1
|
Martynova E, Davidyuk Y, Kabwe E, Garanina EE, Shakirova V, Pavelkina V, Uskova Y, Stott RJ, Foster TL, Markelova M, Goyal M, Gupta A, Bhola M, Kumar V, Baranwal M, Rizvanov AA, Khaiboullina SF. Cytokine, Chemokine, and Metalloprotease Activation in the Serum of Patients with Nephropathia Epidemica from the Republic of Tatarstan and the Republic of Mordovia, Russia. Pathogens 2021; 10:pathogens10050527. [PMID: 33925451 PMCID: PMC8145562 DOI: 10.3390/pathogens10050527] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/18/2021] [Accepted: 04/24/2021] [Indexed: 12/31/2022] Open
Abstract
Nephropathia Epidemica (NE), endemic to several Volga regions of Russia, including the Republic of Tatarstan (RT) and the Republic of Mordovia (RM), is a mild form of hemorrhagic fever with renal syndrome caused by infection with rodent-borne orthohantaviruses. Although NE cases have been reported for decades, little is known about the hantavirus strains associated with human infection in these regions. There is also limited understanding of the pathogenesis of NE in the RT and the RM. To address these knowledge gaps, we conducted comparative analyses of patients with NE in the RT and the RM. Clinical symptoms were more severe in patients with NE from the RM with longer observed duration of fever symptoms and hospitalization. Analysis of patient sera showed changes in the levels of numerous cytokines, chemokines, and matrix metalloproteases (MMPs) in patients with NE from both the RT and the RM, suggesting leukocyte activation, extracellular matrix degradation, and leukocyte chemotaxis. Interestingly, levels of several cytokines were distinctly different between patients NE from the RT when compared with those from the RM. These differences were not related to the genetic variation of orthohantaviruses circulating in those regions, as sequence analysis showed that Puumala virus (PUUV) was the causative agent of NE in these regions. Additionally, only the “Russia” (RUS) genetic lineage of PUUV was detected in the serum samples of patients with NE from both the RT and the RM. We therefore conclude that differences in serum cytokine, chemokine, and MMP levels between the RT and the RM are related to environmental factors and lifestyle differences that influence individual immune responses to orthohantavirus infection.
Collapse
Affiliation(s)
- Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
- Correspondence:
| | - Yuriy Davidyuk
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Emmanuel Kabwe
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Venera Shakirova
- Infectious Diseases Department, Kazan State Medical Academy, 420012 Kazan, Russia;
| | - Vera Pavelkina
- Infectious Diseases Department, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (V.P.); (Y.U.)
| | - Yulia Uskova
- Infectious Diseases Department, National Research Ogarev Mordovia State University, 430005 Saransk, Russia; (V.P.); (Y.U.)
| | - Robert J. Stott
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Toshana L. Foster
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, The University of Nottingham, Loughborough LE12 5RD, UK; (R.J.S.); (T.L.F.)
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Mehendi Goyal
- Doconvid.ai, Bestech Business Tower, Mohali 160055, India;
| | - Abhimat Gupta
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India;
| | - Mannan Bhola
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India; (M.B.); (M.B.)
| | - Vinay Kumar
- Department of Electronics and Communication Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, India;
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India; (M.B.); (M.B.)
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (Y.D.); (E.K.); (E.E.G.); (M.M.); (A.A.R.); (S.F.K.)
| |
Collapse
|
2
|
Paim AC, Cummins NW, Natesampillai S, Garcia-Rivera E, Kogan N, Neogi U, Sönnerborg A, Sperk M, Bren GD, Deeks S, Polley E, Badley AD. HIV elite control is associated with reduced TRAILshort expression. AIDS 2019; 33:1757-1763. [PMID: 31149947 PMCID: PMC6873462 DOI: 10.1097/qad.0000000000002279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) dependent apoptosis has been implicated in CD4 T-cell death and immunologic control of HIV-1 infection. We have described a splice variant called TRAILshort, which is a dominant negative ligand that antagonizes TRAIL-induced cell death in the context of HIV-1 infection. HIV-1 elite controllers naturally control viral replication for largely unknown reasons. Since enhanced death of infected cells might be responsible, as might occur in situations of low (or inhibited) TRAILshort, we tested whether there was an association between elite controller status and reduced levels of TRAILshort expression. DESIGN Cohort study comparing TRAILshort and full length TRAIL expression between HIV-1 elite controllers and viremic progressors from two independent populations. METHODS TRAILshort and TRAIL gene expression in peripheral blood mononuclear cells (PBMCs) was determined by RNA-seq. TRAILshort and TRAIL protein expression in plasma was determined by antibody bead array and proximity extension assay respectively. RESULTS HIV-1 elite controllers expressed less TRAILshort transcripts in PBMCs (P = 0.002) and less TRAILshort protein in plasma (P < 0.001) than viremic progressors. CONCLUSION Reduced TRAILshort expression in PBMCs and plasma is associated with HIV-1 elite controller status.
Collapse
Affiliation(s)
- Ana C Paim
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | - Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | | | | | | | - Ujjwal Neogi
- Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Maike Sperk
- Division of Clinical Microbiology, Karolinska Institutet, Stockholm, Sweden
| | - Gary D Bren
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
| | - Steve Deeks
- Division of Infectious Diseases, University of California, San Francisco, San Francisco, California
| | - Eric Polley
- Division of Biomedical Statistics and Informatics
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Natesampillai S, Paim AC, Cummins NW, Chandrasekar AP, Bren GD, Lewin SR, Kiem HP, Badley AD. TRAILshort Protects against CD4 T Cell Death during Acute HIV Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:718-724. [PMID: 31189571 PMCID: PMC6785036 DOI: 10.4049/jimmunol.1900271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
CD4 T cells from HIV-1 infected patients die at excessive rates compared to those from uninfected patients, causing immunodeficiency. We previously identified a dominant negative ligand that antagonizes the TRAIL-dependent pathway of cell death, which we called TRAILshort. Because the TRAIL pathway has been implicated in CD4 T cell death occurring during HIV-1 infection, we used short hairpin RNA knockdown, CRISPR deletion, or Abs specific for TRAILshort to determine the effect of inhibiting TRAILshort on the outcome of experimental acute HIV infection in vitro. Strikingly, all three approaches to TRAILshort deletion/inhibition enhanced HIV-induced death of both infected and uninfected human CD4 T cells. Thus, TRAILshort impacts T cell dynamics during HIV infection, and inhibiting TRAILshort causes more HIV-infected and uninfected bystander cells to die. TRAILshort is, therefore, a host-derived, host-adaptive mechanism to limit the effects of TRAIL-induced cell death. Further studies on the effects of TRAILshort in other disease states are warranted.
Collapse
Affiliation(s)
| | - Ana C Paim
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905
| | - Nathan W Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905
| | | | - Gary D Bren
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905
| | - Sharon R Lewin
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital, Melbourne, Victoria 3000, Australia
- Department of Infectious Diseases, Alfred Health and Monash University, Melbourne, Victoria 3004, Australia
| | - Hans-Peter Kiem
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109; and
| | - Andrew D Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905;
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
4
|
Virus Infection and Death Receptor-Mediated Apoptosis. Viruses 2017; 9:v9110316. [PMID: 29077026 PMCID: PMC5707523 DOI: 10.3390/v9110316] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Virus infection can trigger extrinsic apoptosis. Cell-surface death receptors of the tumor necrosis factor family mediate this process. They either assist persistent viral infection or elicit the elimination of infected cells by the host. Death receptor-mediated apoptosis plays an important role in viral pathogenesis and the host antiviral response. Many viruses have acquired the capability to subvert death receptor-mediated apoptosis and evade the host immune response, mainly by virally encoded gene products that suppress death receptor-mediated apoptosis. In this review, we summarize the current information on virus infection and death receptor-mediated apoptosis, particularly focusing on the viral proteins that modulate death receptor-mediated apoptosis.
Collapse
|
5
|
Medrano RF, Hunger A, Mendonça SA, Barbuto JAM, Strauss BE. Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget 2017; 8:71249-71284. [PMID: 29050360 PMCID: PMC5642635 DOI: 10.18632/oncotarget.19531] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
During the last decades, the pleiotropic antitumor functions exerted by type I interferons (IFNs) have become universally acknowledged, especially their role in mediating interactions between the tumor and the immune system. Indeed, type I IFNs are now appreciated as a critical component of dendritic cell (DC) driven T cell responses to cancer. Here we focus on IFN-α and IFN-β, and their antitumor effects, impact on immune responses and their use as therapeutic agents. IFN-α/β share many properties, including activation of the JAK-STAT signaling pathway and induction of a variety of cellular phenotypes. For example, type I IFNs drive not only the high maturation status of DCs, but also have a direct impact in cytotoxic T lymphocytes, NK cell activation, induction of tumor cell death and inhibition of angiogenesis. A variety of stimuli, including some standard cancer treatments, promote the expression of endogenous IFN-α/β, which then participates as a fundamental component of immunogenic cell death. Systemic treatment with recombinant protein has been used for the treatment of melanoma. The induction of endogenous IFN-α/β has been tested, including stimulation through pattern recognition receptors. Gene therapies involving IFN-α/β have also been described. Thus, harnessing type I IFNs as an effective tool for cancer therapy continues to be studied.
Collapse
Affiliation(s)
- Ruan F.V. Medrano
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Aline Hunger
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Samir Andrade Mendonça
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| | - José Alexandre M. Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Cell and Molecular Therapy Center, NUCEL-NETCEM, University of São Paulo, São Paulo, Brazil
| | - Bryan E. Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology, Cancer Institute of São Paulo/LIM 24, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
6
|
Mert U, Sanlioglu AD. Intracellular localization of DR5 and related regulatory pathways as a mechanism of resistance to TRAIL in cancer. Cell Mol Life Sci 2017; 74:245-255. [PMID: 27510421 PMCID: PMC11107773 DOI: 10.1007/s00018-016-2321-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/19/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a prominent cytokine capable of inducing apoptosis. It can bind to five different cognate receptors, through which diverse intracellular pathways can be activated. TRAIL's ability to preferentially kill transformed cells makes it a promising potential weapon for targeted tumor therapy. However, recognition of several resistance mechanisms to TRAIL-induced apoptosis has indicated that a thorough understanding of the details of TRAIL biology is still essential before this weapon can be confidently unleashed. Critical to this aim is revealing the functions and regulation mechanisms of TRAIL's potent death receptor DR5. Although expression and signaling mechanisms of DR5 have been extensively studied, other aspects, such as its subcellular localization, non-signaling functions, and regulation of its membrane transport, have only recently attracted attention. Here, we discuss different aspects of TRAIL/DR5 biology, with a particular emphasis on the factors that seem to influence the cell surface expression pattern of DR5, along with factors that lead to its nuclear localization. Disturbance of this balance apparently affects the sensitivity of cancer cells to TRAIL-mediated apoptosis, thus constituting an eligible target for potential new therapeutic agents.
Collapse
Affiliation(s)
- Ufuk Mert
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey
| | - Ahter Dilsad Sanlioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey.
- Center for Gene and Cell Therapy, Akdeniz University, 07058, Antalya, Turkey.
| |
Collapse
|
7
|
Piras-Straub K, Khairzada K, Kocabayoglu P, Paul A, Gerken G, Herzer K. A -1573T>C SNP within the human TRAIL promoter determines TRAIL expression and HCC tumor progression. Cancer Med 2016; 5:2942-2952. [PMID: 27580702 PMCID: PMC5083748 DOI: 10.1002/cam4.854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 12/23/2022] Open
Abstract
The cytokine tumor necrosis factor (TNF)‐related apoptosis‐inducing ligand (TRAIL) induces apoptosis in liver cancer cells but not in normal liver cells. Therefore, TRAIL got credited to play a role in hepatocellular carcinoma (HCC) development and progression. Impaired expression of TRAIL in HCC cells and sequence variations in the TRAIL promoter may facilitate development, growth, and spread . The TRAIL promoter was sequenced from liver tissue of 93 patients undergoing partial liver resection (PRT) or liver transplantation (LT) for HCC. TRAIL mRNA expression was investigated by quantitative real‐time PCR. A variant ‐1573T>C (single‐nucleotide polymorphism; C, cytosine) SNP was characterized by electron mobility shift assay and supershift assays. Functionality of the ‐1573T>C SNP was analyzed in reporter gene assays and cell migration assays. In approximately 30% of HCC samples, a loss‐of‐function shift of the binding pattern due to a ‐1573T>C SNP was found within the human TRAIL promoter. Correlation analysis revealed significantly lower TRAIL expression in HCC samples with the ‐1573C sequence (P ≤ 0.05). Reporter gene assays revealed significantly reduced inducibility of the TRAIL promoter due to the ‐1573C sequence. The variant ‐1573C sequence impaired not only binding of transcription factors but also expression of TRAIL. Interestingly, this impairment resulted in enhanced migration activity and colony formation of the liver tumor cells. Our findings suggest that loss of function of the human TRAIL promoter due to the ‐1573T>C SNP leads to reduced expression and impaired inducibility of TRAIL, with the consequence of enhanced growth and migration of tumor cells, ultimately resulting in the progression of the HCC.
Collapse
Affiliation(s)
- Katja Piras-Straub
- Department of General, Visceral, and Transplantation Surgery, University Hospital Germany, Essen, Germany.,Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Khaleda Khairzada
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Peri Kocabayoglu
- Department of General, Visceral, and Transplantation Surgery, University Hospital Germany, Essen, Germany
| | - Andreas Paul
- Department of General, Visceral, and Transplantation Surgery, University Hospital Germany, Essen, Germany
| | - Guido Gerken
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | - Kerstin Herzer
- Department of General, Visceral, and Transplantation Surgery, University Hospital Germany, Essen, Germany. .,Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany.
| |
Collapse
|
8
|
Major apoptotic mechanisms and genes involved in apoptosis. Tumour Biol 2016; 37:8471-86. [PMID: 27059734 DOI: 10.1007/s13277-016-5035-9] [Citation(s) in RCA: 411] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/28/2016] [Indexed: 12/12/2022] Open
Abstract
As much as the cellular viability is important for the living organisms, the elimination of unnecessary or damaged cells has the opposite necessity for the maintenance of homeostasis in tissues, organs and the whole organism. Apoptosis, a type of cell death mechanism, is controlled by the interactions between several molecules and responsible for the elimination of unwanted cells from the body. Apoptosis can be triggered by intrinsically or extrinsically through death signals from the outside of the cell. Any abnormality in apoptosis process can cause various types of diseases from cancer to auto-immune diseases. Different gene families such as caspases, inhibitor of apoptosis proteins, B cell lymphoma (Bcl)-2 family of genes, tumor necrosis factor (TNF) receptor gene superfamily, or p53 gene are involved and/or collaborate in the process of apoptosis. In this review, we discuss the basic features of apoptosis and have focused on the gene families playing critical roles, activation/inactivation mechanisms, upstream/downstream effectors, and signaling pathways in apoptosis on the basis of cancer studies. In addition, novel apoptotic players such as miRNAs and sphingolipid family members in various kind of cancer are discussed.
Collapse
|
9
|
Souza PS, Madigan JP, Gillet JP, Kapoor K, Ambudkar SV, Maia RC, Gottesman MM, Fung KL. Expression of the multidrug transporter P-glycoprotein is inversely related to that of apoptosis-associated endogenous TRAIL. Exp Cell Res 2015; 336:318-28. [PMID: 26101157 DOI: 10.1016/j.yexcr.2015.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 12/27/2022]
Abstract
Multidrug resistance (MDR) has been associated with expression of ABC transporter genes including P-glycoprotein (Pgp, MDR1, ABCB1). However, deregulation of apoptotic pathways also renders cells resistant to chemotherapy. To discover apoptosis-related genes affected by Pgp expression, we used the HeLa MDR-off system. We found that using doxycycline to control Pgp expression has a significant advantage over tetracycline, in that doxycycline caused less endogenous gene expression modification/perturbation, and was more potent than tetracycline in suppressing Pgp expression. Cells overexpressing Pgp have lower TNFSF10 (TRAIL) expression than their parental cells. Controlled downregulation of Pgp increased endogenous TRAIL protein expression. Also, ectopic overexpression of TRAIL in Pgp-positive cells was associated with a reduction in Pgp levels. However, cells expressing a functionally defective mutant Pgp showed an increase in TRAIL expression, suggesting that Pgp function is required for TRAIL suppression. Cells in which Pgp is knocked down by upregulation of TRAIL expression are less susceptible to TRAIL ligand (sTRAIL)-induced apoptosis. Our findings reveal an inverse correlation between functional Pgp and endogenous TRAIL expression. Pgp function plays an important role in the TRAIL-mediated apoptosis pathway by regulating endogenous TRAIL expression and the TRAIL-mediated apoptosis pathway in MDR cancer cells.
Collapse
Affiliation(s)
- Paloma S Souza
- Laboratory of Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, USA; Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Brazil
| | - James P Madigan
- Laboratory of Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, USA
| | - Jean-Pierre Gillet
- Laboratory of Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, USA
| | - Khyati Kapoor
- Laboratory of Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, USA
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, USA
| | - Raquel C Maia
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Brazil
| | - Michael M Gottesman
- Laboratory of Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, USA.
| | - King Leung Fung
- Laboratory of Cell Biology, National Cancer Institute, Center for Cancer Research, National Institutes of Health, USA
| |
Collapse
|
10
|
Dai X, Zhang J, Arfuso F, Chinnathambi A, Zayed ME, Alharbi SA, Kumar AP, Ahn KS, Sethi G. Targeting TNF-related apoptosis-inducing ligand (TRAIL) receptor by natural products as a potential therapeutic approach for cancer therapy. Exp Biol Med (Maywood) 2015; 240:760-73. [PMID: 25854879 DOI: 10.1177/1535370215579167] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to selectively induce apoptotic cell death in various tumor cells by engaging its death-inducing receptors (TRAIL-R1 and TRAIL-R2). This property has led to the development of a number of TRAIL-receptor agonists such as the soluble recombinant TRAIL and agonistic antibodies, which have shown promising anticancer activity in preclinical studies. However, besides activating caspase-dependent apoptosis in several cancer cells, TRAIL may also activate nonapoptotic signal transduction pathways such as nuclear factor-kappa B, mitogen-activated protein kinases, AKT, and signal transducers and activators of transcription 3, which may contribute to TRAIL resistance that is being now frequently encountered in various cancers. TRAIL resistance can be overcome by the application of efficient TRAIL-sensitizing pharmacological agents. Natural compounds have shown a great potential in sensitizing cells to TRAIL treatment through suppression of distinct survival pathways. In this review, we have summarized both apoptotic and nonapoptotic pathways activated by TRAIL, as well as recent advances in developing TRAIL-receptor agonists for cancer therapy. We also briefly discuss combination therapies that have shown great potential in overcoming TRAIL resistance in various tumors.
Collapse
Affiliation(s)
- Xiaoyun Dai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Jingwen Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Frank Arfuso
- School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - M E Zayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia Cancer Science Institute of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore School of Biomedical Sciences, CHIRI Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Azahri NSM, Kavurma MM. Transcriptional regulation of tumour necrosis factor-related apoptosis-inducing ligand. Cell Mol Life Sci 2013; 70:3617-29. [PMID: 23329170 PMCID: PMC11113472 DOI: 10.1007/s00018-013-1264-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 12/13/2022]
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has dual functions mediating both apoptosis and survival of cells. This review focusses on the current regulatory factors that control TRAIL transcription. Here, we also highlight the role of distinct transcription factors that co-operate and regulate TRAIL in different pathological states. A better understanding of the molecular signalling pathways of TRAIL-induced cell death and survival in disease may lead to more sophisticated technologies for novel therapeutic targets.
Collapse
Affiliation(s)
- Nor Saadah M. Azahri
- Centre for Vascular Research, University of New South Wales, Sydney, NSW 2052 Australia
- School of Medical Sciences, University of New South Wales, Sydney, NSW 2052 Australia
- Department of Biomedical Science, Faculty of Allied Health Sciences, International Islamic University, 25200 Kuantan, Pahang Malaysia
| | - Mary M. Kavurma
- Centre for Vascular Research, University of New South Wales, Sydney, NSW 2052 Australia
| |
Collapse
|
12
|
Premkumar DR, Jane EP, Foster KA, Pollack IF. Survivin inhibitor YM-155 sensitizes tumor necrosis factor- related apoptosis-inducing ligand-resistant glioma cells to apoptosis through Mcl-1 downregulation and by engaging the mitochondrial death pathway. J Pharmacol Exp Ther 2013; 346:201-10. [PMID: 23740602 PMCID: PMC3716309 DOI: 10.1124/jpet.113.204743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/28/2013] [Indexed: 11/22/2022] Open
Abstract
Induction of apoptosis by the death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor therapy. However, not all tumor cells are sensitive to TRAIL, highlighting the need for strategies to overcome TRAIL resistance. Inhibitor of apoptosis family member survivin is constitutively activated in various cancers and blocks apoptotic signaling. Recently, we demonstrated that YM-155 [3-(2-methoxyethyl)-2-methyl-4,9-dioxo-1-(pyrazin-2-ylmethyl)-4,9-dihydro-3H-naphtho[2,3-d]imidazol-1-ium bromide], a small molecule inhibitor, downregulates not only survivin in gliomas but also myeloid cell leukemia sequence 1 (Mcl-1), and it upregulates proapoptotic Noxa levels. Because Mcl-1 and survivin are critical mediators of resistance to various anticancer therapies, we questioned whether YM-155 could sensitize resistant glioma cells to TRAIL. To address this hypothesis, we combined YM-155 with TRAIL and examined the effects on cell survival and apoptotic signaling. TRAIL or YM-155 individually induced minimal killing in highly resistant U373 and LNZ308 cell lines, but combining TRAIL with YM-155 triggered a synergistic proapoptotic response, mediated through mitochondrial dysfunction via activation of caspases-8, -9, -7, -3, poly-ADP-ribose polymerase, and Bid. Apoptosis induced by combination treatments was blocked by caspase-8 and pan-caspase inhibitors. In addition, knockdown of Mcl-1 by RNA interference overcame apoptotic resistance to TRAIL. Conversely, silencing Noxa by RNA interference reduced the combined effects of YM-155 and TRAIL on apoptosis. Mechanistically, these findings indicate that YM-155 plays a role in counteracting glioma cell resistance to TRAIL-induced apoptosis by downregulating Mcl-1 and survivin and amplifying mitochondrial signaling through intrinsic and extrinsic apoptotic pathways. The significantly enhanced antitumor activity of the combination of YM-155 and TRAIL may have applications for therapy of malignant glioma.
Collapse
Affiliation(s)
- Daniel R Premkumar
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | | | | | | |
Collapse
|
13
|
Abstract
TRAIL is a member of the TNF superfamily that induces tumor-selective cell death by engaging the pro-apoptotic death receptors DR4 and DR5. The antitumor potential of the TRAIL pathway has been targeted by several therapeutic approaches including recombinant TRAIL and TRAIL-receptor agonist antibodies among others. Interest in sensitizing tumor cells to TRAIL-mediated apoptosis has driven investigations of TRAIL-receptor gene regulation, though regulation of the TRAIL gene has been less studied. Physiologically, TRAIL serves as a pro-apoptotic effector molecule in the immune surveillance of cancer that is conditionally expressed by immune cells upon stimulation via an interferon-response element that was identified in early studies of the TRAIL gene promoter. Here, we map the TRAIL gene promoter and review studies of TRAIL gene regulation that involve several modalities of gene regulation including transcription factors, epigenetics, single-nucleotide polymorphisms and functionally distinct isoforms.
Collapse
Affiliation(s)
- Joshua E Allen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Medicine (Hematology/Oncology), Penn State Hershey Cancer Institute, Hershey, PA, USA
| | | |
Collapse
|
14
|
Yanase N, Hayashida M, Kanetaka-Naka Y, Hoshika A, Mizuguchi J. PKC-δ mediates interferon-α-induced apoptosis through c-Jun NH₂-terminal kinase activation. BMC Cell Biol 2012; 13:7. [PMID: 22435755 PMCID: PMC3353249 DOI: 10.1186/1471-2121-13-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 03/21/2012] [Indexed: 12/16/2022] Open
Abstract
Background Interferon-α (IFN-α) exerts an anti-tumor effect at least through induction of apoptosis in a variety of types including B lymphoma cells. We recently found that IFN-α induced a sustained activation of c-Jun NH2-terminal kinase1 (JNK1), which is implicated in activation of the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) promoter. In the present study, we explored upstream component(s) of the prolonged IFN-α-initiated activation of JNK1. Results IFN-α caused activation of PKC-δ in Daudi B lymphoma cells and myeloma U266 cells, as detected by Western blotting using a monoclonal antibody specific for the phosphorylated form of PKC-δ. The dominant-negative form of mutant PKC-δ (dnPKC-δ) reduced the IFN-α-induced JNK1 activation, TRAIL promoter activity, loss of mitochondrial membrane potential (ΔΨm), and increase in propidium iodide (PI) positive cells. The IFN-α-induced activation of JNK1 and the TRAIL promoter was also attenuated by the PKC-δ inhibitor rottlerin. Moreover, a constitutively active form of mutant PKC-δ enhanced the IFN-α-induced TRAIL promoter activity and loss of ΔΨm in Daudi B lymphoma cells. In addition, IFN-α-induced Ser727 phosphorylation of Stat1 was also abrogated by dnPKC-δ. Conclusions IFN-α induced JNK1 activation via PKC-δ, leading to upregulation of TRAIL. The interaction of the consequent enhanced TRAIL expression with TRAIL-receptor results in a loss of ΔΨm and increase in PI positive cells. The IFN-α-induced apoptotic events may also be affected by the Ser727-Stat1 induced by PKC-δ-mediated signaling component(s).
Collapse
Affiliation(s)
- Noriko Yanase
- Department of Immunology and Intractable Immune System Disease Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | | | | | | | | |
Collapse
|
15
|
Yu W, Tiwary R, Li J, Park SK, Jia L, Xiong A, Simmons-Menchaca M, Sanders BG, Kline K. α-TEA induces apoptosis of human breast cancer cells via activation of TRAIL/DR5 death receptor pathway. Mol Carcinog 2010; 49:964-73. [PMID: 20886583 DOI: 10.1002/mc.20681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Vitamin E derivative RRR-α-tocopherol ether-linked acetic acid analog (α-TEA) induces apoptosis in MCF-7 and HCC-1954 human breast cancer cells in a dose- and time-dependent manner. α-TEA induces increased levels of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and death receptor-5 (DR5) and decreased levels of antiapoptotic factor, cellular FLICE-like inhibitory protein (c-FLIP L). DR5/TRAIL induced apoptosis involves downregulation of c-FLIP (L), caspase-8 activation, activated proapoptotic mediators tBid and Bax, mitochondrial permeability transition, and activation of caspase-9. siRNA knockdown of either DR5 or TRAIL blocks the ability of α-TEA to enhance DR5 protein levels, downregulate c-FLIP(L) protein levels and induce apoptosis. Combination of α-TEA + TRAIL acts cooperatively to induce apoptosis, and increase DR5 and decrease c-FLIP (L) protein levels. siRNA knockdown of c-FLIP produces a low level of spontaneous apoptosis and enhances α-TEA- and TRAIL-induced apoptosis. Taken together, these studies show that α-TEA induces TRAIL/DR5 mitochondria-dependent apoptosis in human breast cancer cells, and that TRAIL/DR5-dependent increases in DR5 and decreases in c-FLIP expression are triggered by TRAIL or α-TEA treatments.
Collapse
|
16
|
Clark PE, Polosukhina DA, Gyabaah K, Moses HL, Thorburn A, Zent R. TRAIL and interferon-alpha act synergistically to induce renal cell carcinoma apoptosis. J Urol 2010; 184:1166-74. [PMID: 20663526 PMCID: PMC2963111 DOI: 10.1016/j.juro.2010.04.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Indexed: 11/23/2022]
Abstract
PURPOSE Despite modern targeted therapy metastatic renal cell carcinoma remains a deadly disease. Interferon-alpha (Calbiochem(R)) is currently used to treat this condition, mainly combined with the targeted anti-vascular endothelial growth factor antibody bevacizumab. TRAIL (Apo2 ligand/tumor necrosis factor related apoptosis inducing ligand) (Calbiochem) is a novel antineoplastic agent now in early phase clinical trials. Interferon-alpha and TRAIL can act synergistically to kill cancer cells but to our knowledge this has never been tested in the context of renal cell carcinoma. We hypothesized that TRAIL and interferon-alpha could synergistically induce apoptosis in renal cell carcinoma cells. MATERIALS AND METHODS We treated renal cell carcinoma cell lines with recombinant TRAIL and/or interferon-alpha. Viability and apoptosis were assessed by MTS assay, flow cytometry and Western blot. Synergy was confirmed by isobologram. Interferon-alpha induced changes in renal cell carcinoma cell signaling were assessed by Western blot, flow cytometry and enzyme-linked immunosorbent assay. RESULTS TRAIL and interferon-alpha acted synergistically to increase apoptotic cell death in renal cell carcinoma cells. Interferon-alpha treatment altered the ability of cells to activate extracellular signal-regulated kinase while inhibiting extracellular signal-regulated kinase with UO126 abrogated TRAIL and interferon-alpha apoptotic synergy. Interferon-alpha did not induce changes in TRAIL or death receptor expression, or change other known mediators of the intrinsic and extrinsic apoptotic cascade in the cells. CONCLUSIONS TRAIL plus interferon-alpha synergistically induces apoptosis in renal cell carcinoma cells, which is due at least in part to interferon-alpha mediated changes in extracellular signal-regulated kinase activation. TRAIL and interferon-alpha combination therapy may be a novel approach to advanced renal cell carcinoma that warrants further testing in vivo.
Collapse
Affiliation(s)
- Peter E Clark
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2765, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Huang CH, Guh JH, Chen GS, Lu PH, Chern JW. Anticancer activity of a cyclooxygenase inhibitor, CX9051, in human prostate cancer cells: the roles of NF-kappaB and crosstalk between the extrinsic and intrinsic apoptotic pathways. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:159-69. [PMID: 20532752 DOI: 10.1007/s00210-010-0528-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2009] [Accepted: 05/17/2010] [Indexed: 10/19/2022]
Abstract
Comprehensive studies support the notion that selective inhibitors of cyclooxygenase-2 (COX-2) display anticancer activities in numerous types of cancer cells, including prostate cancers. Our previous study showed that the benzodithiazolium-based compound CX9051 selectively inhibited COX-2 activity. We now show that CX9051 inhibits cell proliferation and induces apoptosis in numerous human cancer cell types. Biochemical analyses, including flow cytometry, showed that CX9051 induced apoptosis in the absence of cell cycle checkpoint arrest and down-regulated the expression of Bcl-2, Bcl-x(L), and Mcl-1, but up-regulated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) expression, leading to proteolytic activation of caspase-8, -9, -7, and -3. These data suggest that CX9051 functions in both mitochondria-mediated intrinsic and death receptor-induced extrinsic apoptosis pathways. Moreover, confocal microscopy demonstrated that CX9051 induced nuclear translocation of nuclear factor-kappa B (NF-kappaB) at initial stage and then caused a marked decrease of total cellular NF-kappaB at later stage in both PC-3 and DU145 cells. Taken together, our data suggest that CX9051 induces TRAIL up-regulation and activation of extrinsic apoptotic signaling, which in turn activates mitochondria-mediated intrinsic apoptotic signaling, leading to cancer cell apoptosis.
Collapse
Affiliation(s)
- Chiung-Hua Huang
- School of Pharmacy, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | | | | | | | | |
Collapse
|
18
|
Horinaka M, Yoshida T, Kishi A, Akatani K, Yasuda T, Kouhara J, Wakada M, Sakai T. Lactobacillus strains induce TRAIL production and facilitate natural killer activity against cancer cells. FEBS Lett 2009; 584:577-82. [PMID: 19995562 DOI: 10.1016/j.febslet.2009.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 12/03/2009] [Indexed: 11/27/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an endogenous cytokine that induces apoptosis in malignant tumor cells. Here, we show for the first time that lactobacilli induce TRAIL production in human peripheral blood mononuclear cells (PBMC). Treatment with lactobacilli induced TRAIL on the cell surface of PBMC and in culture medium. The TRAIL production induced by lactobacilli partially depends on IFN-alpha and IFN-gamma. Lactobacilli treatment facilitated NK activity of PBMC against prostate cancer cells. Moreover, TRAIL neutralization antibody efficiently prevented the NK activity. Our results indicate that lactobacilli facilitate NK activity through TRAIL production, and raise the possibility of a new TRAIL-based strategy against malignant tumors.
Collapse
Affiliation(s)
- Mano Horinaka
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Type I interferons and interferon regulatory factors regulate TNF-related apoptosis-inducing ligand (TRAIL) in HIV-1-infected macrophages. PLoS One 2009; 4:e5397. [PMID: 19404407 PMCID: PMC2672636 DOI: 10.1371/journal.pone.0005397] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 04/01/2009] [Indexed: 01/14/2023] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that participates in HIV-1 pathogenesis through the depletion of CD4+ T cells. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The regulation of TRAIL in macrophages during HIV-1 infection is not completely understood. In this study, we investigated the mechanism(s) of TRAIL expression in HIV-1-infected macrophages, an important cell type in HIV-1 pathogenesis. A human monocyte-derived macrophage (MDM) culture system was infected with macrophage-tropic HIV-1ADA, HIV-1JR-FL, or HIV-1BAL strains. TRAIL, predominantly the membrane-bound form, increased following HIV-1 infection. We found that HIV-1 infection also induced interferon regulatory factor (IRF)-1, IRF-7 gene expression and signal transducers and activators of transcription 1 (STAT1) activation. Small interfering RNA knockdown of IRF-1 or IRF-7, but not IRF-3, reduced STAT1 activation and TRAIL expression. Furthermore, the upregulation of IRF-1, IRF-7, TRAIL, and the activation of STAT1 by HIV-1 infection was reduced by the treatment of type I interferon (IFN)-neutralizing antibodies. In addition, inhibition of STAT1 by fludarabine abolished IRF-1, IRF-7, and TRAIL upregulation. We conclude that IRF-1, IRF-7, type I IFNs, and STAT1 form a signaling feedback loop that is critical in regulating TRAIL expression in HIV-1-infected macrophages.
Collapse
|
20
|
Shepard BD, Badley AD. The Biology of TRAIL and the Role of TRAIL-Based Therapeutics in Infectious Diseases. ACTA ACUST UNITED AC 2009; 8:87-101. [PMID: 21857885 DOI: 10.2174/187152109787846060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
TNF-related apoptosis inducing ligand (TRAIL) is a key mediator of the innate immune response to infection. While TRAIL-mediated apoptosis plays an essential role in the clearance of virus-infected cells, its physiologic role also includes immunosurveilance for cancer cells. Therapeutics that induce TRAIL-mediated apoptosis in cancer cells remain a focus of ongoing investigation in clinical trials, and much has been learned from these studies regarding the efficacy and toxicity of these interventions. These data, combined with data from numerous preclinical studies that detail the important and multifaceted role of TRAIL during infection with human immunodeficiency virus and other viruses, suggest that therapeutic exploitation of TRAIL signaling offers a novel and efficacious strategy for the management of infectious diseases.
Collapse
Affiliation(s)
- Brett D Shepard
- Mayo Clinic College of Medicine, Division of Infectious Diseases, Rochester, MN, 55905, USA
| | | |
Collapse
|
21
|
TRAIL as a target in anti-cancer therapy. Cancer Lett 2009; 285:1-5. [PMID: 19299078 DOI: 10.1016/j.canlet.2009.02.029] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 01/29/2023]
Abstract
The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can initiate apoptosis through the activation of their death receptors. The ability of TRAIL to selectively induce apoptosis of transformed or tumor cells but not normal cells promotes the development of TRAIL-based cancer therapy. Accumulating preclinical studies demonstrate that the TRAIL ligand can effectively induce cancer cell apoptosis. Completed and ongoing Phases I and II clinical trials using TRAIL are showing clinically promising outcomes without significant toxicity. Importantly, TRAIL, DR4 and DR5 can all be induced by chemotherapeutics and/or radiation, which can sensitize cancer cells to TRAIL. Thus, understanding the regulation of the TRAIL apoptosis pathway can help develop more selective TRAIL-based agents for the treatment of human cancer.
Collapse
|
22
|
Brincks EL, Kucaba TA, Legge KL, Griffith TS. Influenza-induced expression of functional tumor necrosis factor-related apoptosis-inducing ligand on human peripheral blood mononuclear cells. Hum Immunol 2008; 69:634-46. [PMID: 18723061 PMCID: PMC2597454 DOI: 10.1016/j.humimm.2008.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 12/30/2022]
Abstract
The immunologic response to influenza virus infection, like many other viruses, is characterized by robust production of proinflammatory cytokines, including type I and II interferon (IFN), which induce a number of antiviral effects and are essential for priming the innate and adaptive cellular components of the immune response. Here, we demonstrate that influenza virus infection induces the expression of functional tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on human peripheral blood mononuclear cell (PBMC) populations. Consistent with previous studies examining TRAIL upregulation, increased TRAIL expression correlated with increased type I and II IFN levels in PBMC cultures. Interestingly, dilution of these cytokines resulted in decreased expression of TRAIL. TRAIL upregulation was not dependent on active viral infection, and TRAIL was observed on NS-1-negative cells. Furthermore, influenza virus infection of lung adenocarcinoma cells (A549) resulted in increased sensitization to TRAIL-induced apoptosis compared with uninfected A549. Infected PBMC expressing TRAIL preferentially killed infected A549, but did not affect uninfected cells, and the addition of soluble TRAIL-R2:Fc blocked the lysis of infected cells, demonstrating TRAIL-dependent killing of infected cells. Collectively, these data demonstrate that TRAIL expression is induced on primary human innate and adaptive immune cells in response to cytokines produced during influenza infection and that TRAIL sensitivity is increased in influenza virus-infected cells. These data also suggest that TRAIL is a primary mechanism used by influenza-stimulated human PBMC to kill influenza-infected target cells and reinforce the importance of cytokines produced in response to TLR agonists in enhancing cellular immune effector functions.
Collapse
Affiliation(s)
- Erik L. Brincks
- Department of Urology, University of Iowa, 375 Newton Road, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 375 Newton Road, Iowa City, IA 52242
| | - Tamara A. Kucaba
- Department of Urology, University of Iowa, 375 Newton Road, Iowa City, IA 52242
| | - Kevin L. Legge
- Department of Pathology, University of Iowa, 375 Newton Road, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 375 Newton Road, Iowa City, IA 52242
| | - Thomas S. Griffith
- Department of Urology, University of Iowa, 375 Newton Road, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Immunology, University of Iowa, 375 Newton Road, Iowa City, IA 52242
| |
Collapse
|
23
|
Abstract
The regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in cancer chemotherapy is not fully understood. Here, we show that the histone deacetylase (HDAC) inhibitors induce TRAIL in human breast cancer cells. Induction of TRAIL by the HDAC inhibitor MS275 can be enhanced by Adriamycin. Using different reporter constructs in conjunction with transcription activity assays and chromatin immunoprecipitation assays, we provide evidence that the transcription factor Sp1 is responsible for TRAIL induction by MS275 alone or in combination with Adriamycin. Further, we show that the combined treatment of breast cancer cells with MS275 and Adriamycin significantly increases apoptotic cell death via the activation of both death receptor and mitochondrial apoptotic pathways. Down-regulation of TRAIL by small interfering RNA silencing decreased MS275-mediated Adriamycin-induced caspase activation and apoptosis, thus conferring Adriamycin resistance. More importantly, breast cancer T47D cells in which Sp1 was knocked down or Sp1-knockout mouse embryonic stem cells were resistant to the combined treatments. Taken together, our results indicate that induction of TRAIL by the combined treatments with MS275 and Adriamycin is mediated by Sp1 and suggest that transcription factor Sp1 is an important target for the development of novel anticancer agents.
Collapse
Affiliation(s)
- Jing Xu
- Program in Molecular Biology & Genetics, Karmanos Cancer Institute, Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jun-Ying Zhou
- Program in Molecular Biology & Genetics, Karmanos Cancer Institute, Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Wei-Zen Wei
- Program in Breast Cancer, Karmanos Cancer Institute, Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gen Sheng Wu
- Program in Molecular Biology & Genetics, Karmanos Cancer Institute, Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
24
|
Ashkenazi A, Herbst RS. To kill a tumor cell: the potential of proapoptotic receptor agonists. J Clin Invest 2008; 118:1979-90. [PMID: 18523647 DOI: 10.1172/jci34359] [Citation(s) in RCA: 254] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Disturbances in mechanisms that direct abnormal cells to undergo apoptosis frequently and critically contribute to tumorigenesis, yielding a logical target for potential therapeutic intervention. There is currently heightened interest in the extrinsic apoptosis pathway, with several proapoptotic receptor agonists (PARAs) in development. The PARAs include the ligand recombinant human Apo2L/TRAIL and agonistic mAbs. Mechanistic and preclinical data with Apo2L/TRAIL indicate exciting opportunities for synergy with conventional therapies and for combining PARAs with other molecularly targeted agents. Novel molecular biomarkers may help identify those patients most likely to benefit from PARA therapy.
Collapse
Affiliation(s)
- Avi Ashkenazi
- Genentech, South San Francisco, California 94080, USA.
| | | |
Collapse
|
25
|
Gao Y, Chang MX, Sun BJ, Nie P. TRAIL in the mandarin fish Siniperca chuatsi: gene and its apoptotic effect in HeLa cells. FISH & SHELLFISH IMMUNOLOGY 2008; 24:55-66. [PMID: 18083044 DOI: 10.1016/j.fsi.2007.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 07/26/2007] [Accepted: 08/03/2007] [Indexed: 05/25/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is one of the TNF superfamily members, participating in many biological processes including cell proliferation and apoptotic death. In this study, a TRAIL gene was cloned from a perciform fish, the mandarin fish Siniperca chuatsi, a major cultured fish in China's aquaculture, and is named as SCTRAIL for S. chuatsi TRAIL. The full-length cDNA of SCTRAIL is 1359bp, encoding a 283-amino-acid protein. This deduced protein contains the Cys(231), a 23-mer fragment of transmembrane region, a glycosylation site and a TNF family signature, all of which are conserved among TRAIL members. SCTRAIL gene consists of six exons, with five intervening introns, spaced over approximately 9kb of genomic sequence. Southern blotting demonstrated that the SCTRAIL gene is present as a single copy in mandarin fish genome. A 620bp promoter region obtained by genome walking contains a number of putative transcription factor binding sites, such as Oct-1, Sp-1, NF-1, RAP-1, C/EBPalp, NF-kappaB and AP-1. The SCTRAIL is constitutively expressed in all the analyzed tissues, as revealed by RT-PCR, which is confirmed by Western blotting analysis using polyclonal antibody against bacteria-derived recombinant SCTRAIL protein. As an apoptosis-inducing ligand, the overexpression of SCTRAIL but not the mutant SCTRAIL-C203S in HeLa cells induced changes characteristic of apoptosis, including chromatin condensation, nucleus fragmentation, DNA ladder, and increase of sub-G0/G1 cells in FACS analysis.
Collapse
Affiliation(s)
- Y Gao
- Institute of Hydrobiology, Chinese Academy of Sciences, Hubei Province, People's Republic of China
| | | | | | | |
Collapse
|
26
|
Apoptotic pathways in tumor progression and therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 615:47-79. [PMID: 18437891 DOI: 10.1007/978-1-4020-6554-5_4] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis is a cell suicide program that plays a critical role in development and tissue homeostasis. The ability of cancer cells to evade this programmed cell death (PCD) is a major characteristic that enables their uncontrolled growth. The efficiency of chemotherapy in killing such cells depends on the successful induction of apoptosis, since defects in apoptosis signaling are a major cause of drug resistance. Over the past decades, much progress has been made in our understanding of apoptotic signaling pathways and their dysregulation in cancer progression and therapy. These advances have provided new molecular targets for proapoptotic cancer therapies that have recently been used in drug development. While most of those therapies are still at the preclinical stage, some of them have shown much promise in the clinic. Here, we review our current knowledge of apoptosis regulation in cancer progression and therapy, as well as the new molecular targeted molecules that are being developed to reinstate cancer cell death.
Collapse
|
27
|
Manzo F, Nebbioso A, Miceli M, Conte M, De Bellis F, Carafa V, Franci G, Tambaro FP, Altucci L. TNF-related apoptosis-inducing ligand: signalling of a 'smart' molecule. Int J Biochem Cell Biol 2007; 41:460-6. [PMID: 18243765 DOI: 10.1016/j.biocel.2007.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 12/20/2007] [Accepted: 12/20/2007] [Indexed: 12/20/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the tumor necrosis factor super-family and signals via two death receptors, TRAIL-R1 and TRAIL-R2, and two decoy receptors, TRAIL-R3 and TRAIL-R4, differently expressed in normal and cancer cells. TRAIL is mainly studied for its capacity to induce apoptosis preferentially in cancer cells. TRAIL is expressed in a variety of human tissues, in particular in the lymphoid system, suggesting a strong physiological role in the innate immunity. This review will focus on TRAIL gene structure and regulation, protein folding, tissue expression and molecular signalling. Finally, the potential use of TRAIL as anticancer treatment alone or in combination therapy as well as the use of drugs which signal via TRAIL and its receptors will be analyzed.
Collapse
Affiliation(s)
- Fabio Manzo
- Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rani MRS, Pandalai S, Shrock J, Almasan A, Ransohoff RM. Requirement of catalytically active Tyk2 and accessory signals for the induction of TRAIL mRNA by IFN-beta. J Interferon Cytokine Res 2007; 27:767-79. [PMID: 17892398 DOI: 10.1089/jir.2007.0005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo2L) mRNA was induced preferentially by interferon (IFN)-beta but not IFN-alpha in human fibrosarcoma and primary fibroblast cells. To characterize the signaling components mediating the IFN subtype-specific induction of this gene, we used mutant cell lines lacking individual components involved in signaling by type I IFNs. TRAIL was not induced by IFN-beta in mutant cell lines U2A, U3A, U4A, U5A, and U6A, which lack, respectively, IFN regulatory factor-9 (IRF-9), Stat1, Jak1, IFNAR-2.2, and Stat2, indicating transcription factor IFN-stimulated gene factor 3 (ISGF3) was essential for the induction of this gene. TRAIL was not induced by IFN-beta in U1A (Tyk2 null) or U1A.R930 cells (that express a kinase-deficient point mutant of Tyk2) but was induced in U1A.wt-5 cells (U1A cells expressing wild-type Tyk2), indicating that Tyk2 protein and kinase activity were both required for induction of the gene. Biochemical and genetic analyses revealed the requirement of transcription factor NF-kappa B and phosphoinositide 3-kinase (PI3K) but not extracellular signal-regulated kinase (ERK) for the induction of TRAIL by IFN-beta. Furthermore, the antiproliferative but not antiviral effects of IFN-beta required catalytically active Tyk2, suggesting that expression of genes, such as TRAIL, may play an important role in mediating the biologic effects of IFNs.
Collapse
Affiliation(s)
- M R Sandhya Rani
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
29
|
Fionda C, Nappi F, Piccoli M, Frati L, Santoni A, Cippitelli M. Inhibition of trail gene expression by cyclopentenonic prostaglandin 15-deoxy-delta12,14-prostaglandin J2 in T lymphocytes. Mol Pharmacol 2007; 72:1246-57. [PMID: 17673570 DOI: 10.1124/mol.107.038042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) is a cyclopentenonic prostaglandin endowed with powerful anti-inflammatory activities, as shown in animal models of inflammatory/autoimmune diseases, where pharmacological administration of this prostanoid can ameliorate inflammation and local tissue damage via activation of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) and/or covalent modifications of cellular proteins. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily expressed in most of the cells, including those of immune system such as T lymphocytes, in which it is up-regulated upon antigen-specific stimulation. This cytokine plays an important role in regulating various physiological and immunopathological processes, such as immunosurveillance of tumors and tissue destruction associated with different inflammatory and autoimmune diseases. Here, we demonstrate that 15d-PGJ(2) inhibits trail mRNA and protein expression by down-regulating the activity of its promoter in human T lymphocytes. Our data indicate that both the chemically reactive cyclopentenone moiety of 15d-PGJ(2) and the activation of PPARgamma may be involved in this repressive mechanism. We identified nuclear factor kappaB (NF-kappaB) as a direct target of the prostanoid. 15d-PGJ(2) significantly decreases the expression and/or DNA binding of c-rel, RelA, and p50 transcription factors to the NF-kappaB1 site of trail promoter. Moreover, 15d-PGJ(2)-mediated activation of the transcription factor heat shock factor-1 may contribute to inhibit trail promoter activity in transfected Jurkat T cells. These results suggest that modulation of TRAIL gene expression by 15d-PGJ(2) in T cells may provide a novel pharmacological tool to modify the onset and the progression of specific autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
- Cinzia Fionda
- Department of Experimental Medicine, Istituto Pasteur-Fondazione Cenci Bolognetti, University La Sapienza, Viale Regina Elena 324, 00161, Rome, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Kavurma MM, Bennett MR. Expression, regulation and function of trail in atherosclerosis. Biochem Pharmacol 2007; 75:1441-50. [PMID: 18061141 DOI: 10.1016/j.bcp.2007.10.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 10/03/2007] [Accepted: 10/11/2007] [Indexed: 01/22/2023]
Abstract
Atherosclerosis is a condition where vascular smooth muscle cells (VSMCs), inflammatory cells, lipids, cholesterol and cellular waste accumulate in the inner lining of an artery, producing a fibro-fatty plaque and resulting in the thickening of the arterial wall. The tumor necrosis factor (TNF) family of cytokines plays a major role in the progression of atherosclerosis. Recently, TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, has been implicated in the development of atherosclerosis since it has been detected in normal and diseased atherosclerotic tissue. Not only is TRAIL involved in apoptosis and immune regulation, recent studies have provided a new function of TRAIL on vascular cells, such that TRAIL can promote endothelial cell (EC) and VSMCs migration and proliferation. In addition, TRAIL is implicated in regulating vascular tone. This review discusses our current understanding of TRAIL expression, regulation and function, and summarises the recent data implicating a role for TRAIL in atherosclerosis.
Collapse
Affiliation(s)
- Mary M Kavurma
- Centre for Vascular Research, The University of New South Wales, Kensington, Sydney, NSW 2052, Australia.
| | | |
Collapse
|
31
|
Abstract
Hepatocellular carcinoma (HCC) ranks among the 10 most common cancers worldwide. The fact that HCC is resistant to conventional chemotherapy and is rarely amenable to radiotherapy leaves this disease with no effective therapeutic options and a very poor prognosis. Therefore, the development of more effective therapeutic tools and strategies is much needed. HCCs are phenotypically and genetically heterogeneous tumors that commonly emerge on a background of chronic liver diseases, most of which culminate in cirrhosis, such as alcoholic cirrhosis and chronic hepatitis B and C infections. This review outlines recent findings on the progression of liver disease, including our knowledge of the role of apoptotic processes, with an emphasis on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). The proapoptotic and antiapoptotic properties of TRAIL, its involvement in liver injury, and its potential as a therapeutic agent in fibrosis and HCC are discussed. Several contradictory and confusing data have not yet been resolved or placed into perspective, such as the influence of factors that determine the TRAIL sensitivity of target cells, including the tumor microenvironment or cirrhotic tissue. Therefore, we assess these data from the perspectives of gastroenterologists (P.S. and M.W.B.) and a molecular oncologist (I.H.) with research interests in liver injury, apoptosis, and experimental therapeutics.
Collapse
Affiliation(s)
- Ingrid Herr
- Department of Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | |
Collapse
|
32
|
Xu J, Zhou JY, Tainsky MA, Wu GS. Evidence that tumor necrosis factor-related apoptosis-inducing ligand induction by 5-Aza-2'-deoxycytidine sensitizes human breast cancer cells to adriamycin. Cancer Res 2007; 67:1203-11. [PMID: 17283156 DOI: 10.1158/0008-5472.can-06-2310] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) inhibits DNA methyltransferase activity and sensitizes cancer cells to chemotherapy, but the mechanisms of its sensitization are not fully understood. Here, we show that 5-aza-CdR induces tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in the human breast cancer MDA-231 cells. Induction of TRAIL by 5-aza-CdR correlated with inactivation of Akt. Furthermore, we show that overexpression of the active form of Akt by adenovirus infection or inhibition of the Akt downstream target glycogen synthase kinase 3 by its pharmacologic inhibitors abolishes TRAIL induction by 5-aza-CdR. Importantly, we show that the combined treatment of breast cancer cells with 5-aza-CdR and Adriamycin significantly increases apoptotic cell death compared with the treatment with either agent alone. Moreover, the combined treatment activated both death receptor and mitochondrial apoptotic pathways, whereas Adriamycin alone activated only the mitochondrial pathway while 5-aza-CdR failed to activate either. More importantly, down-regulation of TRAIL by small interference RNA silencing decreased 5-aza-CdR-mediated Adriamycin-induced caspase activation and apoptosis, thus conferring Adriamycin resistance. Taken together, our results suggest that induction of TRAIL by 5-aza-CdR is critical for enhancing chemosensitivity of breast cancer cells to Adriamycin.
Collapse
Affiliation(s)
- Jing Xu
- Program in Molecular Biology and Genetics, Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
33
|
Weinstock-Guttman B, Hong J, Santos R, Tamaño-Blanco M, Badgett D, Patrick K, Baier M, Feichter J, Gallagher E, Garg N, Ramanathan M. Interferon-beta modulates bone-associated cytokines and osteoclast precursor activity in multiple sclerosis patients. Mult Scler 2006; 12:541-50. [PMID: 17086898 DOI: 10.1177/1352458506070605] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Multiple sclerosis (MS) patients have a high risk of low bone density. The purpose of this study was to examine the molecular mechanisms potentially capable of modulating bone homeostasis in response to interferon-beta-1a (IFN-beta-1a) treatment and the focus was the bone-modulating system comprised of receptor activator of nuclear factor-kappaB (RANK), its ligand RANKL and its decoy receptor, osteoprotegerin (OPG). METHODS In this open-label pharmacodynamic study, peripheral blood was obtained from relapsing-remitting MS patients just prior to and at multiple time points after intramuscular injection of 30 microg IFN-beta-1a. Samples were analysed for RANKL, tumour necrosis factor related apoptosis-inducing ligand (TRAIL), OPG and macrophage inflammatory protein-1 alpha/beta expression. Osteoclast precursor differentiation from peripheral blood cells of MS patients in the presence of exogenously added IFN-beta-1a was also assessed. Additionally, the changes in plasma levels of osteocalcin and the C-telopeptides after 1 year of treatment were measured as surrogate markers of bone formation and degradation, respectively. RESULTS IFN-beta-1a treatment modulated RANKL and OPG in a selective, time-dependent manner. The levels of OPG protein decreased 25% at the 8-h time point, then increased 43% at the 24-h time point. The levels of free RANKL reached a maximum at the 8-h time point. Increases in the levels of macrophage inflammatory protein-1beta (MIP-1beta), a chemokine that increases osteolysis, were observed. The levels of the bone formation marker, osteocalcin, were lower in MS patients compared to controls and increased after one year of treatment. Ex vivo treatment of peripheral blood lymphocytes with IFN-beta resulted in a marked reduction of osteoclast-like cells in the presence of RANKL and macrophage colony stimulating factor. CONCLUSIONS IFN-beta treatment induces complex, specific and time-dependent changes in multiple proteins and mRNAs related to bone homeostasis in MS patients.
Collapse
|
34
|
Xu J, Zhou JY, Wu GS. Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Is Required for Tumor Necrosis Factor α–Mediated Sensitization of Human Breast Cancer Cells to Chemotherapy. Cancer Res 2006; 66:10092-9. [PMID: 17047073 DOI: 10.1158/0008-5472.can-06-1633] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor alpha (TNFalpha) induces apoptosis and sensitizes cancer cells to chemotherapy, but the mechanism underlying its sensitization is not fully understood. Here, we report that TNFalpha-mediated sensitization of cancer cells to chemotherapy involves activation of the TRAIL pathway. We show that the combined treatment of breast cancer cells with TNFalpha and Adriamycin significantly increases cell death compared with the treatment with either agent alone. The combined treatment activated both death receptor and mitochondrial apoptotic pathways, whereas Adriamycin alone activated only the mitochondrial pathway, and TNFalpha failed to activate either. Furthermore, we show that TNFalpha induces TRAIL through a transcriptional mechanism. Using reporter gene assays in conjunction with chromatin immunoprecipitation assays, we show that TRAIL induction by TNFalpha is regulated via both nuclear factor-kappaB and Sp1 binding sites. Importantly, down-regulation of TRAIL by small interfering RNA silencing decreased TNFalpha-mediated Adriamycin-induced caspase activation and apoptosis, and thus enhanced breast cancer cell resistance to Adriamycin. Collectively, our results suggest that induction of TRAIL by TNFalpha is critical for sensitization of breast cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Jing Xu
- Program in Molecular Biology and Human Genetics, Karmanos Cancer Institute, Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
35
|
Popnikolov NK, Gatalica Z, Adegboyega PA, Norris BA, Pasricha PJ. Downregulation of TNF-Related Apoptosis-Inducing Ligand (TRAIL)/Apo2L in Barrett's Esophagus With Dysplasia and Adenocarcinoma. Appl Immunohistochem Mol Morphol 2006; 14:161-5. [PMID: 16785783 DOI: 10.1097/01.pai.0000157905.30872.9f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
TRAIL/Apo2L is a CD95 ligand-related member of the TNF family that initiates apoptosis in immune and neoplastic cells after binding to specific surface receptors. The authors previously reported a specific topographic pattern of TRAIL expression in the normal colonic mucosa and the loss of TRAIL expression in tubular adenomas as well as in most colon carcinomas. Therefore, they hypothesized that similar changes may occur during the malignant transformation of Barrett's esophagus. The aim of this study was to compare TRAIL/Apo2L expression in normal gastroesophageal (GE) junction, Barrett's esophagus with and without dysplasia, and associated adenocarcinoma. Immunohistochemical evaluation of TRAIL expression was performed on formalin-fixed paraffin-embedded sections from 29 GE junction/esophageal biopsies, 20 gastric biopsies, 6 esophagectomies, 2 small bowel resection specimens, and 5 colon biopsies. The expression was graded semiquantitatively on a 4-point scale (0-3). TRAIL was expressed in the foveolar epithelium of the histologically normal GE junctional mucosa and stomach as well as in the normal intestinal epithelium, with maximal expression in the surface epithelium. TRAIL was always detected in Barrett's metaplasia (21/21, 100%), and the overall expression was similar to that of the columnar portion of the normal GE junction (8/8, 100%). TRAIL was rarely and weakly (1+) expressed in Barrett's esophagus with dysplasia (3/18, 16.7%) and adenocarcinoma (1/10, 10.0%) (P<0.001). Similarities in the topographic pattern of TRAIL expression in the normal GE junction, stomach, small intestine, and colon suggest a common function of TRAIL throughout the gastrointestinal tract. These results show that the downregulation of TRAIL is associated with development of dysplasia in Barrett's esophagus. Thus, the immunohistochemically detected downregulation of TRAIL expression appears to be a promising indicator of dysplasia in Barrett's esophagus.
Collapse
Affiliation(s)
- Nikolay K Popnikolov
- Drexel University College of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, USA.
| | | | | | | | | |
Collapse
|
36
|
Chang MX, Nie P, Xie HX, Wang GL, Gao Y. Characterization and expression analysis of TNF-related apoptosis inducing ligand (TRAIL) in grass carp Ctenopharyngodon idella. Vet Immunol Immunopathol 2006; 110:51-63. [PMID: 16216337 DOI: 10.1016/j.vetimm.2005.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 08/25/2005] [Accepted: 09/08/2005] [Indexed: 11/24/2022]
Abstract
TRAIL (Apo2 ligand) described as a type II transmembrane protein belonging to the TNF superfamily can induce apoptotic cell death in a variety of cell types. In the present study, a putative cDNA sequence encoding the 299 amino acids of TRAIL (GC-TRAIL) and its genomic organization were identified in grass carp Ctenopharyngodon idella. The predicted GC-TRAIL sequence showed 44 and 41% identities to chicken and human TRAILs, respectively. In a domain search, a tumor necrosis factor homology domain (THD) was identified in the C-terminal portion of TRAILs. The GC-TRAIL gene consists of five exons, with four intervening introns, spaced over approximately 4 kb of genomic sequence. Analysis of GC-TRAIL promoter region revealed the presence of a number of putative transcription factor binding sites, such as Sp1, NF-kappaB, AP-1, GATA, NFAT, HNF, STAT, P53 and IRF1 sequences which are important for the expression of other TNF family members. Phylogenetic analysis placed GC-TRAIL and the putative zebrafish (Danio rerio) TRAIL obtained from searching the zebrafish database into one separate cluster near mammalian TRAIL genes, but apart from the reported zebrafish TRAIL-like protein, indicating that the GC-TRAIL is an authentic fish TRAIL. Expression analysis revealed that GC-TRAIL is expressed in many tissues, such as in gills, liver, trunk kidney, head kidney, intestine and spleen.
Collapse
Affiliation(s)
- M X Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, and Laboratory of Fish Diseases, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, PR China
| | | | | | | | | |
Collapse
|
37
|
Rowinsky EK. Targeted induction of apoptosis in cancer management: the emerging role of tumor necrosis factor-related apoptosis-inducing ligand receptor activating agents. J Clin Oncol 2006; 23:9394-407. [PMID: 16361639 DOI: 10.1200/jco.2005.02.2889] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Targeted induction of programmed cell death or apoptosis via the extrinsic apoptotic pathway represents an unexploited therapeutic strategy to destroy cancer cells. The activation of cell surface receptors by the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) results in direct stimulation of apoptotic signaling pathways (extrinsic stimulation). Molecules that directly activate these receptors, such as agonistic monoclonal antibodies to the TRAIL receptors and recombinant TRAIL, are being developed as monotherapies and as part of combination therapies with existing chemotherapeutic drugs and other therapeutic modalities. This article examines the TRAIL receptors as potential targets for activating the TRAIL-mediated apoptosis pathway and presents the current status of novel therapeutics that exploit this pathway, particularly focusing on agonistic monoclonal antibodies to the TRAIL receptors. The preclinical activity, the status of ongoing evaluations, and the potential clinical impact of these novel agents are reviewed.
Collapse
|
38
|
Yanase N, Hata K, Shimo K, Hayashida M, Evers BM, Mizuguchi J. Requirement of c-Jun NH2-terminal kinase activation in interferon-α-induced apoptosis through upregulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in Daudi B lymphoma cells. Exp Cell Res 2005; 310:10-21. [PMID: 16099454 DOI: 10.1016/j.yexcr.2005.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 06/23/2005] [Accepted: 06/29/2005] [Indexed: 11/17/2022]
Abstract
Interferon alpha (IFN-alpha) inhibits growth, at least in part, through induction of apoptosis. However, the molecular mechanisms underlying IFN-alpha-induced apoptosis are not completely understood. In the present study, we found that IFN-alpha induced a sustained activation of c-Jun N-terminal kinase 1 (JNK1), but not extracellular kinases (ERKs), in Daudi B lymphoma cells, as assessed by Western blotting using phospho-specific antibodies. Several lines of evidence support the notion that the IFN-alpha-induced activation of JNK is responsible for IFN-alpha-induced apoptosis, at least in part, through upregulation of TNF-related apoptosis-inducing ligand (TRAIL). First, pretreatment of Daudi cells with a JNK inhibitor reduced IFN-alpha-induced upregulation of TRAIL and loss of mitochondrial membrane potential (DeltaPsim) and annexin-positive cells, which was assessed by flow cytometry. Second, a dominant-negative form of JNK1 (dnJNK1) also reduced these apoptotic events, while a constitutively active form of JNK1, MKK7-JNK1beta, enhanced them. Finally, treatment with IFN-alpha enhanced the promoter activity of the TRAIL gene, which was partially abrogated by either JNK inhibitor or dnJNK1, while it was moderately enhanced by MKK7-JNK1beta. These findings are useful for understanding molecular mechanisms of IFN-alpha-induced apoptosis and also for development of treatment modalities of some tumors with IFN-alpha.
Collapse
Affiliation(s)
- Noriko Yanase
- Department of Immunology and Intractable Immunology Research Center, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Kirshner JR, Karpova AY, Kops M, Howley PM. Identification of TRAIL as an interferon regulatory factor 3 transcriptional target. J Virol 2005; 79:9320-4. [PMID: 15994827 PMCID: PMC1168760 DOI: 10.1128/jvi.79.14.9320-9324.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interferon production and apoptosis in virus-infected cells are necessary to prevent progeny virus production and to eliminate infected cells. Paramyxovirus infection induces apoptosis through interferon regulatory factor 3 (IRF-3), but the exact mechanism of how IRF-3 functions is unknown. We show that IRF-3 is involved in the transcriptional induction of TRAIL, a key player in the apoptosis pathway. IRF-3 upregulates TRAIL transcription following viral infection and binds an interferon-stimulated response element in the TRAIL promoter. The mRNA for TRAIL and its receptor, DR5, are induced following viral infection. These studies identify TRAIL as a novel IRF-3 transcriptional target.
Collapse
Affiliation(s)
- Jessica R Kirshner
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
40
|
Bouralexis S, Findlay DM, Evdokiou A. Death to the bad guys: targeting cancer via Apo2L/TRAIL. Apoptosis 2005; 10:35-51. [PMID: 15711921 DOI: 10.1007/s10495-005-6060-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
All higher organisms consist of an ordered society of individual cells that must communicate to maintain and regulate their functions. This is achieved through a complex but highly regulated network of hormones, chemical mediators, chemokines and other cytokines, acting as ligands for intra or extra-cellular receptors. Ligands and receptors of the tumor necrosis factor (TNF) superfamilies are examples of signal transducers, whose integrated actions influence the development, homeostasis and adaptive responses of many cells and tissue types. Apo2L/TRAIL is one of several members of the tumour necrosis factor superfamily that induce apoptosis through the engagement of death receptors. Apo2L/TRAIL interacts with an unusually complex receptor system, which in humans comprises two death receptors and three decoy receptors. This molecule has received considerable attention recently because of the finding that many cancer cell types are sensitive to Apo2L/TRAIL-induced apoptosis, while most normal cells appear to be resistant to this action of Apo2L/TRAIL. In this review, we specifically emphasise on the actions of Apo2L/TRAIL with respect to its apoptotic signaling pathways and summarise what is known about its physiological role. The potential therapeutic usefulness of Apo2L/TRAIL, especially in combination with chemotherapeutic agents, is also discussed in some detail.
Collapse
Affiliation(s)
- S Bouralexis
- St Vincent's Institute of Medical Research, Fitzroy, 3065, Victoria, Australia.
| | | | | |
Collapse
|
41
|
Vannucchi S, Chiantore MV, Fiorucci G, Percario ZA, Leone S, Affabris E, Romeo G. TRAIL is a key target in S-phase slowing-dependent apoptosis induced by interferon-beta in cervical carcinoma cells. Oncogene 2005; 24:2536-46. [PMID: 15735750 DOI: 10.1038/sj.onc.1208403] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Interferon (IFN)-beta induces S-phase slowing and apoptosis in human papilloma virus (HPV)-positive cervical carcinoma cell line ME-180. Here, we show that apoptosis is a consequence of the S-phase lengthening imposed by IFN-beta, demonstrating the functional correlation between S-phase alteration and apoptosis induction. In ME-180 cells, where p53 function is inhibited by HPV E6 oncoprotein, IFN-beta effects on cell cycle and apoptosis occur independently of p53. The apoptosis due to IFN-beta is mediated by the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in a manner dependent on the S-phase deregulation. IFN-beta appears to increase TRAIL expression both directly at the mRNA level and indirectly by augmenting surface protein levels as a consequence of the induced S-phase cell accumulation. Moreover, the alteration of the S-phase due to IFN-beta promotes TRAIL-dependent apoptosis by potentiating cell sensitivity to TRAIL, possibly through induction of a proapoptotic NF-kappaB activity and TRAIL-R2 receptor expression. Interestingly, IFN-beta-induced TRAIL-dependent apoptotic events strongly differ in the requirement of caspase activity. These results show that IFN-beta may induce an apoptotic response by deregulating cell cycle. Understanding the linkage between these mechanisms appears to be of primary importance in the search for new IFN-based therapeutic strategies to circumvent cancer disease or improve clinical outcome.
Collapse
Affiliation(s)
- Serena Vannucchi
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Matsuda T, Almasan A, Tomita M, Tamaki K, Saito M, Tadano M, Yagita H, Ohta T, Mori N. Dengue virus-induced apoptosis in hepatic cells is partly mediated by Apo2 ligand/tumour necrosis factor-related apoptosis-inducing ligand. J Gen Virol 2005; 86:1055-1065. [PMID: 15784899 PMCID: PMC2917180 DOI: 10.1099/vir.0.80531-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Although hepatic injury is reported in cases with dengue haemorrhagic fever and dengue shock syndrome, its mechanism remains poorly understood. Several findings suggest that dengue virus (DEN) induces apoptosis of hepatocytes in vivo. In this work, DEN type 2 (DEN-2) strain NGC was shown to induce apoptosis in the hepatic cell line HepG2, and infection of HepG2 cells was found to induce Apo2 ligand (Apo2L, also known as tumour necrosis factor-related apoptosis-inducing ligand or TRAIL) expression. Furthermore, Apo2L/TRAIL induced apoptosis in HepG2 cells, which expressed the Apo2L/TRAIL receptor DR5/TRAIL-R2 on their surface. Analysis of the Apo2L/TRAIL promoter revealed that this gene was activated by DEN-2 infection, whose responsive element was overlapping NF-kappaB- and Sp1-binding sites located at nt -75 to -65. The proteasome inhibitor N-acetyl-L-leucinyl-L-leucinyl-L-norleucinal (LLnL) inhibited Apo2L/TRAIL mRNA expression, and LLnL and anti-Apo2L/TRAIL antibody inhibited DEN-2-induced apoptosis. It was proposed that DEN infection promotes apoptosis partly through the induction of Apo2L/TRAIL expression.
Collapse
Affiliation(s)
- Takehiro Matsuda
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 903-0215, Japan
- Division of Child Health and Welfare, Faculty of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 903-0215, Japan
| | - Alex Almasan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Mariko Tomita
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 903-0215, Japan
| | - Kazumi Tamaki
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 903-0215, Japan
| | - Mika Saito
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 903-0215, Japan
| | - Masayuki Tadano
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 903-0215, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takao Ohta
- Division of Child Health and Welfare, Faculty of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 903-0215, Japan
| | - Naoki Mori
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 903-0215, Japan
| |
Collapse
|
43
|
Liu LG, Tanaka H, Ito K, Ito T, Sultana TA, Kyo T, Kimura A. Absence of gene mutation in TRAIL receptor 1 (TRAIL-R1) and TRAIL receptor 2 (TRAIL-R2) in chronic myelogenous leukemia and myelodysplastic syndrome, and analysis of mRNA Expressions of TRAIL and TRAIL-related genes in chronic myelogenous leukemia. Acta Haematol 2005; 113:113-23. [PMID: 15802890 DOI: 10.1159/000083449] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 05/26/2004] [Indexed: 11/19/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an interferon (IFN)-induced molecule with apoptotic activity. We examined gene mutations in the death domains of TRAIL receptor 1 (TRAIL-R1) and TRAIL receptor 2 (TRAIL-R2), and in the TRAIL gene promoter in 46 chronic myelogenous leukemia (CML) patients. In 23 of the 46 patients, all the coding regions of TRAIL-R2 were also examined. However, no mutation or loss of heterozygosity was found. Furthermore, no mutation in the death domains of TRAIL-R1 and TRAIL-R2 genes, which causes amino acid change, was found in 18 myelodysplastic syndrome (MDS) patients. Ribonuclease protection assay (RPA) and real-time quantitative polymerase chain reaction using polymorphonuclear neutrophils of five new CML patients showed that the TRAIL mRNA expression was very low before in vitro IFN-alpha stimulation and markedly upregulated after IFN-alpha stimulation. FAS mRNA was also upregulated with IFN-alpha stimulation but the fold induction was far lower than that of TRAIL mRNA. In addition, RPA revealed that the ratio of (TRAIL-R1 plus TRAIL-R2) to TRAIL-R3 was also increased after IFN-alpha stimulation. Taken together, gene mutations of TRAIL-R1, TRAIL-R2 are infrequent in patients with CML and MDS. And so is the TRAIL promoter for CML. These mutations seem unrelated to tumorigenesis, disease progression, and response to IFN-alpha therapy in CML. A markedly high induction of TRAIL mRNA by IFN-alpha may have some relevance to IFN-alpha action in CML patients.
Collapse
MESH Headings
- Amino Acid Substitution/genetics
- Apoptosis Regulatory Proteins
- Female
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Interferon-alpha/pharmacology
- Interferon-alpha/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Loss of Heterozygosity/genetics
- Male
- Membrane Glycoproteins/genetics
- Middle Aged
- Myelodysplastic Syndromes/drug therapy
- Myelodysplastic Syndromes/genetics
- Open Reading Frames/genetics
- Promoter Regions, Genetic/genetics
- Protein Structure, Tertiary/genetics
- RNA, Messenger/genetics
- Receptors, TNF-Related Apoptosis-Inducing Ligand
- Receptors, Tumor Necrosis Factor/genetics
- TNF-Related Apoptosis-Inducing Ligand
- Tumor Cells, Cultured
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Li-Gen Liu
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells. MM cells localize to the bone marrow, where cell adhesion-mediated autocrine or paracrine activation of various cytokines, such as interleukin 6, insulin-like growth factor 1, and interferon alpha, results in their accumulation mainly because of loss of critical apoptotic controls. Resistance to apoptosis, a genetically regulated cell death process, may play a critical role in both pathogenesis and resistance to treatment of MM. Abnormalities in regulation and execution of apoptosis can contribute to tumor initiation, progression, as well as to tumor resistance to various therapeutic agents. Apoptosis is executed via 2 main pathways that lead to activation of caspases: the death receptor (extrinsic) pathway and the mitochondrial (intrinsic) pathway. Ionizing radiation and chemotherapeutic agents act primarily through the intrinsic pathway, in which mitochondria play the central role. Various therapeutic modalities that are effective in MM modulate levels of the proapoptotic and antiapoptotic Bcl-2 family of proteins and of inhibitors of apoptosis, expression of which is primarily regulated by p53, nuclear factor KB, and STAT (signal transducers and activators of transcription) factors. This review focuses on the key concepts and some of the most recent studies of signaling pathways regulated in MM and summarizes what is known about the clinical role of these pathways.
Collapse
Affiliation(s)
- Marcela Oancea
- Department of Cancer Biology, Lerner Research Institute
- Department of Chemistry, Cleveland State University, Cleveland, Ohio, USA
| | | | | | - Alexandru Almasan
- Department of Cancer Biology, Lerner Research Institute
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic Foundation
- Correspondence and reprint requests: Alex Almasan, PhD, Departments of Cancer Biology and Radiation Oncology, NB40, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; 1-216-444-9970; fax: 1-216-445-6269 (e-mail:
)
| |
Collapse
|
45
|
Matsuda T, Almasan A, Tomita M, Uchihara JN, Masuda M, Ohshiro K, Takasu N, Yagita H, Ohta T, Mori N. Resistance to Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis and constitutive expression of Apo2L/TRAIL in human T-cell leukemia virus type 1-infected T-cell lines. J Virol 2005; 79:1367-78. [PMID: 15650163 PMCID: PMC544134 DOI: 10.1128/jvi.79.3.1367-1378.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Adult T-cell leukemia (ATL), a CD4+-T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1), is difficult to cure, and novel treatments are urgently needed. Apo2 ligand (Apo2L; also tumor necrosis factor-related apoptosis-inducing ligand [TRAIL]) has been implicated in antitumor therapy. We found that HTLV-1-infected T-cell lines and primary ATL cells were more resistant to Apo2L-induced apoptosis than uninfected cells. Interestingly, HTLV-1-infected T-cell lines and primary ATL cells constitutively expressed Apo2L mRNA. Inducible expression of the viral oncoprotein Tax in a T-cell line up-regulated Apo2L mRNA. Analysis of the Apo2L promoter revealed that this gene is activated by Tax via the activation of NF-kappaB. The sensitivity to Apo2L was not correlated with expression levels of Apo2L receptors, intracellular regulators of apoptosis (FLICE-inhibitory protein and active Akt). NF-kappaB plays a crucial role in the pathogenesis and survival of ATL cells. The resistance to Apo2L-induced apoptosis was reversed by N-acetyl-L-leucinyl-L-leucinyl-lLnorleucinal (LLnL), an NF-kappaB inhibitor. LLnL significantly induced the Apo2L receptors DR4 and DR5. Our results suggest that the constitutive activation of NF-kappaB is essential for Apo2L gene induction and protection against Apo2L-induced apoptosis and that suppression of NF-kappaB may be a useful adjunct in clinical use of Apo2L against ATL.
Collapse
Affiliation(s)
- Takehiro Matsuda
- Division of Molecular Virology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Di Pietro R, Zauli G. Emerging non-apoptotic functions of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L. J Cell Physiol 2004; 201:331-340. [PMID: 15389537 DOI: 10.1002/jcp.20099] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tumor necrosis factor (TNF) is a cytokine that mediates tumor necrosis. To date, 20 different members of the TNF super-family and 21 different receptors have been identified. All ligands of the TNF super-family have been found to activate transcription factor NF-kappa B and c-Jun kinase. Members of this family have diverse biological effects, including induction of apoptosis, promotion of cell survival, and regulation of the immune system and hematopoiesis. The current review focuses on the biological effects of TNF-related apoptosis-inducing ligand (TRAIL), a TNF super-family member which, a few years ago, generated considerable enthusiasm for its anticancer activity, not accompanied by general toxicity in most normal tissues and organs.
Collapse
Affiliation(s)
- Roberta Di Pietro
- Dipartimento di Biomorfologia, Università G. d'Annunzio, Via dei Vestini, Chieti Scalo, Italy.
| | | |
Collapse
|
47
|
Clarke N, Jimenez-Lara AM, Voltz E, Gronemeyer H. Tumor suppressor IRF-1 mediates retinoid and interferon anticancer signaling to death ligand TRAIL. EMBO J 2004; 23:3051-60. [PMID: 15241475 PMCID: PMC514919 DOI: 10.1038/sj.emboj.7600302] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2004] [Accepted: 06/09/2004] [Indexed: 12/31/2022] Open
Abstract
Retinoids and interferons are signaling molecules with pronounced anticancer activity. We show that in both acute promyelocytic leukemia and breast cancer cells the retinoic acid (RA) and interferon signaling pathways converge on the promoter of the tumoricidal death ligand TRAIL. Promoter mapping, chromatin immunoprecipitation and RNA interference reveal that retinoid-induced interferon regulatory factor-1 (IRF-1), a tumor suppressor, is critically required for TRAIL induction by both RA and IFNgamma. Exposure of breast cancer cells to both antitumor agents results in enhanced TRAIL promoter occupancy by IRF-1 and coactivator recruitment, leading to strong histone acetylation and synergistic induction of TRAIL expression. In coculture experiments, pre-exposure of breast cancer cells to RA and IFNgamma induced a dramatic TRAIL-dependent apoptosis in heterologous cancer cells in a paracrine mode of action, while normal cells were not affected. Our results identify a novel TRAIL-mediated tumor suppressor activity of IRF-1 and suggest a mechanistic basis for the synergistic antitumor activities of certain retinoids and interferons. These data argue for combination therapies that activate the TRAIL pathway to eradicate tumor cells.
Collapse
Affiliation(s)
- Nicole Clarke
- Department of Cell Biology and Signal Transduction, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/ULP, Illkirch, CU de Strasbourg, France
| | - Ana M Jimenez-Lara
- Department of Cell Biology and Signal Transduction, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/ULP, Illkirch, CU de Strasbourg, France
| | - Emilie Voltz
- Department of Cell Biology and Signal Transduction, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/ULP, Illkirch, CU de Strasbourg, France
| | - Hinrich Gronemeyer
- Department of Cell Biology and Signal Transduction, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS/INSERM/ULP, Illkirch, CU de Strasbourg, France
| |
Collapse
|
48
|
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF family that can induce apoptosis when binding to either of two receptors bearing an intracellular death domain. The physiologic function of the TRAIL system, which also comprises three receptors not mediating a death signal has just begun to be elucidated. Expression of TRAIL, mostly upon stimulation by interferons, in different cytotoxic immune cells suggested it has a role as an important effector molecule in immune surveillance. In addition to its ability to induce apoptosis in transformed tumor cells, TRAIL has attracted attention for its possibly critical role in the defense against viral infection. Viruses may induce TRAIL expression in host and?or immune cells and sensitize host cells toward TRAIL-mediated apoptosis. On the other hand, viruses have evolved a variety of strategies to prevent TRAIL-mediated host cell death early in infection, which may contribute to allowing their replication and the spread of viral progeny. The knowledge of the molecular mechanisms leading to modification of TRAIL sensitivity in virus-host cell interactions may also impact upon future (virus-based) strategies to increase TRAIL sensitivity of tumor cells.
Collapse
Affiliation(s)
- Jörn Sträter
- Department of Pathology, University Hospital of Ulm, D-89081 Ulm, Germany
| | | |
Collapse
|
49
|
Robertson NM, Rosemiller M, Lindemeyer RG, Steplewski A, Zangrilli JG, Litwack G. TRAIL in the airways. VITAMINS AND HORMONES 2004; 67:149-67. [PMID: 15110176 DOI: 10.1016/s0083-6729(04)67009-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is an important immunomodulatory factor that may play a role in the structural changes observed in the asthmatic airways. In vitro as well as in vivo studies have evidenced a dual role for TRAIL: it can either function as a pro- or anti-inflammatory cytokine on inflammatory cells, participating in the initiation and resolution of inflammatory and immune responses. TRAIL is expressed in the airways by inflammatory cells infiltrated in the bronchial mucosa, as well as by structural cells of the airway wall including fibroblasts, epithelial, endothelial, and smooth muscle cells. By releasing TRAIL, these different cell types may then participate in the increased levels of TRAIL observed in bronchoalveolar lavage fluid from asthmatic patients. Taken together, this suggests that TRAIL may play a role in inflammation in asthma. However, concerning its role is dual in the modulation of inflammation, further studies are needed to elucidate the precise role of TRAIL in the airways.
Collapse
Affiliation(s)
- Noreen M Robertson
- Department of Biochemistry and Molecular Pharmacology Jefferson Medical College, Thomas Jefferson University Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | |
Collapse
|
50
|
Ehrlich S, Infante-Duarte C, Seeger B, Zipp F. Regulation of soluble and surface-bound TRAIL in human T cells, B cells, and monocytes. Cytokine 2004; 24:244-53. [PMID: 14609566 DOI: 10.1016/s1043-4666(03)00094-2] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF/nerve growth factor superfamily that, apart from inducing cell death in susceptible cells, displays immunoregulatory functions influencing, for instance, T cell proliferation. It can be found in two forms: membrane-bound and soluble protein. The regulation of these is still not fully understood. In this study, we have analyzed the regulation of TRAIL surface expression and secretion in human T cells, B cells, and monocytes in response to specific stimuli. T cells, B cells, and monocytes were cultured in the presence of phytohemagglutinin (PHA)+interleukin (IL-2), anti-CD40+IL-4, and lipopolysaccharide (LPS), respectively. In particular, not only PHA+IL-2 but also LPS were able to induce secretion of soluble TRAIL, but did not enhance the expression of surface-bound TRAIL. Simultaneously, we investigated the effect of the pleiotropic stimulus interferon (IFN)-beta, known to target all leukocyte subsets, on TRAIL. Predominantly, monocytes were affected by IFN-beta, causing both release of soluble TRAIL and upregulation of the surface-bound form. IFN-beta, however, did not cause any upregulation of TRAIL in T cells. Our data serve as a basis to better understand the complex regulation of TRAIL in human peripheral immune cells and might help to clarify the role of the TRAIL system in immunopathology.
Collapse
Affiliation(s)
- Stefan Ehrlich
- Institute of Neuroimmunology, Neuroscience Research Center, Charitè University Hospital, 10098 Berlin, Germany
| | | | | | | |
Collapse
|