1
|
Wang Z, Wang S, Wang H, Hu B, Qi Z, Zhang Y, Song P, Cai Q, Yang H, Wang J. Uncovering the selectivity mechanism of phosphodiesterase 7A/8A inhibitors through computational studies. Phys Chem Chem Phys 2024; 26:11770-11781. [PMID: 38566586 DOI: 10.1039/d3cp03913g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The expression of phosphodiesterase 7A (PDE7A) and phosphodiesterase 8A (PDE8) genes is integral to human signaling pathways, and the inhibition of PDE7A has been associated with the onset of various diseases, including effects on the immune system and nervous system. The development of PDE7 selective inhibitors can promote research on immune and nervous system diseases, such as multiple sclerosis, chronic inflammation, and autoimmune responses. PDE8A is expressed alongside PDE8B, and its inhibitory mechanism is still unclear. Studying the mechanisms of selective inhibitors against different PDE subtypes is crucial to prevent potential side effects, such as nausea and cardiac toxicity, and the sequence similarity of the two protein subtypes was 55.9%. Therefore, it is necessary to investigate the differences of both subtypes' ligand binding sites. Selective inhibitors of two proteins were chosen to summarize the reason for their selectivity through molecular docking, molecular dynamics simulation, alanine scanning mutagenesis, and MM-GBSA calculation. We found that Phe384PDE7A, Leu401PDE7A, Gln413PDE7A, Tyr419PDE7A, and Phe416PDE7A in the active site positively contribute to the selectivity towards PDE7A. Additionally, Asn729PDE8A, Phe767PDE8A, Gln778PDE8A, and Phe781PDE8A positively contribute to the selectivity towards PDE8A.
Collapse
Affiliation(s)
- Zhijian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Shizun Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Hanxun Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Baichun Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhuo Qi
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yaming Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Pengfei Song
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Qingkui Cai
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Huali Yang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
- Key Laboratory of Intelligent Drug Design and New Drug Discovery of Liaoning Province, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
2
|
Campolo F, Assenza MR, Venneri MA, Barbagallo F. Once upon a Testis: The Tale of Cyclic Nucleotide Phosphodiesterase in Testicular Cancers. Int J Mol Sci 2023; 24:ijms24087617. [PMID: 37108780 PMCID: PMC10146088 DOI: 10.3390/ijms24087617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Phosphodiesterases are key regulators that fine tune the intracellular levels of cyclic nucleotides, given their ability to hydrolyze cAMP and cGMP. They are critical regulators of cAMP/cGMP-mediated signaling pathways, modulating their downstream biological effects such as gene expression, cell proliferation, cell-cycle regulation but also inflammation and metabolic function. Recently, mutations in PDE genes have been identified and linked to human genetic diseases and PDEs have been demonstrated to play a potential role in predisposition to several tumors, especially in cAMP-sensitive tissues. This review summarizes the current knowledge and most relevant findings regarding the expression and regulation of PDE families in the testis focusing on PDEs role in testicular cancer development.
Collapse
Affiliation(s)
- Federica Campolo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Maria Rita Assenza
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| | - Mary Anna Venneri
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Barbagallo
- Faculty of Medicine and Surgery, "Kore" University of Enna, 94100 Enna, Italy
| |
Collapse
|
3
|
Epstein PM, Basole C, Brocke S. The Role of PDE8 in T Cell Recruitment and Function in Inflammation. Front Cell Dev Biol 2021; 9:636778. [PMID: 33937235 PMCID: PMC8085600 DOI: 10.3389/fcell.2021.636778] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/29/2021] [Indexed: 01/07/2023] Open
Abstract
Inhibitors targeting cyclic nucleotide phosphodiesterases (PDEs) expressed in leukocytes have entered clinical practice to treat inflammatory disorders, with three PDE4 inhibitors currently in clinical use as therapeutics for psoriasis, psoriatic arthritis, atopic dermatitis and chronic obstructive pulmonary disease. In contrast, the PDE8 family that is upregulated in pro-inflammatory T cells is a largely unexplored therapeutic target. It was shown that PDE8A plays a major role in controlling T cell and breast cancer cell motility, including adhesion to endothelial cells under physiological shear stress and chemotaxis. This is a unique function of PDE8 not shared by PDE4, another cAMP specific PDE, employed, as noted, as an anti-inflammatory therapeutic. Additionally, a regulatory role was shown for the PDE8A-rapidly accelerated fibrosarcoma (Raf)-1 kinase signaling complex in myelin antigen reactive CD4+ effector T cell adhesion and locomotion by a mechanism differing from that of PDE4. The PDE8A-Raf-1 kinase signaling complex affects T cell motility, at least in part, via regulating the LFA-1 integrin mediated adhesion to ICAM-1. The findings that PDE8A and its isoforms are expressed at higher levels in naive and myelin oligodendrocyte glycoprotein (MOG)35–55 activated effector T (Teff) cells compared to regulatory T (Treg) cells and that PDE8 inhibition specifically affects MOG35–55 activated Teff cell adhesion, indicates that PDE8A could represent a new beneficial target expressed in pathogenic Teff cells in CNS inflammation. The implications of this work for targeting PDE8 in inflammation will be discussed in this review.
Collapse
Affiliation(s)
- Paul M Epstein
- Department of Cell Biology, UConn Health, Farmington, CT, United States
| | - Chaitali Basole
- Department of Immunology, UConn Health, Farmington, CT, United States
| | - Stefan Brocke
- Department of Immunology, UConn Health, Farmington, CT, United States
| |
Collapse
|
4
|
Which phosphodiesterase can decrease cardiac effects of 5-HT4 receptor activation in transgenic mice? Naunyn Schmiedebergs Arch Pharmacol 2019; 392:991-1004. [DOI: 10.1007/s00210-019-01653-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/09/2019] [Indexed: 12/13/2022]
|
5
|
Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases. Pharmacol Ther 2019; 197:225-242. [PMID: 30759374 DOI: 10.1016/j.pharmthera.2019.02.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic respiratory diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, affect millions of people all over the world. Cyclic adenosine monophosphate (cAMP) which is one of the most important second messengers, plays a vital role in relaxing airway smooth muscles and suppressing inflammation. Given its vast role in regulating intracellular responses, cAMP provides an attractive pharmaceutical target in the treatment of chronic respiratory diseases. Phosphodiesterases (PDEs) are enzymes that hydrolyze cyclic nucleotides and help control cyclic nucleotide signals in a compartmentalized manner. Currently, the selective PDE4 inhibitor, roflumilast, is used as an add-on treatment for patients with severe COPD associated with bronchitis and a history of frequent exacerbations. In addition, other novel PDE inhibitors are in different phases of clinical trials. The current review provides an overview of the regulation of various PDEs and the potential application of selective PDE inhibitors in the treatment of COPD and asthma. The possibility to combine various PDE inhibitors as a way to increase their therapeutic effectiveness is also emphasized.
Collapse
Affiliation(s)
- Haoxiao Zuo
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Isabella Cattani-Cavalieri
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nshunge Musheshe
- Department of Molecular Pharmacology, University of Groningen, the Netherlands
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Cardiovascular Research (DZHK), 20246 Hamburg, Germany
| | - Martina Schmidt
- Department of Molecular Pharmacology, University of Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
6
|
Morales-Garcia JA, Echeverry-Alzate V, Alonso-Gil S, Sanz-SanCristobal M, Lopez-Moreno JA, Gil C, Martinez A, Santos A, Perez-Castillo A. Phosphodiesterase7 Inhibition Activates Adult Neurogenesis in Hippocampus and Subventricular Zone In Vitro and In Vivo. Stem Cells 2016; 35:458-472. [PMID: 27538853 DOI: 10.1002/stem.2480] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/18/2016] [Accepted: 07/29/2016] [Indexed: 11/08/2022]
Abstract
The phosphodiesterase 7 (PDE7) enzyme is one of the enzymes responsible for controlling intracellular levels of cyclic adenosine 3',5'-monophosphate in the immune and central nervous system. We have previously shown that inhibitors of this enzyme are potent neuroprotective and anti-inflammatory agents. In addition, we also demonstrated that PDE7 inhibition induces endogenous neuroregenerative processes toward a dopaminergic phenotype. Here, we show that PDE7 inhibition controls stem cell expansion in the subgranular zone of the dentate gyrus of the hippocampus (SGZ) and the subventricular zone (SVZ) in the adult rat brain. Neurospheres cultures obtained from SGZ and SVZ of adult rats treated with PDE7 inhibitors presented an increased proliferation and neuronal differentiation compared to control cultures. PDE7 inhibitors treatment of neurospheres cultures also resulted in an increase of the levels of phosphorylated cAMP response element binding protein, suggesting that their effects were indeed mediated through the activation of the cAMP/PKA signaling pathway. In addition, adult rats orally treated with S14, a specific inhibitor of PDE7, presented elevated numbers of proliferating progenitor cells, and migrating precursors in the SGZ and the SVZ. Moreover, long-term treatment with this PDE7 inhibitor shows a significant increase in newly generated neurons in the olfactory bulb and the hippocampus. Also a better performance in memory tests was observed in S14 treated rats, suggesting a functional relevance for the S14-induced increase in SGZ neurogenesis. Taken together, our results indicate for the first time that inhibition of PDE7 directly regulates proliferation, migration and differentiation of neural stem cells, improving spatial learning and memory tasks. Stem Cells 2017;35:458-472.
Collapse
Affiliation(s)
- Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Victor Echeverry-Alzate
- Departamento de Psicobiologia, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain
| | - Sandra Alonso-Gil
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Marina Sanz-SanCristobal
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Jose A Lopez-Moreno
- Departamento de Psicobiologia, Facultad de Psicología, Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, Madrid, Spain
| | - Angel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas (CSIC-UAM), Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
7
|
Cichero E, Brullo C, Bruno O, Fossa P. Exhaustive 3D-QSAR analyses as a computational tool to explore the potency and selectivity profiles of thieno[3,2-d]pyrimidin-4(3H)-one derivatives as PDE7 inhibitors. RSC Adv 2016. [DOI: 10.1039/c6ra12624c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In the development of selective ligands binding to specific PDE isoforms, the ligand-based approach proved to be a useful tool to better investigate the potency and selectivity profiles of PDE7 inhibitors.
Collapse
Affiliation(s)
- Elena Cichero
- Department of Pharmacy
- Section of Medicinal Chemistry
- School of Medical and Pharmaceutical Sciences
- University of Genoa
- Genoa
| | - Chiara Brullo
- Department of Pharmacy
- Section of Medicinal Chemistry
- School of Medical and Pharmaceutical Sciences
- University of Genoa
- Genoa
| | - Olga Bruno
- Department of Pharmacy
- Section of Medicinal Chemistry
- School of Medical and Pharmaceutical Sciences
- University of Genoa
- Genoa
| | - Paola Fossa
- Department of Pharmacy
- Section of Medicinal Chemistry
- School of Medical and Pharmaceutical Sciences
- University of Genoa
- Genoa
| |
Collapse
|
8
|
Morales-Garcia JA, Aguilar-Morante D, Hernandez-Encinas E, Alonso-Gil S, Gil C, Martinez A, Santos A, Perez-Castillo A. Silencing phosphodiesterase 7B gene by lentiviral-shRNA interference attenuates neurodegeneration and motor deficits in hemiparkinsonian mice. Neurobiol Aging 2014; 36:1160-73. [PMID: 25457552 DOI: 10.1016/j.neurobiolaging.2014.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 09/16/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
Different studies have suggested that the nucleotide cyclic adenosine 3', 5'-monophosphate can actively play an important role as a neuroprotective and anti-inflammatory agent after a brain injury. The phosphodiesterase 7 (PDE7) enzyme is one of the enzymes responsible for controlling specifically the intracellular levels of cyclic adenosine 3', 5'-monophosphate in the immune and central nervous systems. Therefore, this enzyme could play an important role in brain inflammation and neurodegeneration. In this regard, using different chemical inhibitors of PDE7 we have demonstrated their neuroprotective and anti-inflammatory activity in different models of neurodegenerative disorders, including Parkinson's disease (PD). In the present study, we have used the toxin 6-hydroxydopamine and lipopolysaccharide to model PD and explore the protective effects of PDE7B deficiency in dopaminergic neurons cell death. Lentivirus-mediated PDE7B deprivation conferred marked in vitro and in vivo neuroprotection against 6-hydroxydopamine and lipopolysaccharide toxicity in dopaminergic neurons and preserved motor function involving the dopamine system in mouse. Our results substantiate previous data and provide a validation of PDE7B enzyme as a valuable new target for therapeutic development in the treatment of PD.
Collapse
Affiliation(s)
- Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Diana Aguilar-Morante
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elena Hernandez-Encinas
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Sandra Alonso-Gil
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Carmen Gil
- Centro de Investigaciones Biologicas, Biología FisicoQuimica, CSIC, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biologicas, Biología FisicoQuimica, CSIC, Madrid, Spain
| | - Angel Santos
- Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, Madrid, Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
9
|
Mavillard F, Hidalgo J, Megias D, Levitsky KL, Velasco A. PKA-mediated Golgi remodeling during cAMP signal transmission. Traffic 2010; 11:90-109. [PMID: 20002352 DOI: 10.1111/j.1600-0854.2009.01007.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cyclic AMP (cAMP)-dependent protein kinase A (PKA) is part of the set of signaling proteins that are stably associated to the cytosolic surface of Golgi membranes in mammalian cells. In principle, Golgi-associated PKA could participate in either signal transduction events and/or the coordination of Golgi transport activities. Here, we show data indicating that although Golgi-associated PKA is activated fast and efficiently during cell stimulation by an extracellular ligand it does not contribute significantly to cAMP signal transmission to the nucleus. Instead, most of the PKA catalytic subunits Calphaderived from the Golgi complex remain localized in the perinuclear cytoplasm where they induce changes in Golgi structural organization. Thus, in stimulated cells the Golgi complex appears collapsed, showing increased colocalization of previously segregated markers and exhibiting merging of different proximal cisternae within a single stack. In contrast, the trans-Golgi network remains as a separate compartment. Consequently, the rate of protein transport is increased whereas glycan processing is not severely affected. This remodeling process requires the presence of PKA activity associated to the Golgi membranes. Together these data indicate that Golgi-associated PKA activity is involved in the adaptation of Golgi dynamic organization to extracellular signaling events.
Collapse
Affiliation(s)
- Fabiola Mavillard
- Department of Cell Biology, Faculty of Biology, University of Seville, Seville, Spain
| | | | | | | | | |
Collapse
|
10
|
Castaño T, Wang H, Campillo NE, Ballester S, González-García C, Hernández J, Pérez C, Cuenca J, Pérez-Castillo A, Martínez A, Huertas O, Gelpí JL, Luque FJ, Ke H, Gil C. Synthesis, structural analysis, and biological evaluation of thioxoquinazoline derivatives as phosphodiesterase 7 inhibitors. ChemMedChem 2009; 4:866-76. [PMID: 19350606 PMCID: PMC2952885 DOI: 10.1002/cmdc.200900043] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Indexed: 01/21/2023]
Abstract
PDE7 inhibitors regulate pro-inflammatory and immune T-cell functions, and are a potentially novel class of drugs especially useful in the treatment of a wide variety of immune and inflammatory disorders. Starting from our lead family of thioxoquinazolines, we designed, synthesized, and characterized a novel series of thioxoquinazoline derivatives. Many of these compounds showed inhibitory potencies at sub-micromolar levels against the catalytic domain of PDE7A1 and at the micromolar level against PDE4D2. Cell-based studies showed that these compounds not only increased intracellular cAMP levels, but also had interesting anti-inflammatory properties within a therapeutic window. The in silico data predict that these compounds are capable of the crossing the blood-brain barrier. The X-ray crystal structure of the PDE7A1 catalytic domain in complex with compound 15 at a resolution of 2.4 A demonstrated that hydrophobic interactions at the active site pocket are a key feature. This structure, together with molecular modeling, provides insight into the selectivity of the PDE inhibitors and a template for the discovery of new PDE7 or PDE7/PDE4 dual inhibitors.
Collapse
Affiliation(s)
- Tania Castaño
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid (Spain)
| | - Huanchen Wang
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260 (USA)
| | - Nuria E. Campillo
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid (Spain)
| | - Sara Ballester
- Unidad de Regulación Génica, CNM Instituto de Salud Carlos III, Madrid (Spain)
| | | | - Javier Hernández
- Unidad de Regulación Génica, CNM Instituto de Salud Carlos III, Madrid (Spain)
| | - Concepción Pérez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid (Spain)
| | - Jimena Cuenca
- Instituto de Investigaciones Biomédicas (CSIC-UAM) Arturo Duperier 4, 28029 Madrid (Spain)
| | - Ana Pérez-Castillo
- Instituto de Investigaciones Biomédicas (CSIC-UAM) Arturo Duperier 4, 28029 Madrid (Spain)
| | - Ana Martínez
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid (Spain)
| | - Oscar Huertas
- Departamento de Fisicoquímica e Instituto de Biomedicina (IBUB) Facultad de Farmacia, Universidad de Barcelona, Avda. Diagonal 643, 08028 Barcelona (Spain)
| | - José Luis Gelpí
- Departamento de Bioquímica y Biología Molecular Facultad de Bioquímica, Universidad de Barcelona Avda. Diagonal 643, 08028 Barcelona (Spain)
| | - F. Javier Luque
- Departamento de Fisicoquímica e Instituto de Biomedicina (IBUB) Facultad de Farmacia, Universidad de Barcelona, Avda. Diagonal 643, 08028 Barcelona (Spain)
| | - Hengming Ke
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599-7260 (USA)
| | - Carmen Gil
- Instituto de Química Médica (CSIC), Juan de la Cierva 3, 28006 Madrid (Spain)
| |
Collapse
|
11
|
Purification of recombinant human phosphodiesterase 7A expressed in Dictyostelium discoideum. Protein Expr Purif 2008; 61:149-54. [PMID: 18547817 DOI: 10.1016/j.pep.2008.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/06/2008] [Accepted: 05/06/2008] [Indexed: 11/21/2022]
Abstract
Phosphodiesterase plays an important role in regulating inflammatory pathways and T cell function. The development of phosphodiesterase 7 inhibitor may give better efficacy profile over phosphodiesterase 4 inhibitors. However, the recombinant phosphodiesterase 7 is required in large quantity for high-throughput screening of new drugs by in vitro enzymatic assays. In the present study, recombinant human PDE7A1 was expressed in Dictyostelium discoideum under the control of constitutively active actin-15 promoter. The cytosolic localization of the expressed protein was confirmed by immunofluorescence studies. Upto 2 mg of recombinant protein was purified using His-Tag affinity column chromatography followed by ion-exchange Resource Q column purification. The recombinant protein expressed in D. discoideum followed Michaelis-Menten kinetics similar to the protein expressed in mammalian system and showed no major changes in affinity to substrate or inhibitors. Thus, our study clearly demonstrates a robust expression system for successful bulk production of pharmacologically active isoform of human PDE7A1 required for high-throughput assays.
Collapse
|
12
|
Malik R, Bora RS, Gupta D, Sharma P, Arya R, Chaudhary S, Saini KS. Cloning, stable expression of human phosphodiesterase 7A and development of an assay for screening of PDE7 selective inhibitors. Appl Microbiol Biotechnol 2007; 77:1167-73. [PMID: 17952431 DOI: 10.1007/s00253-007-1230-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 09/14/2007] [Accepted: 09/27/2007] [Indexed: 11/25/2022]
Abstract
Phosphodiesterases (PDEs) constitute a superfamily of enzymes that plays an important role in signal transduction by catalysing the hydrolysis of cAMP and cGMP. cDNA encoding PDE7A1 subtype was cloned and a stable recombinant HEK 293 cell line expressing high levels of PDE7A1 was generated. Transient transfection of pCRE-Luc plasmid, harboring luciferase reporter gene into the stable recombinant cell line and subsequent treatment with PDE7 inhibitor, resulted in a dose-dependent increase in luciferase activity. This method provides a simple and sensitive cell-based assay for screening of PDE7 selective inhibitors for the treatment of T cell mediated diseases.
Collapse
Affiliation(s)
- Renu Malik
- Department of Biotechnology, Ranbaxy Research Laboratories, Plot No. 20, Sector 18, Udyog Vihar Industrial Area, Gurgaon, 122001, Haryana, India
| | | | | | | | | | | | | |
Collapse
|
13
|
Yamamoto S, Sugahara S, Ikeda K, Shimizu Y. Amelioration of collagen-induced arthritis in mice by a novel phosphodiesterase 7 and 4 dual inhibitor, YM-393059. Eur J Pharmacol 2007; 559:219-26. [PMID: 17250824 DOI: 10.1016/j.ejphar.2006.11.079] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2006] [Revised: 10/27/2006] [Accepted: 11/29/2006] [Indexed: 10/23/2022]
Abstract
YM-393059 is a novel phosphodiesterase (PDE) 7 and PDE4 dual inhibitor that inhibits PDE7A with high potency (IC50=14 nM) and PDE4 with moderate potency (IC50=630 nM). It inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha production in mice with an ED50 value of 2.1 mg/kg [Yamamoto, S., Sugahara, S., Naito, R., Ichikawa, A., Ikeda, K., Yamada, T., Shimizu, Y., 2006. The effects of a novel phosphodiesterase 7A and -4 dual inhibitor, YM-393059, on T-cell-related cytokine production in vitro and in vivo. Eur. J. Pharmacol. 541, 106-114.]. In this study, we investigated the therapeutic potential of YM-393059 for the treatment of rheumatoid arthritis in several animal models. YM-393059 was found to inhibit LPS-induced interleukin (IL)-1beta production in mice with an ED50 value of 16.6 mg/kg, but it had only a slight effect on IL-6 production. YM-393059 and cyclosporine significantly suppressed arthritis development at doses of 30-100 mg/kg and 20 mg/kg, respectively, in the mice collagen-induced arthritis model. YM-393059 (100 mg/kg) significantly inhibited increases in the serum immunoglobulin G level that occurred in response to autoantigenic collagen in arthritic mice, whereas cyclosporine (20 mg/kg) did not. In contrast, cyclosporine completely suppressed the acute rejection of cardiac allografts in rats, whereas YM-393059 did not, even at a dose of 100 mg/kg. YM-393059 potently inhibited proinflammatory cytokine production and selectively suppressed the response to the autoantigen without affecting the response to alloantigens. These results suggest that YM-393059 is an attractive compound for the treatment of autoimmune disorders such as rheumatoid arthritis.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/antagonists & inhibitors
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Animals
- Antibody Formation/drug effects
- Antirheumatic Agents/pharmacology
- Antirheumatic Agents/therapeutic use
- Arthritis, Experimental/enzymology
- Arthritis, Experimental/immunology
- Arthritis, Experimental/prevention & control
- Arthritis, Rheumatoid/enzymology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/prevention & control
- Cyclic Nucleotide Phosphodiesterases, Type 4
- Cyclic Nucleotide Phosphodiesterases, Type 7
- Cyclosporine/pharmacology
- Dose-Response Relationship, Drug
- Fumarates/pharmacology
- Fumarates/therapeutic use
- Graft Survival/drug effects
- Heart Transplantation
- Immunoglobulin G/blood
- Immunosuppressive Agents/pharmacology
- Indoles/pharmacology
- Indoles/therapeutic use
- Interleukin-1beta/biosynthesis
- Interleukin-6/biosynthesis
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Phosphodiesterase Inhibitors/pharmacology
- Phosphodiesterase Inhibitors/therapeutic use
- Rats
- Rats, Inbred Lew
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Time Factors
- Transplantation, Homologous
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Pharmacology Research Laboratories, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | | | | | | |
Collapse
|
14
|
Bingham J, Sudarsanam S, Srinivasan S. Profiling human phosphodiesterase genes and splice isoforms. Biochem Biophys Res Commun 2006; 350:25-32. [PMID: 16987497 DOI: 10.1016/j.bbrc.2006.08.180] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2006] [Accepted: 08/28/2006] [Indexed: 11/29/2022]
Abstract
A mere 21 human phosphodiesterase (PDE) genes are responsible for modulating cellular levels of cAMP and cGMP in response to stimuli. Considering the importance of cAMP and cGMP to disparate physiological functions including visual response, smooth muscle relaxation, platelet aggregation, immune response, and cardiac contractibility, perhaps the 200 or more splice isoforms of PDE genes also play a major functional role. We profiled the human PDEs across 25 tissue samples using splice sensitive oligonucleotide microarrays containing probes for exons and exon-exon junctions. Our results suggest that PDEs exhibit tissue-specific differences in expression, as demonstrated by the high expression of PDE4B in skeletal muscle. At the splice variant level, the majority of PDE genes--notably 1A, 1C, 2A, 4C, 4D, 5A, 7A, 8A, 8B, 9A, 10A, and 11A--exhibited tissue-specific splicing with potential functional implications for PDE biology. This work validates expression of many EST transcripts, and confirms and expands on published findings based on PCR and cloning, illuminating some of the complexity of cAMP and cGMP processing.
Collapse
|
15
|
Yamamoto S, Sugahara S, Naito R, Ichikawa A, Ikeda K, Yamada T, Shimizu Y. The effects of a novel phosphodiesterase 7A and -4 dual inhibitor, YM-393059, on T-cell-related cytokine production in vitro and in vivo. Eur J Pharmacol 2006; 541:106-14. [PMID: 16780833 DOI: 10.1016/j.ejphar.2006.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 04/18/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
YM-393059, (+/-)-N-(4,6-dimethylpyrimidin-2-yl)-4-[2-(4-methoxy-3-methylphenyl)-5-(4-methylpiperazin-1-yl)-4,5,6,7-tetrahydro-1H-indol-1-yl]benzenesulfonamide difumarate, is a novel phosphodiesterase (PDE) inhibitor that inhibited the PDE7A isoenzyme with a high potency (IC50=14 nM) and PDE4 with a moderate potency (IC50=630 nM). In a cell-based assay, YM-393059 was found to inhibit anti-CD3 antibody, Staphylococcal enterotoxin B, and phytohaemagglutinin-induced interleukin (IL)-2 production in mouse splenocytes with IC50 values ranging from 0.48 to 1.1 microM. It also inhibited anti-CD3 antibody-induced interferon (IFN)-gamma and IL-4 production in splenocytes with IC50 values of 1.8 and 2.8 microM, respectively. YM-393059's inhibition of anti-CD3 antibody-stimulated cytokine (IL-2, IFN-gamma, and IL-4) production was 20- to 31-fold weaker than that of YM976, a selective PDE4 inhibitor. However, orally administered YM-393059 and YM976 inhibited anti-CD3 antibody-induced IL-2 production equipotently in mice. In addition, YM-393059 inhibited lipopolysaccharide-induced tumor necrosis factor-alpha production in vivo more potently than IL-2 (ED50 values of 2.1 mg/kg and 74 mg/kg). In contrast to YM976, YM-393059 did not shorten the duration of alpha2-adrenoceptor agonist-induced sleep in mice, which is a model for the assessment of the typical side effects caused by PDE4 inhibitors, nausea and emesis. YM-393059 is a novel and attractive compound for the treatment of a wide variety of T-cell-mediated diseases.
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Pharmacology Research Laboratories, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Lerner A, Epstein P. Cyclic nucleotide phosphodiesterases as targets for treatment of haematological malignancies. Biochem J 2006; 393:21-41. [PMID: 16336197 PMCID: PMC1383661 DOI: 10.1042/bj20051368] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cAMP signalling pathway has emerged as a key regulator of haematopoietic cell proliferation, differentiation and apoptosis. In parallel, general understanding of the biology of cyclic nucleotide PDEs (phosphodiesterases) has advanced considerably, revealing the remarkable complexity of this enzyme system that regulates the amplitude, kinetics and location of intracellular cAMP-mediated signalling. The development of therapeutic inhibitors of specific PDE gene families has resulted in a growing appreciation of the potential therapeutic application of PDE inhibitors to the treatment of immune-mediated illnesses and haematopoietic malignancies. This review summarizes the expression and function of PDEs in normal haematopoietic cells and the evidence that family-specific inhibitors will be therapeutically useful in myeloid and lymphoid malignancies.
Collapse
Affiliation(s)
- Adam Lerner
- *Evans Department of Medicine, Section of Hematology and Oncology, Boston Medical Center, Boston, MA 02118, U.S.A
- †Department of Pathology, Boston University School of Medicine, Boston, MA 02118, U.S.A
| | - Paul M. Epstein
- ‡Department of Pharmacology, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
17
|
Legraverend M, Grierson DS. The purines: potent and versatile small molecule inhibitors and modulators of key biological targets. Bioorg Med Chem 2006; 14:3987-4006. [PMID: 16503144 DOI: 10.1016/j.bmc.2005.12.060] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Revised: 12/29/2005] [Accepted: 12/29/2005] [Indexed: 11/24/2022]
Abstract
The goal of this review is to highlight the wide range of biological activities displayed by purines, with particular emphasis on new purine-based agents which find potential application as chemical-biology tools and/or therapeutic agents. The expanding interest in the biological properties of polyfunctionalized purine derivatives issues, in large part, from the development of rapid high-throughput screening essays for new protein targets, and the corresponding development of efficient synthetic methodology adapted to the construction of highly diverse purine libraries. Purine-based compounds have found new applications as inducers of interferon and lineage-committed cell dedifferentiation, agonists and antagonists of adenosine receptors, ligands of corticotropin-releasing hormone receptors, and as inhibitors of HSP90, Src kinase, p38alpha MAP kinase, sulfotransferases, phosphodiesterases, and Cdks. The scope of application of purines in biology is most certainly far from being exhausted. Testing purine derivatives against the multitude of biological targets for which small molecule probes have not yet been found should thus be a natural reflex.
Collapse
Affiliation(s)
- Michel Legraverend
- UMR 176 CNRS-Institut Curie, Laboratoire de Pharmacochimie, Bât. 110, Centre Universitaire, 91405 Orsay, France.
| | | |
Collapse
|
18
|
Lugnier C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents. Pharmacol Ther 2005; 109:366-98. [PMID: 16102838 DOI: 10.1016/j.pharmthera.2005.07.003] [Citation(s) in RCA: 666] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/12/2005] [Indexed: 01/08/2023]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs), which are ubiquitously distributed in mammalian tissues, play a major role in cell signaling by hydrolyzing cAMP and cGMP. Due to their diversity, which allows specific distribution at cellular and subcellular levels, PDEs can selectively regulate various cellular functions. Their critical role in intracellular signaling has recently designated them as new therapeutic targets for inflammation. The PDE superfamily represents 11 gene families (PDE1 to PDE11). Each family encompasses 1 to 4 distinct genes, to give more than 20 genes in mammals encoding the more than 50 different PDE proteins probably produced in mammalian cells. Although PDE1 to PDE6 were the first well-characterized isoforms because of their predominance in various tissues and cells, their specific contribution to tissue function and their regulation in pathophysiology remain open research fields. This concerns particularly the newly discovered families, PDE7 to PDE11, for which roles are not yet established. In many pathologies, such as inflammation, neurodegeneration, and cancer, alterations in intracellular signaling related to PDE deregulation may explain the difficulties observed in the prevention and treatment of these pathologies. By inhibiting specifically the up-regulated PDE isozyme(s) with newly synthesized potent and isozyme-selective PDE inhibitors, it may be potentially possible to restore normal intracellular signaling selectively, providing therapy with reduced adverse effects.
Collapse
Affiliation(s)
- Claire Lugnier
- CNRS UMR, 7034, Pharmacologie et Physicochimie des Interactions Moléculaires et Cellulaires, Faculté de Pharmacie, Université Louis Pasteur de Strasbourg, 74 route du Rhin, BP 60024, 67401 Illkirch, France.
| |
Collapse
|
19
|
PDE7 Inhibitors: Chemistry and Potential Therapeutic Utilites. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2005. [DOI: 10.1016/s0065-7743(05)40015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
20
|
Bian H, Zhang J, Wu P, Varty LA, Jia Y, Mayhood T, Hey JA, Wang P. Differential type 4 cAMP-specific phosphodiesterase (PDE4) expression and functional sensitivity to PDE4 inhibitors among rats, monkeys and humans. Biochem Pharmacol 2004; 68:2229-36. [PMID: 15498513 DOI: 10.1016/j.bcp.2004.08.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2004] [Accepted: 08/09/2004] [Indexed: 10/26/2022]
Abstract
It has been suggested that the rat is relatively more susceptible to toxicity induced by inhibitors for type 4 cAMP-specific phosphodiesterase (PDE4). In this study designed to elucidate possible biochemical basis for the higher susceptibility, we compared PDE4 expression levels and their functional relevance among rats, monkeys and humans. In several toxicologically relevant tissues and blood leukocytes, the mRNA expression levels of PDEs 4A, 4B, 4C and 4D were significantly higher in rats than in humans. We confirmed that higher PDE4 expression levels were correlated with a higher enzyme activity level in rat leukocytes. The PDE4 enzyme activity level of leukocytes in monkeys fell between that of rats and humans. Functionally, the potencies of the PDE4 inhibitors rolipram, SB 207499 and SCH 351591 in inhibiting tumor necrosis factor production from leukocytes were in the following order: rat > monkey > human. In addition, rolipram was about 10-fold more potent in rats than in humans in inhibiting phenylephrine-induced contraction of renal artery. These inhibitors were confirmed to be highly selective for PDE4 in comparison to all other PDE families, and to inhibit rat and human PDE4s with identical potencies. Taken together, these results suggest that the higher susceptibility of rats to PDE4 inhibitor-induced toxicity might be due to their higher expression levels of PDE4, and that PDE4 inhibitors may be safer in humans than in monkeys and, particularly, rats.
Collapse
Affiliation(s)
- Hong Bian
- Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang J, Kuvelkar R, Wu P, Egan RW, Billah MM, Wang P. Differential inhibitor sensitivity between human recombinant and native photoreceptor cGMP-phosphodiesterases (PDE6s). Biochem Pharmacol 2004; 68:867-73. [PMID: 15294449 DOI: 10.1016/j.bcp.2004.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Human photoreceptor cGMP-phosphodiesterases (PDE6s) are important reagents in PDE inhibitor discovery. However, recombinant human PDE6s have not been expressed, and isolation of native human PDE6s is highly difficult. In this study, the catalytic subunit(s) of human rod and cone PDE6s (PDE6alphabeta and PDE6alpha', respectively) were co-expressed or expressed separately as catalytically active enzymes. Sildenafil inhibited both the recombinant PDE6s in a dose-dependent manner with Ki values of 94 and 98 nM, respectively. These Ki values were four-fold higher than that (25 nM) of a human native PDE6 preparation. Similarly, 3-isobutyl-1-methylxanthine (IBMX)'s Ki values for the recombinant PDE6s were five- to eight-fold higher than that of the native enzyme. However, E4021 and zaprinast exhibited much (30-80-fold) lower potencies for the recombinant PDE6s than for the native enzyme. Additional PDE5 inhibitors representing other structural classes and possessing different selectivity against native PDE6 also showed different potencies against the recombinant and native PDE6s. In particular, one class of xanthine analogues exhibited significantly (5-15-fold) higher potencies for the recombinant PDE6s than for the native enzyme. Our data demonstrates that the recombinant and native PDE6s exhibit differential sensitivity to inhibitors, and cautions the use of recombinant catalytic subunits of PDE6 in drug discovery or in structural/functional studies.
Collapse
Affiliation(s)
- Ji Zhang
- Allergy Department, Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | | | | | | | | | |
Collapse
|
22
|
Vergne F, Bernardelli P, Lorthiois E, Pham N, Proust E, Oliveira C, Mafroud AK, Ducrot P, Wrigglesworth R, Berlioz-Seux F, Coleon F, Chevalier E, Moreau F, Idrissi M, Tertre A, Descours A, Berna P, Li M. Discovery of thiadiazoles as a novel structural class of potent and selective PDE7 inhibitors. Part 2: Metabolism-directed optimization studies towards orally bioavailable derivatives. Bioorg Med Chem Lett 2004; 14:4615-21. [PMID: 15324875 DOI: 10.1016/j.bmcl.2004.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 06/18/2004] [Accepted: 07/02/2004] [Indexed: 11/19/2022]
Abstract
The synthesis and optimization of pharmacokinetic parameters of structurally novel small PDE7 inhibitors is discussed.
Collapse
Affiliation(s)
- Fabrice Vergne
- Pfizer Global Research and Development, 3-9 Rue de la loge 94265 Fresnes, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) are second messengers involved in the intracellular signal transduction of a variety of extracellular stimuli in several tissues. In the vascular system, these nucleotides play important roles in the regulation of vascular tone and in the maintenance of the mature contractile phenotype in smooth muscle cells. Given that cyclic nucleotide signaling regulates a wide variety of cellular functions, it is not surprising that cyclic nucleotide phosphodiesterases (PDEs). In paticular, the accumulating data showing that there are a large number of different PDE isozymes have triggered an equally large increase in interest about these enzymes. At least 11 different gene families of PDEs are currently known to exist in mammalian tissues. Most families contain several distinct genes, and many of these genes are expressed in different tissues as functionally unique alternative splice variants. This article reviews many of the important aspects about the structure, cellular localization, and regulation of each family of PDEs. Particular emphasis is placed on new information obtained in the last few years about vascular disease. The development of novel methods to deliver more potent and selective PDE inhibitors to individual cell types and subcellular locations will lead to new therapeutic uses for this class of drugs in diseases of the vascular system.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | | | | |
Collapse
|
24
|
Yang G, McIntyre KW, Townsend RM, Shen HH, Pitts WJ, Dodd JH, Nadler SG, McKinnon M, Watson AJ. Phosphodiesterase 7A-Deficient Mice Have Functional T Cells. THE JOURNAL OF IMMUNOLOGY 2003; 171:6414-20. [PMID: 14662840 DOI: 10.4049/jimmunol.171.12.6414] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Phosphodiesterases (PDEs) are enzymes which hydrolyze the cyclic nucleotide second messengers, cAMP and cGMP. In leukocytes, PDEs are responsible for depletion of cAMP which broadly suppresses cell functions and cellular responses to many activation stimuli. PDE7A has been proposed to be essential for T lymphocyte activation based on its induction during cell activation and the suppression of proliferation and IL-2 production observed following inhibition of PDE7A expression using a PDE7A antisense oligonucleotide. These observations have led to the suggestion that selective PDE7 inhibitors could be useful in the treatment of T cell-mediated autoimmune diseases. In the present report, we have used targeted gene disruption to examine the role PDE7A plays in T cell activation. In our studies, PDE7A knockout mice (PDE7A(-/-)) showed no deficiencies in T cell proliferation or Th1- and Th2-cytokine production driven by CD3 and CD28 costimulation. Unexpectedly, the Ab response to the T cell-dependent Ag, keyhole limpet hemocyanin, in the PDE7A(-/-) mice was found to be significantly elevated. The results from our studies strongly support the notion that PDE7A is not essential for T cell activation.
Collapse
Affiliation(s)
- Guchen Yang
- Immunology and Inflammation Drug Discovery, Bristol-Myers Squibb Pharmaceutical Research Institute, Princeton, NJ 08543, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cobb BR, Fan L, Kovacs TE, Sorscher EJ, Clancy JP. Adenosine receptors and phosphodiesterase inhibitors stimulate Cl- secretion in Calu-3 cells. Am J Respir Cell Mol Biol 2003; 29:410-8. [PMID: 12714375 DOI: 10.1165/rcmb.2002-0247oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We investigated cystic fibrosis transmembrane conductance regulator (CFTR) activation by clinically used phosphodiesterase inhibitors (PDEis) in Calu-3 cell monolayers alone and in combination with A2B adenosine receptor stimulation. This receptor pathway has previously been shown to activate wild-type and mutant CFTR molecules. Several PDEis, including milrinone, cilostazol (Pletal), papaverine, rolipram, and sildenafil (Viagra), produced a short circuit current (Isc) that was glibenclamide-sensitive, achieving 20-85% of forskolin-stimulated Isc. Papaverine, cilostazol, and rolipram also augmented both the magnitude and the duration of Isc following low dose stimulation of adenosine receptors with Ado (0.1-1.0 microM, P < 0.01). Subsequent studies demonstrated that very low concentrations of cilostazol or papaverine (approximately 1/2 peak serum concentrations) were sufficient to activate Isc, and both agents markedly augmented Ado-stimulated Isc (1 microM, P < 0.01). Our results provide evidence that select PDEis, at concentrations achieved as part of systemic therapies, can activate CFTR-dependent Isc in Calu-3 cell monolayers. These studies also indicate that PDEis have the capacity to augment an endogenous CFTR-activating pathway in an "in vivo"-like model system, and supports future investigations of these agents relevant to cystic fibrosis.
Collapse
Affiliation(s)
- Bryan R Cobb
- Department of Human Genetics, Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, 35233, USA
| | | | | | | | | |
Collapse
|
26
|
Torras-Llort M, Azorín F. Functional characterization of the human phosphodiesterase 7A1 promoter. Biochem J 2003; 373:835-43. [PMID: 12737631 PMCID: PMC1223549 DOI: 10.1042/bj20021829] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2002] [Revised: 04/14/2003] [Accepted: 05/09/2003] [Indexed: 11/17/2022]
Abstract
In this paper, the human phosphodiesterase 7A1 (h PDE7A1 ) promoter region was identified and functionally characterized. Transient transfection experiments indicated that a 2.9 kb fragment of the h PDE7A1 5'-flanking region, to position -2907, has strong promoter activity in Jurkat T-cells. Deletion analysis showed that the proximal region, up to position -988, contains major cis -regulatory elements of the h PDE7A1 promoter. This minimal promoter region contains a regulatory CpG island which is essential for promoter activity. The CpG island contains three potential cAMP-response-element-binding protein (CREB)-binding sites that, as judged by in vivo dimethyl sulphate (DMS) footprinting, are occupied in Jurkat T-cells. Moreover, over-expression of CREB results in increased promoter activity, but, on the other hand, promoter activity decreases when a dominant-negative form of CREB (KCREB) is over-expressed. In vivo DMS footprinting strongly indicates that other transcription factors, such Ets-2, nuclear factor of activated T-cells 1 (NFAT-1) and nuclear factor kappaB (NF-kappaB), might also contribute to the regulation of h PDE7A1 promoter. Finally, h PDE7A1 promoter was found to be induced by treatment with PMA, but not by treatment with dibutyryl cAMP or forskolin. These results provide insights into the factors and mechanisms that regulate expression of the h PDE7A gene.
Collapse
Affiliation(s)
- Mònica Torras-Llort
- Departament de Biologia Molecular i Cellular, Institut de Biologia Molecular de Barcelona, CSIC, Jordi Girona Salgado 18-26. 08034 Barcelona, Spain
| | | |
Collapse
|
27
|
Smith SJ, Brookes-Fazakerley S, Donnelly LE, Barnes PJ, Barnette MS, Giembycz MA. Ubiquitous expression of phosphodiesterase 7A in human proinflammatory and immune cells. Am J Physiol Lung Cell Mol Physiol 2003; 284:L279-89. [PMID: 12388353 DOI: 10.1152/ajplung.00170.2002] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have determined the expression of phosphodiesterase (PDE) 7A1 and PDE7A2 in human cells that have been implicated in the pathogenesis of chronic obstructive pulmonary disease and asthma. Messenger RNA transcripts were detected by RT-PCR in T lymphocytes, monocytes, neutrophils, airway and vascular smooth muscle cells, lung fibroblasts, epithelial cells, and cardiac myocytes. Human epithelial, T cell, eosinophil, and lung fibroblast cell lines were also positive for PDE7A1 and PDE7A2 mRNA transcripts. By Western immunoblot analyses the amount of PDE7A1 was greatest in T cell lines, peripheral blood T lymphocytes, epithelial cell lines, airway and vascular smooth muscle cells, lung fibroblasts, and eosinophils but was not detected in neutrophils. In contrast, PDE7A2 protein, which was identified in human cardiac myocytes, was not found in any of the other cell types investigated. Immunoconfocal analyses showed that PDE7A was expressed in neutrophils and alveolar macrophages. As the expression of PDE7A mirrors the distribution of PDE4 we speculate that this enzyme could be a target for novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Susan J Smith
- Thoracic Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London SW3 6LY, United Kingdom
| | | | | | | | | | | |
Collapse
|
28
|
Park S, Hwang I, Shong M, Kwon OY. Identification of genes in thyrocytes regulated by unfolded protein response by using disulfide bond reducing agent of dithiothreitol. J Endocrinol Invest 2003; 26:132-7. [PMID: 12739740 DOI: 10.1007/bf03345141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Disulfide bonds are formed between the sulfhydryl groups in two cysteine residues of a protein. The formation of these bonds is necessary for the proper folding of a protein into its active three-dimensional form. In this study, the genes associated with disulfide bond formation of proteins from the rat thyroid cell line, FRTL-5 cell, were investigated using disulfide bond reducing agent of dithiothreitol (DTT), which prevented disulfide formation of newly synthesized proteins. The expression of six genes, they being the cAMP phosphodiesterase 7A1, neuronal cell death inducible putative kinase (NIPK), cytosolic LIM protein (Ajuba), Eker, early growth response 1 and the ferritin heavy chain, was specifically enhanced under both reductive conditions and various endoplasmic reticulum (ER) stresses inducing drugs such as Brefeldin A (BFA), calcium ionophore A23187 (A23187) and tunicamycin. These results suggest that a suitable redox environment is necessary for the correct disulfide bond conformation in thyrocytes in a complex system.
Collapse
Affiliation(s)
- S Park
- Department of Biology, Chungnam National University, Taejon, Korea
| | | | | | | |
Collapse
|
29
|
Richter W, Hermsdorf T, Kronbach T, Dettmer D. Refolding and purification of recombinant human PDE7A expressed in Escherichia coli as inclusion bodies. Protein Expr Purif 2002; 25:138-48. [PMID: 12071709 DOI: 10.1006/prep.2002.1620] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the refolding and purification of the catalytic domain of human 3',5'-cyclic nucleotide phosphodiesterase 7A1 (PDE7A1) expressed in Escherichia coli. A cDNA encoding an N-terminal-truncated PDE7A1(147-482-His) was amplified by RT-PCR from human peripheral blood cells and inserted into the vector pET21-C for bacterial expression of the enzyme fused to a C-terminal His-tag. The PDE was found to be expressed in the form of inclusion bodies which could be refolded to an active enzyme in buffer containing high concentrations of arginine hydrochloride, ethylene glycol, and magnesium chloride at pH 8.5. The PDE7A1(147-482-His) construct could be purified after dialysis and concentration steps by either Zn2+-IDA-Sepharose chromatography or ResourceQ ion-exchange chromatography to homogeneity. In comparison to the metal-chelate column, the ResourceQ purification resulted in a distinctly better yield and enrichment of the protein. Both the Vmax (0.46 micromol. min(-1). mg(-1) ) and the K(m) (0.1 microM) of the purified enzyme were found to be comparable with published data for native or recombinant catalytically active expressed PDE7A1. Using SDS/PAGE, a molecular mass of 39 kDa was determined (theoretical value 38.783 kDa). As known from several other mammalian PDEs, size-exclusion chromatography using refolded PDE7A1(147-482-His) indicated the formation of dimers. The purified enzyme was soluble at concentrations up to 100 microg/ml. A further increase of protein concentration resulted, however, in precipitation of the enzyme.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/chemistry
- 3',5'-Cyclic-AMP Phosphodiesterases/isolation & purification
- Alternative Splicing
- Blotting, Western
- Catalytic Domain
- Chromatography, Ion Exchange
- Cloning, Molecular
- Cyclic Nucleotide Phosphodiesterases, Type 7
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/metabolism
- Heparin/pharmacology
- Humans
- Hydrogen-Ion Concentration
- Inclusion Bodies/metabolism
- Ions
- Isoenzymes/chemistry
- Isoenzymes/isolation & purification
- Kinetics
- Leukocytes/metabolism
- Models, Genetic
- Protein Binding
- Protein Folding
- Protein Renaturation
- Protein Structure, Tertiary
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Reducing Agents/pharmacology
- Sepharose/pharmacology
- Time Factors
- Up-Regulation
Collapse
Affiliation(s)
- Wito Richter
- Institute of Biochemistry, Medical Faculty, Institute of Biochemistry, University of Leipzig, Liebigstrasse 16, Leipzig, Germany
| | | | | | | |
Collapse
|
30
|
Wang P, Wu P, Egan RW, Billah MM. Human phosphodiesterase 8A splice variants: cloning, gene organization, and tissue distribution. Gene 2001; 280:183-94. [PMID: 11738832 DOI: 10.1016/s0378-1119(01)00783-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have cloned cDNAs representing five full-length human phosphodiesterase (PDE) 8A splice variants (PDE8As 1-5) from testis and T cells. PDE8A1 encodes a hydrophilic protein of 829 amino acids, containing an N-terminal REC domain, a PAS domain, and a C-terminal catalytic domain. PDE8A2 encodes a protein of 783 amino acids, identical to PDE8A1 but lacking the PAS domain. PDE8A3 encodes a shorter protein equivalent to the C-terminal 449 amino acids of PDE8A1, containing the catalytic but not the REC and PAS domains. PDE8A4 and PDE8A5, though different from each other at the nucleotide level, encode an identical protein equivalent to the C-terminal 582 amino acids of PDE8A1, including half of the PAS domain. The PDE8A gene is revealed to contain 23 exons, and its exon-intron boundaries have been defined. In addition, we have mapped a common transcription initiation site, and further determined the upstream 5'-flanking sequence of 1740 bp containing the putative promoter. Compared to PDE8A1, PDE8As 2-5 appear to be expressed in much lower abundance. Among various tissues and organs, PDE8A1 and PDE8A2 are expressed at various levels.
Collapse
Affiliation(s)
- P Wang
- Allergy Department, Schering-Plough Research Institute, 2015 Galloping Hill Road, K-15-1600, Kenilworth, NJ 07033, USA.
| | | | | | | |
Collapse
|