
- Chanan Meydan
- Department of Internal Medicine, Mayanei Hayeshua Medical Center, Bnei Brak, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Central District, Leumit Health Services, Tel Aviv, Israel
| | - Nimrod Madrer
- The Department of Biological Chemistry and The Edmond and Lilly Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hermona Soreq
- The Department of Biological Chemistry and The Edmond and Lilly Safra Center for Brain Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Brown JC. Involvement of promoter/enhancers in a feedback loop to regulate human gene expression. Heliyon 2020; 6:e04934. [PMID: 32995621 PMCID: PMC7501438 DOI: 10.1016/j.heliyon.2020.e04934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/30/2020] [Accepted: 09/10/2020] [Indexed: 11/28/2022] Open
Abstract
The study described here was undertaken to extend the observation that some transcription factors can either stimulate or suppress gene expression depending on the local environment of their DNA binding site. It is suggested that if such transcription factors also had a mechanism to sense the expression level of the gene they control, then they could create a feedback loop able to keep expression of a gene within a limited range. The transcription factor would be activating if gene expression were determined to be too low and repressing if it were too high. To test the above idea, I have examined the effect of gene expression on the ability of the transcription factor binding areas, the promoter/enhancers, to stimulate or attenuate gene expression depending on the existing expression level of a gene. Studies were carried out with a population of 61 human genes expressed selectively in liver. A similar study was carried out with thyroid genes. The total length of all promoter/enhancers in each gene sequence was determined and compared in weakly and strongly expressed genes. The results showed that the level of expression was stimulated by promoter/enhancers in weakly expressed genes and antagonized in strongly expressed ones. The results are interpreted to indicate that promoter/enhancers act to keep expression of a gene within a defined range that is appropriate for the gene's function.
Collapse
Affiliation(s)
- Jay C Brown
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
11
|
Evdokiou A, Kanisicak O, Gierek S, Barry A, Ivey MJ, Zhang X, Bodnar RJ, Satish L. Characterization of Burn Eschar Pericytes. J Clin Med 2020; 9:jcm9020606. [PMID: 32102389 PMCID: PMC7074206 DOI: 10.3390/jcm9020606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/31/2022] Open
Abstract
Pericytes are cells that reside adjacent to microvasculature and regulate vascular function. Pericytes gained great interest in the field of wound healing and regenerative medicine due to their multipotential fate and ability to enhance angiogenesis. In burn wounds, scarring and scar contractures are the major pathologic feature and cause loss of mobility. The present study investigated the influence of burn wound environment on pericytes during wound healing. Pericytes isolated from normal skin and tangentially excised burn eschar tissues were analyzed for differences in gene and protein expression using RNA-seq., immunocytochemistry, and ELISA analyses. RNA-seq identified 443 differentially expressed genes between normal- and burn eschar-derived pericytes. Whereas, comparing normal skin pericytes to normal skin fibroblasts identified 1021 distinct genes and comparing burn eschar pericytes to normal skin fibroblasts identified 2449 differential genes. Altogether, forkhead box E1 (FOXE1), a transcription factor, was identified as a unique marker for skin pericytes. Interestingly, FOXE1 levels were significantly elevated in burn eschar pericytes compared to normal. Additionally, burn wound pericytes showed increased expression of profibrotic genes periostin, fibronectin, and endosialin and a gain in contractile function, suggesting a contribution to scarring and fibrosis. Our findings suggest that the burn wound environment promotes pericytes to differentiate into a myofibroblast-like phenotype promoting scar formation and fibrosis.
Collapse
Affiliation(s)
- Alexander Evdokiou
- Shriners Hospitals for Children, Research Department, Cincinnati, OH 45229, USA; (A.E.); (S.G.); (A.B.)
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA; (O.K.); (M.J.I.)
| | - Stephanie Gierek
- Shriners Hospitals for Children, Research Department, Cincinnati, OH 45229, USA; (A.E.); (S.G.); (A.B.)
| | - Amanda Barry
- Shriners Hospitals for Children, Research Department, Cincinnati, OH 45229, USA; (A.E.); (S.G.); (A.B.)
| | - Malina J. Ivey
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA; (O.K.); (M.J.I.)
| | - Xiang Zhang
- Genomics, Epigenomics and Sequencing Core, University of Cincinnati, Cincinnati, OH 45267, USA;
| | - Richard J. Bodnar
- Veterans Affairs Medical Center, University Dr. C, Pittsburgh, PA 15240, USA;
| | - Latha Satish
- Shriners Hospitals for Children, Research Department, Cincinnati, OH 45229, USA; (A.E.); (S.G.); (A.B.)
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45267-0529, USA; (O.K.); (M.J.I.)
- Correspondence: or ; Tel.: +1-513-872-6278
| |
Collapse
|
12
|
Budi EH, Hoffman S, Gao S, Zhang YE, Derynck R. Integration of TGF-β-induced Smad signaling in the insulin-induced transcriptional response in endothelial cells. Sci Rep 2019; 9:16992. [PMID: 31740700 PMCID: PMC6861289 DOI: 10.1038/s41598-019-53490-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023] Open
Abstract
Insulin signaling governs many processes including glucose homeostasis and metabolism, and is therapeutically used to treat hyperglycemia in diabetes. We demonstrated that insulin-induced Akt activation enhances the sensitivity to TGF-β by directing an increase in cell surface TGF-β receptors from a pool of intracellular TGF-β receptors. Consequently, increased autocrine TGF-β signaling in response to insulin participates in insulin-induced angiogenic responses of endothelial cells. With TGF-β signaling controlling many cell responses, including differentiation and extracellular matrix deposition, and pathologically promoting fibrosis and cancer cell dissemination, we addressed to which extent autocrine TGF-β signaling participates in insulin-induced gene responses of human endothelial cells. Transcriptome analyses of the insulin response, in the absence or presence of a TGF-β receptor kinase inhibitor, revealed substantial positive and negative contributions of autocrine TGF-β signaling in insulin-responsive gene responses. Furthermore, insulin-induced responses of many genes depended on or resulted from autocrine TGF-β signaling. Our analyses also highlight extensive contributions of autocrine TGF-β signaling to basal gene expression in the absence of insulin, and identified many novel TGF-β-responsive genes. This data resource may aid in the appreciation of the roles of autocrine TGF-β signaling in normal physiological responses to insulin, and implications of therapeutic insulin usage.
Collapse
Affiliation(s)
- Erine H Budi
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, 94143-0669, USA
| | - Steven Hoffman
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, 94143-0669, USA
| | - Shaojian Gao
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-1906, USA
| | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4256, USA
| | - Rik Derynck
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, 94143-0669, USA.
| |
Collapse
|
13
|
Abstract
Developmental anomalies of the thyroid gland, defined as thyroid dysgenesis, underlie the majority of cases of congenital hypothyroidism. Thyroid dysgenesis is predominantly a sporadic disorder although a reported familial enrichment, variation of incidence by ethnicity and the monogenic defects associated mainly with athyreosis or orthotopic thyroid hypoplasia, suggest a genetic contribution. Of note, the most common developmental anomaly, thyroid ectopy, remains unexplained. Ectopy may result from multiple genetic or epigenetic variants in the germline and/or at the somatic level. This review provides a brief overview of the monogenic defects in candidate genes that have been identified so far and of the syndromes which are known to be associated with thyroid dysgenesis.
Collapse
Affiliation(s)
- Rasha Abu-Khudir
- Endocrinology Service and Research Center, Sainte-Justine Hospital and Department of Pediatrics, University of Montreal, Montreal, H3T 1C5, Quebec, Canada; Chemistry Department, Biochemistry Division, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Stéphanie Larrivée-Vanier
- Endocrinology Service and Research Center, Sainte-Justine Hospital and Department of Pediatrics, University of Montreal, Montreal, H3T 1C5, Quebec, Canada.
| | - Jonathan D Wasserman
- Division of Endocrinology, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.
| | - Johnny Deladoëy
- Endocrinology Service and Research Center, Sainte-Justine Hospital and Department of Pediatrics, University of Montreal, Montreal, H3T 1C5, Quebec, Canada.
| |
Collapse
|
14
|
Rossich LE, Thomasz L, Nicola JP, Nazar M, Salvarredi LA, Pisarev M, Masini-Repiso AM, Christophe-Hobertus C, Christophe D, Juvenal GJ. Effects of 2-iodohexadecanal in the physiology of thyroid cells. Mol Cell Endocrinol 2016; 437:292-301. [PMID: 27568464 DOI: 10.1016/j.mce.2016.08.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Iodide has direct effects on thyroid function. Several iodinated lipids are biosynthesized by the thyroid and they were postulated as intermediaries in the action of iodide. Among them, 2-iodohexadecanal (2-IHDA) has been identified and proposed to play a role in thyroid autoregulation. The aim of this study was to compare the effect of iodide and 2-IHDA on thyroid cell physiology. For this purpose, FRTL-5 thyroid cells were incubated with the two compounds during 24 or 48 h and several thyroid parameters were evaluated such as: iodide uptake, intracellular calcium and H2O2 levels. To further explore the molecular mechanism involved in 2-IHDA action, transcript and protein levels of genes involved in thyroid hormone biosynthesis, as well as the transcriptional expression of these genes were evaluated in the presence of iodide and 2-IHDA. The results obtained indicate that 2-IHDA reproduces the action of excess iodide on the "Wolff-Chaikoff" effect as well as on thyroid specific genes transcription supporting its role in thyroid autoregulation.
Collapse
Affiliation(s)
- Luciano E Rossich
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina
| | - Lisa Thomasz
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina
| | - Juan P Nicola
- Department of Clinical Biochemistry, School of Chemical Sciences, National University of Cordoba, CONICET, Buenos Aires, Argentina
| | - Magali Nazar
- Department of Clinical Biochemistry, School of Chemical Sciences, National University of Cordoba, CONICET, Buenos Aires, Argentina
| | - Leonardo A Salvarredi
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina
| | - Mario Pisarev
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina; Department of Human Biochemistry, University of Buenos Aires School of Medicine, CONICET, Buenos Aires, Argentina
| | - Ana M Masini-Repiso
- Department of Clinical Biochemistry, School of Chemical Sciences, National University of Cordoba, CONICET, Buenos Aires, Argentina
| | | | | | - Guillermo J Juvenal
- Nuclear Biochemistry Division, Argentine National Atomic Energy Commission, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Lu MM, Li S, Yang H, Morrisey EE. Foxp4: a novel member of the Foxp subfamily of winged-helix genes co-expressed with Foxp1 and Foxp2 in pulmonary and gut tissues. Mech Dev 2016; 119 Suppl 1:S197-202. [PMID: 14516685 DOI: 10.1016/s0925-4773(03)00116-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this study, we describe the isolation and characterization of Foxp4, a new member of the Foxp subfamily of winged-helix transcription factors. The full-length mouse Foxp4 cDNA encodes a 685-amino-acid protein that is similar to Foxp1 and Foxp2. Foxp4 gene expression is observed primarily in pulmonary, neural, and gut tissues during embryonic development. To compare the protein expression patterns of Foxp4 to Foxp1 and Foxp2, specific polyclonal antisera to each of these proteins was used in immunohistochemical analysis of mouse embryonic tissues. All three proteins are expressed in lung epithelium with Foxp1 and Foxp4 expressed in both proximal and distal airway epithelium while Foxp2 is expressed primarily in distal epithelium. Foxp1 protein expression is also observed in the mesenchyme and vascular endothelial cells of the lung. At embryonic day 12.5, Foxp1 and Foxp2 are expressed in both the mucosal and epithelial layers of the intestine. However, Foxp2 is expressed only in the outer mucosal layer of the intestine and stomach later in development. Finally, Foxp4 is expressed exclusively in the epithelial cells of the developing intestine, where, in late development, it is expressed in a gradient along the longitudinal axis of the villi.
Collapse
Affiliation(s)
- Min Min Lu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
16
|
Geng P, Ou J, Li J, Liao Y, Wang N, Xie G, Sa R, Liu C, Xiang L, Liang H. TITF1 and TITF2 loci variants indicate significant associations with thyroid cancer. Endocrine 2015. [PMID: 26206751 DOI: 10.1007/s12020-015-0664-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A number of studies have investigated the influence of TITF1 and TITF2 genetic variants on thyroid carcinogenesis, but their associations remain unclear due to the controversial results. The objective of this study was to test the hypothesis that TITF1 and TITF2 variants modulate thyroid cancer susceptibility. Eligible studies were identified through online searches supplemented by manual search. Either the DerSimonian and Laird method or the Mantel-Haenszel method was used to estimate the risk of thyroid cancer (ORs and 95 % CIs). The pooled ORs were calculated assuming the allele model. We identified a total of 10 publications concerning the topic of interest. Overall, meta-analysis of rs944289 showed 1.11-fold increased risk of thyroid cancer related to the risk T allele (T vs. C: OR 1.11, 95 % CI 1.05-1.17). For rs965513, individuals carrying the risk A allele, compared to individuals with the G allele, had 31 % higher risk of thyroid cancer (A vs. G: OR 1.31, 95 % CI 1.17-1.46). Analyses in total samples for rs1867277, rs1443434, and rs907580 yielded similar associations (A vs. G: OR 1.22, 95 % CI 1.06-1.39; G vs. T: OR 1.26, 95 % CI 1.09-1.45; T vs. C: OR 1.42, 95 % CI 1.21-1.66, respectively). The significant association persisted among Caucasians in subgroup analyses for rs944289 and rs965513. The genetic susceptibility of thyroid cancer seems likely to be associated with the risk allele at rs944289 in the TITF1 gene and at rs1867277, rs965513, rs1443434, and rs907580 in the TITF2 gene.
Collapse
Affiliation(s)
- Peiliang Geng
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Juanjuan Ou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Jianjun Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Yunmei Liao
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Ning Wang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Ganfeng Xie
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Rina Sa
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Chen Liu
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Lisha Xiang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital Third Military Medical University, 29 Gaotanyan Main Street, Chongqing, 400038, China.
| |
Collapse
|
17
|
Fernández LP, López-Márquez A, Santisteban P. Thyroid transcription factors in development, differentiation and disease. Nat Rev Endocrinol 2015; 11:29-42. [PMID: 25350068 DOI: 10.1038/nrendo.2014.186] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Identification of the thyroid transcription factors (TTFs), NKX2-1, FOXE1, PAX8 and HHEX, has considerably advanced our understanding of thyroid development, congenital thyroid disorders and thyroid cancer. The TTFs are fundamental to proper formation of the thyroid gland and for maintaining the functional differentiated state of the adult thyroid; however, they are not individually required for precursor cell commitment to a thyroid fate. Although knowledge of the mechanisms involved in thyroid development has increased, the full complement of genes involved in thyroid gland specification and the signals that trigger expression of the genes that encode the TTFs remain unknown. The mechanisms involved in thyroid organogenesis and differentiation have provided clues to identifying the genes that are involved in human congenital thyroid disorders and thyroid cancer. Mutations in the genes that encode the TTFs, as well as polymorphisms and epigenetic modifications, have been associated with thyroid pathologies. Here, we summarize the roles of the TTFs in thyroid development and the mechanisms by which they regulate expression of the genes involved in thyroid differentiation. We also address the implications of mutations in TTFs in thyroid diseases and in diseases not related to the thyroid gland.
Collapse
Affiliation(s)
- Lara P Fernández
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Arístides López-Márquez
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029, Spain
| |
Collapse
|
18
|
Abstract
Context
Accurate classification of follicular-patterned thyroid lesions is not always an easy task on routine surgical hematoxylin-eosin–stained or cytologic fine-needle aspiration specimens. The diagnostic challenges are partially due to differential diagnostic criteria that are often subtle and subjective. In the past decades, tremendous advances have been made in molecular gene profiling of tumors and diagnostic immunohistochemistry, aiding in diagnostic accuracy and proper patient management.
Objective
To evaluate the diagnostic utility of the most commonly studied immunomarkers in the field of thyroid pathology by review of the literature, using the database of indexed articles in PubMed (US National Library of Medicine) from 1976–2013.
Data Sources
Literature review, authors' research data, and personal practice experience.
Conclusions
The appropriate use of immunohistochemistry by applying a panel of immunomarkers and using a standardized technical and interpretational method may complement the morphologic assessment and aid in the accurate classification of difficult thyroid lesions.
Collapse
Affiliation(s)
- Haiyan Liu
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| | - Fan Lin
- From the Department of Laboratory Medicine, Geisinger Medical Center, Danville, Pennsylvania
| |
Collapse
|
19
|
Katagiri N, Uemae Y, Sakamoto J, Hidaka Y, Susa T, Kato Y, Kimura S, Suzuki M. Molecular cloning and functional characterization of two forms of Pax8 in the rainbow trout, Oncorhynchus mykiss. Gen Comp Endocrinol 2014; 198:22-31. [PMID: 24380675 PMCID: PMC3991817 DOI: 10.1016/j.ygcen.2013.12.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/27/2013] [Accepted: 12/15/2013] [Indexed: 11/22/2022]
Abstract
We have identified two distinct Pax8 (a and b) mRNAs from the thyroid gland of the rainbow trout (Oncorhynchus mykiss), which seemed to be generated by alternative splicing. Both Pax8a and Pax8b proteins were predicted to possess the paired domain, octapeptide, and partial homeodomain, while Pax8b lacked the carboxy-terminal portion due to an insertion in the coding region of the mRNA. RT-PCR analysis showed each of Pax8a and Pax8b mRNAs to be abundantly expressed in the thyroid and kidney. In situ hybridization histochemistry further detected the expression of Pax8 mRNA in the epithelial cells of the thyroid follicles of the adult trout and in the thyroid primordial cells of the embryo. The functional properties of Pax8a and Pax8b were investigated by dual luciferase assay. The transcriptional regulation by the rat thyroid peroxidase (TPO) promoter was found to be increased by Pax8a, but not by Pax8b. Pax8a further showed synergistic transcriptional activity with rat Nkx2-1 for the human TPO upstream region including the enhancer and promoter. On the other hand, Pax8b decreased the synergistic activity of Pax8a and Nkx2-1. Electrophoretic mobility shift assay additionally indicated that not only Pax8a but also Pax8b can bind to the TPO promoter and enhancer, implying that the inhibitory effect of Pax8b might result from the lack of the functional carboxy-terminal portion. Collectively, the results suggest that for the trout thyroid gland, Pax8a may directly increase TPO gene expression in cooperation with Nkx2-1 while Pax8b may work as a non-activating competitor for the TPO transcription.
Collapse
Affiliation(s)
- Nobuto Katagiri
- Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan
| | - Youji Uemae
- Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan
| | - Joe Sakamoto
- Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan
| | - Yoshie Hidaka
- Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan
| | - Takao Susa
- Department of Life Science, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Kawasaki, Kanagawa 214-8571, Japan
| | - Yukio Kato
- Department of Life Science, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Kawasaki, Kanagawa 214-8571, Japan
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masakazu Suzuki
- Department of Biological Science, Graduate School of Science, Shizuoka University, Ohya 836, Shizuoka City, Shizuoka 422-8529, Japan.
| |
Collapse
|
20
|
Fernández LP, López-Márquez A, Martínez ÁM, Gómez-López G, Santisteban P. New insights into FoxE1 functions: identification of direct FoxE1 targets in thyroid cells. PLoS One 2013; 8:e62849. [PMID: 23675434 PMCID: PMC3652843 DOI: 10.1371/journal.pone.0062849] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/26/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND FoxE1 is a thyroid-specific forkhead transcription factor essential for thyroid gland development, as well as for the maintenance of the thyroid differentiated state in adults. FoxE1 recognizes and binds to a short DNA sequence present in thyroglobulin (Tg) and thyroperoxidase (Tpo) promoters, but FoxE1 binding to regulatory regions other than Tg and Tpo promoters remains almost unexplored. Improving knowledge of the regulatory functions of FoxE1 is necessary to clarify its role in endocrine syndromes and cancer susceptibility. METHODOLOGY/PRINCIPAL FINDING In order to further investigate downstream FoxE1 targets, we performed a genome-wide expression screening after knocking-down FoxE1 and obtained new insights into FoxE1 transcriptional networks in thyroid follicular cells. After validation, we confirmed Adamts9, Cdh1, Duox2 and S100a4 as upregulated genes and Casp4, Creld2, Dusp5, Etv5, Hsp5a, Nr4a2 and Tm4sf1 as downregulated genes when FoxE1 was silenced. In promoter regions of putative FoxE1-regulated genes and also in the promoters of the classical thyroid genes Nis, Pax8 and Titf1, we performed an in silico search of the FoxE1 binding motif that was in close proximity to the NF1/CTF binding sequence, as previously described for other forkhead factors. Using chromatin immunoprecipitation we detected specific in vivo FoxE1 binding to novel regulatory regions in two relevant thyroid genes, Nis and Duox2. Moreover, we demonstrated simultaneous binding of FoxE1 and NF1/CTF to the Nis upstream enhancer region, as well as a clear functional activation of the Nis promoter by both transcription factors. CONCLUSIONS/SIGNIFICANCE In search for potential downstream mediators of FoxE1 function in thyroid cells, we identified two novel direct FoxE1 target genes. To our knowledge, this is the first evidence regarding the implication of Nis and Duox2 in executing the transcriptional program triggered by FoxE1. Furthermore, this study points out the important role of FoxE1 in the regulation of a large number of genes in thyroid cells.
Collapse
Affiliation(s)
- Lara P. Fernández
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Arístides López-Márquez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
| | - Ángel M. Martínez
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Meng T, Shi JY, Wu M, Wang Y, Li L, Liu Y, Zheng Q, Huang L, Shi B. Overexpression of mouse TTF-2 gene causes cleft palate. J Cell Mol Med 2013; 16:2362-8. [PMID: 22304410 PMCID: PMC3823429 DOI: 10.1111/j.1582-4934.2012.01546.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In humans, mutations of the gene encoding for thyroid transcription factor-2 (TTF-2 or FOXE1) result in Bamforth syndrome. Bamforth syndrome is characterized by agenesis, cleft palate, spiky hair and choanal atresia. TTF-2 null mice (TTF-2−/−) also exhibit cleft palate, suggesting its involvement in the palatogenesis. However, the molecular pathology and genetic regulation by TTF2 remain largely unknown. In the present study, the recombinant expression vector pBROAD3-TTF-2 containing the promoter of the mouse ROSA26 gene was created to form the structural gene of mouse TTF-2 and was microinjected into the male pronuclei of fertilized ova. Sequence analysis confirmed that the TTF-2 transgenic mouse model was established successfully. The transgenic mice displayed a phenotype of cleft palate. In addition, we found that TTF-2 was highly expressed in the medial edge epithelium (MEE) from the embryonic day 12.5 (E12.5) to E14.5 in TTF-2 transgenic mice. These observations suggest that overexpression of TTF-2 during palatogenesis may contribute to formation of cleft palate.
Collapse
Affiliation(s)
- Tian Meng
- State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shi X, Wallis AM, Gerard RD, Voelker KA, Grange RW, DePinho RA, Garry MG, Garry DJ. Foxk1 promotes cell proliferation and represses myogenic differentiation by regulating Foxo4 and Mef2. J Cell Sci 2012; 125:5329-37. [PMID: 22956541 DOI: 10.1242/jcs.105239] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In response to severe injury, adult skeletal muscle exhibits a remarkable regenerative capacity due to a resident muscle stem/progenitor cell population. While a number of factors are expressed in the muscle progenitor cell (MPC) population, the molecular networks that govern this cell population remain an area of active investigation. In this study, utilizing knockdown techniques and overexpression of Foxk1 in the myogenic lineage, we observed dysregulation of Foxo and Mef2 downstream targets. Utilizing an array of technologies, we establish that Foxk1 represses the transcriptional activity of Foxo4 and Mef2 and physically interacts with Foxo4 and Mef2, thus promoting MPC proliferation and antagonizing the myogenic lineage differentiation program, respectively. Correspondingly, knockdown of Foxk1 in C2C12 myoblasts results in cell cycle arrest, and Foxk1 overexpression in C2C12CAR myoblasts retards muscle differentiation. Collectively, we have established that Foxk1 promotes MPC proliferation by repressing Foxo4 transcriptional activity and inhibits myogenic differentiation by repressing Mef2 activity. These studies enhance our understanding of the transcriptional networks that regulate the MPC population and muscle regeneration.
Collapse
Affiliation(s)
- Xiaozhong Shi
- Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Park E, Gong EY, Romanelli MG, Lee K. Suppression of estrogen receptor-alpha transactivation by thyroid transcription factor-2 in breast cancer cells. Biochem Biophys Res Commun 2012; 421:532-7. [PMID: 22521644 DOI: 10.1016/j.bbrc.2012.04.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
Estrogen receptors (ERs), which mediate estrogen actions, regulate cell growth and differentiation of a variety of normal tissues and hormone-responsive tumors through interaction with cellular factors. In this study, we show that thyroid transcription factor-2 (TTF-2) is expressed in mammary gland and acts as ERα co-repressor. TTF-2 inhibited ERα transactivation in a dose-dependent manner in MCF-7 breast cancer cells. In addition, TTF-2 directly bound to and formed a complex with ERα, colocalizing with ERα in the nucleus. In MCF-7/TTF-2 stable cell lines, TTF-2 repressed the expression of endogenous ERα target genes such as pS2 and cyclin D1 by interrupting ERα binding to target promoters and also significantly decreased cell proliferation. Taken together, these data suggest that TTF-2 may modulate the function of ERα as a corepressor and play a role in ER-dependent proliferation of mammary cells.
Collapse
Affiliation(s)
- Eunsook Park
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | |
Collapse
|
24
|
Choi JH, Kim BK, Kim JK, Lee HY, Park JK, Yoon SK. Downregulation of Foxe1 by HR suppresses Msx1 expression in the hair follicles of Hr(Hp) mice. BMB Rep 2011; 44:478-83. [PMID: 21777520 DOI: 10.5483/bmbrep.2011.44.7.478] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hairless (HR), a transcriptional cofactor, is highly expressed in the skin and brain. To characterize the effects of HR expression in the skin, we examined its capacity for transcriptional regulation of its target genes in mouse skin and keratinocytes. We found that Foxe1 mRNA expression was suppressed in HR-overexpressing skin, as well as in HR-expressing keratinocytes. In turn, Msx1 expression was downregulated contingent on Foxe1 downregulation in skin and keratinocytes. We also found that expression of Sfrp1 was also correlated with that of Foxe1. Further investigation of the mechanisms involved in the transcriptional regulation of these genes will facilitate our understanding of the relationship among genes involved in hair follicle morphogenesis and cycling.
Collapse
Affiliation(s)
- Jee-Hyun Choi
- Department of Biomedical Sciences, Research Institute of Molecular Genetics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
25
|
Yaklichkin SY, Darnell DK, Pier MV, Antin PB, Hannenhalli S. Accelerated evolution of 3'avian FOXE1 genes, and thyroid and feather specific expression of chicken FoxE1. BMC Evol Biol 2011; 11:302. [PMID: 21999483 PMCID: PMC3207924 DOI: 10.1186/1471-2148-11-302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 10/15/2011] [Indexed: 12/04/2022] Open
Abstract
Background The forkhead transcription factor gene E1 (FOXE1) plays an important role in regulation of thyroid development, palate formation and hair morphogenesis in mammals. However, avian FOXE1 genes have not been characterized and as such, codon evolution of FOXE1 orthologs in a broader evolutionary context of mammals and birds is not known. Results In this study we identified the avian FOXE1 gene in chicken, turkey and zebra finch, all of which consist of a single exon. Chicken and zebra finch FOXE1 are uniquely located on the sex-determining Z chromosome. In situ hybridization shows that chicken FOXE1 is specifically expressed in the developing thyroid. Its expression is initiated at the placode stage and is maintained during the stages of vesicle formation and follicle primordia. Based on this expression pattern, we propose that avian FOXE1 may be involved in regulating the evagination and morphogenesis of thyroid. Chicken FOXE1 is also expressed in growing feathers. Sequence analysis identified two microdeletions in the avian FOXE1 genes, corresponding to the loss of a transferable repression domain and an engrailed homology motif 1 (Eh1) C-terminal to the forkhead domain. The avian FOXE1 proteins exhibit a significant sequence divergence of the C-terminus compared to those of amphibian and mammalian FOXE1. The codon evolution analysis (dN/dS) of FOXE1 shows a significantly increased dN/dS ratio in the avian lineages, consistent with either a relaxed purifying selection or positive selection on a few residues in avian FOXE1 evolution. Further site specific analysis indicates that while relaxed purifying selection is likely to be a predominant cause of accelerated evolution at the 3'-region of avian FOXE1, a few residues might have evolved under positive selection. Conclusions We have identified three avian FOXE1 genes based on synteny and sequence similarity as well as characterized the expression pattern of the chicken FOXE1 gene during development. Our evolutionary analyses suggest that while a relaxed purifying selection is likely to be the dominant force driving accelerated evolution of avian FOXE1 genes, a few residues may have evolved adaptively. This study provides a basis for future genetic and comparative biochemical studies of FOXE1.
Collapse
Affiliation(s)
- Sergey Yu Yaklichkin
- Penn Center for Bioinformatics, 1424 Blockley Hall, 423 Guardian Drive, University of Pennsylvania, Philadelphia, PA 19104 USA
| | | | | | | | | |
Collapse
|
26
|
Puppin C, Passon N, Frasca F, Vigneri R, Tomay F, Tomaciello S, Damante G. In thyroid cancer cell lines expression of periostin gene is controlled by p73 and is not related to epigenetic marks of active transcription. Cell Oncol (Dordr) 2011; 34:131-40. [DOI: 10.1007/s13402-011-0009-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2010] [Indexed: 12/26/2022] Open
|
27
|
The mouse forkhead gene Foxp2 modulates expression of the lung genes. Life Sci 2010; 87:17-25. [PMID: 20553735 DOI: 10.1016/j.lfs.2010.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 04/11/2010] [Accepted: 05/11/2010] [Indexed: 11/22/2022]
Abstract
AIMS Foxp2 is expressed in the lung during mouse development. A monoclonal anti-mouse Foxp2 antibody was created to determine the expression pattern in the developing lung. Next, transcriptional control of two lung genes, CC10 and surfactant protein C (SPC) genes, by Foxp2 was investigated in H441 and A549 cells. Thirdly, expression patterns of Foxp2 and Foxf2 were compared in the developing lung. Finally, Foxp2 expression was determined in the Foxf2-null mice. MAIN METHODS Immunohistochemical staining and in situ hybridization were applied to the sections of lungs in the developing embryos. KEY FINDINGS Monoclonal anti-Foxp2 antibody demonstrated that Foxp2 was expressed in the bronchial epithelium at E10.5 and its expression became restricted to the distal portion of the elongating bronchiolar epithelium and finally to type II alveolar epithelial cells around birth and in the adult. Foxp2 activated the SPC gene promoter in the presence of Nkx2.1 in A549 cells while it repressed the CC10 gene promoter in H441 cells. Next, the expression domains of the Foxp2 and Foxf2 were found to be exclusive in the lung. Finally, the expression of Foxp2 did not change in the lung of Foxf2-null mice. SIGNIFICANCE The Foxp2 protein is expressed in the growing distal edge of airway epithelium. When the bronchiolus elongates, Foxp2 suppresses CC10 expression. When the lung alveolus is formed, Foxp2 modulates the Nkx2.1-mediated SPC expression in type II alveolar cells. Foxp2 and Foxf2 independently play distinct roles in the alveoli and the mesenchyme, respectively.
Collapse
|
28
|
Nakada C, Iida A, Tabata Y, Watanabe S. Forkhead transcription factor foxe1 regulates chondrogenesis in zebrafish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2010; 312:827-40. [PMID: 19488987 DOI: 10.1002/jez.b.21298] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Forkhead transcription factor (Fox) e1 is a causative gene for Bamforth-Lazarus syndrome, which is characterized by hypothyroidism and cleft palate. Applying degenerate polymerase chain reaction using primers specific for the conserved forkhead domain, we identified zebrafish foxe1 (foxe1). Foxe1 is expressed in the thyroid, pharynx, and pharyngeal skeleton during development; strongly expressed in the gill and weakly expressed in the brain, eye, and heart in adult zebrafish. A loss of function of foxe1 by morpholino antisense oligo (MO) exhibited abnormal craniofacial development, shortening of Meckel's cartilage and the ceratohyals, and suppressed chondrycytic proliferation. However, at 27 hr post fertilization, the foxe1 MO-injected embryos showed normal dlx2, hoxa2, and hoxb2 expression, suggesting that the initial steps of pharyngeal skeletal development, including neural crest migration and specification of the pharyngeal arch occurred normally. In contrast, at 2 dpf, a severe reduction in the expression of sox9a, colIIaI, and runx2b, which play roles in chondrocytic proliferation and differentiation, was observed. Interestingly, fgfr2 was strongly upregulated in the branchial arches of the foxe1 MO-injected embryos. Unlike Foxe1-null mice, normal thyroid development in terms of morphology and thyroid-specific marker expression was observed in foxe1 MO-injected zebrafish embryos. Taken together, our results indicate that Foxe1 plays an important role in chondrogenesis during development of the pharyngeal skeleton in zebrafish, probably through regulation of fgfr2 expression. Furthermore, the roles reported for FOXE1 in mammalian thyroid development may have been acquired during evolution.
Collapse
Affiliation(s)
- Chisako Nakada
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
29
|
Zhou B, Zhong Q, Minoo P, Li C, Ann DK, Frenkel B, Morrisey EE, Crandall ED, Borok Z. Foxp2 inhibits Nkx2.1-mediated transcription of SP-C via interactions with the Nkx2.1 homeodomain. Am J Respir Cell Mol Biol 2008; 38:750-8. [PMID: 18239190 DOI: 10.1165/rcmb.2007-0350oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The transcription factor (TF) Foxp2 has been shown to partially repress surfactant protein C (SP-C) transcription, presumably through interaction of an independent repressor domain with a conserved Foxp2 consensus site in the SP-C promoter. We explored the role of interactions between Foxp2 and the homeodomain TF Nkx2.1 that may contribute to the marked reduction in SP-C expression accompanying phenotypic transition of alveolar epithelial type II (AT2) to type I (AT1) cells. Foxp2 dose-dependently inhibited Nkx2.1-mediated activation of SP-C in MLE-15 cells. While electrophoretic mobility shift assays and chromatin immunoprecipitations revealed an interaction between Foxp2 and the conserved consensus motif in the SP-C promoter, Nkx2.1-mediated activation of the 318-bp proximal SP-C promoter (which lacks a Foxp2 consensus) was attenuated by increasing amounts of Foxp2. Co-immunoprecipitation and mammalian two-hybrid assays confirmed a physical interaction between Nkx2.1 and Foxp2 mediated through the Nkx2.1 homeodomain. Formation of an Nkx2.1 complex with an SP-C oligonucleotide was inhibited dose-dependently by recombinant Foxp2. These findings demonstrate that direct interaction between Foxp2 and Nkx2.1 inhibits Nkx2.1 DNA-binding and transcriptional activity and suggest a mechanism for down-regulation of SP-C (and probably other AT2 cell genes) during transition of AT2 cells to an AT1 cell phenotype.
Collapse
Affiliation(s)
- Beiyun Zhou
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Southern California, 2020 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Spiteri E, Konopka G, Coppola G, Bomar J, Oldham M, Ou J, Vernes SC, Fisher SE, Ren B, Geschwind DH. Identification of the transcriptional targets of FOXP2, a gene linked to speech and language, in developing human brain. Am J Hum Genet 2007; 81:1144-57. [PMID: 17999357 DOI: 10.1086/522237] [Citation(s) in RCA: 194] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Accepted: 08/01/2007] [Indexed: 12/15/2022] Open
Abstract
Mutations in FOXP2, a member of the forkhead family of transcription factor genes, are the only known cause of developmental speech and language disorders in humans. To date, there are no known targets of human FOXP2 in the nervous system. The identification of FOXP2 targets in the developing human brain, therefore, provides a unique tool with which to explore the development of human language and speech. Here, we define FOXP2 targets in human basal ganglia (BG) and inferior frontal cortex (IFC) by use of chromatin immunoprecipitation followed by microarray analysis (ChIP-chip) and validate the functional regulation of targets in vitro. ChIP-chip identified 285 FOXP2 targets in fetal human brain; statistically significant overlap of targets in BG and IFC indicates a core set of 34 transcriptional targets of FOXP2. We identified targets specific to IFC or BG that were not observed in lung, suggesting important regional and tissue differences in FOXP2 activity. Many target genes are known to play critical roles in specific aspects of central nervous system patterning or development, such as neurite outgrowth, as well as plasticity. Subsets of the FOXP2 transcriptional targets are either under positive selection in humans or differentially expressed between human and chimpanzee brain. This is the first ChIP-chip study to use human brain tissue, making the FOXP2-target genes identified in these studies important to understanding the pathways regulating speech and language in the developing human brain. These data provide the first insight into the functional network of genes directly regulated by FOXP2 in human brain and by evolutionary comparisons, highlighting genes likely to be involved in the development of human higher-order cognitive processes.
Collapse
Affiliation(s)
- Elizabeth Spiteri
- Program in Neurogenetics, Department of Neurology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Carré A, Castanet M, Sura-Trueba S, Szinnai G, Van Vliet G, Trochet D, Amiel J, Léger J, Czernichow P, Scotet V, Polak M. Polymorphic length of FOXE1 alanine stretch: evidence for genetic susceptibility to thyroid dysgenesis. Hum Genet 2007; 122:467-76. [PMID: 17717707 DOI: 10.1007/s00439-007-0420-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Accepted: 08/03/2007] [Indexed: 01/31/2023]
Abstract
Familial cases of congenital hypothyroidism from thyroid dysgenesis (TD) (OMIM 218700) occur with a frequency 15-fold higher than by chance, FOXE1 is one of the candidate genes for this genetic predisposition and contains an alanine tract. Our purpose is to assess the influence of length of the alanine tract of FOXE1 on genetic susceptibility to TD. A case-control association study (based on 115 patients affected by TD and 129 controls genotyped by direct sequencing) and transmission disequilibrium testing (TDT) analyses were performed. The transcriptional activities of FOXE1 constructs containing 14 or 16 alanines were also studied. In the case-control association study, the 16/16 and 16/14 genotypes were inversely associated with TD (OR = 0.39, 95%CI = 0.22-0.68, P = 0.0005), strongly suggesting that the presence of 16 alanines in the tract protect against the occurrence of TD. This association was stronger in the subgroup of patients with ectopic thyroid (OR = 0.28, 95%CI = 0.13-0.58, P = 0.00015). The protection was confirmed by the TDT analysis performed in 39 trios (chi(2) = 4.3, P = 0.0374). Alternatively, the presence of the 14/14 genotype is associated with an increase risk of TD (OR = 2.59, 95%CI = 1.56-4.62, P = 0.0005). The expression studies showed that the transcriptional activities of FOXE1 with 16 alanines were significantly higher (1.55-fold) than FOXE1 containing 14 alanines (P < 0.003), while the nuclear localisation of the proteins was not affected. We conclude that FOXE1 through its alanine containing stretch modulates significantly the risk of TD occurrence, enhancing a mechanism linking an alanine containing transcription factor to disease.
Collapse
Affiliation(s)
- Aurore Carré
- Faculty of Medicine René Descartes, Paris V, Site Necker, Institut National de la Santé et de la Recherche Médicale U845 and Pediatric Endocrine Unit Assistance Publique-Hôpitaux de PARIS, Hôpital Necker Enfants-Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Wijchers PJEC, Burbach JPH, Smidt MP. In control of biology: of mice, men and Foxes. Biochem J 2006; 397:233-46. [PMID: 16792526 PMCID: PMC1513289 DOI: 10.1042/bj20060387] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/04/2006] [Accepted: 05/05/2006] [Indexed: 12/11/2022]
Abstract
Forkhead proteins comprise a highly conserved family of transcription factors, named after the original forkhead gene in Drosophila. To date, over 100 forkhead genes have been identified in a large variety of species, all sharing the evolutionary conserved 'forkhead' DNA-binding domain, and the cloning and characterization of forkhead genes have continued in recent years. Forkhead transcription factors regulate the expression of countless genes downstream of important signalling pathways in most, if not all, tissues and cell types. Recent work has provided novel insights into the mechanisms that contribute to their functional diversity, including functional protein domains and interactions of forkheads with other transcription factors. Studies using loss- and gain-of-function models have elucidated the role of forkhead factors in developmental biology and cellular functions such as metabolism, cell division and cell survival. The importance of forkhead transcription factors is underlined by the developmental defects observed in mutant model organisms, and multiple human disorders and cancers which can be attributed to mutations within members of the forkhead gene family. This review provides a comprehensive overview of current knowledge on forkhead transcription factors, from structural organization and regulatory mechanisms to cellular and developmental functions in mice and humans. Finally, we will discuss how novel insights gained from involvement of 'Foxes' in the mechanisms underlying human pathology may create new opportunities for treatment strategies.
Collapse
Key Words
- cell cycle
- development
- forkhead
- fox
- immunoregulation
- transcription factor
- cbp, creb (camp-response-element-binding protein)-binding protein
- ccnb, cyclin b
- cdk, cyclin-dependent kinase
- cki, cdk inhibitor
- dyrk1a, dual-specificity tyrosine-phosphorylated and -regulated kinase 1a
- er, oestrogen receptor
- fha, forkhead-associated domain
- fm, foxh1 motif
- fox, forkhead box
- gadd45a, growth arrest and dna-damage-inducible protein 45α
- hdac, histone deacetylase
- iκb, inhibitory κb
- ikkβ, iκb kinase β
- mh domain, mothers against decapentaplegic homology domain
- nf-κb, nuclear factor κb
- nls, nuclear localization signal
- pkb, protein kinase b
- plk-1, polo-like kinase 1
- scf, skp2/cullin/f-box
- sgk, serum- and glucocorticoid-induced protein kinase
- smad, similar to mothers against decapentaplegic
- sid, smad-interaction domain
- sim, smad-interaction motif
- tgfβ, transforming growth factor β
Collapse
Affiliation(s)
- Patrick J E C Wijchers
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | |
Collapse
|
34
|
Castanet M, Sura-Trueba S, Chauty A, Carré A, de Roux N, Heath S, Léger J, Lyonnet S, Czernichow P, Polak M. Linkage and mutational analysis of familial thyroid dysgenesis demonstrate genetic heterogeneity implicating novel genes. Eur J Hum Genet 2005; 13:232-9. [PMID: 15547625 DOI: 10.1038/sj.ejhg.5201321] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The pathophysiology of thyroid dysgenesis (TD) is not elucidated yet in the majority of cases. The unexpected familial clustering of congenital hypothyroidism due to TD suggests a genetically determined disorder. Four genes have been hitherto involved in thyroid development, including migration and growth. Three of these encode transcription factors (the thyroid transcription factors 1 and 2 (TTF1 or NKX2.1 and TTF2 or FOXE1) and PAX8) while the other encodes the thyrotropin hormone receptor (TSHR). Some mutations have been reported in patients affected by thyroid defects, which supports the relevance of these four genes in TD. However, their involvement in the general TD population remains questionable. Therefore, to document their involvement, we performed a linkage analysis followed by mutational analysis in 19 multiplex TD families. The LOD score results failed to prove linkage between any of the four genes and the TD phenotype, whatever the postulated mode of inheritance. Manual extended haplotypes showed allele sharing among affected individuals of at least one of these four genes in the majority of families. Nevertheless, mutational analysis did not identify mutations in these cases, arguing in favor of identity by descent and not identity by state. Furthermore, as a main result of the present study, extended haplotypes confirmed by mutational analysis showed that the four genes were excluded in five out of the 19 investigated families, demonstrating the relevance of other genes. In conclusion, the present study demonstrates genetic heterogeneity in the TD disorder and suggests the involvement of novel genes.
Collapse
|
35
|
Miccadei S, Provenzano C, Mojzisek M, Natali PG, Civitareale D. Retinoblastoma protein acts as Pax 8 transcriptional coactivator. Oncogene 2005; 24:6993-7001. [PMID: 16007137 DOI: 10.1038/sj.onc.1208861] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Control of cell proliferation and differentiation by the retinoblastoma protein (pRb) depends on its interactions with key cellular substrates. Available data indicate that pRb and the transcription factor Pax 8 play a crucial role in the differentiation of thyroid follicular cells. In this study, we show that pRb takes part in the complex assembled on the thyroperoxidase gene promoter acting as a transcriptional coactivator of Pax 8. Accordingly, pRb interacts with and potentiates Pax 8 transcriptional activity. In addition, we show that the downregulation of pRb gene expression, in thyrocytes, through RNA interference results in a reduction of the thyroperoxidase gene promoter activity mediated by the Pax 8-binding site. In agreement with these results and with the ability of the adenoviral protein E1A to bind pRb, we show that E1A downregulates Pax 8 activity and that such inhibition requires the E1A-Rb interaction. Furthermore, we show that the Pax 8/pRb synergy plays a role on the sodium/iodide symporter gene expression as well.
Collapse
Affiliation(s)
- Stefania Miccadei
- Molecular Pathology Laboratory, Regina Elena Cancer Institute, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | | | | | | | | |
Collapse
|
36
|
Parlato R, Rosica A, Rodriguez-Mallon A, Affuso A, Postiglione MP, Arra C, Mansouri A, Kimura S, Di Lauro R, De Felice M. An integrated regulatory network controlling survival and migration in thyroid organogenesis. Dev Biol 2005; 276:464-75. [PMID: 15581879 DOI: 10.1016/j.ydbio.2004.08.048] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Revised: 08/27/2004] [Accepted: 08/31/2004] [Indexed: 11/25/2022]
Abstract
The thyroid gland originates from the ventral floor of the foregut as a thickening of the endodermal cell layer. The molecular mechanisms underlying the early steps of thyroid morphogenesis are not known. Gene targeting experiments have contributed to the identification of several transcription factors, in general playing a role in the proliferation, survival, and migration of the thyroid cell precursors. The experiments reported here analyze the expression of the transcription factors Titf1, Hhex, Pax8, and Foxe1 in the thyroid primordium of null mutants of each of them. We found that most of these transcription factors are linked in an integrated regulatory network, each of them controlling the presence of other members of the network. The expression of Foxe1 is regulated in an intriguing fashion as it is strongly dependent on the presence of Pax8 in thyroid precursor cells, while the expression of the same gene in the pharyngeal endoderm surrounding the primordium is dependent on Sonic hedgehog (Shh)-derived signaling. Moreover, by the generation of mouse mutants expressing Foxe1 exclusively in the thyroid primordium, we provide a better understanding of the role of Foxe1 in these cells in order to acquire the competence to migrate into the underlying mesenchyme. In conclusion, we provide the first evidence of gene expression programs, controlled by a hierarchy of transcription factors expressed in the thyroid presumptive gut domain and directing the progression of thyroid morphogenesis.
Collapse
|
37
|
Abstract
Thyroid gland organogenesis results in an organ the shape, size, and position of which are largely conserved among adult individuals of the same species, thus suggesting that genetic factors must be involved in controlling these parameters. In humans, the organogenesis of the thyroid gland is often disturbed, leading to a variety of conditions, such as agenesis, ectopy, and hypoplasia, which are collectively called thyroid dysgenesis (TD). The molecular mechanisms leading to TD are largely unknown. Studies in murine models and in a few patients with dysgenesis revealed that mutations in regulatory genes expressed in the developing thyroid are responsible for this condition, thus showing that TD can be a genetic and inheritable disease. These studies open the way to a novel working hypothesis on the molecular and genetic basis of this frequent human condition and render the thyroid an important model in the understanding of molecular mechanisms regulating the size, shape, and position of organs.
Collapse
Affiliation(s)
- Mario De Felice
- Stazione Zoologica Anton Dohrn, University of Naples Federico II, 80121 Naples, Italy
| | | |
Collapse
|
38
|
Eichberger T, Regl G, Ikram MS, Neill GW, Philpott MP, Aberger F, Frischauf AM. FOXE1, a new transcriptional target of GLI2 is expressed in human epidermis and basal cell carcinoma. J Invest Dermatol 2004; 122:1180-7. [PMID: 15140221 DOI: 10.1111/j.0022-202x.2004.22505.x] [Citation(s) in RCA: 309] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sonic hedgehog (Hh) signaling plays a key role in epidermal development and skin cancer. Mutational inactivation of the tumor suppressor gene patched (PTCH) leads to constitutive activation of the Hh signaling pathway, resulting in activation of target gene transcription by the zinc finger transcription factors GLI1 and GLI2. Recent experiments in mice point to GLI2 as the key mediator of Hh signaling in skin. We have concentrated on the identification of candidate mediators of GLI2 function in the human epidermis. We show here that the forkhead/winged-helix domain transcription factor FOXE1 is likely to be a direct GLI2 target gene. The kinetics of FOXE1 induction are similar to the known direct target PTCH, and a 2.5 kb upstream fragment containing five GLI-binding sites activates transcription in a reporter assay. We show by in situ hybridization that FOXE1 is expressed in the outer root sheath of the hair follicle, where murine Gli2 is also expressed. FOXE1 expression is also found in basal keratinocytes of the human epidermis and basal cell carcinoma (BCC). These data point to a putative role of FOXE1 in mediating Hh signaling in the human epidermis downstream of GLI2.
Collapse
Affiliation(s)
- Thomas Eichberger
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
39
|
Maino K, Skelton H, Yeager J, Smith KJ. Benign ectopic thyroid tissue in a cutaneous location: a case report and review. J Cutan Pathol 2003; 31:195-8. [PMID: 14690467 DOI: 10.1111/j.0303-6987.2004.00160.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND For many years, lateral, aberrant thyroid tissue in adults was a term used almost exclusively for metastatic thyroid carcinoma. However, aberrant, benign ectopic thyroid tissue does occur, and it is most commonly found as a part of the evaluation of endocrine dysfunction. Rarely, aberrant, benign ectopic thyroid presents as a primary mass. CASE REPORT We present a 35-year-old female who presented for removal of a lifelong posterior lateral neck nodule. RESULTS Histologic examination and immunohistochemical studies confirmed the presence of aberrant, benign ectopic thyroid tissue. The patient had no endocrine problems, and she had a normally located and functioning thyroid gland. CONCLUSIONS This case illustrates that not all aberrant thyroid tissues in adults are malignant or associated with endocrine disorders. This case also illustrates the rare association of ectopic thyroid and a normally located and functioning thyroid gland. In this patient, a somatic mutation in a transcription factor important in thyroid migration could explain these findings.
Collapse
Affiliation(s)
- Kim Maino
- Department of Dermatology, National Naval Medical Center, Bethesda, MD, USA
| | | | | | | |
Collapse
|
40
|
Sequeira M, Al-Khafaji F, Park S, Lewis MD, Wheeler MH, Chatterjee VKK, Jasani B, Ludgate M. Production and application of polyclonal antibody to human thyroid transcription factor 2 reveals thyroid transcription factor 2 protein expression in adult thyroid and hair follicles and prepubertal testis. Thyroid 2003; 13:927-32. [PMID: 14611701 DOI: 10.1089/105072503322511328] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Germline mutations in thyroid transcription factor 2 (TTF2) cause thyroid agenesis, spiky hair, and cleft palate, indicating thyroidal and extrathyroidal expression. We sought to investigate this by producing and applying an antibody to human TTF2. The coding region of human TTF2 was cloned into a bacterial expression vector, production of the soluble TTF2 protein optimized, and pure TTF2 obtained by nickel chromatography. Rabbits were immunized and the resulting TTF2 polyclonal titrated on formalin-fixed, paraffin-embedded sections of thyroid. The optimized protocol was applied to a range of tissues. Nine milligrams of TTF2 protein was obtained per liter of culture and a high-titer antibody produced. This displayed specific staining of thyroid follicular cell nuclei/cytoplasm and not of the interstitium, connective tissue, smooth muscle, or endothelium. No staining was obtained with the preimmune serum in the same conditions, or with the majority of other tissues tested with the TTF2 polyclonal. The exceptions were testis and skin, in which nuclear TTF2 immunoreactivity was present in the seminiferous tubules and cells in the follicular outer root sheath, respectively. In conclusion, we have produced a polyclonal antibody for human TTF2 and demonstrated immunoreactivity for this transcription factor in adult human thyroid and hair follicles and prepubertal testis.
Collapse
Affiliation(s)
- Melwyn Sequeira
- Department of Medicine (EMD Section), University of Wales College of Medicine, Heath Park, Cardiff, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yang MCW, Wang B, Weissler JC, Margraf LR, Yang YS. BR22, a 26 kDa thyroid transcription factor-1 associated protein (TAP26), is expressed in human lung cells. Eur Respir J 2003; 22:28-34. [PMID: 12882447 DOI: 10.1183/09031936.03.00117702] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current authors have previously identified BR22, a thyroid transcription factor (TTF)-1 associated protein 26 (TAP26), which interacts with TTF-1 to enhance human surfactant protein (SP)-B promoter activity in transfected 293 cells. However, the expression of TAP26 in the lung cells and its biological relevance to the SP-B production under physiological conditions were not examined. In this study, endogenous co-immunoprecipitation and in situ immunohistochemical staining techniques were employed to explore the presence of TAP26 and TTF-1 complex in the lung epithelial cells. The correlation of TAP26, TTF-1 and SP-B expression was inspected in H441 cells in the presence of dexamethasone, a known positive effector of the SP-B promoter. Monoclonal antibody (mAb) against TAP26 can co-immunoprecipitate both TAP26 and TTF-1 from H441 cells. Using this antibody in in situ staining of human lung sections, the data show that TAP26 is present in the lung alveolar epithelial cells. Reverse transcriptase-polymerase chain reaction and Western blot analyses of type-II cells as well as dexamethasone-treated H441 cells suggest that TAP26 expression is modulated coordinately with SP-B and TTF-1 in these cells. In summary, the current study demonstrates that thyroid transcription factor-1 associated protein 26 is an associated protein of thyroid transcription factor-1 in the lung alveolar epithelial cells where surfactant protein gene expressions take place in vivo.
Collapse
Affiliation(s)
- M C W Yang
- Dept of Internal Medicine, Pulmonary and Critical Care Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9034, USA
| | | | | | | | | |
Collapse
|
42
|
Dathan N, Parlato R, Rosica A, De Felice M, Di Lauro R. Distribution of the titf2/foxe1 gene product is consistent with an important role in the development of foregut endoderm, palate, and hair. Dev Dyn 2002; 224:450-6. [PMID: 12203737 DOI: 10.1002/dvdy.10118] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Titf2/foxe1 is a forkhead domain-containing gene expressed in the foregut, in the thyroid, and in the cranial ectoderm of the developing mouse. Titf2 null mice exhibit cleft palate and either a sublingual or completely absent thyroid gland. In humans, mutations of the gene encoding for thyroid transcription factor-2 (TTF-2) result in the Bamforth syndrome, characterized by thyroid agenesis, cleft palate, spiky hair, and choanal atresia. Here, we report a detailed expression pattern of TTF-2 protein during mouse embryogenesis and show its presence in structures where it has not been described yet. At embryonic day (E) 10.5, TTF-2 is expressed in Rathke's pouch, in thyroid, and in the epithelium of the pharyngeal wall and arches, whereas it is absent in the epithelium of the pharyngeal pouches. According to this expression, at E13.5, TTF-2 is present in endoderm derivatives, such as tongue, palate, epiglottis, pharynx, and oesophagus. Later in embryogenesis, we detect TTF-2 in the choanae and whiskers. This pattern of expression helps to define the complex phenotype displayed by human patients. Finally, we show that TTF-2 is a phosphorylated protein. These results help to characterize the domains of TTF-2 expression, from early embryogenesis throughout organogenesis, providing more detail on the potential role of TTF-2 in the development of endoderm and ectoderm derived structures.
Collapse
Affiliation(s)
- Nina Dathan
- Centro di Studi di Biocristallografia del CNR, via Mezzocannone, Naples, Italy
| | | | | | | | | |
Collapse
|
43
|
Sequeira MJ, Morgan JM, Fuhrer D, Wheeler MH, Jasani B, Ludgate M. Thyroid transcription factor-2 gene expression in benign and malignant thyroid lesions. Thyroid 2001; 11:995-1001. [PMID: 11762722 DOI: 10.1089/105072501753271662] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Thyroid transcription factor-2 (TTF-2) is a recently cloned thyroid-specific gene and is central to the development and differentiation of the thyroid follicular cell. Information regarding transcript levels in normal and diseased adult human thyroids is lacking. We have investigated TTF-2 gene expression in various thyroid pathologies and assessed its potential in preoperative diagnosis of thyroid nodular disease, which is a common clinical problem. We have used reverse transcription-polymerase chain reaction (RT-PCR) and in situ hybridization (ISH) and detected TTF-2 transcripts in 60% of 125 samples of adult human thyroids tested by RT-PCR (64% of 35) or ISH (59% of 90). In normal thyroid tissues TTF-2 transcript levels are low, 18 of 36 were weakly positive and 18 of 36 negative when tested by ISH. In the benign lesions, TTF-2 transcripts were detected either by RT-PCR or ISH in 8 of 8 Graves disease; 3 of 7 Hashimoto's; 2 of 2 follicular hyperplasia; 15 of 21 follicular adenoma; 11 of 13 multinodular goiters and 0 of 1 hyalinizing trabecular adenoma. In the malignant thyroid lesions, TTF-2 transcripts were detected in 8 of 18 follicular cancers; 0 of 2 anaplastic carcinoma, and 11 of 17 papillary cancers. Compared with normal thyroids, transcripts were more abundant in 24% of thyroid lesions tested by ISH. In conclusion, we report for the first time on TTF-2 gene expression in normal and diseased adult human thyroids.
Collapse
Affiliation(s)
- M J Sequeira
- Department of Medicine, University of Wales College of Medicine, Cardiff, United Kingdom
| | | | | | | | | | | |
Collapse
|
44
|
Schubert LA, Jeffery E, Zhang Y, Ramsdell F, Ziegler SF. Scurfin (FOXP3) acts as a repressor of transcription and regulates T cell activation. J Biol Chem 2001; 276:37672-9. [PMID: 11483607 DOI: 10.1074/jbc.m104521200] [Citation(s) in RCA: 399] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently identified and cloned Foxp3, the gene defective in mice with the scurfy mutation. The immune dysregulation documented in these mice and in humans with mutations in the orthologous gene indicates that the foxp3 gene product, scurfin, is involved in the regulation of T cell activation and differentiation. The autoimmune state observed in these patients with the immune dysregulation polyendocrinopathy, enteropathy, X-linked syndrome, or X-linked autoimmunity-allergic dysregulation syndrome also points to a critical role for scurfin in the regulation of T cell homeostasis. FOXP3 encodes a novel member of the forkhead family of transcription factors. Here we demonstrate that this structural domain is required for nuclear localization and DNA binding. Scurfin, transiently expressed in heterologous cells, represses transcription of a reporter containing a multimeric forkhead binding site. Upon overexpression in CD4 T cells, scurfin attenuates activation-induced cytokine production and proliferation. We have identified FKH binding sequences adjacent to critical NFAT regulatory sites in the promoters of several cytokine genes whose expression is sensitive to changes in SFN abundance. Our findings indicate that the ability of scurfin to bind DNA, and presumably repress transcription, plays a paramount role in determining the amplitude of the response of CD4 T cells to activation.
Collapse
Affiliation(s)
- L A Schubert
- Immunology Program, Virginia Mason Research Center, Seattle, Washington 98101, USA
| | | | | | | | | |
Collapse
|
45
|
Shu W, Yang H, Zhang L, Lu MM, Morrisey EE. Characterization of a New Subfamily of Winged-helix/Forkhead (Fox) Genes That Are Expressed in the Lung and Act as Transcriptional Repressors. J Biol Chem 2001; 276:27488-97. [PMID: 11358962 DOI: 10.1074/jbc.m100636200] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Epithelial gene expression in the lung is thought to be regulated by the coordinate activity of several different families of transcription factors including the Fox family of winged-helix/forkhead DNA-binding proteins. In this report, we have identified and characterized two members of this Fox gene family, Foxp1 and Foxp2, and show that they comprise a new subfamily of Fox genes expressed in the lung. Foxp1 and Foxp2 are expressed at high levels in the lung as early as E12.5 of mouse development with Foxp2 expression restricted to the airway epithelium. In addition, Foxp1 and Foxp2 are expressed at lower levels in neural, intestinal, and cardiovascular tissues during development. Upon differentiation of the airway epithelium along the proximal-distal axis, Foxp2 expression becomes restricted to the distal alveolar epithelium whereas Foxp1 expression is observed in the distal epithelium and mesenchyme. Foxp1 and Foxp2 can regulate epithelial lung gene transcription as was demonstrated by their ability to dramatically repress the mouse CC10 promoter and, to a lesser extent, the human surfactant protein C promoter. In addition, GAL4 fusion proteins encoding subdomains of Foxp1 and Foxp2 demonstrate that an independent and homologous transcriptional repression domain lies within the N-terminal end of the proteins. Together, these studies suggest that Foxp1 and Foxp2 are important regulators of lung epithelial gene transcription.
Collapse
Affiliation(s)
- W Shu
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
46
|
Gereben B, Salvatore D, Harney JW, Tu HM, Larsen PR. The human, but not rat, dio2 gene is stimulated by thyroid transcription factor-1 (TTF-1). Mol Endocrinol 2001; 15:112-24. [PMID: 11145743 DOI: 10.1210/mend.15.1.0579] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Types 1 and 2 iodothyronine deiodinases (D1 and D2) catalyze the production of T(3) from T(4). D2 mRNA is abundant in the human thyroid but very low in adult rat thyroid, whereas D1 activity is high in both. To understand the molecular regulation of these genes in thyroid cells, the effect of thyroid transcription factor 1 (TTF-1) and the paired domain-containing protein 8 (Pax-8) on the transcriptional activity of the deiodinase promoters were studied. Both the approximately 6.5-kb hdio2 sequence and its most 3' 633 bp were activated 10-fold by transiently expressed TTF-1 in COS-7 cells, but the hdio1 was unaffected. Surprisingly, the response of the rdio2 gene to TTF-1 was only 3-fold despite the 73% identity with the proximal 633-bp region of hdio2 including complete conservation of a functional cAMP response element at -90. Neither human nor rat dio2 nor human dio1 was induced by Pax-8. The binding affinity of four putative TTF-1 binding sites in hdio2 were compared by a semiquantitative gel retardation assay using in vitro expressed TTF-1 homeodomain protein. Only two sites, D and C1 (both of which are absent in rdio2), had significant affinity. Functional analyses showed that both sites are required for the full response to TTF-1. These results can explain the differential expression of dio2 in thyroid and potentially other tissues in humans and rats.
Collapse
Affiliation(s)
- B Gereben
- Thyroid Division, Department of Medicine Brigham and Women's Hospital, Harvard Medical School Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|