1
|
Cytoplasmic proteotoxicity regulates HRI-dependent phosphorylation of eIF2α via the Hsp70-Bag3 module. iScience 2022; 25:104282. [PMID: 35573186 PMCID: PMC9097715 DOI: 10.1016/j.isci.2022.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/27/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
The major heat shock protein Hsp70 forms a complex with a scaffold protein Bag3 that links it to components of signaling pathways. Via these interactions, the Hsp70-Bag3 module functions as a proteotoxicity sensor that controls cell signaling. Here, to search for pathways regulated by the complex, we utilized JG-98, an allosteric inhibitor of Hsp70 that blocks its interaction with Bag3. RNAseq followed by the pathway analysis indicated that several signaling pathways including UPR were activated by JG-98. Surprisingly, only the eIF2α-associated branch of the UPR was activated, while other UPR branches were not induced, suggesting that the response was unrelated to the ER proteotoxicity and ER-associated kinase PERK1. Indeed, induction of the UPR genes under these conditions was driven by a distinct eIF2α kinase HRI. Hsp70-Bag3 directly interacted with HRI and regulated eIF2α phosphorylation upon cytoplasmic proteotoxicity. Therefore, cytosolic proteotoxicity can activate certain UPR genes via Hsp70-Bag3-HRI-eIF2α axis. Disruption of Hsp70-Bag3 module activates the unfolded protein response (UPR) This induction of UPR genes is mediated by HRI-dependent phosphorylation of eIF2α Hsp70-Bag3 “monitors” cytoplasmic proteotoxicity to activate the HRI-eIF2α axis eIF2α integrates proteotoxicity signals from ER and cytoplasm
Collapse
|
2
|
Piazzi M, Bavelloni A, Faenza I, Blalock W. Glycogen synthase kinase (GSK)-3 and the double-strand RNA-dependent kinase, PKR: When two kinases for the common good turn bad. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118769. [PMID: 32512016 PMCID: PMC7273171 DOI: 10.1016/j.bbamcr.2020.118769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 01/08/2023]
Abstract
Glycogen synthase kinase (GSK)-3α/β and the double-stranded RNA-dependent kinase PKR are two sentinel kinases that carry-out multiple similar yet distinct functions in both the cytosol and the nucleus. While these kinases belong to separate signal transduction cascades, they demonstrate an uncanny propensity to regulate many of the same proteins either through direct phosphorylation or by altering transcription/translation, including: c-MYC, NF-κB, p53 and TAU, as well as each another. A significant number of studies centered on the GSK3 kinases have led to the identification of the GSK3 interactome and a number of substrates, which link GSK3 activity to metabolic control, translation, RNA splicing, ribosome biogenesis, cellular division, DNA repair and stress/inflammatory signaling. Interestingly, many of these same pathways and processes are controlled by PKR, but unlike the GSK3 kinases, a clear picture of proteins interacting with PKR and a complete listing of its substrates is still missing. In this review, we take a detailed look at what is known about the PKR and GSK3 kinases, how these kinases interact to influence common cellular processes (innate immunity, alternative splicing, translation, glucose metabolism) and how aberrant activation of these kinases leads to diseases such as Alzheimer's disease (AD), diabetes mellitus (DM) and cancer. GSK3α/β and PKR are major regulators of cellular homeostasis and the response to stress/inflammation and infection. GSK3α/β and PKR interact with and/or modify many of the same proteins and affect the expression of similar genes. A balance between AKT and PKR nuclear signaling may be responsible for regulating the activation of nuclear GSK3β. GSK3α/β- and PKR-dependent signaling influence major molecular mechanisms of the cell through similar intermediates. Aberrant activation of GSK3α/β and PKR is highly involved in cancer, metabolic disorders, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), Bologna, Italy; IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alberto Bavelloni
- Laboratoria di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - William Blalock
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza", Consiglio Nazionale delle Ricerche (IGM-CNR), Bologna, Italy; IRCCS, Istituto Ortopedico Rizzoli, Bologna, Italy.
| |
Collapse
|
3
|
Piazzi M, Bavelloni A, Gallo A, Faenza I, Blalock WL. Signal Transduction in Ribosome Biogenesis: A Recipe to Avoid Disaster. Int J Mol Sci 2019; 20:ijms20112718. [PMID: 31163577 PMCID: PMC6600399 DOI: 10.3390/ijms20112718] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/27/2022] Open
Abstract
Energetically speaking, ribosome biogenesis is by far the most costly process of the cell and, therefore, must be highly regulated in order to avoid unnecessary energy expenditure. Not only must ribosomal RNA (rRNA) synthesis, ribosomal protein (RP) transcription, translation, and nuclear import, as well as ribosome assembly, be tightly controlled, these events must be coordinated with other cellular events, such as cell division and differentiation. In addition, ribosome biogenesis must respond rapidly to environmental cues mediated by internal and cell surface receptors, or stress (oxidative stress, DNA damage, amino acid depletion, etc.). This review examines some of the well-studied pathways known to control ribosome biogenesis (PI3K-AKT-mTOR, RB-p53, MYC) and how they may interact with some of the less well studied pathways (eIF2α kinase and RNA editing/splicing) in higher eukaryotes to regulate ribosome biogenesis, assembly, and protein translation in a dynamic manner.
Collapse
Affiliation(s)
- Manuela Piazzi
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | | | - Angela Gallo
- RNA Editing Laboratory, Dipartimento di Oncoematologia, IRCCS, Ospedale Pediatrica Bambino Gesù, 00146 Rome, Italy.
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, 40126 Bologna, Italy.
| | - William L Blalock
- Istituto di Genetica Molecolare-Luigi Luca Cavalli Sforza, UOS Bologna, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy.
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
4
|
Kikuchi S, Suzuki R, Ohguchi H, Yoshida Y, Lu D, Cottini F, Jakubikova J, Bianchi G, Harada T, Gorgun G, Tai YT, Richardson PG, Hideshima T, Anderson KC. Class IIa HDAC inhibition enhances ER stress-mediated cell death in multiple myeloma. Leukemia 2015; 29:1918-27. [PMID: 25801913 DOI: 10.1038/leu.2015.83] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/05/2015] [Accepted: 03/12/2015] [Indexed: 01/14/2023]
Abstract
Histone deacetylase (HDAC) inhibitors have been extensively investigated as therapeutic agents in cancer. However, the biological role of class IIa HDACs (HDAC4, 5, 7 and 9) in cancer cells, including multiple myeloma (MM), remains unclear. Recent studies show HDAC4 interacts with activating transcription factor 4 (ATF4) and inhibits activation of endoplasmic reticulum (ER) stress-associated proapoptotic transcription factor C/EBP homologous protein (CHOP). In this study, we hypothesized that HDAC4 knockdown and/or inhibition could enhance apoptosis in MM cells under ER stress condition by upregulating ATF4, followed by CHOP. HDAC4 knockdown showed modest cell growth inhibition; however, it markedly enhanced cytotoxicity induced by either tunicamycin or carfilzomib (CFZ), associated with upregulating ATF4 and CHOP. For pharmacological inhibition of HDAC4, we employed a novel and selective class IIa HDAC inhibitor TMP269, alone and in combination with CFZ. As with HDAC4 knockdown, TMP269 significantly enhanced cytotoxicity induced by CFZ in MM cell lines, upregulating ATF4 and CHOP and inducing apoptosis. Conversely, enhanced cytotoxicity was abrogated by ATF4 knockdown, confirming that ATF4 has a pivotal role mediating cytotoxicity in this setting. These results provide the rationale for novel treatment strategies combining class IIa HDAC inhibitors with ER stressors, including proteasome inhibitors, to improve patient outcome in MM.
Collapse
Affiliation(s)
- S Kikuchi
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - R Suzuki
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - H Ohguchi
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Y Yoshida
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - D Lu
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - F Cottini
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - J Jakubikova
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - G Bianchi
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - T Harada
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - G Gorgun
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Y-T Tai
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - P G Richardson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - T Hideshima
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - K C Anderson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Dufey E, Sepúlveda D, Rojas-Rivera D, Hetz C. Cellular Mechanisms of Endoplasmic Reticulum Stress Signaling in Health and Disease. 1. An overview. Am J Physiol Cell Physiol 2014; 307:C582-94. [DOI: 10.1152/ajpcell.00258.2014] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increased demand on the protein folding capacity of the endoplasmic reticulum (ER) engages an adaptive reaction known as the unfolded protein response (UPR). The UPR regulates protein translation and the expression of numerous target genes that contribute to restore ER homeostasis or induce apoptosis of irreversibly damaged cells. UPR signaling is highly regulated and dynamic and integrates information about the type, intensity, and duration of the stress stimuli, thereby determining cell fate. Recent advances highlight novel physiological outcomes of the UPR beyond specialized secretory cells, particularly in innate immunity, metabolism, and cell differentiation. Here we discuss studies on the fine-tuning of the UPR and its physiological role in diverse organs and diseases.
Collapse
Affiliation(s)
- Estefanie Dufey
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Denisse Sepúlveda
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Diego Rojas-Rivera
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; and
- Neurounion Biomedical Foundation, CENPAR, Santiago, Chile
| |
Collapse
|
6
|
|
7
|
Blalock WL, Bavelloni A, Piazzi M, Faenza I, Cocco L. A role for PKR in hematologic malignancies. J Cell Physiol 2010; 223:572-91. [PMID: 20232306 DOI: 10.1002/jcp.22092] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The double-stranded RNA-dependent kinase PKR has been described for many years as strictly a pro-apoptotic kinase. Recent data suggest that the main purpose of this kinase is damage control and repair following stress and, if all else fails, apoptosis. Aberrant activation of PKR has been reported in numerous neurodegenerative diseases and cancer. Although a subset of myelodysplastic syndromes (MDS) and chronic lymphocytic leukemia contain low levels of PKR expression and activity, elevated PKR activity and/or expression have been detected in a wide range of hematologic malignancies, from bone marrow failure disorders to acute leukemia. With the recent findings that cancers containing elevated PKR activity are highly sensitive to PKR inhibition, we explore the role of PKR in hematologic malignancies, signal transduction pathways affected by PKR, and how PKR may contribute to leukemic transformation.
Collapse
Affiliation(s)
- William L Blalock
- Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
8
|
Carter CJ. Multiple genes and factors associated with bipolar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: implications for oligodendrocyte viability. Neurochem Int 2007; 50:461-90. [PMID: 17239488 DOI: 10.1016/j.neuint.2006.11.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 11/27/2006] [Indexed: 02/06/2023]
Abstract
Famine and viral infection, as well as interferon therapy have been reported to increase the risk of developing bipolar disorder. In addition, almost 100 polymorphic genes have been associated with this disease. Several form most of the components of a phosphatidyl-inositol signalling/AKT1 survival pathway (PIK3C3, PIP5K2A, PLCG1, SYNJ1, IMPA2, AKT1, GSK3B, TCF4) which is activated by growth factors (BDNF, NRG1) and also by NMDA receptors (GRIN1, GRIN2A, GRIN2B). Various other protein products of genes associated with bipolar disorder either bind to or are affected by phosphatidyl-inositol phosphate products of this pathway (ADBRK2, HIP1R, KCNQ2, RGS4, WFS1), are associated with its constituent elements (BCR, DUSP6, FAT, GNAZ) or are downstream targets of this signalling cascade (DPYSL2, DRD3, GAD1, G6PD, GCH1, KCNQ2, NOS3, SLC6A3, SLC6A4, SST, TH, TIMELESS). A further pathway relates to endoplasmic reticulum-stress (HSPA5, XBP1), caused by problems in protein glycosylation (ALG9), growth factor receptor sorting (PIK3C3, HIP1R, SYBL1), or aberrant calcium homoeostasis (WFS1). Key processes relating to these pathways appear to be under circadian control (ARNTL, CLOCK, PER3, TIMELESS). DISC1 can also be linked to many of these pathways. The growth factor pathway promotes protein synthesis, while the endoplasmic reticulum stress pathway, and other stress pathways activated by viruses and cytokines (IL1B, TNF, Interferons), oxidative stress or starvation, all factors associated with bipolar disorder risk, shuts down protein synthesis via control of the EIF2 alpha and beta translation initiation complex. For unknown reasons, oligodendrocytes appear to be particularly prone to defects in the translation initiation complex (EIF2B) and the convergence of these environmental and genomic signalling pathways on this area might well explain their vulnerability in bipolar disorder.
Collapse
|
9
|
Smith JA, Schmechel SC, Raghavan A, Abelson M, Reilly C, Katze MG, Kaufman RJ, Bohjanen PR, Schiff LA. Reovirus induces and benefits from an integrated cellular stress response. J Virol 2006; 80:2019-33. [PMID: 16439558 PMCID: PMC1367166 DOI: 10.1128/jvi.80.4.2019-2033.2006] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Following infection with most reovirus strains, viral protein synthesis is robust, even when cellular translation is inhibited. To gain further insight into pathways that regulate translation in reovirus-infected cells, we performed a comparative microarray analysis of cellular gene expression following infection with two strains of reovirus that inhibit host translation (clone 8 and clone 87) and one strain that does not (Dearing). Infection with clone 8 and clone 87 significantly increased the expression of cellular genes characteristic of stress responses, including the integrated stress response. Infection with these same strains decreased transcript and protein levels of P58(IPK), the cellular inhibitor of the eukaryotic initiation factor 2alpha (eIF2alpha) kinases PKR and PERK. Since infection with host shutoff-inducing strains of reovirus impacted cellular pathways that control eIF2alpha phosphorylation and unphosphorylated eIF2alpha is required for translation initiation, we examined reovirus replication in a variety of cell lines with mutations that impact eIF2alpha phosphorylation. Our results revealed that reovirus replication is more efficient in the presence of eIF2alpha kinases and phosphorylatable eIF2alpha. When eIF2alpha is phosphorylated, it promotes the synthesis of ATF4, a transcription factor that controls cellular recovery from stress. We found that the presence of this transcription factor increased reovirus yields 10- to 100-fold. eIF2alpha phosphorylation also led to the formation of stress granules in reovirus-infected cells. Based on these results, we hypothesize that eIF2alpha phosphorylation facilitates reovirus replication in two ways-first, by inducing ATF4 synthesis, and second, by creating an environment that places abundant reovirus transcripts at a competitive advantage for limited translational components.
Collapse
Affiliation(s)
- Jennifer A Smith
- Department of Microbiology, University of Minnesota, 420 Delaware Street SE, MMC 196, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hao S, Sharp JW, Ross-Inta CM, McDaniel BJ, Anthony TG, Wek RC, Cavener DR, McGrath BC, Rudell JB, Koehnle TJ, Gietzen DW. Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform cortex. Science 2005; 307:1776-8. [PMID: 15774759 DOI: 10.1126/science.1104882] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recognizing a deficiency of indispensable amino acids (IAAs) for protein synthesis is vital for dietary selection in metazoans, including humans. Cells in the brain's anterior piriform cortex (APC) are sensitive to IAA deficiency, signaling diet rejection and foraging for complementary IAA sources, but the mechanism is unknown. Here we report that the mechanism for recognizing IAA-deficient foods follows the conserved general control (GC) system, wherein uncharged transfer RNA induces phosphorylation of eukaryotic initiation factor 2 (eIF2) via the GC nonderepressing 2 (GCN2) kinase. Thus, a basic mechanism of nutritional stress management functions in mammalian brain to guide food selection for survival.
Collapse
Affiliation(s)
- Shuzhen Hao
- School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ryman KD, Meier KC, Nangle EM, Ragsdale SL, Korneeva NL, Rhoads RE, MacDonald MR, Klimstra WB. Sindbis virus translation is inhibited by a PKR/RNase L-independent effector induced by alpha/beta interferon priming of dendritic cells. J Virol 2005; 79:1487-99. [PMID: 15650175 PMCID: PMC544143 DOI: 10.1128/jvi.79.3.1487-1499.2005] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The tropism of Sindbis virus (SB) for cells of the dendritic cell (DC) lineage and the virulence of SB in vivo are largely determined by the efficacy of alpha/beta interferon (IFN-alpha/beta)-mediated antiviral responses. These responses are essentially intact in the absence of PKR and/or RNase L (K. D. Ryman, L. J. White, R. E. Johnston, and W. B. Klimstra, Viral Immunol. 15:53-76, 2002). In the present studies, we investigated the nature of antiviral effects and identity of antiviral effectors primed by IFN-alpha/beta treatment of bone marrow-derived DCs (BMDCs) generated from mice deficient in PKR and RNase L (TD). IFN-alpha/beta priming exerted significant antiviral activity at very early stages of SB replication and most likely inhibited the initial translation of infecting genomes. The early effect targeted cap-dependent translation as protein synthesis from an SB-like and a simple RNA were inhibited by interferon treatment, but an encephalomyocarditis virus internal ribosome entry site-driven element exhibited no inhibition. Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 was defective after virus infection of TD cells, suggesting other mechanisms of translation inhibition. To identify components of these alternative antiviral pathway(s), we have compared global gene regulation in BMDCs derived from normal 129 Sv/Ev, IFNAR1-/-, and TD mice following infection with SB or treatment with IFN-alpha/beta. Candidate effectors of alternative antiviral pathways were those genes induced by virus infection or IFN-alpha/beta treatment in 129 Sv/Ev and TD-derived BMDC but not in virus-infected or IFN-alpha/beta-treated IFNAR1-/- cells. Statistical analyses of gene array data identified 44 genes that met these criteria which are discussed.
Collapse
Affiliation(s)
- K D Ryman
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, 1501 Kings Hwy., Shreveport, LA 71130-3932, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Naidoo N, Giang W, Galante RJ, Pack AI. Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. J Neurochem 2005; 92:1150-7. [PMID: 15715665 DOI: 10.1111/j.1471-4159.2004.02952.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Little is known about the molecular mechanisms underlying sleep. We show the induction of key regulatory proteins in a cellular protective pathway, the unfolded protein response (UPR), following 6 h of induced wakefulness. Using C57/B6 male mice maintained on a 12:12 light/dark cycle, we examined, in cerebral cortex, the effect of different durations of prolonged wakefulness (0, 3, 6, 9 and 12 h) from the beginning of the lights-on inactivity period, on the protein expression of BiP/GRP78, a chaperone and classical UPR marker. BiP/GRP78 expression is increased with increasing durations of sleep deprivation (6, 9 and 12 h). There is no change in BiP/GRP78 levels in handling control experiments carried out during the lights-off period. PERK, the transmembrane kinase responsible for attenuating protein synthesis, which is negatively regulated by binding to BiP/GRP78, is activated by dissociation from BiP/GRP78 and by autophosphorylation. There is phosphorylation of the elongation initiation factor 2alpha and alteration in ribosomal function. These changes are first observed after 6 h of induced wakefulness. Thus, prolonging wakefulness beyond a certain duration induces the UPR indicating a physiological limit to wakefulness.
Collapse
Affiliation(s)
- Nirinjini Naidoo
- Division of Sleep Medicine/Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
13
|
Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 2004; 15:5383-98. [PMID: 15371533 PMCID: PMC532018 DOI: 10.1091/mbc.e04-08-0715] [Citation(s) in RCA: 795] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 09/08/2004] [Indexed: 01/01/2023] Open
Abstract
TIA-1 is an RNA binding protein that promotes the assembly of stress granules (SGs), discrete cytoplasmic inclusions into which stalled translation initiation complexes are dynamically recruited in cells subjected to environmental stress. The RNA recognition motifs of TIA-1 are linked to a glutamine-rich prion-related domain (PRD). Truncation mutants lacking the PRD domain do not induce spontaneous SGs and are not recruited to arsenite-induced SGs, whereas the PRD forms aggregates that are recruited to SGs in low-level-expressing cells but prevent SG assembly in high-level-expressing cells. The PRD of TIA-1 exhibits many characteristics of prions: concentration-dependent aggregation that is inhibited by the molecular chaperone heat shock protein (HSP)70; resistance to protease digestion; sequestration of HSP27, HSP40, and HSP70; and induction of HSP70, a feedback regulator of PRD disaggregation. Substitution of the PRD with the aggregation domain of a yeast prion, SUP35-NM, reconstitutes SG assembly, confirming that a prion domain can mediate the assembly of SGs. Mouse embryomic fibroblasts (MEFs) lacking TIA-1 exhibit impaired ability to form SGs, although they exhibit normal phosphorylation of eukaryotic initiation factor (eIF)2alpha in response to arsenite. Our results reveal that prion-like aggregation of TIA-1 regulates SG formation downstream of eIF2alpha phosphorylation in response to stress.
Collapse
Affiliation(s)
- Natalie Gilks
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Fan YH, Chen H, Natarajan A, Guo Y, Harbinski F, Iyasere J, Christ W, Aktas H, Halperin JA. Structure–activity requirements for the antiproliferative effect of troglitazone derivatives mediated by depletion of intracellular calcium. Bioorg Med Chem Lett 2004; 14:2547-50. [PMID: 15109648 DOI: 10.1016/j.bmcl.2004.02.087] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 02/16/2004] [Accepted: 02/26/2004] [Indexed: 11/16/2022]
Abstract
Depletion of calcium from the endoplasmic reticulum has shown to affect protein synthesis and cell proliferation. The anticancer effect of troglitazone was reported to be mediated by depletion of intracellular calcium stores resulting in inhibition of translation initiation. The unsaturated form of troglitazone displays similar anticancer properties in vitro. In this letter, we report our findings on the minimum structural requirements for both compounds to retain their calcium release and antiproliferative activities.
Collapse
Affiliation(s)
- Yun-Hua Fan
- Laboratory for Translational Research, Harvard Medical School, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kubota H, Obata T, Ota K, Sasaki T, Ito T. Rapamycin-induced translational derepression of GCN4 mRNA involves a novel mechanism for activation of the eIF2 alpha kinase GCN2. J Biol Chem 2003; 278:20457-60. [PMID: 12676950 DOI: 10.1074/jbc.c300133200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
When starved for amino acids, Saccharomyces cerevisiae accumulates uncharged tRNAs to activate its sole eukaryotic initiation factor (eIF) 2alpha kinase GCN2. Subsequent phosphorylation of eIF2alpha impedes general translation, but translationally derepresses the transcription factor GCN4, which induces expression of various biosynthetic genes to elicit general amino acid control response. By contrast, when supplied with enough nutrients, the yeast activates the target of rapamycin signaling pathway to stimulate translation initiation by facilitating the assembly of eIF4F. A cross-talk was suggested between the two pathways by rapamycin-induced translation of GCN4 mRNA. Here we show that rapamycin causes an increase in phosphorylated eIF2alpha to translationally derepress GCN4. This increment is not observed in the cells expressing mammalian non-GCN2 eIF2alpha kinases in place of GCN2. It is thus suggested that rapamycin does not inhibit dephosphorylation of eIF2alpha but rather activates the kinase GCN2. This activation seems to require an interaction between the kinase and uncharged tRNAs, because rapamycin, similar to amino acid starvation, fails to induce eIF2alpha phosphorylation in the cells with GCN2 defective in tRNA binding. However, in contrast with amino acid starvation, rapamycin activates GCN2 without increasing the amount of uncharged tRNAs, but presumably by modifying the tRNA binding affinity of GCN2.
Collapse
Affiliation(s)
- Hiroyuki Kubota
- Division of Genome Biology, Cancer Research Institute, Kanazawa University, 13-1 Takaramachi, Kanazawa 920-0934, Japan
| | | | | | | | | |
Collapse
|
16
|
Ryman KD, White LJ, Johnston RE, Klimstra WB. Effects of PKR/RNase L-dependent and alternative antiviral pathways on alphavirus replication and pathogenesis. Viral Immunol 2002; 15:53-76. [PMID: 11952147 DOI: 10.1089/088282402317340233] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Type I interferons (IFN-alpha/beta) rapidly confer resistance to alphavirus infection in macrophages and dendritic cells (DC) as evidenced by the dramatically increased susceptibility of these cells in mice with the IFNAR1 subunit of the IFN-alpha/beta receptor ablated (IFNAR1-/-). Normal adult mice develop only a subclinical Sindbis virus infection, whereas infected IFNAR1-/- mice rapidly succumb to a fatal disease. Here, we investigated the individual and combined contributions of the two best characterized INF-alpha/beta-mediated antiviral pathways to the control of Sindbis virus replication: (1) the coupled 2-5A synthetase/RNase L pathway and (2) the double-stranded RNA-dependent protein kinase (PKR) pathway. Surprisingly, mice deficient in PKR, RNase L, and Mx-1 (triply-deficient [TD]) developed only subclinical infection. Although the permissivity of cells in lymph nodes draining the inoculation site was increased in the absence of PKR/RNase L, systemic dissemination of the virus infection was restricted by an alternative IFN-alpha/beta receptor-dependent mechanism. In vitro, suppression of early virus protein synthesis and virion production in primary bone marrow-derived dendritic cells (BMDC) was largely dependent on the PKR pathway. However, later in infection virion production was reduced even in the absence of PKR/RNase L by an IFN-alpha/beta receptor-dependent mechanism. Priming of BMDC with IFN-alpha/beta or IFN-gamma resulted in dose-dependent restriction of virus replication, largely independent of PKR and/or RNase L expression.
Collapse
Affiliation(s)
- Kate D Ryman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, USA
| | | | | | | |
Collapse
|
17
|
Laing KG, Elia A, Jeffrey I, Matys V, Tilleray VJ, Souberbielle B, Clemens MJ. In vivo effects of the Epstein-Barr virus small RNA EBER-1 on protein synthesis and cell growth regulation. Virology 2002; 297:253-69. [PMID: 12083824 DOI: 10.1006/viro.2002.1354] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have suggested a role for the Epstein-Barr virus-encoded RNA EBER-1 in malignant transformation. EBER-1 inhibits the activity of the protein kinase PKR, an inhibitor of protein synthesis with tumour suppressor properties. In human 293 cells and murine embryonic fibroblasts, transient expression of EBER-1 promoted total protein synthesis and enhanced the expression of cotransfected reporter genes. However reporter gene expression was stimulated equally well in cells from control and PKR knockout mice. NIH 3T3 cells stably expressing EBER-1 exhibited a greatly increased frequency of colony formation in soft agar, and protein synthesis in these cells was relatively resistant to inhibition by the calcium ionophore A23187. Nevertheless clones containing a high concentration of EBER-1 were not invariably tumourigenic. We conclude that EBER-1 can enhance protein synthesis by a PKR-independent mechanism and that, although this RNA may contribute to the oncogenic potential of Epstein-Barr virus, its expression is not always sufficient for malignant transformation.
Collapse
Affiliation(s)
- Kenneth G Laing
- Department of Biochemistry and Immunology, St. George's Hospital Medical School, Cranmer Terrace, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
18
|
Lu L, Han AP, Chen JJ. Translation initiation control by heme-regulated eukaryotic initiation factor 2alpha kinase in erythroid cells under cytoplasmic stresses. Mol Cell Biol 2001; 21:7971-80. [PMID: 11689689 PMCID: PMC99965 DOI: 10.1128/mcb.21.23.7971-7980.2001] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic stresses, including heat shock, osmotic stress, and oxidative stress, cause rapid inhibition of protein synthesis in cells through phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) by eIF2alpha kinases. We have investigated the role of heme-regulated inhibitor (HRI), a heme-regulated eIF2alpha kinase, in stress responses of erythroid cells. We have demonstrated that HRI in reticulocytes and fetal liver nucleated erythroid progenitors is activated by oxidative stress induced by arsenite, heat shock, and osmotic stress but not by endoplasmic reticulum stress or nutrient starvation. While autophosphorylation is essential for the activation of HRI, the phosphorylation status of HRI activated by different stresses is different. The contributions of HRI in various stress responses were assessed with the aid of HRI-null reticulocytes and fetal liver erythroid cells. HRI is the only eIF2alpha kinase activated by arsenite in erythroid cells, since HRI-null cells do not induce eIF2alpha phosphorylation upon arsenite treatment. HRI is also the major eIF2alpha kinase responsible for the increased eIF2alpha phosphorylation upon heat shock in erythroid cells. Activation of HRI by these stresses is independent of heme and requires the presence of intact cells. Both hsp90 and hsc70 are necessary for all stress-induced HRI activation. However, reactive oxygen species are involved only in HRI activation by arsenite. Our results provide evidence for a novel function of HRI in stress responses other than heme deficiency.
Collapse
Affiliation(s)
- L Lu
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|