1
|
Boruah A, Afzal NU, Saha S, Mazumdar A, Ozah D, Bora T, Prabhakaran P, Manna P, Roy A. Enhanced glucose regulation potential of C-peptide mimics. Org Biomol Chem 2025; 23:5163-5173. [PMID: 40309967 DOI: 10.1039/d5ob00318k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The connecting peptide (C-peptide), once relegated as an epiphenomenon in insulin biosynthesis, has now been recognized for its capacity to instigate molecular effects along with important physiological functions. These findings suggest that C-peptide is a hormonally active molecule responsible for controlling a number of diabetes-related complications, in addition to proinsulin processing. Notably, it demonstrates cellular responsiveness and acts as a robust biomarker for beta cell functions, with a half-life longer than that of insulin. Herein, we investigated the effect of some synthetic C-peptide mimics on glucose homeostasis, specifically focusing on glucose uptake, GLUT4 translocation and associated membrane trafficking processes. The glucose utilization potential of some of the C-peptide mimics in L6 muscle myotubes was significantly better than that of the human C-peptide. One of the synthesized C-peptide mimics, CP8, showed glucose metabolism akin to insulin, including potential for Akt phosphorylation and IRβ autophosphorylation. Also, it showed the ability to mitigate intramolecular reactive oxygen species production. The results obtained here highlight the potential of C-peptide mimics on glucose metabolism, as well as interaction with Akt and IRβ, positioning them as promising candidates for future diabetes research.
Collapse
Affiliation(s)
- Alpana Boruah
- Chemical Sciences and Technology Division, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Nazim Uddin Afzal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Center for Infectious Diseases, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India.
| | - Sayari Saha
- Chemical Sciences and Technology Division, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India.
| | - Anusmrita Mazumdar
- Chemical Sciences and Technology Division, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India.
| | - Dibyajyoti Ozah
- Clinical Center, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India
| | - Thaneswar Bora
- Clinical Center, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India
| | - Panchami Prabhakaran
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, 382030, Gujarat, India
| | - Prasenjit Manna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Center for Infectious Diseases, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India.
| | - Arup Roy
- Chemical Sciences and Technology Division, CSIR - North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
2
|
Zhou J, Zhang Z, Yang Y, Liao F, Zhou P, Wang Y, Zhang H, Jiang H, Alinejad T, Shan G, Wu S. Deletion of serine racemase reverses neuronal insulin signaling inhibition by amyloid-β oligomers. J Neurochem 2022; 163:8-25. [PMID: 35839294 DOI: 10.1111/jnc.15664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/26/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
Dysregulation of insulin signaling in the Alzheimer's (AD) brain has been extensively reported. Serine racemase(SR) modulates insulin secretion in pancreatic islets. Similarly, we wonder whether or not SR regulates insulin synthesis and secretion in neurons, thereby modulating insulin signaling in the AD brain. Srr-knockout (Srr-/- ) mice generated with the CRISPR/Cas9 technique were used. Using immunofluorescence and fluorescence in situ hybridization, the levels of insulin protein and insulin(ins2) mRNA significantly increased in the hippocampal but not in the hypothalamic sections of Srr-/- mice compared with WT mice. Using real-time quantitative PCR, ins2 mRNA from primary hippocampal neuronal cultures of Srr-/- mice significantly increased compared with the cultured neurons from WT mice. Notably, the secretion of proinsulin C-peptide increased in Srr-/- neurons relative to WT neurons. By examining the membrane fractional proteins with immunoblotting, Srr-/- neurons retained ATP-dependent potassium channel on plasmalemma and correspondingly contained higher levels of p-AMPK. Under treatment by Aβ42, the phosphorylation levels of insulin receptor substrate at serine 616,636 (p-IRS1ser616,636 ) were significantly lower whereas p-AKT308 and p-AKT473 were higher in Srr-/- neurons, compared with WT neurons, respectively. The phosphorylated form of c-Jun N-terminal kinase decreased in the cultured Srr-/- neurons relative to the WT neurons upon Aβ42 treatment. In contrast, the phosphorylated protein kinase R remained at the same levels. Further, reactive oxygen species reduced in the cultured Srr-/- neurons under Aβ42 treatment relative to the WT neurons. Altogether, our study indicated that Srr deletion promoted insulin synthesis and secretion of proinsulin C-peptide, thereby reversing insulin resistance by Aβ42. This study suggests that targeting the neuronal SR may be utilized to enhance insulin signaling which is inhibited at the early stage of the AD brain.
Collapse
Affiliation(s)
- Jing Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Zhiwen Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Yuanhong Yang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Fei Liao
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Piansi Zhou
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Yan Wang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China.,College of Life and Environmental Sciences, Wenzhou University, Zhejiang, People's Republic of China
| | - Haiyan Jiang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| | - Tahereh Alinejad
- The Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, South Baixiang, Ouhai District, Zhejiang, China
| | - Ge Shan
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, Zhejiang, P.R. China.,State Key Laboratory of Optometry, Ophthalmology, and Visual Science, Zhejiang, P.R. China
| |
Collapse
|
3
|
Rossiter JL, Redlinger LJ, Kolar GR, Samson WK, Yosten GLC. The actions of C-peptide in HEK293 cells are dependent upon insulin and extracellular glucose concentrations. Peptides 2022; 150:170718. [PMID: 34954230 DOI: 10.1016/j.peptides.2021.170718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
Connecting peptide, or C-peptide, is a part of the insulin prohormone and is essential for the proper folding and processing of the mature insulin peptide. C-peptide is released from the same beta cell secretory granules as insulin in equimolar amounts. However, due to their relative stabilities in plasma, the two peptides are detected in the circulation at ratios of approximately 4:1 to 6:1 (C-peptide to insulin), depending on metabolic state. C-peptide binds specifically to human cell membranes and induces intracellular signaling cascades, likely through an interaction with the G protein coupled receptor, GPR146. C-peptide has been shown to exert protective effects against the vascular, renal, and ocular complications of diabetes. The effects of C-peptide appear to be dependent upon the presence of insulin and the absolute, extracellular concentration of glucose. In this study, we employed HEK293 cells to further examine the interactive effects of C-peptide, insulin, and glucose on cell signaling. We observed that C-peptide's cellular effects are dampened significantly when cells are exposed to physiologically relevant concentrations of both insulin and C-peptide. Likewise, the actions of C-peptide on cFos and GPR146 mRNA expressions were affected by changes in extracellular glucose concentration. In particular, C-peptide induced significant elevations in cFos expression in the setting of high (25 mmol) extracellular glucose concentration. These data indicate that future experimentation on the actions of C-peptide should control for the presence or absence of insulin and the concentration of glucose. Furthermore, these findings should be considered prior to the development of C-peptide-based therapeutics for the treatment of diabetes-associated complications.
Collapse
Affiliation(s)
- Jacqueline L Rossiter
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Lauren J Redlinger
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Grant R Kolar
- Department of Pathology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Willis K Samson
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Boulevard, Saint Louis, MO 63104, United States.
| |
Collapse
|
4
|
Lee J, Kim TM, Kim H, Lee SH, Cho JH, Lee H, Yim HW, Yoon KH, Kim HS. Differences in Clinical Outcomes between Patients with and without Hypoglycemia during Hospitalization: A Retrospective Study Using Real-World Evidence. Diabetes Metab J 2020; 44:555-565. [PMID: 32431110 PMCID: PMC7453993 DOI: 10.4093/dmj.2019.0064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/20/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Some patients admitted to hospitals for glycemic control experience hypoglycemia despite regular meals and despite adhering to standard blood glucose control protocols. Different factors can have a negative impact on blood glucose control and prognosis after discharge. This study investigated risk factors for hypoglycemia and its effects on glycemic control during the hospitalization of patients in the general ward. METHODS This retrospective study included patients who were admitted between 2009 and 2018. Patients were provided regular meals at fixed times according to ideal body weights during hospitalization. We categorized the patients into two groups: those with and those without hypoglycemia during hospitalization. RESULTS Of the 3,031 patients, 379 experienced at least one episode of hypoglycemia during hospitalization (HYPO group). Hypoglycemia occurred more frequently particularly in cases of premixed insulin therapy. Compared with the control group, the HYPO group was older (61.0±16.8 years vs. 59.1±16.5 years, P=0.035), with more females (60.4% vs. 49.6%, P<0.001), lower body mass index (BMI) (23.5±4.2 kg/m² vs. 25.1±4.4 kg/m², P<0.001), and higher prevalence of type 1 diabetes mellitus (6.1% vs. 2.6%, P<0.001), They had longer hospital stay (11.1±13.5 days vs. 7.6±4.6 days, P<0.001). After discharge the HYPO group had lower glycosylated hemoglobin reduction rate (-2.0%±0.2% vs. -2.5%±0.1%, P=0.003) and tended to have more frequent cases of cardiovascular disease. CONCLUSION Hypoglycemia occurred more frequently in older female patients with lower BMI and was associated with longer hospital stay and poorer glycemic control after discharge. Therefore, clinicians must carefully ensure that patients do not experience hypoglycemia during hospitalization.
Collapse
Affiliation(s)
- Jeongmin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Tong Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyunah Kim
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Seung Hwan Lee
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jae Hyoung Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyunyong Lee
- Clinical Research Coordinating Center, Catholic Medical Center, The Catholic University of Korea, Seoul, Korea
| | - Hyeon Woo Yim
- Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kun Ho Yoon
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hun Sung Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| |
Collapse
|
5
|
Takekawa D, Kudo T, Saito J, Kimura F, Nikaido Y, Sawada K, Yasui-Furukori N, Hirota K. Higher plasma leptin and lower C-peptide levels are associated with depression: A cross-sectional study. J Affect Disord 2019; 243:70-74. [PMID: 30236760 DOI: 10.1016/j.jad.2018.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/03/2018] [Accepted: 09/09/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND Depression is a seriously disabling public health problem with very high world-wide prevalence. This study examined cross-sectional association between depression and both inflammatory markers and laboratory data involved in metabolic disturbance among Japanese subjects. METHODS This cross-sectional study is a secondly analysis for the data of the Iwaki Health Promotion Project 2014 (1167 subjects). Plasma inflammatory markers and laboratory metabolic data involved were used. Center for Epidemiologic Studies Depression Scale (CES-D) was used to assess the prevalence and severity of depressive symptoms. Participants with CES-D scores ≥ 16 were assigned to the 'Depression' group (Group D). Differences between group Non-depression (ND) and D were estimated using χ2 test or Fisher's exact test for categorical variables and Student's t-test or Mann-Whitney test for continuous variables. Multivariate logistic regression analysis was also used to identify characteristics, co-morbidities, conditions and laboratory data associated with depression after adjusting for possible confounding factors. RESULTS There were significant differences in sex, age, blood pressure, interleukin (IL)-6, fasting blood sugar (FBS), hemoglobin A1c (HbA1c), and cortisol level using univariate analysis between the two groups. However, multivariate logistic regression analysis indicated that lower age, lower C-peptide, and higher leptin were associated with the depression. CONCLUSION This study showed that higher plasma leptin and lower C-peptide levels were significantly associated with depressive symptoms. No significant association was found between plasma inflammatory markers and depressive symptoms after adjusting for possible confounding factors.
Collapse
Affiliation(s)
- Daiki Takekawa
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Takashi Kudo
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Junichi Saito
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Futoshi Kimura
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Yoshikazu Nikaido
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kaori Sawada
- Department of Social Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Norio Yasui-Furukori
- Department of Neuropsychiatry, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| |
Collapse
|
6
|
Nazmy WH, Elbassuoni EA, Ali FF, Rifaai RA. Proinsulin C-peptide as an alternative or combined treatment with insulin for management of testicular dysfunction and fertility impairments in streptozotocin-induced type 1 diabetic male rats. J Cell Physiol 2018; 234:9351-9357. [PMID: 30317639 DOI: 10.1002/jcp.27618] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 09/24/2018] [Indexed: 01/23/2023]
Abstract
Diabetes mellitus (DM) is closely associated with male infertility and sexual dysfunction. Recent data indicate that the proinsulin C-peptide (CP) exerts important physiological effects and shows the characteristics of an endogenous peptide hormone. So, this study was done to investigate the effect of C-peptide with or without insulin treatment on testicular function and architecture in diabetic rats. Rats were divided into the following groups: control, diabetic, and diabetic groups treated with either CP alone or combined with insulin. Tested parameters included, estimation of serum follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone, and glucose levels, testicular samples for histopathology and estimation of malondialdehyde (MDA), total antioxidant capacity (TAC), and B-cell leukemia/lymphoma-2 (BCL-2) levels as well as sperm count and motility. Results showed that DM caused a severe alteration in hormonal profile and reduced sperm parameters along with increased MDA and decrease in both TAC and BCL-2 levels. CP alone or with insulin treatment efficiently reversed all the negative effects of DM on rat testes, with maximum improvement in the combined regimen. Proposed mechanisms may involve its hypoglycemic, antioxidant, and antiapoptotic properties. Thus, CP could substitute for or better combined with insulin to prevent or retard diabetic-induced testicular dysfunction.
Collapse
Affiliation(s)
- Walaa Hassan Nazmy
- Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Fatma Farrag Ali
- Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt
| | - Rehab Ahmed Rifaai
- Histology and Cell Biology Department, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
7
|
Kwai NCG, Arnold R, Poynten AM, Howells J, Kiernan MC, Lin CSY, Krishnan AV. In vivo evidence of reduced nodal and paranodal conductances in type 1 diabetes. Clin Neurophysiol 2015; 127:1700-1706. [PMID: 26725257 DOI: 10.1016/j.clinph.2015.11.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/13/2015] [Accepted: 11/29/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Diabetic neuropathy is a debilitating complication of diabetes. Animal models of type 1 diabetes (T1DM) suggest that functional and structural changes, specifically axo-glial dysjunction, may contribute to neuropathy development. The present study sought to examine and characterise early sensory axonal function in T1DM patients in the absence of clinical neuropathy. METHODS Thirty patients with T1DM (15M:15F) without neuropathy underwent median nerve sensory and motor axonal excitability studies to examine axonal function. A verified mathematical model of human motor and sensory axons was used to elucidate the underlying causes of observed alterations. RESULTS Compared to controls (NC), T1DM patients demonstrated significant axonal excitability abnormalities in sensory and motor axons. These included marked reductions in sensory and motor subexcitability during the recovery cycle (T1DM 7.9 ± 0.4:10.4 ± 0.6%, NC 10.4 ± 0.7:15.4 ± 1.2%, P<0.01) and during hyperpolarizing threshold electrotonus at 10-20 ms (T1DM -75.5 ± 0.8:-69.7 ± 0.8%, NC -78.4 ± 1:-72.7 ± 0.9%, P<0.01). Mathematical modelling demonstrated that these changes were due to reduced nodal Na(+) currents, nodal/paranodal K(+) conductances and Na(+)/K(+) pump dysfunction, consistent with axo-glial dysjunction as outlined in animal models of T1DM. CONCLUSIONS The study provided support for the occurrence of early changes in nodal and paranodal conductances in patients with T1DM. SIGNIFICANCE These data indicate that axonal excitability techniques may detect early changes in diabetic patients, providing a window of opportunity for prophylactic intervention in T1DM.
Collapse
Affiliation(s)
- Natalie C G Kwai
- Prince of Wales Clinical School, The University of New South Wales, Sydney, Australia
| | - Ria Arnold
- Department of Pharmacology and Physiology, The University of New South Wales, Sydney, Australia
| | - Ann M Poynten
- Department of Endocrinology, Prince of Wales Hospital, Sydney, Australia
| | - James Howells
- Brain and Mind Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, Australia
| | - Cindy S-Y Lin
- Department of Pharmacology and Physiology, The University of New South Wales, Sydney, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
8
|
Bhatt MP, Lim YC, Ha KS. C-peptide replacement therapy as an emerging strategy for preventing diabetic vasculopathy. Cardiovasc Res 2014; 104:234-44. [PMID: 25239825 DOI: 10.1093/cvr/cvu211] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lack of C-peptide, along with insulin, is the main feature of Type 1 diabetes mellitus (DM) and is also observed in progressive β-cell loss in later stage of Type 2 DM. Therapeutic approaches to hyperglycaemic control have been ineffective in preventing diabetic vasculopathy, and alternative therapeutic strategies are necessary to target both hyperglycaemia and diabetic complications. End-stage organ failure in DM seems to develop primarily due to vascular dysfunction and damage, leading to two types of organ-specific diseases, such as micro- and macrovascular complications. Numerous studies in diabetic patients and animals demonstrate that C-peptide treatment alone or in combination with insulin has physiological functions and might be beneficial in preventing diabetic complications. Current evidence suggests that C-peptide replacement therapy might prevent and ameliorate diabetic vasculopathy and organ-specific complications through conservation of vascular function, as well as prevention of endothelial cell death, microvascular permeability, vascular inflammation, and neointima formation. In this review, we describe recent advances on the beneficial role of C-peptide replacement therapy for preventing diabetic complications, such as retinopathy, nephropathy, neuropathy, impaired wound healing, and inflammation, and further discuss potential beneficial effects of combined C-peptide and insulin supplement therapy to control hyperglycaemia and to prevent organ-specific complications.
Collapse
Affiliation(s)
- Mahendra Prasad Bhatt
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Kangwondaehak-gil 1, Chuncheon, Kangwon-do 200-701, Republic of Korea
| | - Young-Cheol Lim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Kangwondaehak-gil 1, Chuncheon, Kangwon-do 200-701, Republic of Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Kangwondaehak-gil 1, Chuncheon, Kangwon-do 200-701, Republic of Korea
| |
Collapse
|
9
|
Du X, Zhou J, Guvench O, Sangiorgi FO, Li X, Zhou N, Xu B. Supramolecular assemblies of a conjugate of nucleobase, amino acids, and saccharide act as agonists for proliferation of embryonic stem cells and development of zygotes. Bioconjug Chem 2014; 25:1031-5. [PMID: 24798034 PMCID: PMC4068792 DOI: 10.1021/bc500187m] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Indexed: 12/14/2022]
Abstract
The synthetic challenges in glycobiology and glycochemistry hamper the development of glycobiomaterials for biomedicine. Here we report the use of molecular self-assembly to sidestep the laborious synthesis of complex glycans for promoting the proliferation of murine embryonic stem (mES) cells. Our study shows that the supramolecular assemblies of a small molecule conjugate of nucleobase, amino acids, and saccharide, as a de novo glycoconjugate, promote the proliferation of mES cells and the development of zygotes into blastocysts of mouse. Molecular engineering confirms that each motif (i.e., adenine, Arg-Gly-Asp (RGD) domain, and glucosamine) is indispensable for the observed activity of the conjugate. As the first example of using assemblies of the molecular conjugates of multiple fundamental biological building blocks to control cell behaviors, this work illustrates an unprecedented approach to use supramolecular assemblies as multifunctional mimics of glycoconjugates.
Collapse
Affiliation(s)
- Xuewen Du
- Department of Chemistry, Brandeis
University, 415 South
Street, Waltham, Massachusetts 02454, United States
- Department of Pharmaceutical
Sciences, University of New England College
of Pharmacy, 716 Stevens
Avenue, Portland, Maine 04102, United States
| | - Jie Zhou
- Department of Chemistry, Brandeis
University, 415 South
Street, Waltham, Massachusetts 02454, United States
- Department of Pharmaceutical
Sciences, University of New England College
of Pharmacy, 716 Stevens
Avenue, Portland, Maine 04102, United States
| | - Olgun Guvench
- Department of Chemistry, Brandeis
University, 415 South
Street, Waltham, Massachusetts 02454, United States
- Department of Pharmaceutical
Sciences, University of New England College
of Pharmacy, 716 Stevens
Avenue, Portland, Maine 04102, United States
| | - Frank O. Sangiorgi
- Department of Chemistry, Brandeis
University, 415 South
Street, Waltham, Massachusetts 02454, United States
- Department of Pharmaceutical
Sciences, University of New England College
of Pharmacy, 716 Stevens
Avenue, Portland, Maine 04102, United States
| | - Xinming Li
- Department of Chemistry, Brandeis
University, 415 South
Street, Waltham, Massachusetts 02454, United States
- Department of Pharmaceutical
Sciences, University of New England College
of Pharmacy, 716 Stevens
Avenue, Portland, Maine 04102, United States
| | - Ning Zhou
- Department of Chemistry, Brandeis
University, 415 South
Street, Waltham, Massachusetts 02454, United States
- Department of Pharmaceutical
Sciences, University of New England College
of Pharmacy, 716 Stevens
Avenue, Portland, Maine 04102, United States
| | | |
Collapse
|
10
|
Bhatt MP, Lim YC, Hwang J, Na S, Kim YM, Ha KS. C-peptide prevents hyperglycemia-induced endothelial apoptosis through inhibition of reactive oxygen species-mediated transglutaminase 2 activation. Diabetes 2013; 62:243-53. [PMID: 22923476 PMCID: PMC3526059 DOI: 10.2337/db12-0293] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C-peptide is a bioactive peptide with a potentially protective role in diabetes complications; however, its molecular mechanism of protection against cardiovascular damage caused by hyperglycemia-induced apoptosis remains unclear. We investigated the protective mechanism of C-peptide against hyperglycemia-induced apoptosis using human umbilical vein endothelial cells and streptozotocin diabetic mice. High glucose (33 mmol/L) induced apoptotic cell death in endothelial cells via sequential elevation of intracellular Ca(2+) and reactive oxygen species (ROS) as well as subsequent activation of transglutaminase 2 (TG2). C-peptide (1 nmol/L) prevented endothelial cell death by inhibiting protein kinase C- and NADPH oxidase-dependent intracellular ROS generation and by abolishing high glucose-induced TG2 activation, without affecting intracellular Ca(2+) levels. Consistently, in the aorta of streptozotocin diabetic mice, hyperglycemia stimulated transamidating activity and endothelial cell apoptosis that was inhibited by C-peptide replacement therapy (35 pmol/min/kg) using osmotic pumps (control and diabetes, n = 8; diabetes + C-peptide, n = 7). In addition, C-peptide prevented hyperglycemia-induced activation of transamidation activity and apoptosis in the heart and renal cortex of streptozotocin diabetic mice. Thus, C-peptide protects endothelial cells from hyperglycemia-induced apoptotic cell death by inhibiting intracellular ROS-mediated activation of TG2. Furthermore, TG2 may be a promising avenue of therapeutic investigation to treat diabetic vasculopathies.
Collapse
Affiliation(s)
- Mahendra Prasad Bhatt
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
- Department of Laboratory Medicine, Gandaki Medical College Charak Hospital, Pokhara, Nepal
| | - Young-Cheol Lim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - JongYun Hwang
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - SungHun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
| | - Kwon-Soo Ha
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, Korea
- Corresponding author: Kwon-Soo Ha,
| |
Collapse
|
11
|
Vejandla H, Hollander JM, Kothur A, Brock RW. C-Peptide reduces mitochondrial superoxide generation by restoring complex I activity in high glucose-exposed renal microvascular endothelial cells. ISRN ENDOCRINOLOGY 2012; 2012:162802. [PMID: 22778984 PMCID: PMC3388427 DOI: 10.5402/2012/162802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/10/2012] [Indexed: 12/02/2022]
Abstract
Hyperglycemia-mediated microvascular damage has been proposed to originate from excessive generation of mitochondrial superoxide in endothelial cells and is the suggested mechanism by which the pathogenesis of diabetes-induced renal damage occurs. C-peptide has been shown to ameliorate diabetes-induced renal impairment. Yet, the mechanisms underlying this protective benefit remain unclear. The objective of this study was to determine whether C-peptide affords protection to renal microvascular endothelial cell mitochondria during hyperglycemia. Conditionally immortalized murine renal microvascular endothelial cells (MECs) were exposed to low (5.5 mM) or high glucose (25 mM) media with either C-peptide (6.6 nM) or its scrambled sequence control peptide for 24 or 48 hours. Respiratory control ratio, a measure of mitochondrial electrochemical coupling, was significantly higher in high glucose renal MECs treated with C-peptide than those of high glucose alone. C-peptide also restored high glucose-induced renal MEC mitochondrial membrane potential changes back to their basal low glucose state. Moreover, C-peptide prevented the excessive mitochondrial superoxide generation and concomitant reductions in mitochondrial complex I activity which are mediated by the exposure of the renal MECs to high glucose. Together, these data demonstrate that C-peptide protects against high glucose-induced generation of mitochondrial superoxide in renal MECs via restoration of basal mitochondrial function.
Collapse
Affiliation(s)
- Himani Vejandla
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, P.O. Box 9105, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
12
|
Chen RH, Jiang XZ, Zhao XH, Qin YL, Gu Z, Gu PL, Zhou B, Zhu ZH, Xu LY, Zou YF. Risk factors of mild cognitive impairment in middle aged patients with type 2 diabetes: a cross-section study. ANNALES D'ENDOCRINOLOGIE 2012; 73:208-12. [PMID: 22704263 DOI: 10.1016/j.ando.2012.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 04/07/2012] [Indexed: 11/25/2022]
Abstract
UNLABELLED The aim of this study was to evaluate the risk factors of mild cognitive impairment (MCI) in middle-aged patients with type 2 diabetes (T2DM). METHODS Montreal Cognitive Assessment (MoCA) was applied as cognition assessment implement. One hundred and fifty-seven middle-aged type 2 diabetic patients were enrolled in this cross-section study (age 40~69, mean age 55 ± 7). There were 93 patients with MCI (MoCA score<26) in MCI group and 64 with normal cognitive function (MoCA score ≥ 26) in control group. Information of history of disease, family history, data of BMI, WHR, HbA1c, FINS, C-Peptide (C-P), SBP, DBP, blood lipid (TG, TC, LDL-C, HDL-C and carotid ultrasound (carotid IMT, carotid resistance index [RI]) was collected. RESULTS There were significant differences in the rate of patients with hypertension ([40.63 vs. 58.06%], P=0.026), duration of diabetes mellitus ([3.09 ± 4.04 y vs. 4.80 ± 4.94 y], P=0.024), C-P ([2.79 ± 1.09 ng/ml vs. 2.26 ± 1.00 ng/ml], P=0.008), Max C-IMT ([0.81 ± 0.15 mm vs. 0.91 ± 0.15 mm], P<0.001), Min C-RI (0.71 ± 0.06 vs. 0.68 ± 0.06, P<0.05), and no significant differences in the duration of hypertension and hyperlipidemia, BMI, WHR, HbA1c, SBP, DBP and blood lipid between control group and MCI group. MoCA scores were positively correlated with C-P (r=0.252, P=0.005), and negatively correlated with the history of hypertension (r=-0.244, P=0.002), duration of DM (r=-0.161, P=0.044), Max C-IMT (r=-0.253, P=0.005) and Min C-RI (r=-0.183, P=0.023). Multiple regression analysis showed that history of hypertension (Beta=-0.267, P=0.002), C-P (Beta=0.281, P=0.001) and Min C-RI (Beta=-0.221, P=0.011) were significantly independent determinants for the MoCA scores. CONCLUSIONS The longer duration of diabetes, history of hypertension, lower serum C-P levels, thickened C-IMT and higher C-RI could be risk factors of MCI in type 2 diabetic patients. This finding could have an important impact on the management of cognitive decline in diabetic patients.
Collapse
Affiliation(s)
- Rui-Hua Chen
- Department of Endocrinology, Pudong New Area People's Hospital, Chuan Huan Nan Road No. 490, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- John Wahren
- Department of Molecular Medicine and Surgery, Karolinska Institutet,Stockholm, Sweden.
| | | | | |
Collapse
|
14
|
Nordquist L, Shimada K, Ishii T, Furuya DT, Kamikawa A, Kimura K. Proinsulin C-peptide prevents type-1 diabetes-induced decrease of renal Na+-K+-ATPase alpha1-subunit in rats. Diabetes Metab Res Rev 2010; 26:193-9. [PMID: 20225182 DOI: 10.1002/dmrr.1071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS C-peptide reduces renal damage in diabetic patients and experimental animal models. In vitro studies suggest that the renal effects of C-peptide may, in part, be explained by stimulation of Na(+)/K(+)-ATPase activity. However, the responses of Na(+)/K(+)-ATPase expression in the kidney of diabetic animals to C-peptide administration remain unclear. The aim of this study was to clarify the responses. METHODS Type 1 diabetic rats were produced by injecting streptozotocin (STZ), and some of the rats were treated with either C-peptide or insulin by the aid of an osmotic pump for 1 week. The mRNA expression and immunohistochemical localization of Na(+)/K(+)-ATPase alpha1-, alpha2- and beta3-subunits were investigated in the kidney of these rats. RESULTS Na(+)/K(+)-ATPase alpha1-subunit was abundantly expressed in the medullary collecting ducts of control animals, but the expression was markedly decreased in the diabetic state with concomitant decrease in its mRNA expression. Similar decreases were observed in the insulin-treated diabetic rats, whereas in the C-peptide-treated diabetic rats, there was no reduction in the alpha1-expression. The beta3-subunit was expressed in podocytes and parietal cells in the glomeruli, vascular endothelial cells, and cortical collecting ducts, but lesser signals were observed in the proximal and distal tubules. However, the beta3-subunit did not appear to be affected by the diabetic state. CONCLUSIONS Diabetes selectively reduced Na(+)/K(+)-ATPase alpha1-subunit expression and abundance. Chronic administration of C-peptide prevented this decrease. This implies a role for C-peptide in the long-term regulation of Na(+)/K(+)-ATPase function.
Collapse
Affiliation(s)
- Lina Nordquist
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Kamiya H, Zhang W, Sima AAF. The beneficial effects of C-Peptide on diabetic polyneuropathy. Rev Diabet Stud 2009; 6:187-202. [PMID: 20039008 DOI: 10.1900/rds.2009.6.187] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Diabetic polyneuropathy (DPN) is a common complication in diabetes. At present, there is no adequate treatment, and DPN is often debilitating for patients. It is a heterogeneous disorder and differs in type 1 and type 2 diabetes. An important underlying factor in type 1 DPN is insulin deficiency. Proinsulin C-peptide is a critical element in the cascade of events. In this review, we describe the physiological role of C-peptide and how it provides an insulin-like signaling function. Such effects translate into beneficial outcomes in early metabolic perturbations of neural Na+/K+-ATPase and nitric oxide (NO) with subsequent preventive effects on early nerve dysfunction. Further corrective consequences resulting from this signaling cascade have beneficial effects on gene regulation of early gene responses, neurotrophic factors, their receptors, and the insulin receptor itself. This may lead to preventive and corrective results to nerve fiber degeneration and loss, as well as, promotion of nerve fiber regeneration with respect to sensory somatic fibers and small nociceptive nerve fibers. A characteristic abnormality of type 1 DPN is nodal and paranodal degeneration with severe consequences for myelinated fiber function. This review deals in detail with the underlying insulin-deficiency-related molecular changes and their correction by C-peptide. Based on these observations, it is evident that continuous maintenance of insulin-like actions by C-peptide is needed in peripheral nerve to minimize the sequences of metabolic and molecular abnormalities, thereby ameliorating neuropathic complications. There is now ample evidence demonstrating that C-peptide replacement in type 1 diabetes promotes insulin action and signaling activities in a more enhanced, prolonged, and continuous fashion than does insulin alone. It is therefore necessary to replace C-peptide to physiological levels in diabetic patients. This will have substantial beneficial effects on type 1 DPN.
Collapse
Affiliation(s)
- Hideki Kamiya
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | | | | |
Collapse
|
16
|
Meyer JA, Subasinghe W, Sima AAF, Keltner Z, Reid GE, Daleke D, Spence DM. Zinc-activated C-peptide resistance to the type 2 diabetic erythrocyte is associated with hyperglycemia-induced phosphatidylserine externalization and reversed by metformin. MOLECULAR BIOSYSTEMS 2009; 5:1157-62. [PMID: 19756305 DOI: 10.1039/b908241g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insulin resistance can broadly be defined as the diminished ability of cells to respond to the action of insulin in transporting glucose from the bloodstream into cells and tissues. Here, we report that erythrocytes (ERYs) obtained from type 2 diabetic rats display an apparent resistance to Zn(2+)-activated C-peptide. Thus, the aims of this study were to demonstrate that Zn(2+)-activated C-peptide exerts potentially beneficial effects on healthy ERYs and that these same effects on type 2 diabetic ERYs are enhanced in the presence of metformin. Incubation of ERYs (obtained from type 2 diabetic BBZDR/Wor-rats) with Zn(2+)-activated C-peptide followed by chemiluminescence measurements of ATP resulted in a 31.2 +/- 4.0% increase in ATP release from these ERYs compared to a 78.4 +/- 4.9% increase from control ERYs. Glucose accumulation in diabetic ERYs, measured by scintillation counting of (14)C-labeled glucose, increased by 35.8 +/- 1.3% in the presence of the Zn(2+)-activated C-peptide, a value significantly lower than results obtained from control ERYs (64.3 +/- 5.1%). When Zn(2+)-activated C-peptide was exogenously added to diabetic ERYs, immunoassays revealed a 32.5 +/- 8.2% increase in C-peptide absorbance compared to a 64.4 +/- 10.3% increase in control ERYs. Phosphatidylserine (PS) externalization and metformin sensitization of Zn(2+)-activated C-peptide were examined spectrofluorometrically by measuring the binding of FITC-labeled annexin to PS. The incubation of diabetic ERYs with metformin prior to the addition of Zn(2+)-activated C-peptide resulted in values that were statistically equivalent to those of controls. Summarily, data obtained here demonstrate an apparent resistance to Zn(2+)-activated C-peptide by the ERY that is corrected by metformin.
Collapse
Affiliation(s)
- Jennifer A Meyer
- Department of Chemistry, Michigan State University, 229 Chemistry Building, East Lansing, MI 48824, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Jägerbrink T, Lindahl E, Shafqat J, Jörnvall H. Proinsulin C-peptide interaction with protein tyrosine phosphatase 1B demonstrated with a labeling reaction. Biochem Biophys Res Commun 2009; 387:31-5. [PMID: 19540198 DOI: 10.1016/j.bbrc.2009.06.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 06/13/2009] [Indexed: 10/20/2022]
Abstract
Based on nickel-catalyzed cross-labeling where binding partners become biotinylated, we have studied molecular interactions with an N-terminally fused GGH-tag proinsulin C-peptide. Since C-peptide has been reported to influence phosphatase activity in intact cells, we employed this method to study possible binding of the peptide to protein tyrosine phosphatase 1B (PTP-1B). C-peptide was found to interact with PTP-1B (and for control, also with antibodies to C-peptide), as did also the N- and C-terminal fragments of C-peptide which have sequence similarities with PTP-1B binding proteins. The labeling data combined with enzyme activity analysis indicate a functional interaction between acidic regions of C-peptide and specific sites of PTP-1B. Results highlight the importance of possible phosphatase/C-peptide roles in diabetes, and the usefulness of the cross-labeling reaction also for acidic peptides like C-peptide.
Collapse
Affiliation(s)
- Theres Jägerbrink
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
18
|
Sima AAF, Zhang W, Kreipke CW, Rafols JA, Hoffman WH. Inflammation in Diabetic Encephalopathy is Prevented by C-Peptide. Rev Diabet Stud 2009; 6:37-42. [PMID: 19557294 DOI: 10.1900/rds.2009.6.37] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Encephalopathy is an increasingly recognized complication of type 1 diabetes. The underlying mechanisms are not well understood, although insulin deficiency has been implicated. The spontaneously diabetic BB/Wor-rat develops neuro-behavioral deficits and neuronal cell death in hippocampus and frontal cortex, which can be prevented by insulinomimetic C-peptide. Here we examined whether contributing factors such as activation of innate immune mediators are responsive to C-peptide replacement. Seven-month diabetic BB/Wor-rats and those treated with full C-peptide replacement were compared to age-matched control rats. Hippocampi of diabetic rats showed upregulation of RAGE and NF-kappaB, the former being localized to proliferating astrocytes. These changes were associated with increased expression of TNF-alpha, IL-1beta, IL-2 and IL-6 in hippocampi of diabetic rats. Full C-peptide replacement, which did not induce hyperglycemia, resulted in significant prevention of upregulation of RAGE expression, activation of NF-kappaB and activation of pro-inflammatory factors. In conclusion, impaired insulin activity is associated with upregulation of RAGE and pro-inflammatory factors, and these are likely to contribute to previously described oxidative and apoptotic neuronal cell death. Replacement of insulinomimetic C-peptide significantly prevents this cascade of events.
Collapse
Affiliation(s)
- Anders A F Sima
- Department of Pathology, Wayne State University, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
19
|
Sima AAF, Zhang W, Li ZG, Kamiya H. The effects of C-peptide on type 1 diabetic polyneuropathies and encephalopathy in the BB/Wor-rat. EXPERIMENTAL DIABETES RESEARCH 2008; 2008:230458. [PMID: 18437223 PMCID: PMC2323445 DOI: 10.1155/2008/230458] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 01/07/2008] [Indexed: 12/29/2022]
Abstract
Diabetic polyneuropathy (DPN) occurs more frequently in type 1 diabetes resulting in a more severe DPN. The differences in DPN between the two types of diabetes are due to differences in the availability of insulin and C-peptide. Insulin and C-peptide provide gene regulatory effects on neurotrophic factors with effects on axonal cytoskeletal proteins and nerve fiber integrity. A significant abnormality in type 1 DPN is nodal degeneration. In the type 1 BB/Wor-rat, C-peptide replacement corrects metabolic abnormalities ameliorating the acute nerve conduction defect. It corrects abnormalities of neurotrophic factors and the expression of neuroskeletal proteins with improvements of axonal size and function. C-peptide corrects the expression of nodal adhesive molecules with prevention and repair of the functionally significant nodal degeneration. Cognitive dysfunction is a recognized complication of type 1 diabetes, and is associated with impaired neurotrophic support and apoptotic neuronal loss. C-peptide prevents hippocampal apoptosis and cognitive deficits. It is therefore clear that substitution of C-peptide in type 1 diabetes has a multitude of effects on DPN and cognitive dysfunction. Here the effects of C-peptide replenishment will be extensively described as they pertain to DPN and diabetic encephalopathy, underpinning its beneficial effects on neurological complications in type 1 diabetes.
Collapse
Affiliation(s)
- Anders A F Sima
- Department of Pathology, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
20
|
Szewczyk NJ, Jacobson LA. Signal-transduction networks and the regulation of muscle protein degradation. Int J Biochem Cell Biol 2005; 37:1997-2011. [PMID: 16125109 DOI: 10.1016/j.biocel.2005.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 01/18/2005] [Accepted: 02/22/2005] [Indexed: 02/05/2023]
Abstract
Protein degradation in muscle functions in maintaining normal physiological homeostasis and adapting to new homeostatic states, and is required for muscle wasting or atrophy in various pathological states. The interplay between protein synthesis and degradation to maintain homeostasis is complex and responds to a variety of autocrine and intercellular signals from neuronal inputs, hormones, cytokines, growth factors and other regulatory molecules. The intracellular events that connect extracellular signals to the molecular control of protein degradation are incompletely understood, but likely involve interacting signal-transduction networks rather than isolated pathways. We review some examples of signal-transduction systems that regulate protein degradation, including effectors of proteolysis inducing factor (PIF), insulin and insulin-like growth factor (IGF) and their receptors, and fibroblast growth factor (FGF) and its receptors.
Collapse
Affiliation(s)
- Nathaniel J Szewczyk
- Department of Biological Sciences, University of Pittsburgh, 304 Langley Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
21
|
Zhong Z, Davidescu A, Ehrén I, Ekberg K, Jörnvall H, Wahren J, Chibalin AV. C-peptide stimulates ERK1/2 and JNK MAP kinases via activation of protein kinase C in human renal tubular cells. Diabetologia 2005; 48:187-97. [PMID: 15624099 DOI: 10.1007/s00125-004-1602-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 08/13/2004] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Accumulating evidence indicates that replacement of C-peptide in type 1 diabetes ameliorates nerve and kidney dysfunction, but the molecular mechanisms involved are incompletely understood. C-peptide shows specific binding to a G-protein-coupled membrane binding site, resulting in Ca(2+) influx, activation of mitogen-activated protein kinase signalling pathways, and stimulation of Na(+), K(+)-ATPase and endothelial nitric oxide synthase. This study examines the intracellular signalling pathways activated by C-peptide in human renal tubular cells. METHODS Human renal tubular cells were cultured from the outer cortex of renal tissue obtained from patients undergoing elective nephrectomy. Extracellular-signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and Akt/protein kinase B (PKB) activation was determined using phospho-specific antibodies. Protein kinase C (PKC) and RhoA activation was determined by measuring their translocation to the cell membrane fraction using isoform-specific antibodies. RESULTS Human C-peptide increases phosphorylation of ERK1/2 and Akt/PKB in a concentration- and time-dependent manner in renal tubular cells. The C-terminal pentapeptide of C-peptide is equipotent with the full-length C-peptide, whereas scrambled C-peptide has no effect. C-peptide stimulation also results in phosphorylation of JNK, but not of p38 mitogen-activated protein kinase. MEK1/2 inhibitor PD98059 blocks the C-peptide effect on ERK1/2 phosphorylation. C-peptide causes specific translocation of PKC isoforms delta and epsilon to the membrane fraction in tubular cells. All stimulatory effects of C-peptide were abolished by pertussis toxin. The isoform-specific PKC-delta inhibitor rottlerin and the broad-spectrum PKC inhibitor GF109203X both abolish the C-peptide effect on ERK1/2 phosphorylation. C-peptide stimulation also causes translocation of the small GTPase RhoA from the cytosol to the cell membrane. Inhibition of phospholipase C abolished the stimulatory effect of C-peptide on phosphorylation of ERK1/2, JNK and PKC-delta. CONCLUSIONS/INTERPRETATION C-peptide signal transduction in human renal tubular cells involves the activation of phospholipase C and PKC-delta and PKC-epsilon, as well as RhoA, followed by phosphorylation of ERK1/2 and JNK, and a parallel activation of Akt.
Collapse
Affiliation(s)
- Z Zhong
- Section of Clinical Physiology, Department of Surgical Sciences, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
22
|
Li H, Xu L, Dunbar JC, Dhabuwala CB, Sima AAF. Effects of C-peptide on expression of eNOS and iNOS in human cavernosal smooth muscle cells. Urology 2004; 64:622-7. [PMID: 15351621 DOI: 10.1016/j.urology.2004.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2003] [Accepted: 05/05/2004] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To investigate the role of C-peptide alone or in conjunction with insulin on the expression of nitric oxide synthase (NOS) in human corpus cavernosum smooth muscle cells (HCSMCs). Erectile dysfunction, among diabetic patients, is a significant health problem. The specific causes of erectile dysfunction are unknown. It has been suggested that impairment of penile relaxation is related to a reduction of penile NOS. Plasma levels of C-peptide and insulin are decreased in individuals with type 1 diabetes and late-stage type 2 diabetes. METHODS Primary cultures were initiated from explants of HCSMCs. Confluent cells at passages 2 to 4 were assigned to one of four groups with the following incubation conditions: (a) 27 mM glucose, (b) 27 mM glucose and insulin, (c) 27 mM glucose and human recombinant (hr)C-peptide, and (d) 27 mM glucose, insulin, and hrC-peptide. After 24 hours, total RNA and protein were extracted from cells and subjected to reverse transcriptase-polymerase chain reaction and Western blot analysis, respectively. Intracellular Ca(2+) was examined under the four conditions, using the Fura 2 method. RESULTS The least expression of endothelial NOS (eNOS) and inducible NOS (iNOS) in HCSMCs was observed in cells exposed to 27 mM glucose alone. Increased expression of eNOS and iNOS was found after treatment with insulin or hrC-peptide alone, and the maximal expression of eNOS and iNOS was detected in HCSMCs exposed to both insulin and hrC-peptide. Western blot analyses using eNOS and iNOS antibodies confirmed the RNA data. These effects are likely mediated by the insulin-induced and/or C-peptide-induced increase in intracellular Ca(2+). CONCLUSIONS Our results demonstrated that C-peptide, in the presence of insulin, increases the expression of iNOS and eNOS in HCSMCs. These results suggest that C-peptide, especially in conjunction with insulin, may have beneficial effects on cavernosal smooth muscle relaxation.
Collapse
Affiliation(s)
- Haikun Li
- Department of Urology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Anders A F Sima
- Departments of Pathology and Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
24
|
Schmidt RE, Dorsey DA, Beaudet LN, Parvin CA, Zhang W, Sima AAF. Experimental rat models of types 1 and 2 diabetes differ in sympathetic neuroaxonal dystrophy. J Neuropathol Exp Neurol 2004; 63:450-60. [PMID: 15198124 DOI: 10.1093/jnen/63.5.450] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Dysfunction of the autonomic nervous system is a recognized complication of diabetes, ranging in severity from relatively minor sweating and pupillomotor abnormality to debilitating interference with cardiovascular, genitourinary, and alimentary dysfunction. Neuroaxonal dystrophy (NAD), a distinctive distal axonopathy involving terminal axons and synapses, represents the neuropathologic hallmark of diabetic sympathetic autonomic neuropathy in man and several insulinopenic experimental rodent models. Although the pathogenesis of diabetic sympathetic NAD is unknown, recent studies have suggested that loss of the neurotrophic effects of insulin and/or insulin-like growth factor-I (IGF-I) on sympathetic neurons rather than hyperglycemia per se, may be critical to its development. Therefore, in our current investigation we have compared the sympathetic neuropathology developing after 8 months of diabetes in the streptozotocin (STZ)-induced diabetic rat and BB/ Wor rat, both models of hypoinsulinemic type 1 diabetes, with the BBZDR/Wor rat, a hyperglycemic and hyperinsulinemic type 2 diabetes model. Both STZ- and BB/Wor-diabetic rats reproducibly developed NAD in nerve terminals in the prevertebral superior mesenteric sympathetic ganglia (SMG) and ileal mesenteric nerves. The BBZDR/Wor-diabetic rat, in comparison, failed to develop superior mesenteric ganglionic NAD in excess of that of age-matched controls. Similarly, NAD which developed in axons of ileal mesenteric nerves of BBZDR/Wor rats was substantially less frequent than in BB/Wor- and STZ-rats. These data, considered in the light of the results of previous experiments, argue that hyperglycemia alone is not sufficient to produce sympathetic ganglionic NAD, but rather that it may be the diabetes-induced superimposed loss of trophic support, likely of IGF-I, insulin, or C-peptide, that ultimately causes NAD.
Collapse
MESH Headings
- Animals
- Autonomic Nervous System Diseases/metabolism
- Autonomic Nervous System Diseases/pathology
- Autonomic Nervous System Diseases/physiopathology
- C-Peptide/metabolism
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/pathology
- Diabetic Neuropathies/metabolism
- Diabetic Neuropathies/pathology
- Diabetic Neuropathies/physiopathology
- Disease Models, Animal
- Ganglia, Sympathetic/metabolism
- Ganglia, Sympathetic/pathology
- Ganglia, Sympathetic/ultrastructure
- Hyperglycemia/complications
- Ileum/innervation
- Ileum/physiopathology
- Insulin/metabolism
- Insulin-Like Growth Factor I/metabolism
- Male
- Microscopy, Electron
- Neuroaxonal Dystrophies/metabolism
- Neuroaxonal Dystrophies/pathology
- Neuroaxonal Dystrophies/physiopathology
- Rats
- Rats, Mutant Strains
- Sympathetic Fibers, Postganglionic/metabolism
- Sympathetic Fibers, Postganglionic/pathology
- Sympathetic Fibers, Postganglionic/ultrastructure
Collapse
Affiliation(s)
- Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
In contrast to earlier views, new data indicate that proinsulin C-peptide exerts important physiological effects and shows the characteristics of an endogenous peptide hormone. C-peptide in nanomolar concentrations binds specifically to cell membranes, probably to a G-protein coupled receptor. Ca(2+)- and MAP-kinase dependent signalling pathways are activated, resulting in stimulation of Na(+), K(+)-ATPase and endothelial nitric oxide (NO) synthase, two enzyme systems known to be deficient in diabetes. C-peptide may also interact synergistically with insulin signal transduction. Studies in intact animals and in patients with type 1 diabetes have demonstrated multifaceted effects. Thus, C-peptide administration in streptozotocin-diabetic animals results in normalization of diabetes-induced glomerular hyperfiltration, reduction of urinary albumin excretion and diminished glomerular expansion. The former two effects have also been observed in type 1 diabetes patients given C-peptide in replacement dose for up to 3 months. Peripheral nerve function and structure are likewise influenced by C-peptide administration; sensory and motor nerve conduction velocities increase and nerve structural changes are diminished or reversed in diabetic rats. In patients with type 1 diabetes, beneficial effects have been demonstrated on sensory nerve conduction velocity, vibration perception and autonomic nerve function. C-peptide also augments blood flow in several tissues in type 1 diabetes via its stimulation of endothelial NO release, emphasizing a role for C-peptide in maintaining vascular homeostasis. Continued research is needed to establish whether, among the hormones from the islets of Langerhans, C-peptide is the ugly duckling that--nearly 40 years after its discovery--may prove to be an endogenous peptide hormone of importance in the treatment of diabetic long-term complications.
Collapse
Affiliation(s)
- John Wahren
- Section of Clinical Physiology, Department of Surgical Sciences, Karolinska Institute, N1:05, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
26
|
Sima AAF, Zhang W, Li ZG, Murakawa Y, Pierson CR. Molecular alterations underlie nodal and paranodal degeneration in type 1 diabetic neuropathy and are prevented by C-peptide. Diabetes 2004; 53:1556-63. [PMID: 15161761 DOI: 10.2337/diabetes.53.6.1556] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To explore the molecular abnormalities underlying the degeneration of the node of Ranvier, a characteristic aberration of type 1 diabetic neuropathy, we examined in type 1 BB/Wor and type 2 BBZDR/Wor rats changes in expression of key molecules that make up the nodal and paranodal apparatus of peripheral nerve. Their posttranslational modifications were examined in vitro. Their responsiveness to restored insulin action was examined in type 1 animals replenished with proinsulin C-peptide. In sciatic nerve, the expression of contactin, receptor protein tyrosine phosphatase beta, and the Na(+)-channel beta(1) subunit, paranodal caspr and nodal ankyrin(G) was unaltered in 2-month type 1 diabetic BB/Wor rats but significantly decreased after 8 months of diabetes. These abnormalities were prevented by C-peptide administered to type 1 BB/Wor rats and did not occur in duration- and hyperglycemia-matched type 2 BBZDR/Wor rats. The expression of the alpha-Na(+)-channel subunit was unaltered. In SH-SY5Y cells, only the combination of insulin and C-peptide normalized posttranslational O-linked N-acetylglucosamine modifications and maximized serine phosphorylation of ankyrin(G) and p85 binding to caspr. The beneficial effects of C-peptide resulted in significant normalization of the nerve conduction deficits. These data describe for the first time the progressive molecular aberrations underlying nodal and paranodal degenerative changes in type 1 diabetic neuropathy and demonstrate that they are preventable by insulinomimetic C-peptide.
Collapse
Affiliation(s)
- Anders A F Sima
- Wayne State University, Department of Pathology, 540 E. Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
27
|
Sima AAF, Kamiya H, Kamiya H, Li ZG. Insulin, C-peptide, hyperglycemia, and central nervous system complications in diabetes. Eur J Pharmacol 2004; 490:187-97. [PMID: 15094085 DOI: 10.1016/j.ejphar.2004.02.056] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2004] [Indexed: 11/18/2022]
Abstract
Diabetes is an increasingly common disorder which causes and contributes to a variety of central nervous system (CNS) complications which are often associated with cognitive deficits. There appear to be two types of diabetic encephalopathy. Primary diabetic encephalopathy is caused by hyperglycemia and impaired insulin action, which evolves in a diabetes duration-related fashion and is associated with apoptotic neuronal loss and cognitive decline. This appears to be particularly associated with insulin-deficient diabetes. Secondary diabetic encephalopathy appears to arise from hypoxic-ischemic insults due to underlying microvascular disease or as a consequence of hypoglycemia. This type of cerebral diabetic complication is more common in the type 2 diabetic population. Here, we will review the clinical and experimental data supporting this conceptual division of diabetic CNS complications and discuss the underlying metabolic, molecular, and functional aberrations.
Collapse
Affiliation(s)
- Anders A F Sima
- Department of Pathology, Gordon H. Scott Hall of Basic Medical Sciences, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
28
|
Li ZG, Zhang W, Sima AAF. C-peptide enhances insulin-mediated cell growth and protection against high glucose-induced apoptosis in SH-SY5Y cells. Diabetes Metab Res Rev 2003; 19:375-85. [PMID: 12951645 DOI: 10.1002/dmrr.389] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND We have previously reported that C-peptide exerts preventive and therapeutic effects on diabetic neuropathy in type 1 diabetic BB/Wor-rats and that it prevents duration-dependent hippocampal apoptosis in the same animal model. In the present study, we examined human neuroblastoma SH-SY5Y cells to examine whether C-peptide stimulates cell proliferation/neurite outgrowth and whether it has antiapoptotic effects. METHODS For neurite outgrowth, serum-starved cultures were treated with C-peptide and/or insulin or IGF-1. Neurites were visualized with NF-L antibody and measured morphometrically. Cell numbers were determined using an electronic cell counter. Scrambled C-peptide was used as a negative control. For assessment of apoptosis, SH-SY5Y cells were incubated with 100 mM glucose for 24 h, and the effects of C-peptide and/or insulin or IGF-1 were examined. Apoptosis was demonstrated by transferase-mediated dUTP nick-end labeling (TUNEL)/4,6-diamidino-2-phenylindole (DAPI) stainings, flow cytometry and changes in the expression of Bcl2. Activation of insulin signaling intermediaries was determined by Western blots. Translocation of NF-kappaB was demonstrated immunocytochemically. RESULTS C-peptide but not scrambled C-peptide stimulated cell proliferation and neurite outgrowth. In the presence of 4 nM insulin, 3 nM C-peptide significantly increased autophosphorylation of the insulin receptor (IR) but not that of the insulin-like growth factor 1 receptor (IGF-1R). It stimulated phosphoinositide 3-kinase (PI-3 kinase) and p38 mitogen-activated protein (MAP) kinase activation, enhanced the expression and translocation of nuclear factor-kappaB (NF-kappaB), promoted the expression of Bcl2 and reduced c-jun N-terminal kinase (JNK) phosphorylation in excess of that of insulin alone. CONCLUSIONS C-peptide in the presence of insulin exerts synergistic effects on cell proliferation, neurite outgrowth and has in the presence of insulin an antiapoptotic effect on high glucose-induced apoptosis but less so on hyperosmolar-induced apoptosis. These effects are likely to be mediated via interactions with the insulin signaling pathway.
Collapse
Affiliation(s)
- Zhen-Guo Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
29
|
Pierson CR, Zhang W, Sima AAF. Proinsulin C-peptide replacement in type 1 diabetic BB/Wor-rats prevents deficits in nerve fiber regeneration. J Neuropathol Exp Neurol 2003; 62:765-79. [PMID: 12901702 DOI: 10.1093/jnen/62.7.765] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We recently reported that early gene responses and expression of cytoskeletal proteins are perturbed in regenerating nerve in type 1 insulinopenic diabetes but not in type 2 hyperinsulinemic diabetes. We hypothesized that these differences were due to impaired insulin action in the former type of diabetes. To test this hypothesis, type 1 diabetic BB/Wor-rats were replaced with proinsulin C-peptide, which enhances insulin signaling without lowering blood glucose. Following sciatic nerve crush injury, early gene responses such as insulin-like growth factor, c-fos, and nerve growth factor were examined longitudinally in sciatic nerve. Neurotrophic factors, their receptors, and beta-tubulin and neurofilament expression were examined in dorsal root ganglia. C-peptide replacement significantly normalized early gene responses in injured sciatic nerve and partially corrected the expression of endogenous neurotrophic factors and their receptors, as well as neuroskeletal protein in dorsal root ganglia. These effects translated into normalization of axonal radial growth and significantly improved axonal elongation of regenerating fibers in C-peptide-replaced BB/Wor-rats. The findings in C-peptide replaced type 1 diabetic rats were similar to those previously reported in hyperinsulinemic and iso-hyperglycemic type 2 BB/Z-rats. We conclude that impaired insulin action may be more important than hyperglycemia in suppressing nerve fiber regeneration in type 1 diabetic neuropathy.
Collapse
Affiliation(s)
- Christopher R Pierson
- Department of Pathology, Wayne State University, School of Medicine and Detroit Medical Center, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
30
|
Pierson CR, Zhang W, Murakawa Y, Sima AAF. Insulin deficiency rather than hyperglycemia accounts for impaired neurotrophic responses and nerve fiber regeneration in type 1 diabetic neuropathy. J Neuropathol Exp Neurol 2003; 62:260-71. [PMID: 12638730 DOI: 10.1093/jnen/62.3.260] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Diabetic polyneuropathy (DPN) shows more severe functional and structural changes in type 1 than in type 2 human and experimental diabetes. We have previously suggested that these differences may be due to insulin and/or C-peptide deficiencies in type 1 diabetes. To further explore these differences between type I and type 2 DPN, we examined factors underlying nerve fiber regeneration in the hyperinsulinemic type 2 BB/Z-rat and compared these with previous data obtained from the iso-hyperglycemic, insulin and C-peptide-deficient type 1 diabetic BB/Wor-rat. The expression of neurotrophic factors and cytoskeletal proteins were studied in L4 and L5 dorsal root ganglia (DRG) at various time points after sciatic nerve crush. The data were compared to those of nondiabetes-prone BB-rats. Insulin-like growth factor 1 (IGF-1) and TrkA levels were lower in DRG from type 1 than from those of type 2 and control BB-rats. On the other hand, IGF-1 receptor expression was increased at baseline in type 1 BB/Wor-rats and decreased after crush injury, whereas its expression increased after crush injury in both control and type 2 BB/Z-rats. Following crush injury, betaII- and betaIII-tubulins were upregulated in type 2 BB/Z and control rats, which did not occur in type 1 BB/Wor-rats. Furthermore, type 2 BB/Z-rats showed the normal downregulation of low and medium molecular neurofilament (NF-L and NF-M, respectively), which did not occur in type 1 BB/Wor-rats. These findings were associated with significantly milder abnormalities in axonal elongation and caliber growth of regenerating fibers in type 2 compared to type 1 diabetic rats. These data suggest that impaired insulin signaling in type 1 diabetic nerve may be of greater significance in the regulation of neurotrophic and neurocytoskeletal protein synthesis than hyperglycemia in explaining the differences in nerve fiber regeneration between type 2 and type 1 diabetes.
Collapse
Affiliation(s)
- Christopher R Pierson
- Department of Pathology, Morris Hood Jr. Comprehensive Diabetes Center, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
31
|
Pierson CR, Zhang W, Murakawa Y, Sima AAF. Early gene responses of trophic factors in nerve regeneration differ in experimental type 1 and type 2 diabetic polyneuropathies. J Neuropathol Exp Neurol 2002; 61:857-71. [PMID: 12387452 DOI: 10.1093/jnen/61.10.857] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have previously suggested that alterations in sequential early gene responses of trophic factors (IGF-1 -->c-fos-->NGF) contribute to impaired peripheral nerve regeneration in type 1 diabetic BB/W-rats. To study the role these responses may play in type 2 diabetic nerve regeneration, BB/Z-rats were subjected to sciatic nerve crush injury. The expression of IGF-1, c-fos, NGF and the receptors p75 and IGF-1R were determined at the protein and mRNA levels in sciatic nerve distal to the crush site by immunoblotting and semi-quantitative RT-PCR. In situ hybridization was performed to assess the cellular localization of IGF-1, NGF, p75, and IGF-1R mRNA and immunohistochemistry served to localize the source of p75 and IGF-1R protein expression. The data were compared to those of type 1 diabetic BB/Wor-rats and non-diabetic controls. Increased expression of IGF-1 in Schwann cells is the first growth factor response to injury and peaked at 0.5 hours (h) in control, 2 h in type 2 rats, and 24 h in type 1 rats. IGF-1R was expressed in Schwann cells and its expression was asynchronous to IGF-1 expression in type 1 rats but remained synchronous with IGF-1 in control and type 2 animals. The expression of the immediate early proto-oncogene c-fos exhibited an initial peak at 6 h in control animals, 24 h in type 2, and 2 days (d) in type 1 animals. The initial peak of NGF expression occurred at 6 h in non-diabetic rats, 24 h in type 2, and 2 d in type 1 diabetic rats. The expression of p75 was delayed and attenuated in type 1 diabetic rats; however, in type 2 diabetic rats it was similar to that of non-diabetic rats. These data indicate that early gene responses following nerve damage are significantly less perturbed in type 2 compared to type 1 diabetes. These differences may account for the more efficient nerve regeneration seen in type 2 diabetic polyneuropathy.
Collapse
Affiliation(s)
- Christopher R Pierson
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
32
|
Kitamura T, Kimura K, Jung BD, Makondo K, Sakane N, Yoshida T, Saito M. Proinsulin C-peptide activates cAMP response element-binding proteins through the p38 mitogen-activated protein kinase pathway in mouse lung capillary endothelial cells. Biochem J 2002; 366:737-44. [PMID: 12059784 PMCID: PMC1222821 DOI: 10.1042/bj20020344] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2002] [Revised: 06/05/2002] [Accepted: 06/11/2002] [Indexed: 11/17/2022]
Abstract
Proinsulin C-peptide has been reported to have some biological activities and to be possibly involved in the development of diabetic microangiopathy. In the present study, we examined the effects of C-peptide on the mitogen-activated protein kinase pathway in LEII mouse lung capillary endothelial cells. Stimulation of the cells with C-peptide increased both p38 mitogen-activated protein kinase (p38MAPK) and extracellular signal-regulated kinase (ERK1/2) activities and activity-related site-specific phosphorylation of the respective kinases in a concentration-dependent manner, but failed to activate c-Jun N-terminal kinase. Stimulation of the cells with C-peptide also induced site-specific phosphorylation of cAMP response element (CRE)-binding protein (CREB)/activating transcription factor 1 (ATF1), and thereby binding of these transcription factors to CRE. Among three CREB kinases tested, phosphorylation of mitogen-activated protein kinase-activated protein kinase 2 (MAPKAP-K2) was induced after stimulation with C-peptide. The phosphorylation of CREB, ATF1 and MAPKAP-K2 were inhibited by SB203580, a p38MAPK inhibitor, but not by PD98059, an ERK kinase inhibitor. These results indicate that C-peptide activates p38MAPK followed by MAPKAP-K2 to enhance DNA-CREB/ATF1 interactions.
Collapse
Affiliation(s)
- Takanori Kitamura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Duration-related cognitive impairment is an increasingly recognized complication of type 1 diabetes. To explore potential underlying mechanisms, we examined hippocampal abnormalities in the spontaneously type 1 diabetic BB/W rat. As a functional assay of cognition, the Morris water maze test showed significantly prolonged latencies in 8-month diabetic rats not present at 2 months of diabetes. These abnormalities were associated with DNA fragmentation, positive TUNEL staining, elevated Bax/Bcl-x(L) ratio, increased caspase 3 activities and decreased neuronal densities in diabetic hippocampi. These changes were not caused by hypoglycemic episodes or reduced weight in diabetic animals. To explore potential mechanisms responsible for the apoptosis, we examined the expression of the IGF system. Western blotting and in situ hybridization revealed significant reductions in the expression of IGF-I, IGF-II, IGF-IR and IR preceding (2 months) and accompanying (8 months) the functional cognitive impairments and the apoptotic neuronal loss in hippocampus. These data suggest that a duration-related apoptosis-induced neuronal loss occurs in type 1 diabetes associated with cognitive impairment. The data also suggest that this is at least in part related to impaired insulin and/or IGF activities.
Collapse
Affiliation(s)
- Zhen-Guo Li
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
34
|
Johansson J, Ekberg K, Shafqat J, Henriksson M, Chibalin A, Wahren J, Jörnvall H. Molecular effects of proinsulin C-peptide. Biochem Biophys Res Commun 2002; 295:1035-40. [PMID: 12135597 DOI: 10.1016/s0006-291x(02)00721-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The proinsulin C-peptide has been held to be merely a by-product in insulin biosynthesis, but recent reports show that it elicits both molecular and physiological effects, suggesting that it is a hormonally active peptide. Specific binding of C-peptide to the plasma membranes of intact cells and to detergent-solubilised cells has been shown, indicating the existence of a cell surface receptor for C-peptide. C-peptide elicits a number of cellular responses, including Ca(2+) influx, activation of mitogen-activated protein (MAP) kinases, of Na(+),K(+)-ATPase, and of endothelial NO synthase. The pentapeptide EGSLQ, corresponding to the C-terminal five residues of human C-peptide, mimics several of the effects of the full-length peptide. The pentapeptide displaces cell membrane-bound C-peptide, elicits transient increase in intracellular Ca(2+) concentration and stimulates MAP kinase signalling pathways and Na(+),K(+)-ATPase. The Glu residue of the pentapeptide is essential for displacement of the full-length C-peptide, and free Glu can partly displace bound C-peptide, suggesting that charge interactions are important for receptor binding. Many C-peptide effects, such as phosphorylation of MAP-kinases ERK 1 and 2, stimulation of Na(+),K(+)-ATPase and increases in intracellular calcium concentrations are inhibited by pertussis toxin, supporting interaction of C-peptide with a G-protein-coupled receptor. However, all C-peptide effects cannot be explained in this manner, and it is possible that additional interactions are involved. Combined, the available observations show that C-peptide is biologically active and suggest a molecular model for its physiological effects.
Collapse
Affiliation(s)
- Jan Johansson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
35
|
Xu G, Pierson CR, Murakawa Y, Sima AAF. Altered tubulin and neurofilament expression and impaired axonal growth in diabetic nerve regeneration. J Neuropathol Exp Neurol 2002; 61:164-75. [PMID: 11855383 DOI: 10.1093/jnen/61.2.164] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cytoskeletal protein expression in sensory neurons and sciatic nerve axonal growth were examined in type 1 diabetic BB/Wor rats after sciatic nerve crush injury. Diabetic male rats were subjected to sciatic nerve crush at 6 wk of diabetes. L4 and L5 dorsal root ganglia (DRG) mRNA expression of low and medium molecular weight neurofilaments (NF-L, NF-M), betaII- and betaIII-tubulin as well as protein expression of NF-L, NF-M, and beta-tubulin were examined at various time points following crush injury and compared with age- and sex-matched non-diabetic BB/Wor rats. Steady state mRNA expression of NF-L, NF-M, betaII- and betaIII-tubulin were decreased in diabetic DRG. NF-L and NF-M proteins were also decreased in DRG of uncrushed diabetic animals. After crush injury, betaII- and betaIII-tubulin mRNA were upregulated in control animals at day 2 and day 6, respectively, and beta-tubulin protein showed similarly increased expression after crush injury, while such upregulations did not occur in diabetic animals. Conversely, mRNA and protein expressions of NF-L, NF-M were downregulated to a lesser extent in diabetic animals compared to control rats. These changes were associated with impaired axonal elongation and caliber growth of regenerating fibers in diabetic rats. We propose that upregulation of tubulin has a negative feedback on NF expression in response to nerve injury, as seen in control rats. The absence of this upregulation in diabetic animals may impair its regulatory effect on NF expression and contribute to perturbed nerve regeneration seen in diabetic nerve.
Collapse
Affiliation(s)
- Gang Xu
- Department of Pathology, Morris Hood Jr Comprehensive Diabetes Center, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
36
|
Pramanik A, Ekberg K, Zhong Z, Shafqat J, Henriksson M, Jansson O, Tibell A, Tally M, Wahren J, Jörnvall H, Rigler R, Johansson J. C-Peptide Binding to Human Cell Membranes: Importance of Glu27. Biochem Biophys Res Commun 2001; 284:94-8. [PMID: 11374876 DOI: 10.1006/bbrc.2001.4917] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to its established role in proinsulin folding, C-peptide has a function in regulation of cellular activity. The 31-residue peptide influences renal, vascular, and metabolic functions in patients with insulin-dependent diabetes mellitus. Binding to cells has been demonstrated for C-peptide, which can be displaced by its C-terminal pentapeptide. We have now used fluorescence correlation spectroscopy to investigate structural requirements on the pentapeptide part for C-peptide binding. All pentapeptide residues, E(27)GSLQ(31), were individually replaced with Ala and the capacity of the resulting peptides to displace rhodamine-labelled full-length human C-peptide from human renal tubular cell membranes was determined. This showed that Glu27 is essential for displacement, while replacement of Gly28 with Ala has little effect, and replacement of any of the three most C-terminal residues had intermediate effects. Morevover, free Glu displaces full-length C-peptide to about 50%, while free Ala, C-peptide(1-26), and the truncated pentapeptide, corresponding to the tetrapeptide G(28)SLG(31), have no displacing capacity. The peptides EVARQ (corresponding to the rat C-terminal pentapeptide) and ELGGGPGAG (corresponding to positions 11-19 of human C-peptide) do not displace human C-peptide. These results indicate that Glu27 of C-peptide is critically involved in binding to cellular targets.
Collapse
Affiliation(s)
- A Pramanik
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|