1
|
Hellwig M, Diel P, Eisenbrand G, Grune T, Guth S, Henle T, Humpf HU, Joost HG, Marko D, Raupbach J, Roth A, Vieths S, Mally A. Dietary glycation compounds - implications for human health. Crit Rev Toxicol 2024; 54:485-617. [PMID: 39150724 DOI: 10.1080/10408444.2024.2362985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 08/17/2024]
Abstract
The term "glycation compounds" comprises a wide range of structurally diverse compounds that are formed endogenously and in food via the Maillard reaction, a chemical reaction between reducing sugars and amino acids. Glycation compounds produced endogenously are considered to contribute to a range of diseases. This has led to the hypothesis that glycation compounds present in food may also cause adverse effects and thus pose a nutritional risk to human health. In this work, the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG) summarized data on formation, occurrence, exposure and toxicity of glycation compounds (Part A) and systematically assessed potential associations between dietary intake of defined glycation compounds and disease, including allergy, diabetes, cardiovascular and renal disease, gut/gastrotoxicity, brain/cognitive impairment and cancer (Part B). A systematic search in Pubmed (Medline), Scopus and Web of Science using a combination of keywords defining individual glycation compounds and relevant disease patterns linked to the subject area of food, nutrition and diet retrieved 253 original publications relevant to the research question. Of these, only 192 were found to comply with previously defined quality criteria and were thus considered suitable to assess potential health risks of dietary glycation compounds. For each adverse health effect considered in this assessment, however, only limited numbers of human, animal and in vitro studies were identified. While studies in humans were often limited due to small cohort size, short study duration, and confounders, experimental studies in animals that allow for controlled exposure to individual glycation compounds provided some evidence for impaired glucose tolerance, insulin resistance, cardiovascular effects and renal injury in response to oral exposure to dicarbonyl compounds, albeit at dose levels by far exceeding estimated human exposures. The overall database was generally inconsistent or inconclusive. Based on this systematic review, the SKLM concludes that there is at present no convincing evidence for a causal association between dietary intake of glycation compounds and adverse health effects.
Collapse
Affiliation(s)
- Michael Hellwig
- Chair of Special Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Sabine Guth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Thomas Henle
- Chair of Food Chemistry, TU Dresden, Dresden, Germany
| | | | - Hans-Georg Joost
- Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), Nuthetal, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Jana Raupbach
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Angelika Roth
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | | | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Luciani L, Pedrelli M, Parini P. Modification of lipoprotein metabolism and function driving atherogenesis in diabetes. Atherosclerosis 2024; 394:117545. [PMID: 38688749 DOI: 10.1016/j.atherosclerosis.2024.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, characterized by raised blood glucose levels and impaired lipid metabolism resulting from insulin resistance and relative insulin deficiency. In diabetes, the peculiar plasma lipoprotein phenotype, consisting in higher levels of apolipoprotein B-containing lipoproteins, hypertriglyceridemia, low levels of HDL cholesterol, elevated number of small, dense LDL, and increased non-HDL cholesterol, results from an increased synthesis and impaired clearance of triglyceride rich lipoproteins. This condition accelerates the development of the atherosclerotic cardiovascular disease (ASCVD), the most common cause of death in T2DM patients. Here, we review the alteration of structure, functions, and distribution of circulating lipoproteins and the pathophysiological mechanisms that induce these modifications in T2DM. The review analyzes the influence of diabetes-associated metabolic imbalances throughout the entire process of the atherosclerotic plaque formation, from lipoprotein synthesis to potential plaque destabilization. Addressing the different pathophysiological mechanisms, we suggest improved approaches for assessing the risk of adverse cardiovascular events and clinical strategies to reduce cardiovascular risk in T2DM and cardiometabolic diseases.
Collapse
Affiliation(s)
- Lorenzo Luciani
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Interdisciplinary Center for Health Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Birben E, Şahiner ÜM, Kalaycı CÖ. Determination of the effects of advanced glycation end products receptor polymorphisms and its activation on structural cell responses and inflammation in asthma. Turk J Med Sci 2023; 53:160-170. [PMID: 36945930 PMCID: PMC10387853 DOI: 10.55730/1300-0144.5569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/30/2022] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Advanced glycation end products receptor (RAGE) is a pattern recognition receptor which attracted attention in chronic airway diseases recently. This study aimed to determine the association of RAGE with asthma and the cellular responses resulting from RAGE signaling pathway activation. METHODS Asthmatic (n = 362) and healthy (n = 134) children were genotyped by PCR-RFLP. Plasma sRAGE levels were determined by ELISA. Lung structural cells were stimulated with AGEs (advanced glycation end products) and control BSA. Expressions of cytokines and protein levels were determined by real-time PCR and ELISA. RESULTS : Gly82Ser and -374 T/A polymorphisms in RAGE gene were associated with lower plasma sRAGE levels (p < 0.001 and p < 0.025, respectively). AGE stimulation increased the expression of RAGE (p = 0.002), ICAM-1 (p = 0.010) and VCAM-1 (p = 0.002) in endothelial cells; TIMP-1 (p = 0.003) and MCP-1 (p = 0.005) in fibroblasts. AGE stimulation increased protein levels of IL-6 (p < 0.001) in endothelial cells; VEGF (p = 0.025) and IL-8 (p < 0.001) in fibroblasts; IL-1b (p < 0.001) and VEGF (p = 0.007) in epithelial cells. DISCUSSION Activation of RAGE pathway may contribute to asthma pathogenesis by increasing the expression of several asthmarelated genes. These findings suggest that suppression of RAGE signaling may be an alternative candidate for treating asthma.
Collapse
Affiliation(s)
- Esra Birben
- Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey
| | - Ümit Murat Şahiner
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Can Ömer Kalaycı
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
4
|
Chen X, Shi C, Wang Y, Yu H, Zhang Y, Zhang J, Li P, Gao J. The mechanisms of glycolipid metabolism disorder on vascular injury in type 2 diabetes. Front Physiol 2022; 13:952445. [PMID: 36117707 PMCID: PMC9473659 DOI: 10.3389/fphys.2022.952445] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with diabetes have severe vascular complications, such as diabetic nephropathy, diabetic retinopathy, cardiovascular disease, and neuropathy. Devastating vascular complications lead to increased mortality, blindness, kidney failure, and decreased overall quality of life in people with type 2 diabetes (T2D). Glycolipid metabolism disorder plays a vital role in the vascular complications of T2D. However, the specific mechanism of action remains to be elucidated. In T2D patients, vascular damage begins to develop before insulin resistance and clinical diagnosis. Endothelial dysregulation is a significant cause of vascular complications and the early event of vascular injury. Hyperglycemia and hyperlipidemia can trigger inflammation and oxidative stress, which impair endothelial function. Furthermore, during the pathogenesis of T2D, epigenetic modifications are aberrant and activate various biological processes, resulting in endothelial dysregulation. In the present review, we provide an overview and discussion of the roles of hyperglycemia- and hyperlipidemia-induced endothelial dysfunction, inflammatory response, oxidative stress, and epigenetic modification in the pathogenesis of T2D. Understanding the connections of glucotoxicity and lipotoxicity with vascular injury may reveal a novel potential therapeutic target for diabetic vascular complications.
Collapse
Affiliation(s)
- Xiatian Chen
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | | | - Yin Wang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Hua Yu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Yu Zhang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jiaxuan Zhang
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jinning Gao
- Center for Molecular Genetics, Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Singh S, Siva BV, Ravichandiran V. Advanced Glycation End Products: key player of the pathogenesis of atherosclerosis. Glycoconj J 2022; 39:547-563. [PMID: 35579827 DOI: 10.1007/s10719-022-10063-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/07/2022] [Accepted: 05/02/2022] [Indexed: 01/08/2023]
Abstract
Atherosclerosis is the most common type of cardiovascular disease, and it causes intima thickening, plaque development, and ultimate blockage of the artery lumen. Advanced glycation end products (AGEs) are thought to have a role in the development and progression of atherosclerosis. there is developing an enthusiasm for AGEs as a potential remedial target. AGES mainly induce arterial damage and exacerbate the development of atherosclerotic plaques by triggering cell receptor-dependent signalling. The interplay of AGEs with RAGE, a transmembrane signalling receptor present across all cells important to atherosclerosis, changes cell activity, boosts expression of genes, and increases the outflow of inflammatory compounds, resulting in arterial wall injury and plaque formation. Here in this review, function of AGEs in the genesis, progression, and instability of atherosclerosis is discussed. In endothelial and smooth muscle cells, as well as platelets, the interaction of AGEs with their transmembrane cell receptor, RAGE, triggers intracellular signalling, resulting in endothelial damage, vascular smooth muscle cell function modification, and changed platelet activity.
Collapse
Affiliation(s)
- Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, 844102, Dist:Vaishali, Hajipur, Bihar, India.
| | - Boddu Veerabadra Siva
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, 844102, Dist:Vaishali, Hajipur, Bihar, India
| | - V Ravichandiran
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Export Promotion Industrial Park (EPIP) Zandaha Road, 844102, Dist:Vaishali, Hajipur, Bihar, India
| |
Collapse
|
6
|
Malik P, Hoidal JR, Mukherjee TK. Implication of RAGE Polymorphic Variants in COPD Complication and Anti-COPD Therapeutic Potential of sRAGE. COPD 2021; 18:737-748. [PMID: 34615424 DOI: 10.1080/15412555.2021.1984417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a slowly progressive and poorly reversible airway obstruction disease. It is caused either alone or in combination of emphysema, chronic bronchitis (CB), and small airways disease. COPD is thought to be a multi-factorial disorder in which genetic susceptibility, environmental factors and tobacco exposure could be doubly or simultaneously implicated. Available medicines against COPD include anti-inflammatory drugs, such as β2-agonists and anticholinergics, which efficiently reduce airflow limitation but are unable to avert disease progression and mortality. Advanced glycation end products (AGE) and their receptors i.e. receptor for advanced glycation end products (RAGE) are some molecules that have been implicated in the complication of COPD. Several RAGE single nucleotide polymorphic (SNP) variants are produced by the mammalian cells. Based on the ethnicity some SNPs aggravate the COPD severity. Mammalian cells produce several alternative RAGE splice variants including a soluble RAGE (sRAGE) and an endogenous soluble RAGE (esRAGE). Both of these act as decoy receptor and thus may help to arrest the COPD complications. Several lines of evidences indicate a decreased level of sRAGE in the COPD subjects. One of the new strategies to reduce COPD complication may be sRAGE therapeutic administration to the COPD subjects. This comprehensive discussion sheds light on the role of RAGE and its polymorphic variants in the COPD complication along with sRAGE therapeutic significance in the COPD prevention.
Collapse
Affiliation(s)
- Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| | - John R Hoidal
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| | - Tapan Kumar Mukherjee
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Mohebbati R, Abbasnezhad A. Effects of Nigella sativa on endothelial dysfunction in diabetes mellitus: A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112585. [PMID: 31972323 DOI: 10.1016/j.jep.2020.112585] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Endothelial dysfunction is involved in lesion generation by the promotion of both early and late mechanism(s) of atherosclerosis such as adhesion molecules up-regulation, increased chemokine secretion and leukocyte adherence, increased cell permeability, enhanced low-density lipoprotein oxidation, cytokine elaboration, platelet activation and vascular smooth muscle cell migration, and proliferation. Nigella sativa is from the Ranunculaceae family which is used in some countries for various medicinal purposes. Nigella sativa seed has been widely used in traditional medicine for the treatment of diabetes. AIM OF THE REVIEW This review article summarized the therapeutic effects of Nigella sativa on endothelial dysfunction. METHODS Databases such as PubMed, Web of Science, Google Scholar, Scopus, and Iran Medex were considered. The search terms were " Nigella sativa " or "endothelium" and " Diabetes"," endothelial dysfunction ", " Thymoquinone " and " anti-inflammatory effect ". RESULTS The current review shows that Nigella sativa and Thymoquinone have a protective effect on endothelial dysfunction induced by diabetes. This is done by several mechanisms such as reduction of inflammatory and apoptotic markers, improving hyperglycemia, hyperlipidemia and antioxidant function, inhibiting platelet aggregation, and regulating eNOS, VCAM-1 and LOX-1 genes expression that involve in the endothelial dysfunction. Thymoquinone also reduces expression and secretion of some cytokines such as MCP-1, interleukin-1β, TNF-α, NF-κB, and Cox-2 that result in anti-inflammation effect. CONCLUSION Thymoquinone, the main phenolic terpene found in Nigella sativa, has several important properties such as antidiabetic, anti-inflammatory, and antioxidant activity. Therefore, Nigella sativa can improve endothelial dysfunction.
Collapse
Affiliation(s)
- Reza Mohebbati
- - Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Abbasali Abbasnezhad
- - Department of Physiology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
8
|
N ε-Carboxymethyl-Lysine Negatively Regulates Foam Cell Migration via the Vav1/Rac1 Pathway. J Immunol Res 2020; 2020:1906204. [PMID: 32190703 PMCID: PMC7064830 DOI: 10.1155/2020/1906204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/22/2020] [Indexed: 11/17/2022] Open
Abstract
Background Macrophage-derived foam cells play a central role in atherosclerosis, and their ultimate fate includes apoptosis, promotion of vascular inflammation, or migration to other tissues. Nε-Carboxymethyl-lysine (CML), the key active component of advanced glycation end products, induced foam cell formation and apoptosis. Previous studies have shown that the Vav1/Rac1 pathway affects the macrophage cytoskeleton and cell migration, but its role in the pathogenesis of diabetic atherosclerosis is unknown. Methods and Results In this study, we used anterior tibiofibular vascular samples from diabetic foot amputation patients and accident amputation patients, and histological and cytological tests were performed using a diabetic ApoE−/− mouse model and primary peritoneal macrophages, respectively. The results showed that the atherosclerotic plaques of diabetic foot amputation patients and diabetic ApoE−/− mice were larger than those of the control group. Inhibition of the Vav1/Rac1 pathway reduced vascular plaques and promoted the migration of macrophages to lymph nodes. Transwell and wound healing assays showed that the migratory ability of macrophage-derived foam cells was inhibited by CML. Cytoskeletal staining showed that advanced glycation end products inhibited the formation of lamellipodia in foam cells, and inhibition of the Vav1/Rac1 pathway restored the formation of lamellipodia. Conclusion CML inhibits the migration of foam cells from blood vessels via the Vav1/Rac1 pathway, and this process affects the formation of lamellipodia.
Collapse
|
9
|
Atherosclerosis and the Capillary Network; Pathophysiology and Potential Therapeutic Strategies. Cells 2019; 9:cells9010050. [PMID: 31878229 PMCID: PMC7016600 DOI: 10.3390/cells9010050] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis and associated ischemic organ dysfunction represent the number one cause of mortality worldwide. While the key drivers of atherosclerosis, arterial hypertension, hypercholesterolemia and diabetes mellitus, are well known disease entities and their contribution to the formation of atherosclerotic plaques are intensively studied and well understood, less effort is put on the effect of these disease states on microvascular structure an integrity. In this review we summarize the pathological changes occurring in the vascular system in response to prolonged exposure to these major risk factors, with a particular focus on the differences between these pathological alterations of the vessel wall in larger arteries as compared to the microcirculation. Furthermore, we intend to highlight potential therapeutic strategies to improve microvascular function during atherosclerotic vessel disease.
Collapse
|
10
|
Wang Z, Bao Z, Ding Y, Xu S, Du R, Yan J, Li L, Sun Z, Shao C, Gu W. Nε-carboxymethyl-lysine-induced PI3K/Akt signaling inhibition promotes foam cell apoptosis and atherosclerosis progression. Biomed Pharmacother 2019; 115:108880. [PMID: 31035012 DOI: 10.1016/j.biopha.2019.108880] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/10/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022] Open
Abstract
Advanced glycation end products (AGEs) are closely associated with diabetic macrovascular complications. The present study aimed to investigate the effects of Nε-Carboxymethyl-Lysine (the key active component of AGEs) in diabetic atherosclerosis on foam cell apoptosis and to explore the underlying mechanisms. Tissue sections were collected from 12 Type 2 diabetic patients and 4 control patients who underwent amputation surgery following a car accident. Peritoneal injection of streptozotocin in ApoE-/- mice was used to generate a diabetic model in vivo, and Raw 264.7 cells treated with CML and 740Y-P (a PI3K/AKT signaling agonist) were used to explore the effect of PI3K/AKT signaling in CML-induced foam cell apoptosis in vitro. The anterior tibial section of diabetic amputees contained a thinner fiber cap, higher lipid content, and more apoptotic cells than were found in control patients. in vitro studies using Raw 264.7 cell-derived foam cells and in vivo studies using diabetic ApoE-/- mice showed that CML levels dose-dependently reduced cell vitality, induced foam cell apoptosis and regulated apoptosis related protein. Furthermore, CML significantly decreased the phosphorylation of PI3K/AKT signaling, and restoration of PI3K/AKT signaling by 740Y-P decreased the CML-induced foam cell apoptosis. In conclusion, our results showed CML induced foam cell apoptosis in diabetic atherosclerosis through inhibiting the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| | - Zhengyang Bao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Yingpeng Ding
- Department of Cardiology, Affiliated Jintan Hospital of Jiangsu University, Jintan, 213200, China
| | - Suining Xu
- Department of Cardiology, First Affiliated Hospital of Xi'an Medical University, Xi'an, 710021, China
| | - Rongzeng Du
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Wen Gu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
11
|
Wang Y, Zhu J, Handberg A, Overvad K, Tjønneland A, Rimm EB, Jensen MK. Association between plasma CD36 levels and incident risk of coronary heart disease among Danish men and women. Atherosclerosis 2018; 277:163-168. [PMID: 30218892 DOI: 10.1016/j.atherosclerosis.2018.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS CD36 is a cholesterol receptor involved in the uptake of oxidized low-density lipoprotein cholesterol and development of atherosclerotic plaques. Cross-sectional studies have shown correlations between plasma CD36 and atherosclerosis but no prospective study has examined the association yet. We prospectively examined the association between plasma CD36 levels and risk of incident coronary heart disease (CHD) in a Danish population. METHODS Plasma CD36 levels were measured in a case-cohort study nested within the Danish population-based cohort, the Diet, Cancer and Health Study. A total of 1963 incident CHD events occurred between baseline (1993-1997) and 2008, and a sub-cohort of 1759 participants were randomly selected as reference. Cox proportional hazard regression models were used to compute the hazard ratio (HR) and corresponding 95% confidence interval (CI). RESULTS After adjusting for CHD risk factors, including history of hypercholesterolemia and diabetes, elevated plasma CD36 levels were not associated with higher CHD risk in the total population, and the HR comparing the highest versus lowest tertile of CD36 levels was 1.02 (95% CI: 0.84-1.23). High CD36 levels were only found to be associated with risk of CHD in combination with prevalent diabetes (HR = 2.83, 95% CI: 1.08-7.45) vs. the joint reference group of lowest CD36 tertile and no diabetes. CONCLUSIONS Plasma CD36 levels were not predictive of CHD risk in the general population.
Collapse
Affiliation(s)
- Yeli Wang
- Health Services and Systems Research, Duke-NUS Medical School, 169857, Singapore
| | - Jingwen Zhu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, 9100, Denmark; Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, 9100, Denmark
| | - Kim Overvad
- Department of Cardiology, Aalborg University Hospital, Aalborg, 9100, Denmark; Section for Epidemiology, Department of Public Health, Aarhus University, Aarhus, 8000, Denmark
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, 2100, Denmark
| | - Eric B Rimm
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Majken K Jensen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Phagocytosis of Advanced Glycation End Products (AGEs) in Macrophages Induces Cell Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8419035. [PMID: 29430285 PMCID: PMC5752849 DOI: 10.1155/2017/8419035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/15/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023]
Abstract
Advanced glycation end products (AGEs) are the products of a series of nonenzymatic modifications of proteins by reducing sugars. AGEs play a pivotal role in development of diabetic complications and atherosclerosis. Accumulation of AGEs in a vessel wall may contribute to the development of vascular lesions. Although AGEs have a diverse range of bioactivities, the clearance process of AGEs from the extracellular space, including the incorporation of AGEs into specific cells, subcellular localization, and the fate of AGEs, remains unclear. In the present study, we examined the kinetics of the uptake of AGEs by mouse macrophage J774.1 cells in vitro and characterized the process. We demonstrated that AGEs bound to the surface of the cells and were also incorporated into the cytoplasm. The temperature- and time-dependent uptake of AGEs was saturable with AGE concentration and was inhibited by cytochalasin D but not chlorpromazine. We also observed the granule-like appearance of AGE immunoreactivity in subcellular localizations in macrophages. Higher concentrations of AGEs induced intracellular ROS and 4-HNE, which were associated with activation of the NF-κB pathway and caspase-3. These results suggest that incorporation of AGEs occurred actively by endocytosis in macrophages, leading to apoptosis of these cells through NF-κB activation.
Collapse
|
13
|
Abstract
Although an association between diabetes mellitus (DM) and cognitive dysfunction has been recognized for a century, it is often not considered as a complication of DM and remains under-recognized. Cognitive dysfunction, usually present as mild cognitive impairment, can occur with either type 1 or type 2 DM. Both forms of DM contribute to accelerated cerebral atrophy and to the presence of heightened white matter abnormalities. These effects are noted most at the two extremes of life, in childhood and in the advanced years. The cognitive spheres most affected include attention and executive function, processing speed, perception, and memory. Although DM is unlikely to lead to frank dementia, its ability to exacerbate existing neurodegenerative processes, such as Alzheimer disease, will impact tremendously upon our society in the upcoming decades as our population ages. This chapter describes the clinical impact of DM upon the brain, along with discussion of the potential therapeutic avenues to be discovered in the coming decades. We need to prepare for better preventative and therapeutic management of this cerebral neurodegenerative condition.
Collapse
Affiliation(s)
- Cory Toth
- Department of Clinical Neurosciences and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
14
|
Nowotny K, Jung T, Grune T, Höhn A. Reprint of "accumulation of modified proteins and aggregate formation in aging". Exp Gerontol 2014; 59:3-12. [PMID: 25308087 DOI: 10.1016/j.exger.2014.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
Increasing cellular damage during the aging process is considered to be one factor limiting the lifespan of organisms. Besides the DNA and lipids, proteins are frequent targets of non-enzymatic modifications by reactive substances including oxidants and glycating agents. Non-enzymatic protein modifications may alter the protein structure often leading to impaired functionality. Although proteolytic systems ensure the removal of modified proteins, the activity of these proteases was shown to decline during the aging process. The additional age-related increase of reactive compounds as a result of impaired antioxidant systems leads to the accumulation of damaged proteins and the formation of protein aggregates. Both, non-enzymatic modified proteins and protein aggregates impair cellular functions and tissue properties by a variety of mechanisms. This is increasingly important in aging and age-related diseases. In this review, we will give an overview on oxidation and glycation of proteins and the function of modified proteins in aggregate formation. Furthermore, their effects as well as their role in aging and age-related diseases will be highlighted.
Collapse
Affiliation(s)
- Kerstin Nowotny
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Tobias Jung
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Annika Höhn
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, 07743 Jena, Germany.
| |
Collapse
|
15
|
Oxidative stress, protein glycation and nutrition--interactions relevant to health and disease throughout the lifecycle. Proc Nutr Soc 2014; 73:430-8. [PMID: 24877772 DOI: 10.1017/s0029665114000603] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein glycation has been studied for over a century now and plays an important role in disease pathogenesis throughout the lifecycle. Strongly related to diabetic complications, glycation of Hb has become the gold standard method for diabetes diagnosis and monitoring. It is however attracting attention in normoglycaemia as well lately. Longitudinal studies increasingly suggest a positive relationship between glycation and the risk of chronic diseases in normoglycaemic individuals, but the mechanisms behind this association remain unclear. The interaction between glycation and oxidative stress may be particularly relevant in the normoglycaemic context, as suggested by recent epidemiological and in vitro evidence. In that context nutritional and lifestyle factors with an influence on redox status, such as smoking, fruit and vegetable and antioxidants consumption, may have the capacity to promote or inhibit glycation. However, experimental data from controlled trials are lacking the quality and rigour needed to reach firm conclusions. In the present review, we discuss the importance of glycation for health through the lifecycle and focus on the importance of oxidative stress as a driver for glycation. The importance of nutrition to modulate glycation is discussed, based on the evidence available and recommendations towards higher quality future research are made.
Collapse
|
16
|
Accumulation of modified proteins and aggregate formation in aging. Exp Gerontol 2014; 57:122-31. [PMID: 24877899 DOI: 10.1016/j.exger.2014.05.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
Increasing cellular damage during the aging process is considered to be one factor limiting the lifespan of organisms. Besides the DNA and lipids, proteins are frequent targets of non-enzymatic modifications by reactive substances including oxidants and glycating agents. Non-enzymatic protein modifications may alter the protein structure often leading to impaired functionality. Although proteolytic systems ensure the removal of modified proteins, the activity of these proteases was shown to decline during the aging process. The additional age-related increase of reactive compounds as a result of impaired antioxidant systems leads to the accumulation of damaged proteins and the formation of protein aggregates. Both, non-enzymatic modified proteins and protein aggregates impair cellular functions and tissue properties by a variety of mechanisms. This is increasingly important in aging and age-related diseases. In this review, we will give an overview on oxidation and glycation of proteins and the function of modified proteins in aggregate formation. Furthermore, their effects as well as their role in aging and age-related diseases will be highlighted.
Collapse
|
17
|
Leurs P, Lindholm B. The AGE-RAGE pathway and its relation to cardiovascular disease in patients with chronic kidney disease. Arch Med Res 2013; 44:601-10. [PMID: 24231387 DOI: 10.1016/j.arcmed.2013.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 12/20/2022]
Abstract
Chronic kidney disease (CKD) carries an unequivocal high risk for cardiovascular disease (CVD) contributing to high morbimortality; however, the underlying reasons are not fully known. Among mechanisms involved in the pathophysiology of CVD, chronic overstimulation of the advanced glycation end-products (AGE)-receptor for AGE (RAGE) pathway is likely a major contributor in patients with CKD. This review describes briefly some of the components of this pathway, highlighting especially differences between circulating AGE and tissue AGE and how activation of the AGE-RAGE pathway may promote CVD in CKD.
Collapse
Affiliation(s)
- Paul Leurs
- Divisions of Renal Medicine and Baxter Novum, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
18
|
Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflam 2013; 2013:403460. [PMID: 24102034 PMCID: PMC3786507 DOI: 10.1155/2013/403460] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/29/2013] [Indexed: 02/06/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a transmembrane receptor of the immunoglobulin superfamily, capable of binding a broad repertoire of ligands. RAGE-ligands interaction induces a series of signal transduction cascades and lead to the activation of transcription factor NF-κB as well as increased expression of cytokines, chemokines, and adhesion molecules. These effects endow RAGE with the role in the signal transduction from pathogen substrates to cell activation during the onset and perpetuation of inflammation. RAGE signaling and downstream pathways have been implicated in a wide spectrum of inflammatory-related pathologic conditions such as arteriosclerosis, Alzheimer's disease, arthritis, acute respiratory failure, and sepsis. Despite the significant progress in other RAGE studies, the functional importance of the receptor in clinical situations and inflammatory diseases still remains to be fully realized. In this review, we will summarize current understandings and lines of evidence on the molecular mechanisms through which RAGE signaling contributes to the pathogenesis of the aforementioned inflammation-associated conditions.
Collapse
|
19
|
Shiu SWM, Wong Y, Tan KCB. Effect of advanced glycation end products on lectin-like oxidized low density lipoprotein receptor-1 expression in endothelial cells. J Atheroscler Thromb 2013; 19:1083-92. [PMID: 22863784 DOI: 10.5551/jat.11742] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Lectin-like oxidized LDL receptor-1 (LOX-1) is a class E oxidized LDL specific scavenger receptor that recognizes multiple ligands. Advanced glycation end products (AGEs) have been recently identified as other ligands to LOX-1 and shown to increase LOX-1 expressions in diabetes; therefore, we investigated the underlying mechanism involved. METHODS Confluent human aortic endothelial cells were treated with a fixed concentration of AGE-BSA or BSA as a control in the presence or absence of either antibody of the receptor for advanced glycation end products, mammalian target of rapamycin (mTOR) inhibitor rapamycin, NF-kB inhibitor, phosphoinositide 3-kinases (PI3K) inhibitor or anti-diabetic drug metformin. After stimulation, cells were lysed and Western blot protein expression on LOX-1, rapamycin-insensitive companion of mTOR (RICTOR), the phosphorylation status of p-mTOR, p-P70S6 kinase and p-Akt were determined. RESULTS AGEs induced LOX-1 expression in endothelial cells. Pretreatment either with anti-RAGE antibody or LY294002 prior to AGE-BSA decreases LOX-1 and p-mTOR expressions. Incubating endothelial cells with AGE-BSA in the presence of rapamycin down-regulated the protein expression-level of p-mTOR by 41% (p<0.05) and LOX-1 expression by 61.5% (p<0.01). Knockdown of RICTOR by RNA silencing showed a 41.5% (p<0.01) and 71.2% (p<0.01) reduction in LOX-1 and p-Akt expressions, respectively. Preincubation of endothelial cells with AGE-BSA and metformin, an anti-diabetic drug known to have an mTOR inhibition effect, significantly reduced AGE-stimulated LOX-1 expression. CONCLUSION Our results indicated that LOX-1 up-regulation induced by AGE-BSA was a receptor mediated through RAGE and is via the PI3K/PDK1/mTORC2 pathway. Metformincan reduce AGE-stimulated LOX-1 expression in endothelial cells in vitro.
Collapse
Affiliation(s)
- Sammy W M Shiu
- Department of Medicine, University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
20
|
Choi HJ, Jang HJ, Chung TW, Jeong SI, Cha J, Choi JY, Han CW, Jang YS, Joo M, Jeong HS, Ha KT. Catalpol suppresses advanced glycation end-products-induced inflammatory responses through inhibition of reactive oxygen species in human monocytic THP-1 cells. Fitoterapia 2013; 86:19-28. [DOI: 10.1016/j.fitote.2013.01.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 11/25/2022]
|
21
|
Kou MC, Fu SH, Yen JH, Weng CY, Li S, Ho CT, Wu MJ. Effects of citrus flavonoids, 5-hydroxy-3,6,7,8,3′,4′-hexamethoxyflavone and 3,5,6,7,8,3′,4′-heptamethoxyflavone, on the activities of macrophage scavenger receptors and the hepatic LDL receptor. Food Funct 2013; 4:602-9. [DOI: 10.1039/c3fo30301b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Machado-Lima A, Iborra RT, Pinto RS, Sartori CH, Oliveira ER, Nakandakare ER, Stefano JT, Giannella-Neto D, Corrêa-Giannella MLC, Passarelli M. Advanced glycated albumin isolated from poorly controlled type 1 diabetes mellitus patients alters macrophage gene expression impairing ABCA-1-mediated reverse cholesterol transport. Diabetes Metab Res Rev 2013; 29:66-76. [PMID: 23015358 DOI: 10.1002/dmrr.2362] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 08/31/2012] [Accepted: 09/02/2012] [Indexed: 11/06/2022]
Abstract
BACKGROUND We evaluated the effects of albumin isolated from control individuals and from patients with poorly controlled type 1 diabetes mellitus on macrophage gene expression and on reverse cholesterol transport. METHODS Serum albumin was purified from control subjects (n = 12) and from patients with poorly controlled type 1 diabetes mellitus (n = 13). (14)C-cholesterol-labelled J774 macrophages treated with albumin were employed to measure cholesterol efflux mediated by apo A-I, HDL(3) or HDL(2), the intracellular lipid accumulation and the cellular ABCA-1 protein content. Agilent arrays (44000 probes) were used to analyse gene expression. Several differentially expressed genes were validated by real-time reverse transcription-PCR using TaqMan Two Step RT-PCR. RESULTS Levels of glycation-modified and (carboxymethyl)lysine-modified albumin were higher in diabetic patients than in control subjects. Apo A-I-mediated and HDL(2)-mediated cellular cholesterol efflux were impaired in macrophages treated with albumin from diabetic patients in comparison with control albumin-treated cells, which was attributed to the reduction in ABCA-1 protein content. Even in the presence of cholesterol acceptors, a higher level of intracellular lipid was observed in macrophages exposed to albumin from diabetic individuals in comparison with the control. The reduction in ABCA-1 content was associated with enhanced expression of stearoyl CoA desaturase 1 and decreased expression of janus kinase 2, which were induced by albumin from patients with type 1 diabetes mellitus. CONCLUSIONS (Carboxymethyl)lysine-modified albumin isolated from poorly controlled type 1 diabetic patients impairs ABCA-1-mediated reverse cholesterol transport and elicits intracellular lipid accumulation, possibly contributing to atherosclerosis.
Collapse
Affiliation(s)
- Adriana Machado-Lima
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yoshimoto R, Fujita Y, Kakino A, Iwamoto S, Takaya T, Sawamura T. The discovery of LOX-1, its ligands and clinical significance. Cardiovasc Drugs Ther 2012; 25:379-91. [PMID: 21805404 PMCID: PMC3204104 DOI: 10.1007/s10557-011-6324-6] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LOX-1 is an endothelial receptor for oxidized low-density lipoprotein (oxLDL), a key molecule in the pathogenesis of atherosclerosis.The basal expression of LOX-1 is low but highly induced under the influence of proinflammatory and prooxidative stimuli in vascular endothelial cells, smooth muscle cells, macrophages, platelets and cardiomyocytes. Multiple lines of in vitro and in vivo studies have provided compelling evidence that LOX-1 promotes endothelial dysfunction and atherogenesis induced by oxLDL. The roles of LOX-1 in the development of atherosclerosis, however, are not simple as it had been considered. Evidence has been accumulating that LOX-1 recognizes not only oxLDL but other atherogenic lipoproteins, platelets, leukocytes and CRP. As results, LOX-1 not only mediates endothelial dysfunction but contributes to atherosclerotic plaque formation, thrombogenesis, leukocyte infiltration and myocardial infarction, which determine mortality and morbidity from atherosclerosis. Moreover, our recent epidemiological study has highlighted the involvement of LOX-1 in human cardiovascular diseases. Further understandings of LOX-1 and its ligands as well as its versatile functions will direct us to ways to find novel diagnostic and therapeutic approaches to cardiovascular disease.
Collapse
Affiliation(s)
- Ryo Yoshimoto
- Department of Vascular Physiology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
24
|
LOX-1, oxidative stress and inflammation: a novel mechanism for diabetic cardiovascular complications. Cardiovasc Drugs Ther 2012; 25:451-9. [PMID: 21993919 DOI: 10.1007/s10557-011-6342-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus is a common metabolic disease characterized by a state of oxidative stress, inflammation and endothelial dysfunction. This malady can lead to a number of complications such as ischemic heart disease, nephropathy, neuropathy, retinopathy and impaired wound healing. The etiology of diabetic complications is multifactorial, and is closely associated with oxidative stress and inflammation. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), a receptor for oxidized low density lipoprotein (ox-LDL), plays critical roles in multiple signal transduction pathways and is involved in the process of oxidative stress and inflammation. Recent studies provide important insights into the roles of LOX-1 in the development and progression of diabetic vasculopathy which is the underlying mechanism of diabetic complications. In this review, we summarize mechanistic studies, mainly related to LOX-1, on the development and progression of diabetes mellitus and its cardiovascular complications.
Collapse
|
25
|
Castilho G, Okuda LS, Pinto RS, Iborra RT, Nakandakare ER, Santos CX, Laurindo FR, Passarelli M. ER stress is associated with reduced ABCA-1 protein levels in macrophages treated with advanced glycated albumin - reversal by a chemical chaperone. Int J Biochem Cell Biol 2012; 44:1078-86. [PMID: 22497927 DOI: 10.1016/j.biocel.2012.03.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 03/13/2012] [Accepted: 03/22/2012] [Indexed: 01/18/2023]
Abstract
ATP-binding cassette transporter A1 mediates the export of excess cholesterol from macrophages, contributing to the prevention of atherosclerosis. Advanced glycated albumin (AGE-alb) is prevalent in diabetes mellitus and is associated with the development of atherosclerosis. Independently of changes in ABCA-1 mRNA levels, AGE-alb induces oxidative stress and reduces ABCA-1 protein levels, which leads to macrophage lipid accumulation. These metabolic conditions are known to elicit endoplasmic reticulum (ER) stress. We sought to determine if AGE-alb induces ER stress and unfolded protein response (UPR) in macrophages and how disturbances to the ER could affect ABCA-1 content and cholesterol efflux in macrophages. AGE-alb induced a time-dependent increase in ER stress and UPR markers. ABCA-1 content and cellular cholesterol efflux were reduced by 33% and 47%, respectively, in macrophages treated with AGE-alb, and both were restored by treatment with 4-phenyl butyric acid (a chemical chaperone that alleviates ER stress), but not MG132 (a proteasome inhibitor). Tunicamycin, a classical ER stress inductor, also impaired ABCA-1 expression and cholesterol efflux (showing a decrease of 61% and 82%, respectively), confirming the deleterious effect of ER stress in macrophage cholesterol accumulation. Glycoxidation induces macrophage ER stress, which relates to the reduction in ABCA-1 and in reverse cholesterol transport, endorsing the adverse effect of macrophage ER stress in atherosclerosis. Thus, chemical chaperones that alleviate ER stress may represent a useful tool for the prevention and treatment of atherosclerosis in diabetes.
Collapse
Affiliation(s)
- Gabriela Castilho
- Lipids Laboratory (LIM 10), Faculty of Medical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
26
|
She ZG, Chen HZ, Yan Y, Li H, Liu DP. The human paraoxonase gene cluster as a target in the treatment of atherosclerosis. Antioxid Redox Signal 2012; 16:597-632. [PMID: 21867409 PMCID: PMC3270057 DOI: 10.1089/ars.2010.3774] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 12/17/2022]
Abstract
The paraoxonase (PON) gene cluster contains three adjacent gene members, PON1, PON2, and PON3. Originating from the same fungus lactonase precursor, all of the three PON genes share high sequence identity and a similar β propeller protein structure. PON1 and PON3 are primarily expressed in the liver and secreted into the serum upon expression, whereas PON2 is ubiquitously expressed and remains inside the cell. Each PON member has high catalytic activity toward corresponding artificial organophosphate, and all exhibit activities to lactones. Therefore, all three members of the family are regarded as lactonases. Under physiological conditions, they act to degrade metabolites of polyunsaturated fatty acids and homocysteine (Hcy) thiolactone, among other compounds. By detoxifying both oxidized low-density lipoprotein and Hcy thiolactone, PONs protect against atherosclerosis and coronary artery diseases, as has been illustrated by many types of in vitro and in vivo experimental evidence. Clinical observations focusing on gene polymorphisms also indicate that PON1, PON2, and PON3 are protective against coronary artery disease. Many other conditions, such as diabetes, metabolic syndrome, and aging, have been shown to relate to PONs. The abundance and/or activity of PONs can be regulated by lipoproteins and their metabolites, biological macromolecules, pharmacological treatments, dietary factors, and lifestyle. In conclusion, both previous results and ongoing studies provide evidence, making the PON cluster a prospective target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Zhi-Gang She
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | | | | | | | | |
Collapse
|
27
|
Kzhyshkowska J, Neyen C, Gordon S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology 2012; 217:492-502. [PMID: 22437077 DOI: 10.1016/j.imbio.2012.02.015] [Citation(s) in RCA: 189] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 02/19/2012] [Indexed: 12/22/2022]
Abstract
Accumulating evidence indicates that atherosclerosis is a chronic inflammatory disease. The key innate immune cells that are involved in the pathogenesis of atherosclerosis are circulating monocytes and plaque macrophages. Complex interplay between immune and metabolic processes results in pathological activity of these cells. The best understood pathological process mediated by macrophages is their inability to process modified lipoproteins properly resulting in the formation of foamy cells, which are a dangerous component of atherosclerotic plaques. Key molecules involved in the recognition and processing of modified lipoproteins are scavenger receptors (SR). This is a large family of surface expressed structurally heterogeneous receptors with a broad spectrum of endogenous and exogenous ligands. The common functional feature of SR is internalisation of extracellular components and targeting them for lysosomal degradation. However, these relatively simple functions can have complex consequences, since they are linked to diverse specific signalling pathways and to other membrane transport pathways. Moreover, scavenger receptors can co-operate with other types of receptors increasing the variability of the macrophage response to multiple extracellular ligands. At least some SRs respond to modified lipoproteins by amplification of inflammation and accumulation of macrophages in the plaque, while some SRs may support tolerogenic reactions. Outcome of different SR activities will be the decision of monocytes and macrophage to guard homeostatic balance, support atherosclerosis progression and plaque instability by inflammatory reactions, or support rapid fibrotic processes in the plaque that stabilise it. Despite the accumulating knowledge about the molecular mechanisms of scavenger receptor action, their role in the progression of atherosclerosis remains controversial. The activities of scavenger receptors that can contribute to each of these processes are a subject of current review.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Department of Dermatology, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Germany.
| | | | | |
Collapse
|
28
|
Inhibition of Macrophage Oxidative Stress Prevents the Reduction of ABCA-1 Transporter Induced by Advanced Glycated Albumin. Lipids 2012; 47:443-50. [DOI: 10.1007/s11745-011-3647-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 12/15/2011] [Indexed: 12/18/2022]
|
29
|
M2 macrophages exhibit higher sensitivity to oxLDL-induced lipotoxicity than other monocyte/macrophage subtypes. Lipids Health Dis 2011; 10:229. [PMID: 22146099 PMCID: PMC3281809 DOI: 10.1186/1476-511x-10-229] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 12/06/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In obesity, phenotypic switches occur in macrophage populations such that the predominantly M2-polarised anti-inflammatory state seen in lean individuals changes to a predominantly M1-polarised pro-inflammatory state in those who are obese. However, the mechanisms by which these phenotypic shifts occur have not yet been fully elucidated. RESULTS The effects of oxLDL (1-40 μg/ml; 24 h) on several parameters relevant to the Unfolded Protein Response (UPR)-mediated lipotoxic effects of oxLDL (disruption of ER Ca²⁺ handling; activation of the UPR transcription factor XBP-1; upregulation of the UPR target genes BiP and CHOP; apoptosis; cell viability) were investigated in human primary monocyte-derived macrophages, and also in monocyte-macrophages derived from the THP-1 monocytic cell line. A consistent pattern was observed: M2-polarised macrophages were more sensitive to the lipotoxic effects of oxLDL than either non-polarised macrophages or non-differentiated monocytic cells. Specifically, M2-polarised macrophages were the only cell type to undergo significantly increased apoptosis (Primary cells: 1.23 ± 0.01 basal; THP-1-derived: 1.97 ± 0.12 basal; P < 0.05 in both cases) and decreased cell viability (Primary cells: 0.79 ± 0.04 basal; THP-1-derived: 0.67 ± 0.02 basal; P < 0.05 in both cases) when exposed to oxLDL levels similar to those seen in overweight individuals (ie. 1 μg/ml). CONCLUSIONS We propose that the enhanced susceptibility of M2-polarised macrophages to lipotoxicity seen in the present in vitro study could, over time, contribute to the phenotypic shift seen in obese individuals in vivo. This is because a higher degree of oxLDL-induced lipotoxic cell death within M2 macrophages could contribute to a decrease in numbers of M2 cells, and thus a relative increase in proportion of non-M2 cells, within macrophage populations. Given the pro-inflammatory characteristics of a predominantly M1-polarised state, the data presented here may constitute a useful contribution to our understanding of the origin of the pro-inflammatory nature of obesity, and of the pathogenesis of obesity-associated inflammatory disorders such as Type 2 diabetes and atherosclerosis.
Collapse
|
30
|
Barlovic DP, Soro-Paavonen A, Jandeleit-Dahm KAM. RAGE biology, atherosclerosis and diabetes. Clin Sci (Lond) 2011; 121:43-55. [PMID: 21457145 DOI: 10.1042/cs20100501] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Diabetes is characterized by accelerated atherosclerosis with widely distributed vascular lesions. An important mechanism by which hyperglycaemia contributes to vascular injury is through the extensive intracellular and extracellular formation of AGEs (advanced glycation end products). AGEs represent a heterogeneous group of proteins, lipids and nucleic acids, irreversibly cross-linked with reducing sugars. AGEs are implicated in the atherosclerotic process, either directly or via receptor-mediated mechanisms, the most extensively studied receptor being RAGE (receptor for AGEs). The AGE-RAGE interaction alters cellular signalling, promotes gene expression and enhances the release of pro-inflammatory molecules. It elicits the generation of oxidative stress in numerous cell types. The importance of the AGE-RAGE interaction and downstream pathways leading to injurious effects as a result of chronic hyperglycaemia in the development, progression and instability of diabetic atherosclerotic lesions has been amply demonstrated in animal studies. Moreover, the deleterious link of AGEs with diabetic vascular complications has been suggested in many human studies. In the present review, our current understanding of their role as an important mediator of vascular injury through the various stages of atherosclerosis in diabetes will be reviewed and critically assessed.
Collapse
Affiliation(s)
- Drazenka Pongrac Barlovic
- Clinical Department of Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, Zaloska 7, Ljubljana, Slovenia
| | | | | |
Collapse
|
31
|
Sado T, Naruse K, Noguchi T, Haruta S, Yoshida S, Tanase Y, Kitanaka T, Oi H, Kobayashi H. Inflammatory pattern recognition receptors and their ligands: factors contributing to the pathogenesis of preeclampsia. Inflamm Res 2011; 60:509-20. [PMID: 21380737 PMCID: PMC7095834 DOI: 10.1007/s00011-011-0319-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 02/02/2011] [Accepted: 02/17/2011] [Indexed: 01/01/2023] Open
Abstract
Problem Preeclampsia, a pregnancy-specific hypertensive syndrome, is one of the leading causes of premature births as well as fetal and maternal death. Preeclampsia lacks effective therapies because of the poor understanding of disease pathogenesis. The aim of this paper is to review molecular signaling pathways that could be responsible for the pathogenesis of preeclampsia. Method of study This article reviews the English-language literature for pathogenesis and pathophysiological mechanisms of preeclampsia based on genome-wide gene expression profiling and proteomic studies. Results We show that the expression of the genes and proteins involved in response to stress, host-pathogen interactions, immune system, inflammation, lipid metabolism, carbohydrate metabolism, growth and tissue remodeling was increased in preeclampsia. Several significant common pathways observed in preeclampsia overlap the datasets identified in TLR (Toll-like receptor)- and RAGE (receptor for advanced glycation end products)-dependent signaling pathways. Placental oxidative stress and subsequent chronic inflammation are considered to be major contributors to the development of preeclampsia. Conclusion This review summarizes recent advances in TLR- and RAGE-mediated signaling and the target molecules, and provides new insights into the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Toshiyuki Sado
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang XQ, Yang K, He YS, Lu L, Shen WF. Receptor Mediated Elevation in FABP4 Levels by Advanced Glycation End Products Induces Cholesterol and Triacylglycerol Accumulation in THP-1 Macrophages. Lipids 2011; 46:479-86. [DOI: 10.1007/s11745-011-3542-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 02/08/2011] [Indexed: 01/22/2023]
|
33
|
Vincent AM, Hinder LM, Pop-Busui R, Feldman EL. Hyperlipidemia: a new therapeutic target for diabetic neuropathy. J Peripher Nerv Syst 2009; 14:257-67. [PMID: 20021567 PMCID: PMC4239691 DOI: 10.1111/j.1529-8027.2009.00237.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Emerging data establish dyslipidemia as a significant contributor to the development of diabetic neuropathy. In this review, we discuss how separate metabolic imbalances, including hyperglycemia and hyperlipidemia, converge on mechanisms leading to oxidative stress in dorsal root ganglia (DRG) sensory neurons. We conclude with suggestions for novel therapeutic strategies to prevent or reverse diabetes-induced nerve degeneration.
Collapse
Affiliation(s)
- Andrea M Vincent
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
34
|
Negre-Salvayre A, Salvayre R, Augé N, Pamplona R, Portero-Otín M. Hyperglycemia and glycation in diabetic complications. Antioxid Redox Signal 2009; 11:3071-109. [PMID: 19489690 DOI: 10.1089/ars.2009.2484] [Citation(s) in RCA: 269] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a multifactorial disease, classically influenced by genetic determinants of individual susceptibility and by environmental accelerating factors, such as lifestyle. It is considered a major health concern,as its incidence is increasing at an alarming rate, and the high invalidating effects of its long-term complications affect macro- and microvasculature, heart, kidney, eye, and nerves. Increasing evidence indicates that hyperglycemia is the initiating cause of the tissue damage occurring in diabetes, either through repeated acute changes in cellular glucose metabolism, or through the long-term accumulation of glycated biomolecules and advanced glycation end products (AGEs). AGEs represent a heterogeneous group of chemical products resulting from a nonenzymatic reaction between reducing sugars and proteins, lipids, nucleic acids, or a combination of these.The glycation process (glucose fixation) affects circulating proteins (serum albumin, lipoprotein, insulin, hemoglobin),whereas the formation of AGEs implicates reactive intermediates such as methylglyoxal. AGEs form cross-links on long-lived extracellular matrix proteins or react with their specific receptor RAGE, resulting inoxidative stress and proinflammatory signaling implicated in endothelium dysfunction, arterial stiffening, and microvascular complications. This review summarizes the mechanism of glycation and of AGEs formation and the role of hyperglycemia, AGEs, and oxidative stress in the pathophysiology of diabetic complications.
Collapse
|
35
|
Takahashi HK, Mori S, Wake H, Liu K, Yoshino T, Ohashi K, Tanaka N, Shikata K, Makino H, Nishibori M. Advanced glycation end products subspecies-selectively induce adhesion molecule expression and cytokine production in human peripheral blood mononuclear cells. J Pharmacol Exp Ther 2009; 330:89-98. [PMID: 19380603 DOI: 10.1124/jpet.109.150581] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
Advanced glycation end products (AGEs) are proteins or lipids that become glycated after exposure to diverse reducing sugars. Accumulation of AGEs induces diabetes complications. Microinflammation is a common major mechanism in the pathogenesis of diabetic vascular complications. Activation of monocytes/macrophages and T cells plays roles in the pathogenesis of atherosclerosis. The activation of T cells requires the enhanced expression of adhesion molecules on monocytes. AGEs activate monocytes by engaging the receptor for AGE (RAGE); however, little is known about the profile of agonist activity of diverse AGE moieties on monocytes. We investigated the effect of four distinct AGE subtypes (AGE-modified bovine serum albumin; AGE-2, AGE-3, AGE-4, and AGE-5) at concentrations ranging from 0.1 to 100 microg/ml on the expression of intercellular adhesion molecule-1, B7.1, B7.2, and CD40 on monocytes and its impact on the production of interferon-gamma and tumor necrosis factor-alpha in human peripheral blood mononuclear cells. Among the AGEs examined, AGE-2 and AGE-3 selectively induced adhesion molecule expression and cytokine production. Antagonism experiments using antibodies against adhesion molecules demonstrated that cell-to-cell interaction between monocytes and T/natural killer cells was involved in AGE-2- and AGE-3-induced cytokine production. AGE-2 and AGE-3 up-regulated the expression of RAGE on monocytes. The effects of AGE-2 and AGE-3 were inhibited by nuclear factor-kappaB and p38 mitogen-activated protein kinase inhibitors. These results indicated that AGE-2 and AGE-3 activated monocytes via RAGE, leading to the up-regulation of adhesion molecule expression and cytokine production.
Collapse
Affiliation(s)
- Hideo Kohka Takahashi
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
High-density lipoprotein (HDL) plays an important protective role against atherosclerosis, and the anti-atherogenic properties of HDL include the promotion of cellular cholesterol efflux and reverse cholesterol transport (RCT), as well as antioxidant, anti-inflammatory and anticoagulant effects. RCT is a complex pathway, which transports cholesterol from peripheral cells and tissues to the liver for its metabolism and biliary excretion. The major steps in the RCT pathway include the efflux of free cholesterol mediated by cholesterol transporters from cells to the main extracellular acceptor HDL, the conversion of free cholesterol to cholesteryl esters and the subsequent removal of cholesteryl ester in HDL by the liver. The efficiency of RCT is influenced by the mobilization of cellular lipids for efflux and the intravascular remodelling and kinetics of HDL metabolism. Despite the increased cardiovascular risk in people with type 2 diabetes, current knowledge on RCT in diabetes is limited. In this article, abnormalities in RCT in type 2 diabetes mellitus and therapeutic strategies targeting HDL and RCT will be reviewed.
Collapse
Affiliation(s)
- K C B Tan
- Department of Medicine, University of Hong Kong, Hong Kong.
| |
Collapse
|
37
|
Advanced glycation end products and C-peptide—modulators in diabetic vasculopathy and atherogenesis. Semin Immunopathol 2009; 31:103-11. [DOI: 10.1007/s00281-009-0144-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 03/23/2009] [Indexed: 01/11/2023]
|
38
|
Xanthis A, Hatzitolios A, Fidani S, Befani C, Giannakoulas G, Koliakos G. Receptor of Advanced Glycation End Products (RAGE) Positively Regulates CD36 Expression and Reactive Oxygen Species Production in Human Monocytes in Diabetes. Angiology 2009; 60:772-9. [DOI: 10.1177/0003319708328569] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Introduction: Advanced glycation end products (AGEs) engagement of a monocyte surface receptor (RAGE) induces atherosclerosis. AGEs also act as CD36 ligands. We studied reactive oxygen species (ROS) and CD36 expression after siRNA inhibition of RAGE expression in human monocytes. Methods: We isolated monocytes from: a) 10 type 2 diabetics, and b) 5 age- and sex-matched healthy individuals. CD36 expression and ROS production were evaluated before and after RAGE knockdown. Results: After incubation of monocytes with AGE + bovine serum albumin (BSA), CD36 expression and intracellular ROS increased significantly in all groups. In RAGE-knockdown monocytes, AGE-induced CD36 expression and ROS generation were also significantly inhibited. Conclusions: Blocking RAGE expression using siRNA in human monocytes led to a significant inhibition of CD36 expression and ROS production, suggesting a positive interaction between RAGE, CD36 expression and ROS generation in monocytes.
Collapse
Affiliation(s)
- A. Xanthis
- First Propedeutic Internal Medicine Clinic, AHEPA Hospital, Aristotle University of Thessaloniki, Greece,
| | - A. Hatzitolios
- First Propedeutic Internal Medicine Clinic, AHEPA Hospital, Aristotle University of Thessaloniki, Greece
| | - S. Fidani
- Laboratory of General Biology, Medical School, Aristotle University of Thessaloniki, Greece
| | - C. Befani
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Greece
| | - G. Giannakoulas
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, Greece
| | - G. Koliakos
- 1st Cardiology Dept, Medical School, Aristotle University of Thessaloniki, Greece
| |
Collapse
|
39
|
Iwao Y, Nakajou K, Nagai R, Kitamura K, Anraku M, Maruyama T, Otagiri M. CD36 is one of important receptors promoting renal tubular injury by advanced oxidation protein products. Am J Physiol Renal Physiol 2008; 295:F1871-80. [DOI: 10.1152/ajprenal.00013.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic accumulation of plasma advanced oxidation protein products (AOPPs) promotes renal fibrosis. However, the mechanism at the cellular level has not been clarified. In the present study, endocytic assay of human proximal tubular cells (HK-2 cells) demonstrated that AOPPs-human serum albumin (HSA) (in vitro preparations of chloramine- modified HSA) were significantly endocytosed in a dose-dependent manner at a higher level than HSA. The expression of CD36, a transmembrane protein of the class B scavenger receptor, in HK-2 cells was confirmed in the immunoblot analysis. In a cellular assay using overexpressing human CD36 in Chinese hamster ovary (CHO) cells, AOPPs-HSA were significantly endocytosed by CD36-CHO cells but not by mock-CHO cells. Furthermore, the endocytic association and degradation of AOPPs-HSA by HK-2 cells was significantly inhibited by anti-CD36 antibody treatment, suggesting that CD36 is partly involved in the uptake of AOPPs-HSA by HK-2 cells. AOPPs-HSA upregulated the expression of CD36 in a dose-dependent manner. In addition, AOPPs-HSA upregulated the generation of intracellular reactive oxygen species and the secretion of transforming growth factor (TGF)-β1 in HK-2 cells, whereas anti-CD36 antibody neutralizes the upregulation of TGF-β1. These results suggest that AOPPs-HSA may cause renal tubular injury via the CD36 pathway.
Collapse
|
40
|
Zhou H, Tan KCB, Shiu SWM, Wong Y. Determinants of leukocyte adenosine triphosphate-binding cassette transporter G1 gene expression in type 2 diabetes mellitus. Metabolism 2008; 57:1135-40. [PMID: 18640393 DOI: 10.1016/j.metabol.2008.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 03/17/2008] [Indexed: 11/26/2022]
Abstract
Cellular cholesterol efflux is regulated by cholesterol transporters including adenosine triphosphate-binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor class B type I (SR-BI). We have investigated whether the expression of these transporters is affected by type 2 diabetes mellitus and the association with glycemic indexes and oxidized low-density lipoprotein (oxLDL). Messenger RNA of ABCA1, ABCG1, and SR-BI in peripheral monocytes was measured in 30 diabetic patients and 30 matched controls. Plasma oxLDL and advanced glycation end products (AGEs) were assayed by enzyme-linked immunosorbent assay. Cellular cholesterol efflux from monocytes to serum was determined in a subgroup chosen randomly. The expression of ABCG1 was decreased in diabetic patients (P < .05), whereas the levels of ABCA1 and SR-BI were comparable between the 2 groups. Fasting glucose, hemoglobin A(1c), AGEs, and oxLDL were all significantly increased in diabetic patients. There was an inverse correlation between serum AGEs and ABCG1 (r = -0.44, P < .05) that remained significant after adjusting for potential confounding factors. No associations between fasting glucose, hemoglobin A(1c), plasma lipids, or oxLDL and the expression of ABCG1, ABCA1, or SR-BI were found. Cholesterol efflux from monocytes to standard serum or autologous serum was significantly impaired in diabetic patients, and the reduction in efflux to autologous serum correlated with the expression of ABCG1 (r = 0.60, P < .05). The expression of ABCG1 in monocytes is reduced in type 2 diabetes mellitus and is partly related to serum AGEs concentration. The reduction in ABCG1 is associated with impairment in cholesterol efflux and may contribute to accelerated foam cell formation in diabetic patients.
Collapse
MESH Headings
- ATP Binding Cassette Transporter 1
- ATP Binding Cassette Transporter, Subfamily G, Member 1
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/blood
- ATP-Binding Cassette Transporters/genetics
- Biological Transport
- Blood Glucose/metabolism
- Cholesterol/blood
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/genetics
- Enzyme-Linked Immunosorbent Assay
- Female
- Gene Expression
- Glycated Hemoglobin/analysis
- Glycation End Products, Advanced/blood
- Humans
- Leukocytes, Mononuclear/metabolism
- Lipoproteins, LDL/blood
- Male
- Middle Aged
- RNA, Messenger/blood
- RNA, Messenger/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Scavenger Receptors, Class B/biosynthesis
- Scavenger Receptors, Class B/blood
- Scavenger Receptors, Class B/genetics
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Huali Zhou
- Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong
| | | | | | | |
Collapse
|
41
|
Robenek H, Buers I, Hofnagel O, Lorkowski S, Severs NJ. GFP-tagged proteins visualized by freeze-fracture immuno-electron microscopy: a new tool in cellular and molecular medicine. J Cell Mol Med 2008; 13:1381-90. [PMID: 18624750 PMCID: PMC4496151 DOI: 10.1111/j.1582-4934.2008.00407.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
GFP-tagging is widely used as a molecular tool to localize and visualize the trafficking of proteins in cells but interpretation is frequently limited by the low resolution afforded by fluorescence light microscopy. Although complementary thin-section immunogold electron microscopic techniques go some way in aiding interpretation, major limitations, such as relatively poor structural preservation of membrane systems, low labelling efficiency and the two-dimensional nature of the images, remain. Here we demonstrate that the electron microscopic technique freeze-fracture replica immunogold labelling overcomes these disadvantages and can be used to define, at high resolution, the precise location of GFP-tagged proteins in specific membrane systems and organelles of the cell. Moreover, this technique provides information on the location of the protein within the phospholipid bilayer, potentially providing insight into mis-orientation of tagged proteins compared to their untagged counterparts. Complementary application of the freeze-fracture replica immunogold labelling technique alongside conventional fluorescence microscopy is seen as a novel and valuable approach to verification, clarification and extension of the data obtained using fluorescent-tagged proteins. The application of this approach is illustrated by new findings on PAT-family proteins tagged with GFP transfected into fibroblasts from patients with Niemann-Pick type C disease.
Collapse
Affiliation(s)
- Horst Robenek
- Leibniz Institute for Arteriosclerosis Research, University of Münster, Münster, Germany.
| | | | | | | | | |
Collapse
|
42
|
Tan KCB, Shiu SWM, Wong Y, Leng L, Bucala R. Soluble lectin-like oxidized low density lipoprotein receptor-1 in type 2 diabetes mellitus. J Lipid Res 2008; 49:1438-44. [PMID: 18408244 DOI: 10.1194/jlr.m700551-jlr200] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) can be proteolytically cleaved and released as soluble forms (sLOX-1). We have determined serums LOX-1 in type 2 diabetes and evaluated the effect of glucose and advanced glycation end products (AGEs) on sLOX-1 in vitro and in vivo. Endothelial cells were incubated with glucose or AGEs, and sLOX-1 in cell medium was measured. Serum sLOX-1 was measured in 219 diabetic patients and 187 controls by ELISA. The effect of lowering glucose and AGEs on sLOX-1 was determined in 38 poorly controlled diabetic patients after improvement in glycemic control. Incubation of endothelial cells with AGE-BSA led to a dose-dependent increase in sLOX-1, whereas the effect of glucose on sLOX-1 was less marked. Serum sLOX-1 was 9% higher in diabetic patients compared with controls (P<0.01). In the poorly controlled patients, serum sLOX-1 decreased by 12.5% after improvement in glycemic control (P<0.05). The magnitude of reduction in sLOX-1 correlated with the improvement in hemoglobin A1c and AGEs but not with the reduction in oxidized LDL. sLOX-1 level is increased in type 2 diabetes. Both glucose and AGEs are important determinants of LOX-1 expression, and lowering glucose and AGEs leads to a reduction in sLOX-1.
Collapse
Affiliation(s)
- Kathryn C B Tan
- Department of Medicine, University of Hong Kong, Hong Kong, China.
| | | | | | | | | |
Collapse
|
43
|
Nabiev I, Mitchell S, Davies A, Williams Y, Kelleher D, Moore R, Gun'ko YK, Byrne S, Rakovich YP, Donegan JF, Sukhanova A, Conroy J, Cottell D, Gaponik N, Rogach A, Volkov Y. Nonfunctionalized nanocrystals can exploit a cell's active transport machinery delivering them to specific nuclear and cytoplasmic compartments. NANO LETTERS 2007; 7:3452-3461. [PMID: 17949046 DOI: 10.1021/nl0719832] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We use high content cell analysis, live cell fluorescent imaging, and transmission electron microscopy approaches combined with inhibitors of cellular transport and nuclear import to conduct a systematic study of the mechanism of interaction of nonfunctionalized quantum dots (QDs) with live human blood monocyte-derived primary macrophages and cell lines of phagocytic, epithelial, and endothelial nature. Live human macrophages are shown to be able to rapidly uptake and accumulate QDs in distinct cellular compartment specifically to QDs size and charge. We show that the smallest QDs specifically target histones in cell nuclei and nucleoli by a multistep process involving endocytosis, active cytoplasmic transport, and entering the nucleus via nuclear pore complexes. Treatment of the cells with an anti-microtubule agent nocodazole precludes QDs cytoplasmic transport whereas a nuclear import inhibitor thapsigargin blocks QD import into the nucleus. These results demonstrate that the nonfunctionalized QDs exploit the cell's active transport machineries for delivery to specific intranuclear destinations.
Collapse
Affiliation(s)
- Igor Nabiev
- EA No. 3798 Détection et Approches Thérapeutiques Nanotechnologiques dans Mécanismes Biologiques de Défense, Université de Reims Champagne-Ardenne, 51100 Reims, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
1. Macrophage accumulation is a feature of Type 2 diabetes and is associated with the development of diabetic complications (nephropathy, atherosclerosis, neuropathy and retinopathy). The present article reviews the current evidence that macrophages contribute to the complications of Type 2 diabetes. 2. Macrophage-depletion studies in rodent models have demonstrated a causal role for macrophages in the development of diabetic complications. 3. Components of the diabetic milieu (high glucose, advanced glycation end-products and oxidized low-density lipoprotein) promote macrophage accumulation (via induction of chemokines and adhesion molecules) and macrophage activation within diabetic tissues. 4. Macrophages mediate diabetic injury through a variety of mechanisms, including production of reactive oxygen species, cytokines and proteases, which result in tissue damage leading to sclerosis. 5. A number of existing and experimental therapies can indirectly reduce macrophage-mediated injury in diabetic complications. The present article discusses the use of these therapies, given alone and in combination, in suppressing macrophage accumulation and activity. 6. In conclusion, current evidence supports a critical role for macrophages in the evolution of diabetic complications. Present therapies are limited in slowing the progression of macrophage-mediated injury. Novel strategies that are more specific at targeting macrophages may provide better protection against the development of Type 2 diabetic complications.
Collapse
Affiliation(s)
- G H Tesch
- Department of Nephrology and Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia.
| |
Collapse
|
45
|
Basta G. Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications. Atherosclerosis 2007; 196:9-21. [PMID: 17826783 DOI: 10.1016/j.atherosclerosis.2007.07.025] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/18/2007] [Accepted: 07/21/2007] [Indexed: 12/13/2022]
Abstract
The receptor for advanced glycation endproducts (RAGE) is a member of the immunoglobulin superfamily of cell-surface molecules with a diverse repertoire of ligands. In the atherosclerotic milieu, three classes of RAGE ligands, i.e., products of non-enzymatic glycoxidation, S100 proteins and amphoterin, appear to drive receptor-mediated cellular activation and potentially, acceleration of vascular disease. The interaction of RAGE-ligands effectively modulates several steps of atherogenesis, triggering an inflammatory-proliferative process and furthermore, critically contributing to propagation of vascular perturbation, mainly in diabetes. RAGE has a circulating truncated variant isoform, soluble RAGE (sRAGE), corresponding to its extracellular domain only. By competing with cell-surface RAGE for ligand binding, sRAGE may contribute to the removal/neutralization of circulating ligands thus functioning as a decoy. The critical role of RAGE in the chronic vascular inflammation processes highlights this receptor-ligand axis as a possible and attractive candidate for therapeutic intervention to limit vascular damage and its associated clinical disorders.
Collapse
Affiliation(s)
- Giuseppina Basta
- CNR, Institute of Clinical Physiology, San Cataldo Research Area, Via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
46
|
Vasdev S, Gill V, Singal P. Role of Advanced Glycation End Products in Hypertension and Atherosclerosis: Therapeutic Implications. Cell Biochem Biophys 2007; 49:48-63. [PMID: 17873339 DOI: 10.1007/s12013-007-0039-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 01/11/2023]
Abstract
The vascular diseases, hypertension and atherosclerosis, affect millions of individuals worldwide, and account for a large number of deaths globally. A better understanding of the mechanism of these conditions will lead to more specific and effective therapies. Hypertension and atherosclerosis are both characterized by insulin resistance, and we suggest that this plays a major role in their etiology. The cause of insulin resistance is not known, but may be a result of a combination of genetic and lifestyle factors. In insulin resistance, alterations in glucose and lipid metabolism lead to the production of excess aldehydes including glyoxal and methylglyoxal. These aldehydes react non-enzymatically with free amino and sulfhydryl groups of amino acids of proteins to form stable conjugates called advanced glycation end products (AGEs). AGEs act directly, as well as via receptors to alter the function of many intra- and extracellular proteins including antioxidant and metabolic enzymes, calcium channels, lipoproteins, and transcriptional and structural proteins. This results in endothelial dysfunction, inflammation and oxidative stress. All these changes are characteristic of hypertension and atherosclerosis. Human and animal studies have demonstrated that increased AGEs are also associated with these conditions. A pathological role for AGEs is substantiated by studies showing that therapies that attenuate insulin resistance and/or lower AGEs, are effective in decreasing oxidative stress, lowering blood pressure, and attenuating atherosclerotic vascular changes. These interventions include lipoic acid and other antioxidants, AGE breakers or soluble receptors of AGEs, and aldehyde-binding agents like cysteine. Such therapies may offer alternative specific means to treat hypertension and atherosclerosis. An adjunct therapy may be to implement lifestyle changes such as weight reduction, regular exercise, smoking cessation, and increasing dietary intake of fruits and vegetables that also decrease insulin resistance as well as oxidative stress.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Faculty of Medicine, Room H-4310, Health Sciences Centre, Memorial University of Newfoundland, St. John's, NF, A1B 3V6, Canada.
| | | | | |
Collapse
|
47
|
Kroll MH, Srisawasdi P. The clearance of BNP modeled using the NT-proBNP–BNP relationship. Biosystems 2007; 88:147-55. [PMID: 16860926 DOI: 10.1016/j.biosystems.2006.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 05/08/2006] [Accepted: 05/16/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND The ventricular myocardium simultaneously secretes two natriuretic peptides useful in the evaluation of heart failure: BNP, hormonally active, and NT-proBNP, the N-terminal end, non-hormonally active, but ultimately their concentrations differ and their clearance patterns are poorly defined. METHODS We measured NT-proBNP and BNP in patients with and without heart failure and compared their concentrations using regression analysis. RESULTS The relationship between NT-proBNP with BNP is nonlinear. Between 45 and 70 pmol of BNP/L (class II heart failure) the slope is much higher than in other ranges and the NT-proBNP/BNP ratio reaches its maximum in patients with class II NYHA heart failure. CONCLUSIONS The difference in concentration for NT-proBNP and BNP can be related to the diffusion across the renal basement membrane. Their ratio is nonlinear because BNP is cleared faster than in patients with class II heart failure than other classes or normal, suggesting a change in a non-renal mode of clearance.
Collapse
Affiliation(s)
- Martin H Kroll
- North Texas Veterans Affairs Medical Center, Pathology and Laboratory Medicine, 4500 S. Lancaster Road 113, Dallas, TX 75216, USA.
| | | |
Collapse
|
48
|
Thomas AC, Sala-Newby GB, Ismail Y, Johnson JL, Pasterkamp G, Newby AC. Genomics of Foam Cells and Nonfoamy Macrophages From Rabbits Identifies Arginase-I as a Differential Regulator of Nitric Oxide Production. Arterioscler Thromb Vasc Biol 2007; 27:571-7. [PMID: 17194896 DOI: 10.1161/01.atv.0000256470.23842.94] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Conversion of macrophages to foam cells is a critical step in the initiation and progression of atherosclerosis. We sought to identify genes differentially regulated in foam cells, since these are likely to include new targets for intervention.
Methods and Results—
We used suppression subtraction hybridization to compare foam cells and nonfoamy macrophages isolated from subcutaneous granulomas of rabbits fed a cholesterol-rich or normal chow diet and confirmed upregulation of 3 genes, including matrix metalloproteinase-12 (mRNA 2.0-fold,
P
<0.005; protein 3.9-fold,
P
<0.03). Arginase-I mRNA showed the biggest decrease among 11 downregulated genes in foam cells (2.7-fold,
P
<0.001) and was accompanied by significantly reduced arginase enzymatic activity (60-fold,
P
<0.01). Arginase-I competes for substrate L-arginine with nitric oxide synthase and consequently nitric oxide production was significantly increased (3-fold,
P
<0.02) in foam cells compared with nonfoamy macrophages despite no difference in nitric oxide synthase isoenzyme expression. We validated upregulation of matrix metalloproteinase-12 and downregulation of arginase-1 in foam cells of rabbit and human atherosclerotic plaques.
Conclusions—
Our study identified several differentially expressed genes in foam cells and nonfoamy macrophages derived from live rabbits. The altered pattern of gene expression in foam cells is likely to influence atherosclerosis formation and stability.
Collapse
Affiliation(s)
- Anita C Thomas
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Bristol, BS2 8HW, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
Robenek H, Hofnagel O, Buers I, Robenek MJ, Troyer D, Severs NJ. Adipophilin-enriched domains in the ER membrane are sites of lipid droplet biogenesis. J Cell Sci 2006; 119:4215-24. [PMID: 16984971 DOI: 10.1242/jcs.03191] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The prevailing hypothesis of lipid droplet biogenesis proposes that neutral lipids accumulate within the lipid bilayer of the ER membrane from where they are budded off, enclosed by a protein-bearing phospholipid monolayer originating from the cytoplasmic leaflet of the ER membrane. We have used a variety of methods to investigate the nature of the sites of ER–lipid-droplet association in order to gain new insights into the mechanism of lipid droplet formation and growth. The three-dimensional perspectives provided by freeze-fracture electron microscopy demonstrate unequivocally that at sites of close association, the lipid droplet is not situated within the ER membrane; rather, both ER membranes lie external to and follow the contour of the lipid droplet, enclosing it in a manner akin to an egg cup (the ER) holding an egg (the lipid droplet). Freeze-fracture cytochemistry demonstrates that the PAT family protein adipophilin is concentrated in prominent clusters in the cytoplasmic leaflet of the ER membrane closely apposed to the lipid droplet envelope. We identify these structures as sites at which lipids and adipophilin are transferred from ER membranes to lipid droplets. These findings call for a re-evaluation of the prevailing hypothesis of lipid droplet biogenesis.
Collapse
Affiliation(s)
- Horst Robenek
- Leibniz Institute for Arteriosclerosis Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany.
| | | | | | | | | | | |
Collapse
|
50
|
Iwashima Y, Okada M, Haneda M, Yoshida T. Regression of cardiac hypertrophy in type 2 diabetes with hypertension by candesartan. Diabetes Res Clin Pract 2006; 74:8-14. [PMID: 16720057 DOI: 10.1016/j.diabres.2006.03.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 02/02/2006] [Accepted: 03/01/2006] [Indexed: 11/21/2022]
Abstract
This study was designed to compare the effect of candesartan on cardiac left ventricular mass in Japanese patients with that of amlodipine. A total of 40 type 2 diabetic patients with hypertension and left ventricular hypertrophy (LVH) were randomly assigned to receive candesartan (n=20) or amlodipine (n=20). The two treatments when administered for 6 months significantly reduced systolic and diastolic blood pressures (BPs) to a comparable extent. Notably, candesartan significantly reduced left ventricular mass index (LVMI: from 131.5+/-4.5 to 112.1+/-5.9g/m(2), P=0.0009, M+/-S.E.M.), LV posterior wall thickness (PWTd: from 10.3+/-0.3 to 9.1+/-0.3mm, P=0.0052) and interventricular septal thickness (IVSTd: from 10.7+/-0.4 to 9.3+/-0.4mm, P=0.0019) as determined by echocardiography in diastole, but amlodipine treatment did not. LVMI, PWTd and IVSTd were decreased more significantly by the treatment with candesartan than by that with amlodipine (P=0.020, 0.031 and 0.043). The present study thus revealed that candesartan effectively induced regression of LVH in type 2 diabetic patients with hypertension due to effects beyond reduction in BP.
Collapse
Affiliation(s)
- Yasunori Iwashima
- Department of Internal Medicine, Yoshida Hospital, 4-Nishi 4-1-2, Asahikawa 070-0054, Japan.
| | | | | | | |
Collapse
|