1
|
Villarroel-Vicente C, Martínez-Solsona M, García A, Vila L, Zibar K, Schiel MA, Hennuyer N, Clarisse D, Enriz RD, Staels B, De Bosscher K, González-Navarro H, Cortes D, Cabedo N. Development of 2- and 3-prenylated quinolines and tetrahydroquinolines with PPAR activity: From hit to lead and a novel pan-PPAR agonist as a potential candidate for metabolic syndrome. Bioorg Chem 2025; 160:108450. [PMID: 40215945 DOI: 10.1016/j.bioorg.2025.108450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/27/2025] [Accepted: 04/06/2025] [Indexed: 05/04/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs) represent highly valuable therapeutic targets for the treatment of type 2 diabetes (T2D) and hypertriglyceridemia, both closely linked to the development of metabolic syndrome (MetS). Herein, we have synthesised two series of prenylated quinolines either at the 2- or 3-position, and their tetrahydroquinolines (THQs) using the Friedländer cyclodehydration, followed by the Grignard reaction and subsequent Johnson-Claisen rearrangement. All the synthesised compounds were evaluated in vitro for activity at each of the human PPAR, their cytotoxicity, their capacity to activate the PPAR target gene PDK4 and their anti-inflammatory effects. The compounds with a seven‑carbon prenylated side chain at the 2-position, such as THQ 5a and 6a (series a), displayed similar pan-PPAR agonism to the 2-prenylated benzopyran analogue BP-2. The compounds with a six‑carbon prenylated side chain at the 3-position, such as 5b and 6b (series b), had stronger selectivity for PPARα activation. The luciferase assays of the PPRE-driven gene PDK4 showed that THQ 5a, 5b, and quinoline 8a increased the transactivation of the PDK4-Luc + reporter, which confirmed their potential capacity to promote lipid metabolism. THQs 5a, 5b, and quinoline 8b repressed the transactivation of the TNFα-dependent NF-κB-Luc + reporter and efficiently down-regulated the transcription of several TNFα-induced pro-inflammatory genes. Furthermore, THQ 5a improves total cholesterol, non-HDL-c, HOMA-IR index and lipid metabolism in ob/ob mice, without increasing liver enzymes. Our results suggest that THQ 5a is a promising lead compound in the development of agents for treating metabolic disorders (T2D and dyslipidaemias), which may prevent further cardiovascular comorbidities associated with MetS.
Collapse
Affiliation(s)
- Carlos Villarroel-Vicente
- Department of Pharmacology, University of Valencia, 46100, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain
| | - María Martínez-Solsona
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain; Department of Biochemistry and Molecular Biology, University of Valencia, 46010, Valencia, Spain
| | - Ainhoa García
- Department of Pharmacology, University of Valencia, 46100, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain
| | - Laura Vila
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain
| | - Khamis Zibar
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - María Ayelén Schiel
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL-CONICET, Chacabuco 915, San Luis, Argentina
| | - Nathalie Hennuyer
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France.
| | - Dorien Clarisse
- Translational Nuclear Receptor Research lab, VIB Center for Medical Biotechnology, VIB, Ghent, Belgium; Translational Nuclear Receptor Research lab, Faculty of Medicine and Health Sciences, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL-CONICET, Chacabuco 915, San Luis, Argentina
| | - Bart Staels
- Univ Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - Karolien De Bosscher
- Translational Nuclear Receptor Research lab, VIB Center for Medical Biotechnology, VIB, Ghent, Belgium; Translational Nuclear Receptor Research lab, Faculty of Medicine and Health Sciences, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Herminia González-Navarro
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain; Department of Biochemistry and Molecular Biology, University of Valencia, 46010, Valencia, Spain
| | - Diego Cortes
- Department of Pharmacology, University of Valencia, 46100, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain
| | - Nuria Cabedo
- Department of Pharmacology, University of Valencia, 46100, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain.
| |
Collapse
|
2
|
Dodd MS, Ambrose L, Ball V, Clarke K, Carr CA, Tyler DJ. The age-dependent development of abnormal cardiac metabolism in the peroxisome proliferator-activated receptor α-knockout mouse. Atherosclerosis 2024; 399:118599. [PMID: 39307613 DOI: 10.1016/j.atherosclerosis.2024.118599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIMS Peroxisome proliferator-activated receptor α (PPARα) is crucial for regulating cardiac β-oxidation in the heart, liver, and kidney. Ageing can induce cardiac metabolic alterations, but the role of PPARα has not been extensively characterised. The aim of this research was to investigate the role of PPARα in the aged heart. METHODS Hyperpolarized [1-13C]pyruvate was used to evaluate in vivo cardiac carbohydrate metabolism in fed and fasted young (3 months) and old (20-22 months) PPARα knockout (KO) mice versus controls. Cine MRI assessed cardiac structural and functional changes. Cardiac tissue analysis included qRT-PCR and Western blotting for Pparα, medium chain acyl-CoA dehydrenase (MCAD), uncoupling protein (UCP) 3, glucose transporter (GLUT) 4 and PDH kinase (PDK) 1,2, and 4 expression. RESULTS PPARα-KO hearts from both young and old mice showed significantly reduced Pparα mRNA and a 58-59 % decrease in MCAD protein levels compared to controls. Cardiac PDH flux was similar in young control and PPARα-KO mice but 96 % higher in old PPARα-KO mice. Differences between genotypes were consistent in fed and fasted states, with reduced PDH flux when fasted. Increased PDH flux was accompanied by a 179 % rise in myocardial GLUT4 protein. No differences in PDK 1, 2, or 4 protein levels were observed between fed groups, indicating the increased PDH flux in aged PPARα-KO mice was not due to changes in PDH phosphorylation. CONCLUSIONS Aged PPARα-KO mice demonstrated higher cardiac PDH flux compared to controls, facilitated by increased myocardial GLUT4 protein levels, leading to enhanced glucose uptake and glycolysis.
Collapse
Affiliation(s)
- Michael S Dodd
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom; Centre for Health and Life Sciences, Coventry University, Coventry, United Kingdom.
| | - Lucy Ambrose
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Vicky Ball
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Kieran Clarke
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Carolyn A Carr
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| | - Damian J Tyler
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
| |
Collapse
|
3
|
Lagunas-Rangel FA, Liepinsh E, Fredriksson R, Alsehli AM, Williams MJ, Dambrova M, Jönsson J, Schiöth HB. Off-target effects of statins: molecular mechanisms, side effects and the emerging role of kinases. Br J Pharmacol 2024; 181:3799-3818. [PMID: 39180421 DOI: 10.1111/bph.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024] Open
Abstract
Statins are one of the most important classes of drugs. In this analytical review, we elucidate the intricate molecular mechanisms and toxicological rationale regarding both the on- (targeting 3-hydroxy-3-methylglutaryl-coenzyme A reductase [HMGCR]) and off-target effects of statins. Statins interact with a number of membrane kinases, such as epidermal growth factor receptor (EGFR), erb-b2 receptor tyrosine kinase 2 (HER2) and MET proto-oncogene, receptor tyrosine kinase (MET), as well as cytosolic kinases, such as SRC proto-oncogene, non-receptor tyrosine kinase (Src) and show inhibitory activity at nanomolar concentrations. In addition, they interact with calcium ATPases and peroxisome proliferator-activated receptor α (PPARα/NR1C1) at higher concentrations. Statins interact with mitochondrial complexes III and IV, and their inhibition of coenzyme Q10 synthesis also impairs the functioning of complexes I and II. Statins act as inhibitors of kinases, calcium ATPases and mitochondrial complexes, while activating PPARα. These off-target effects likely contribute to the side effects observed in patients undergoing statin therapy, including musculoskeletal symptoms and hepatic effects. Interestingly, some off-target effects of statins could also be the cause of favourable outcomes, relating to repurposing statins in conditions such as inflammatory disorders and cancer.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ahmed M Alsehli
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Michael J Williams
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, Riga, Latvia
| | - Jörgen Jönsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Koltai T, Fliegel L. Dichloroacetate for Cancer Treatment: Some Facts and Many Doubts. Pharmaceuticals (Basel) 2024; 17:744. [PMID: 38931411 PMCID: PMC11206832 DOI: 10.3390/ph17060744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Rarely has a chemical elicited as much controversy as dichloroacetate (DCA). DCA was initially considered a dangerous toxic industrial waste product, then a potential treatment for lactic acidosis. However, the main controversies started in 2008 when DCA was found to have anti-cancer effects on experimental animals. These publications showed contradictory results in vivo and in vitro such that a thorough consideration of this compound's in cancer is merited. Despite 50 years of experimentation, DCA's future in therapeutics is uncertain. Without adequate clinical trials and health authorities' approval, DCA has been introduced in off-label cancer treatments in alternative medicine clinics in Canada, Germany, and other European countries. The lack of well-planned clinical trials and its use by people without medical training has discouraged consideration by the scientific community. There are few thorough clinical studies of DCA, and many publications are individual case reports. Case reports of DCA's benefits against cancer have been increasing recently. Furthermore, it has been shown that DCA synergizes with conventional treatments and other repurposable drugs. Beyond the classic DCA target, pyruvate dehydrogenase kinase, new target molecules have also been recently discovered. These findings have renewed interest in DCA. This paper explores whether existing evidence justifies further research on DCA for cancer treatment and it explores the role DCA may play in it.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, University Alberta, Edmonton, AB T6G 2H7, Canada;
| |
Collapse
|
5
|
Desmet SJ, Thommis J, Vanderhaeghen T, Vandenboorn EMF, Clarisse D, Li Y, Timmermans S, Fijalkowska D, Ratman D, Van Hamme E, De Cauwer L, Staels B, Brunsveld L, Peelman F, Libert C, Tavernier J, De Bosscher K. Crosstalk interactions between transcription factors ERRα and PPARα assist PPARα-mediated gene expression. Mol Metab 2024; 84:101938. [PMID: 38631478 PMCID: PMC11059514 DOI: 10.1016/j.molmet.2024.101938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/10/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE The peroxisome proliferator-activated receptor α (PPARα) is a transcription factor driving target genes involved in fatty acid β-oxidation. To what extent various PPARα interacting proteins may assist its function as a transcription factor is incompletely understood. An ORFeome-wide unbiased mammalian protein-protein interaction trap (MAPPIT) using PPARα as bait revealed a PPARα-ligand-dependent interaction with the orphan nuclear receptor estrogen-related receptor α (ERRα). The goal of this study was to characterize the nature of the interaction in depth and to explore whether it was of physiological relevance. METHODS We used orthogonal protein-protein interaction assays and pharmacological inhibitors of ERRα in various systems to confirm a functional interaction and study the impact of crosstalk mechanisms. To characterize the interaction surfaces and contact points we applied a random mutagenesis screen and structural overlays. We pinpointed the extent of reciprocal ligand effects of both nuclear receptors via coregulator peptide recruitment assays. On PPARα targets revealed from a genome-wide transcriptome analysis, we performed an ERRα chromatin immunoprecipitation analysis on both fast and fed mouse livers. RESULTS Random mutagenesis scanning of PPARα's ligand-binding domain and coregulator profiling experiments supported the involvement of (a) bridging coregulator(s), while recapitulation of the interaction in vitro indicated the possibility of a trimeric interaction with RXRα. The PPARα·ERRα interaction depends on 3 C-terminal residues within helix 12 of ERRα and is strengthened by both PGC1α and serum deprivation. Pharmacological inhibition of ERRα decreased the interaction of ERRα to ligand-activated PPARα and revealed a transcriptome in line with enhanced mRNA expression of prototypical PPARα target genes, suggesting a role for ERRα as a transcriptional repressor. Strikingly, on other PPARα targets, including the isolated PDK4 enhancer, ERRα behaved oppositely. Chromatin immunoprecipitation analyses demonstrate a PPARα ligand-dependent ERRα recruitment onto chromatin at PPARα-binding regions, which is lost following ERRα inhibition in fed mouse livers. CONCLUSIONS Our data support the coexistence of multiple layers of transcriptional crosstalk mechanisms between PPARα and ERRα, which may serve to finetune the activity of PPARα as a nutrient-sensing transcription factor.
Collapse
Affiliation(s)
- Sofie J Desmet
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Jonathan Thommis
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Tineke Vanderhaeghen
- VIB Center for Inflammation Research, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Edmee M F Vandenboorn
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, the Netherlands
| | - Dorien Clarisse
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Yunkun Li
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Steven Timmermans
- VIB Center for Inflammation Research, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Daria Fijalkowska
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Dariusz Ratman
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | | | - Lode De Cauwer
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, F-59000 Lille, France
| | - Luc Brunsveld
- Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612AZ Eindhoven, the Netherlands
| | - Frank Peelman
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Claude Libert
- VIB Center for Inflammation Research, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Karolien De Bosscher
- VIB Center for Medical Biotechnology, Belgium; Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Annunziato M, Bashirova N, Eeza MNH, Lawson A, Fernandez-Lima F, Tose LV, Matysik J, Alia A, Berry JP. An Integrated Metabolomics-Based Model, and Identification of Potential Biomarkers, of Perfluorooctane Sulfonic Acid Toxicity in Zebrafish Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38411227 DOI: 10.1002/etc.5824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024]
Abstract
Known for their high stability and surfactant properties, per- and polyfluoroalkyl substances (PFAS) have been widely used in a range of manufactured products. Despite being largely phased out due to concerns regarding their persistence, bioaccumulation, and toxicity, legacy PFAS such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid continue to persist at high levels in the environment, posing risks to aquatic organisms. We used high-resolution magic angle spinning nuclear magnetic resonance spectroscopy in intact zebrafish (Danio rerio) embryos to investigate the metabolic pathways altered by PFOS both before and after hatching (i.e., 24 and 72 h post fertilization [hpf], respectively). Assessment of embryotoxicity found embryo lethality in the parts-per-million range with no significant difference in mortality between the 24- and 72-hpf exposure groups. Metabolic profiling revealed mostly consistent changes between the two exposure groups, with altered metabolites generally associated with oxidative stress, lipid metabolism, energy production, and mitochondrial function, as well as specific targeting of the liver and central nervous system as key systems. These metabolic changes were further supported by analyses of tissue-specific production of reactive oxygen species, as well as nontargeted mass spectrometric lipid profiling. Our findings suggest that PFOS-induced metabolic changes in zebrafish embryos may be mediated through previously described interactions with regulatory and transcription factors leading to disruption of mitochondrial function and energy metabolism. The present study proposes a systems-level model of PFOS toxicity in early life stages of zebrafish, and also identifies potential biomarkers of effect and exposure for improved environmental biomonitoring. Environ Toxicol Chem 2024;00:1-19. © 2024 SETAC.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Narmin Bashirova
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - Muhamed N H Eeza
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Ariel Lawson
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Francisco Fernandez-Lima
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Lilian V Tose
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, Leipzig, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - John P Berry
- Institute of Environment, Florida International University, Miami, Florida, USA
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Science Institute, Florida International University, Miami, Florida, USA
| |
Collapse
|
7
|
Sales PF, do Nascimento AL, Pinheiro FC, Alberto AKM, Teixeira dos Santos AVTDL, Carvalho HDO, de Souza GC, Carvalho JCT. Effect of the Association of Fixed Oils from Abelmoschus esculentus (L.) Moench, Euterpe oleracea Martius, Bixa orellana Linné and Chronic SM ® on Atherogenic Dyslipidemia in Wistar Rats. Molecules 2023; 28:6689. [PMID: 37764465 PMCID: PMC10534590 DOI: 10.3390/molecules28186689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Dyslipidemia presents high levels of serum cholesterol and is characterized as a risk factor for cardiovascular diseases, especially for the development of atherosclerosis. E. oleracea oil (OFEO), A. esculentus oil (OFAE), B. orellana oil (OFBO), and Chronic SM® granules (CHR) are rich in bioactive compounds with the potential to treat changes in lipid metabolism. This study investigated the effects of treatments with oils from A. esculentus, E. oleracea, B. orellana, and Chronic SM® on Cocos nucifera L. saturated-fat-induced dyslipidemia. The chromatographic profile showed the majority presence of unsaturated fatty acids in the tested oils. The quantification of tocotrienols and geranylgeraniol in OFBO and CHR was obtained. Treatments with OFEO, OFAE, OFBO, and CHR were able to significantly reduce glycemia, as well as hypertriglyceridemia, total cholesterol, and LDL-cholesterol, besides increasing HDL-cholesterol. The treatments inhibited the formation of atheromatous plaques in the vascular endothelium of the treated rats. The obtained results suggest that the OFEO, OFAE, OFBO, and CHR exhibit antidyslipidemic effects and antiatherogenic activity.
Collapse
Affiliation(s)
- Priscila Faimann Sales
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
| | - Aline Lopes do Nascimento
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
| | - Fernanda Cavalcante Pinheiro
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
| | - Andressa Ketelem Meireles Alberto
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
| | - Abrahão Victor Tavares de Lima Teixeira dos Santos
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
| | - Helison de Oliveira Carvalho
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
| | - Gisele Custódio de Souza
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
| | - José Carlos Tavares Carvalho
- Laboratory of Drugs Research, Biology and Healthy Sciences Department, Pharmacy Faculty, Federal University of Amapá, Rod. JK, Km 02, Amapá, Macapá 68902-280, Brazil; (P.F.S.); (A.L.d.N.); (F.C.P.); (A.K.M.A.); (A.V.T.d.L.T.d.S.); (H.d.O.C.); (G.C.d.S.)
- University Hospital of Federal University of Amapá, Rodovia Josmar Chaves Pinto, Macapá 68903-419, Brazil
| |
Collapse
|
8
|
Qiu YY, Zhang J, Zeng FY, Zhu YZ. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Pharmacol Res 2023; 192:106786. [PMID: 37146924 DOI: 10.1016/j.phrs.2023.106786] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease phenotypes which start with simple steatosis and lipid accumulation in the hepatocytes - a typical histological lesions characteristic. It may progress to non-alcoholic steatohepatitis (NASH) that is characterized by hepatic inflammation and/or fibrosis and subsequent onset of NAFLD-related cirrhosis and hepatocellular carcinoma (HCC). Due to the central role of the liver in metabolism, NAFLD is regarded as a result of and contribution to the metabolic abnormalities seen in the metabolic syndrome. Peroxisome proliferator-activated receptors (PPARs) has three subtypes, which govern the expression of genes responsible for energy metabolism, cellular development, inflammation, and differentiation. The agonists of PPARα, such as fenofibrate and clofibrate, have been used as lipid-lowering drugs in clinical practice. Thiazolidinediones (TZDs) - ligands of PPARγ, such as rosiglitazone and pioglitazone, are also used in the treatment of type 2 diabetes (T2D) with insulin resistance (IR). Increasing evidence suggests that PPARβ/δ agonists have potential therapeutic effects in improving insulin sensitivity and lipid metabolism disorders. In addition, PPARs ligands have been considered as potential therapeutic drugs for hypertension, atherosclerosis (AS) or diabetic nephropathy. Their crucial biological roles dictate the significance of PPARs-targeting in medical research and drug discovery. Here, it reviews the biological activities, ligand selectivity and biological functions of the PPARs family, and discusses the relationship between PPARs and the pathogenesis of NAFLD and metabolic syndrome. This will open new possibilities for PPARs application in medicine, and provide a new idea for the treatment of fatty liver and related diseases.
Collapse
Affiliation(s)
- Yuan-Ye Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| | - Jing Zhang
- University International College, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| | - Fan-Yi Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, 24/1400 West Beijing Road, Shanghai, 200040, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| |
Collapse
|
9
|
Liu J, Gao S, Zhou W, Chen Y, Wang Z, Zeng Z, Zhou H, Lin T. Dihydrotrichodimerol Purified from the Marine Fungus Acremonium citrinum Prevents NAFLD by Targeting PPARα. JOURNAL OF NATURAL PRODUCTS 2023; 86:1189-1201. [PMID: 37083418 DOI: 10.1021/acs.jnatprod.2c00990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The pathogenesis of nonalcoholic fatty liver disease (NAFLD) is closely linked to the imbalance of lipid and glucose metabolism, in which peroxisome proliferator-activated receptors (PPARs) play essential roles. The clinical trials have shown the beneficial effects of the PPARs' ligands on NAFLD. In this study, we screen the extracts from the marine fungus Acremonium citrinum and identify the natural compounds dihydrotrichodimerol (L1A) and trichodimerol (L1B) as the ligands of PPARs, of which L1A is a dual PPARα/γ agonist, whereas L1B is a selective PPARγ agonist. L1A but not L1B significantly prevents hepatic lipid accumulation in an oleic acid-induced NAFLD cell model as well as in a high-fat-diet-induced NAFLD mouse model. Moreover, L1A potently inhibits hepatic steatosis in a PPARα-dependent manner in another NAFLD mouse model constructed by using a choline-deficient and amino acid-defined diet. Mechanistically, L1A transcriptionally up-regulates the expression of SIRT1 in a PPARα-dependent manner, followed by the activation of AMPK and inactivation of ACC, resulting in the inhibition of lipid anabolism and the increase of lipid catabolism. Taken together, our study reveals a dual ligand of PPARα/γ with a distinct structure and therapeutic effect on NAFLD, providing a potential drug candidate bridging the currently urgent need for the management of NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Shuo Gao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Wanxuan Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Yongyan Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| | - Zhenwu Wang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
- High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiping Zeng
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
- High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian 361102, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
- High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian 361102, China
| | - Ting Lin
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen, Fujian 361102, China
| |
Collapse
|
10
|
Inhibition of Pyruvate Dehydrogenase in the Heart as an Initiating Event in the Development of Diabetic Cardiomyopathy. Antioxidants (Basel) 2023; 12:antiox12030756. [PMID: 36979003 PMCID: PMC10045649 DOI: 10.3390/antiox12030756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Obesity affects a growing fraction of the population and is a risk factor for type 2 diabetes and cardiovascular disease. Even in the absence of hypertension and coronary artery disease, type 2 diabetes can result in a heart disease termed diabetic cardiomyopathy. Diminished glucose oxidation, increased reliance on fatty acid oxidation for energy production, and oxidative stress are believed to play causal roles. However, the progression of metabolic changes and mechanisms by which these changes impact the heart have not been established. Cardiac pyruvate dehydrogenase (PDH), the central regulatory site for glucose oxidation, is rapidly inhibited in mice fed high dietary fat, a model of obesity and diabetes. Increased reliance on fatty acid oxidation for energy production, in turn, enhances mitochondrial pro-oxidant production. Inhibition of PDH may therefore initiate metabolic inflexibility and oxidative stress and precipitate diabetic cardiomyopathy. We discuss evidence from the literature that supports a role for PDH inhibition in loss in energy homeostasis and diastolic function in obese and diabetic humans and in rodent models. Finally, seemingly contradictory findings highlight the complexity of the disease and the need to delineate progressive changes in cardiac metabolism, the impact on myocardial structure and function, and the ability to intercede.
Collapse
|
11
|
Bagheripour F, Jeddi S, Kashfi K, Ghasemi A. Metabolic effects of L-citrulline in type 2 diabetes. Acta Physiol (Oxf) 2023; 237:e13937. [PMID: 36645144 DOI: 10.1111/apha.13937] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023]
Abstract
The prevalence of type 2 diabetes (T2D) is increasing worldwide. Decreased nitric oxide (NO) bioavailability is involved in the pathophysiology of T2D and its complications. L-citrulline (Cit), a precursor of NO production, has been suggested as a novel therapeutic agent for T2D. Available data from human and animal studies indicate that Cit supplementation in T2D increases circulating levels of Cit and L-arginine while decreasing circulating glucose and free fatty acids and improving dyslipidemia. The underlying mechanisms for these beneficial effects of Cit include increased insulin secretion from the pancreatic β cells, increased glucose uptake by the skeletal muscle, as well as increased lipolysis and β-oxidation, and decreased glyceroneogenesis in the adipose tissue. Thus, Cit has antihyperglycemic, antidyslipidemic, and antioxidant effects and has the potential to be used as a new therapeutic agent in the management of T2D. This review summarizes available literature from human and animal studies to explore the effects of Cit on metabolic parameters in T2D. It also discusses the possible mechanisms underlying Cit-induced improved metabolic parameters in T2D.
Collapse
Affiliation(s)
- Fatemeh Bagheripour
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, New York, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Peng C, Zhang Y, Lang X, Zhang Y. Role of mitochondrial metabolic disorder and immune infiltration in diabetic cardiomyopathy: new insights from bioinformatics analysis. J Transl Med 2023; 21:66. [PMID: 36726122 PMCID: PMC9893675 DOI: 10.1186/s12967-023-03928-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is one of the common cardiovascular complications of diabetes and a leading cause of death in diabetic patients. Mitochondrial metabolism and immune-inflammation are key for DCM pathogenesis, but their crosstalk in DCM remains an open issue. This study explored the separate roles of mitochondrial metabolism and immune microenvironment and their crosstalk in DCM with bioinformatics. METHODS DCM chip data (GSE4745, GSE5606, and GSE6880) were obtained from NCBI GEO, while mitochondrial gene data were downloaded from MitoCarta3.0 database. Differentially expressed genes (DEGs) were screened by GEO2R and processed for GSEA, GO and KEGG pathway analyses. Mitochondria-related DEGs (MitoDEGs) were obtained. A PPI network was constructed, and the hub MitoDEGs closely linked to DCM or heart failure were identified with CytoHubba, MCODE and CTD scores. Transcription factors and target miRNAs of the hub MitoDEGs were predicted with Cytoscape and miRWalk database, respectively, and a regulatory network was established. The immune infiltration pattern in DCM was analyzed with ImmuCellAI, while the relationship between MitoDEGs and immune infiltration abundance was investigated using Spearman method. A rat model of DCM was established to validate the expression of hub MitoDEGs and their relationship with cardiac function. RESULTS MitoDEGs in DCM were significantly enriched in pathways involved in mitochondrial metabolism, immunoregulation, and collagen synthesis. Nine hub MitoDEGs closely linked to DCM or heart failure were obtained. Immune analysis revealed significantly increased infiltration of B cells while decreased infiltration of DCs in immune microenvironment of DCM. Spearman analysis demonstrated that the hub MitoDEGs were positively associated with the infiltration of pro-inflammatory immune cells, but negatively associated with the infiltration of anti-inflammatory or regulatory immune cells. In the animal experiment, 4 hub MitoDEGs (Pdk4, Hmgcs2, Decr1, and Ivd) showed an expression trend consistent with bioinformatics analysis result. Additionally, the up-regulation of Pdk4, Hmgcs2, Decr1 and the down-regulation of Ivd were distinctly linked to reduced cardiac function. CONCLUSIONS This study unraveled the interaction between mitochondrial metabolism and immune microenvironment in DCM, providing new insights into the research on potential pathogenesis of DCM and the exploration of novel targets for medical interventions.
Collapse
Affiliation(s)
- Cheng Peng
- grid.412463.60000 0004 1762 6325Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 China ,grid.410736.70000 0001 2204 9268Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001 China
| | - Yanxiu Zhang
- grid.412463.60000 0004 1762 6325Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 China ,grid.410736.70000 0001 2204 9268Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001 China
| | - Xueyan Lang
- grid.412463.60000 0004 1762 6325Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001 China ,grid.410736.70000 0001 2204 9268Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001 China
| | - Yao Zhang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China. .,Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
13
|
Bartoszewska S, Collawn JF, Bartoszewski R. The Role of the Hypoxia-Related Unfolded Protein Response (UPR) in the Tumor Microenvironment. Cancers (Basel) 2022; 14:4870. [PMID: 36230792 PMCID: PMC9562011 DOI: 10.3390/cancers14194870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Despite our understanding of the unfolded protein response (UPR) pathways, the crosstalk between the UPR and the complex signaling networks that different cancers utilize for cell survival remains to be, in most cases, a difficult research barrier. A major problem is the constant variability of different cancer types and the different stages of cancer as well as the complexity of the tumor microenvironments (TME). This complexity often leads to apparently contradictory results. Furthermore, the majority of the studies that have been conducted have utilized two-dimensional in vitro cultures of cancer cells that were exposed to continuous hypoxia, and this approach may not mimic the dynamic and cyclic conditions that are found in solid tumors. Here, we discuss the role of intermittent hypoxia, one of inducers of the UPR in the cellular component of TME, and the way in which intermittent hypoxia induces high levels of reactive oxygen species, the activation of the UPR, and the way in which cancer cells modulate the UPR to aid in their survival. Although the past decade has resulted in defining the complex, novel non-coding RNA-based regulatory networks that modulate the means by which hypoxia influences the UPR, we are now just to beginning to understand some of the connections between hypoxia, the UPR, and the TME.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
14
|
Khotimchenko M, Brunk NE, Hixon MS, Walden DM, Hou H, Chakravarty K, Varshney J. In Silico Development of Combinatorial Therapeutic Approaches Targeting Key Signaling Pathways in Metabolic Syndrome. Pharm Res 2022; 39:2937-2950. [PMID: 35313359 DOI: 10.1007/s11095-022-03231-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Dysregulations of key signaling pathways in metabolic syndrome are multifactorial, eventually leading to cardiovascular events. Hyperglycemia in conjunction with dyslipidemia induces insulin resistance and provokes release of proinflammatory cytokines resulting in chronic inflammation, accelerated lipid peroxidation with further development of atherosclerotic alterations and diabetes. We have proposed a novel combinatorial approach using FDA approved compounds targeting IL-17a and DPP4 to ameliorate a significant portion of the clustered clinical risks in patients with metabolic syndrome. In our current research we have modeled the outcomes of metabolic syndrome treatment using two distinct drug classes. METHODS Targets were chosen based on the clustered clinical risks in metabolic syndrome: dyslipidemia, insulin resistance, impaired glucose control, and chronic inflammation. Drug development platform, BIOiSIM™, was used to narrow down two different drug classes with distinct modes of action and modalities. Pharmacokinetic and pharmacodynamic profiles of the most promising drugs were modeling showing predicted outcomes of combinatorial therapeutic interventions. RESULTS Preliminary studies demonstrated that the most promising drugs belong to DPP-4 inhibitors and IL-17A inhibitors. Evogliptin was chosen to be a candidate for regulating glucose control with long term collateral benefit of weight loss and improved lipid profiles. Secukinumab, an IL-17A sequestering agent used in treating psoriasis, was selected as a repurposed candidate to address the sequential inflammatory disorders that follow the first metabolic insult. CONCLUSIONS Our analysis suggests this novel combinatorial therapeutic approach inducing DPP4 and Il-17a suppression has a high likelihood of ameliorating a significant portion of the clustered clinical risk in metabolic syndrome.
Collapse
Affiliation(s)
- Maksim Khotimchenko
- VeriSIM Life, 1 Sansome Street, Suite 3500, San Francisco, California, 94104, USA
| | - Nicholas E Brunk
- VeriSIM Life, 1 Sansome Street, Suite 3500, San Francisco, California, 94104, USA
| | - Mark S Hixon
- VeriSIM Life, 1 Sansome Street, Suite 3500, San Francisco, California, 94104, USA
| | - Daniel M Walden
- VeriSIM Life, 1 Sansome Street, Suite 3500, San Francisco, California, 94104, USA
| | - Hypatia Hou
- VeriSIM Life, 1 Sansome Street, Suite 3500, San Francisco, California, 94104, USA
| | - Kaushik Chakravarty
- VeriSIM Life, 1 Sansome Street, Suite 3500, San Francisco, California, 94104, USA.
| | - Jyotika Varshney
- VeriSIM Life, 1 Sansome Street, Suite 3500, San Francisco, California, 94104, USA.
| |
Collapse
|
15
|
Coenzyme A Restriction as a Factor Underlying Pre-Eclampsia with Polycystic Ovary Syndrome as a Risk Factor. Int J Mol Sci 2022; 23:ijms23052785. [PMID: 35269927 PMCID: PMC8911031 DOI: 10.3390/ijms23052785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Pre-eclampsia is the most common pregnancy complication affecting 1 in 20 pregnancies, characterized by high blood pressure and signs of organ damage, most often to the liver and kidneys. Metabolic network analysis of published lipidomic data points to a shortage of Coenzyme A (CoA). Gene expression profile data reveal alterations to many areas of metabolism and, crucially, to conflicting cellular regulatory mechanisms arising from the overproduction of signalling lipids driven by CoA limitation. Adverse feedback loops appear, forming sphingosine-1-phosphate (a cause of hypertension, hypoxia and inflammation), cytotoxic isoketovaleric acid (inducing acidosis and organ damage) and a thrombogenic lysophosphatidyl serine. These also induce mitochondrial and oxidative stress, leading to untimely apoptosis, which is possibly the cause of CoA restriction. This work provides a molecular basis for the signs of pre-eclampsia, why polycystic ovary syndrome is a risk factor and what might be done to treat and reduce the risk of disease.
Collapse
|
16
|
The role of metabolism in directed differentiation versus trans-differentiation of cardiomyocytes. Semin Cell Dev Biol 2022; 122:56-65. [PMID: 34074592 PMCID: PMC8725317 DOI: 10.1016/j.semcdb.2021.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The advent of induced pluripotent stem cells (iPSCs) and identification of transcription factors for cardiac reprogramming have raised hope to cure heart disease, the leading cause of death in the world. Our knowledge in heart development and molecular barriers of cardiac reprogramming is advancing, but many hurdles are yet to be overcome for clinical translation. Importantly, we lack a full understanding of molecular mechanisms governing cell fate conversion toward cardiomyocytes. In this review, we will discuss the role of metabolism in directed differentiation versus trans-differentiation of cardiomyocytes. Cardiomyocytes exhibit a unique metabolic feature distinct from PSCs and cardiac fibroblasts, and there are multiple overlapping molecular mechanisms underlying metabolic reprogramming during cardiomyogenesis. We will discuss key metabolic changes occurring during cardiomyocytes differentiation from PSCs and cardiac fibroblasts, and the potential role of metabolic reprogramming in the enhancement strategies for cardiomyogenesis. Only when such details are discovered will more effective strategies to enhance the de novo production of cardiomyocytes be possible.
Collapse
|
17
|
Mikucki EE, Lockwood BL. Local thermal environment and warming influence supercooling and drive widespread shifts in the metabolome of diapausing Pieris rapae butterflies. J Exp Biol 2021; 224:272603. [PMID: 34694403 DOI: 10.1242/jeb.243118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/21/2021] [Indexed: 11/20/2022]
Abstract
Global climate change has the potential to negatively impact biological systems as organisms are exposed to novel temperature regimes. Increases in annual mean temperature have been accompanied by disproportionate rates of change in temperature across seasons, and winter is the season warming most rapidly. Yet, we know relatively little about how warming will alter the physiology of overwintering organisms. Here, we simulated future warming conditions by comparing diapausing Pieris rapae butterfly pupae collected from disparate thermal environments and by exposing P. rapae pupae to acute and chronic increases in temperature. First, we compared internal freezing temperatures (supercooling points) of diapausing pupae that were developed in common-garden conditions but whose parents were collected from northern Vermont, USA, or North Carolina, USA. Matching the warmer winter climate of North Carolina, North Carolina pupae had significantly higher supercooling points than Vermont pupae. Next, we measured the effects of acute and chronic warming exposure in Vermont pupae and found that warming induced higher supercooling points. We further characterized the effects of chronic warming by profiling the metabolomes of Vermont pupae via untargeted LC-MS metabolomics. Warming caused significant changes in abundance of hundreds of metabolites across the metabolome. Notably, there were warming-induced shifts in key biochemical pathways, such as pyruvate metabolism, fructose and mannose metabolism, and β-alanine metabolism, suggesting shifts in energy metabolism and cryoprotection. These results suggest that warming affects various aspects of overwintering physiology in P. rapae and may be detrimental depending on the frequency and variation of winter warming events. Further research is needed to ascertain the extent to which the effects of warming are felt among a broader set of populations of P. rapae, and among other species, in order to better predict how insects may respond to changes in winter thermal environments.
Collapse
Affiliation(s)
- Emily E Mikucki
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Brent L Lockwood
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
18
|
PPARα, δ and FOXO1 Gene Silencing Overturns Palmitate-Induced Inhibition of Pyruvate Oxidation Differentially in C2C12 Myotubes. BIOLOGY 2021; 10:biology10111098. [PMID: 34827089 PMCID: PMC8614693 DOI: 10.3390/biology10111098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Frequent high-dietary fat intake increases muscle lipid use and reduces muscle carbohydrate use, thereby inducing metabolic inflexibility. The latter term can be described as a poor muscle biochemical and molecular response to increased availability of insulin, which in the long term results in chronically excessive-high glucose levels in blood. Chronic hyperglycaemia is associated with many pathological conditions, including type 2 diabetes mellitus, which can cause severe health damages in humans. Here, we attempt to unravel the underlying mechanism and its associated factors behind the inhibition of muscle glucose use by a high-fat diet, thereby providing evidence for appropriate therapeutic intervention. Abstract The molecular mechanisms by which free fatty acids (FFA) inhibit muscle glucose oxidation is still elusive. We recently showed that C2C12 myotubes treated with palmitate (PAL) presented with greater protein expression levels of PDK4 and transcription factors PPARα and PPARδ and lower p-FOXO/t-FOXO protein ratios when compared to control. This was complemented with the hallmarks of metabolic inflexibility (MI), i.e., reduced rates of glucose uptake, PDC activity and maximal pyruvate-derived ATP production rates (MAPR). However, the relative contribution of these transcription factors to the increase in PDK4 and reduced glucose oxidation could not be established. Therefore, by using a similar myotube model, a series of individual siRNA gene silencing experiments, validated at transcriptional and translation levels, were performed in conjunction with measurements of glucose uptake, PDC activity, MAPR and concentrations of metabolites reflecting PDC flux (lactate and acetylcarnitine). Gene silencing of PPARα, δ and FOXO1 individually reduced PAL-mediated inhibition of PDC activity and increased glucose uptake, albeit by different mechanisms as only PPARδ and FOXO1 silencing markedly reduced PDK4 protein content. Additionally, PPARα and FOXO1 silencing, but not PPARδ, increased MAPR with PAL. PPARδ silencing also decreased FOXO1 protein. Since FOXO1 silencing did not alter PPARδ protein, this suggests that FOXO1 might be a PPARδ downstream target. In summary, this study suggests that the molecular mechanisms by which PAL reduces PDC-mediated glucose-derived pyruvate oxidation in muscle occur primarily through increased PPARδ and FOXO1 mediated increases in PDK4 protein expression and secondarily through PPARα mediated allosteric inhibition of PDC flux. Furthermore, since PPARδ seems to control FOXO1 expression, this may reflect an important role for PPARδ in preventing glucose oxidation under conditions of increased lipid availability.
Collapse
|
19
|
Anwar S, Shamsi A, Mohammad T, Islam A, Hassan MI. Targeting pyruvate dehydrogenase kinase signaling in the development of effective cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188568. [PMID: 34023419 DOI: 10.1016/j.bbcan.2021.188568] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Pyruvate is irreversibly decarboxylated to acetyl coenzyme A by mitochondrial pyruvate dehydrogenase complex (PDC). Decarboxylation of pyruvate is considered a crucial step in cell metabolism and energetics. The cancer cells prefer aerobic glycolysis rather than mitochondrial oxidation of pyruvate. This attribute of cancer cells allows them to sustain under indefinite proliferation and growth. Pyruvate dehydrogenase kinases (PDKs) play critical roles in many diseases because they regulate PDC activity. Recent findings suggest an altered metabolism of cancer cells is associated with impaired mitochondrial function due to PDC inhibition. PDKs inhibit the PDC activity via phosphorylation of the E1a subunit and subsequently cause a glycolytic shift. Thus, inhibition of PDK is an attractive strategy in anticancer therapy. This review highlights that PDC/PDK axis could be implicated in cancer's therapeutic management by developing potential small-molecule PDK inhibitors. In recent years, a dramatic increase in the targeting of the PDC/PDK axis for cancer treatment gained an attention from the scientific community. We further discuss breakthrough findings in the PDC-PDK axis. In addition, structural features, functional significance, mechanism of activation, involvement in various human pathologies, and expression of different forms of PDKs (PDK1-4) in different types of cancers are discussed in detail. We further emphasized the gene expression profiling of PDKs in cancer patients to prognosis and therapeutic manifestations. Additionally, inhibition of the PDK/PDC axis by small molecule inhibitors and natural compounds at different clinical evaluation stages has also been discussed comprehensively.
Collapse
Affiliation(s)
- Saleha Anwar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
20
|
Pyruvate dehydrogenase kinases (PDKs): an overview toward clinical applications. Biosci Rep 2021; 41:228121. [PMID: 33739396 PMCID: PMC8026821 DOI: 10.1042/bsr20204402] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 01/01/2023] Open
Abstract
Pyruvate dehydrogenase kinase (PDK) can regulate the catalytic activity of pyruvate decarboxylation oxidation via the mitochondrial pyruvate dehydrogenase complex, and it further links glycolysis with the tricarboxylic acid cycle and ATP generation. This review seeks to elucidate the regulation of PDK activity in different species, mainly mammals, and the role of PDK inhibitors in preventing increased blood glucose, reducing injury caused by myocardial ischemia, and inducing apoptosis of tumor cells. Regulations of PDKs expression or activity represent a very promising approach for treatment of metabolic diseases including diabetes, heart failure, and cancer. The future research and development could be more focused on the biochemical understanding of the diseases, which would help understand the cellular energy metabolism and its regulation by pharmacological effectors of PDKs.
Collapse
|
21
|
Imanaka S, Shigetomi H, Kobayashi H. Reprogramming of glucose metabolism of cumulus cells and oocytes and its therapeutic significance. Reprod Sci 2021; 29:653-667. [PMID: 33675030 DOI: 10.1007/s43032-021-00505-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
The aim of this review is to summarize our current understanding of the molecular mechanism for the glucose metabolism, especially pyruvate dehydrogenase (PDH), during oocyte maturation, as well as future perspectives of therapeutic strategies for aging focusing on metabolic regulation between aerobic glycolysis and the tricarboxylic acid (TCA) cycle/oxidative phosphorylation (OXPHOS). Each keyword alone or in combination was used to search from PubMed. Glucose metabolism is a dynamic process involving "On" and "Off" switches by the pyruvate dehydrogenase kinase (PDK)-PDH axis, which is crucial for energy metabolism and mitochondrial efficiency in cumulus cell differentiation and oocyte maturation. Activation of PDK suppresses the conversion of pyruvate to acetyl-coenzyme A (acetyl-CoA) through the inactivation of PDH, which allows the cumulus cells to supply sufficient amounts of pyruvate, lactate, and nicotinamide adenine dinucleotide phosphate (NADPH) to the oocytes. On the other hand, inactivation of PDK in oocytes can produce adenosine triphosphate (ATP) through a metabolic shift from aerobic glycolysis to the TCA cycle/OXPHOS. The metabolic balance between aerobic glycolysis and TCA cycle/OXPHOS presents us with a number of enzymes, ligands, receptors, and antioxidants that are potential therapeutic targets, some of which have already been successfully pursued to improve fertility outcomes. However, there are also many reports that question their efficacy. In conclusion, understanding the molecular mechanisms involved in the PDK-PDH axis is a crucial step to advance in novel therapeutic strategies to improve oocyte quality.
Collapse
Affiliation(s)
- Shogo Imanaka
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Ms.Clinic MayOne, Kashihara, Japan
| | - Hiroshi Shigetomi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan.,Aska Ladies Clinic, Nara, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara, Japan. .,Ms.Clinic MayOne, Kashihara, Japan.
| |
Collapse
|
22
|
Greenwell AA, Gopal K, Ussher JR. Myocardial Energy Metabolism in Non-ischemic Cardiomyopathy. Front Physiol 2020; 11:570421. [PMID: 33041869 PMCID: PMC7526697 DOI: 10.3389/fphys.2020.570421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
As the most metabolically demanding organ in the body, the heart must generate massive amounts of energy adenosine triphosphate (ATP) from the oxidation of fatty acids, carbohydrates and other fuels (e.g., amino acids, ketone bodies), in order to sustain constant contractile function. While the healthy mature heart acts omnivorously and is highly flexible in its ability to utilize the numerous fuel sources delivered to it through its coronary circulation, the heart’s ability to produce ATP from these fuel sources becomes perturbed in numerous cardiovascular disorders. This includes ischemic heart disease and myocardial infarction, as well as in various cardiomyopathies that often precede the development of overt heart failure. We herein will provide an overview of myocardial energy metabolism in the healthy heart, while describing the numerous perturbations that take place in various non-ischemic cardiomyopathies such as hypertrophic cardiomyopathy, diabetic cardiomyopathy, arrhythmogenic cardiomyopathy, and the cardiomyopathy associated with the rare genetic disease, Barth Syndrome. Based on preclinical evidence where optimizing myocardial energy metabolism has been shown to attenuate cardiac dysfunction, we will discuss the feasibility of myocardial energetics optimization as an approach to treat the cardiac pathology associated with these various non-ischemic cardiomyopathies.
Collapse
Affiliation(s)
- Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Jeon JH, Thoudam T, Choi EJ, Kim MJ, Harris RA, Lee IK. Loss of metabolic flexibility as a result of overexpression of pyruvate dehydrogenase kinases in muscle, liver and the immune system: Therapeutic targets in metabolic diseases. J Diabetes Investig 2020; 12:21-31. [PMID: 32628351 PMCID: PMC7779278 DOI: 10.1111/jdi.13345] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Good health depends on the maintenance of metabolic flexibility, which in turn is dependent on the maintenance of regulatory flexibility of a large number of regulatory enzymes, but especially the pyruvate dehydrogenase complex (PDC), because of its central role in carbohydrate metabolism. Flexibility in regulation of PDC is dependent on rapid changes in the phosphorylation state of PDC determined by the relative activities of the pyruvate dehydrogenase kinases (PDKs) and the pyruvate dehydrogenase phosphatases. Inactivation of the PDC by overexpression of PDK4 contributes to hyperglycemia, and therefore the serious health problems associated with diabetes. Loss of regulatory flexibility of PDC occurs in other disease states and pathological conditions that have received less attention than diabetes. These include cancers, non‐alcoholic fatty liver disease, cancer‐induced cachexia, diabetes‐induced nephropathy, sepsis and amyotrophic lateral sclerosis. Overexpression of PDK4, and in some situations, the other PDKs, as well as under expression of the pyruvate dehydrogenase phosphatases, leads to inactivation of the PDC, mitochondrial dysfunction and deleterious effects with health consequences. The possible basis for this phenomenon, along with evidence that overexpression of PDK4 results in phosphorylation of “off‐target” proteins and promotes excessive transport of Ca2+ into mitochondria through mitochondria‐associated endoplasmic reticulum membranes are discussed. Recent efforts to find small molecule PDK inhibitors with therapeutic potential are also reviewed.
Collapse
Affiliation(s)
- Jae-Han Jeon
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea.,Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Korea
| | - Eun Jung Choi
- Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Korea
| | - Min-Ji Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea.,Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Korea.,Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Korea.,Department of Biomedical Science, The Graduate School, Kyungpook National University, Daegu, Korea
| |
Collapse
|
24
|
COVID-19: Proposing a Ketone-Based Metabolic Therapy as a Treatment to Blunt the Cytokine Storm. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6401341. [PMID: 33014275 PMCID: PMC7519203 DOI: 10.1155/2020/6401341] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023]
Abstract
Human SARS-CoV-2 infection is characterized by a high mortality rate due to some patients developing a large innate immune response associated with a cytokine storm and acute respiratory distress syndrome (ARDS). This is characterized at the molecular level by decreased energy metabolism, altered redox state, oxidative damage, and cell death. Therapies that increase levels of (R)-beta-hydroxybutyrate (R-BHB), such as the ketogenic diet or consuming exogenous ketones, should restore altered energy metabolism and redox state. R-BHB activates anti-inflammatory GPR109A signaling and inhibits the NLRP3 inflammasome and histone deacetylases, while a ketogenic diet has been shown to protect mice from influenza virus infection through a protective γδ T cell response and by increasing electron transport chain gene expression to restore energy metabolism. During a virus-induced cytokine storm, metabolic flexibility is compromised due to increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that damage, downregulate, or inactivate many enzymes of central metabolism including the pyruvate dehydrogenase complex (PDC). This leads to an energy and redox crisis that decreases B and T cell proliferation and results in increased cytokine production and cell death. It is hypothesized that a moderately high-fat diet together with exogenous ketone supplementation at the first signs of respiratory distress will increase mitochondrial metabolism by bypassing the block at PDC. R-BHB-mediated restoration of nucleotide coenzyme ratios and redox state should decrease ROS and RNS to blunt the innate immune response and the associated cytokine storm, allowing the proliferation of cells responsible for adaptive immunity. Limitations of the proposed therapy include the following: it is unknown if human immune and lung cell functions are enhanced by ketosis, the risk of ketoacidosis must be assessed prior to initiating treatment, and permissive dietary fat and carbohydrate levels for exogenous ketones to boost immune function are not yet established. The third limitation could be addressed by studies with influenza-infected mice. A clinical study is warranted where COVID-19 patients consume a permissive diet combined with ketone ester to raise blood ketone levels to 1 to 2 mM with measured outcomes of symptom severity, length of infection, and case fatality rate.
Collapse
|
25
|
Intramuscular Mechanisms Mediating Adaptation to Low-Carbohydrate, High-Fat Diets during Exercise Training. Nutrients 2020; 12:nu12092496. [PMID: 32824957 PMCID: PMC7551624 DOI: 10.3390/nu12092496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022] Open
Abstract
Interest in low-carbohydrate, high-fat (LCHF) diets has increased over recent decades given the theorized benefit of associated intramuscular adaptations and shifts in fuel utilization on endurance exercise performance. Consuming a LCHF diet during exercise training increases the availability of fat (i.e., intramuscular triglyceride stores; plasma free fatty acids) and decreases muscle glycogen stores. These changes in substrate availability increase reliance on fat oxidation for energy production while simultaneously decreasing reliance on carbohydrate oxidation for fuel during submaximal exercise. LCHF diet-mediated changes in substrate oxidation remain even after endogenous or exogenous carbohydrate availability is increased, suggesting that the adaptive response driving changes in fat and carbohydrate oxidation lies within the muscle and persists even when the macronutrient content of the diet is altered. This narrative review explores the intramuscular adaptations underlying increases in fat oxidation and decreases in carbohydrate oxidation with LCHF feeding. The possible effects of LCHF diets on protein metabolism and post-exercise muscle remodeling are also considered.
Collapse
|
26
|
Chien HC, Greenhaff PL, Constantin-Teodosiu D. PPARδ and FOXO1 Mediate Palmitate-Induced Inhibition of Muscle Pyruvate Dehydrogenase Complex and CHO Oxidation, Events Reversed by Electrical Pulse Stimulation. Int J Mol Sci 2020; 21:ijms21165942. [PMID: 32824862 PMCID: PMC7460628 DOI: 10.3390/ijms21165942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/21/2022] Open
Abstract
The mechanisms behind the reduction in muscle pyruvate dehydrogenase complex (PDC)-controlled carbohydrate (CHO) oxidation during chronic high-fat dietary intake are poorly understood, as is the basis of CHO oxidation restoration during muscle contraction. C2C12 myotubes were treated with (300 μM) palmitate or without (control) for 16 h in the presence and absence of electrical pulse stimulation (EPS, 11.5 V, 1 Hz, 2 ms). Compared to control, palmitate reduced cell glucose uptake (p < 0.05), PDC activity (p < 0.01), acetylcarnitine accumulation (p < 0.05) and glucose-derived mitochondrial ATP production (p < 0.01) and increased pyruvate dehydrogenase kinase isoform 4 (PDK4) (p < 0.01), peroxisome proliferator-activated receptor alpha (PPARα) (p < 0.01) and peroxisome proliferator-activated receptor delta (PPARδ) (p < 0.01) proteins, and reduced the whole-cell p-FOXO1/t-FOXO1 (Forkhead Box O1) ratio (p < 0.01). EPS rescued palmitate-induced inhibition of CHO oxidation, reflected by increased glucose uptake (p < 0.01), PDC activity (p < 0.01) and glucose-derived mitochondrial ATP production (p < 0.01) compared to palmitate alone. EPS was also associated with less PDK4 (p < 0.01) and PPARδ (p < 0.01) proteins, and lower nuclear p-FOXO1/t-FOXO1 ratio normalised to the cytoplasmic ratio, but with no changes in PPARα protein. Collectively, these data suggest PPARδ, and FOXO1 transcription factors increased PDK4 protein in the presence of palmitate, which limited PDC activity and flux, and blunted CHO oxidation and glucose uptake. Conversely, EPS rescued these metabolic events by modulating the same transcription factors.
Collapse
Affiliation(s)
- Hung-Che Chien
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (H.-C.C.); (P.L.G.)
- Department of Physiology and Biophysics, National Defense Medical Centre, Taipei 11490, Taiwan
| | - Paul L. Greenhaff
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (H.-C.C.); (P.L.G.)
| | - Dumitru Constantin-Teodosiu
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham NG7 2UH, UK; (H.-C.C.); (P.L.G.)
- Correspondence: ; Tel.: +44-115-8230111
| |
Collapse
|
27
|
Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. Cells 2020; 9:cells9071708. [PMID: 32708786 PMCID: PMC7407644 DOI: 10.3390/cells9071708] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Caloric restriction (CR) is a traditional but scientifically verified approach to promoting health and increasing lifespan. CR exerts its effects through multiple molecular pathways that trigger major metabolic adaptations. It influences key nutrient and energy-sensing pathways including mammalian target of rapamycin, Sirtuin 1, AMP-activated protein kinase, and insulin signaling, ultimately resulting in reductions in basic metabolic rate, inflammation, and oxidative stress, as well as increased autophagy and mitochondrial efficiency. CR shares multiple overlapping pathways with peroxisome proliferator-activated receptors (PPARs), particularly in energy metabolism and inflammation. Consequently, several lines of evidence suggest that PPARs might be indispensable for beneficial outcomes related to CR. In this review, we present the available evidence for the interconnection between CR and PPARs, highlighting their shared pathways and analyzing their interaction. We also discuss the possible contributions of PPARs to the effects of CR on whole organism outcomes.
Collapse
|
28
|
Bartoszewska S, Collawn JF. Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cell Mol Biol Lett 2020; 25:18. [PMID: 32190062 PMCID: PMC7071609 DOI: 10.1186/s11658-020-00212-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
During hypoxic conditions, cells undergo critical adaptive responses that include the up-regulation of hypoxia-inducible proteins (HIFs) and the induction of the unfolded protein response (UPR). While their induced signaling pathways have many distinct targets, there are some important connections as well. Despite the extensive studies on both of these signaling pathways, the exact mechanisms involved that determine survival versus apoptosis remain largely unexplained and therefore beyond therapeutic control. Here we discuss the complex relationship between the HIF and UPR signaling pathways and the importance of understanding how these pathways differ between normal and cancer cell models.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
29
|
Polak-Iwaniuk A, Harasim-Symbor E, Gołaszewska K, Chabowski A. How Hypertension Affects Heart Metabolism. Front Physiol 2019; 10:435. [PMID: 31040794 PMCID: PMC6476990 DOI: 10.3389/fphys.2019.00435] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/29/2019] [Indexed: 01/15/2023] Open
Abstract
Hypertension is one of the most frequently observed cardiovascular diseases, which precedes heart failure in 75% of its cases. It is well-established that hypertensive patients have whole body metabolic complications such as hyperlipidemia, hyperglycemia, decreased insulin sensitivity or diabetes mellitus. Since myocardial metabolism is strictly dependent on hormonal status as well as substrate milieu, the above mentioned disturbances may affect energy generation status in the heart. Interestingly, it was found that hypertension induces a shift in substrate preference toward increased glucose utilization in cardiac muscle, prior to structural changes development. The present work reports advances in the aspect of heart metabolism under high blood pressure conditions, including human and the most common animal models of hypertension.
Collapse
Affiliation(s)
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| | | | - Adrian Chabowski
- Department of Physiology, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
30
|
Strowitzki MJ, Radhakrishnan P, Pavicevic S, Scheer J, Kimmer G, Ritter AS, Tuffs C, Volz C, Vondran F, Harnoss JM, Klose J, Schmidt T, Schneider M. High hepatic expression of PDK4 improves survival upon multimodal treatment of colorectal liver metastases. Br J Cancer 2019; 120:675-688. [PMID: 30808993 PMCID: PMC6461828 DOI: 10.1038/s41416-019-0406-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Patients with borderline resectable colorectal liver metastases (CRLM) frequently receive neoadjuvant chemotherapy (NC) to reduce tumour burden, thus making surgical resection feasible. Even though NC can induce severe liver injury, most studies investigating tissue-based prognostic markers focus on tumour tissue. Here, we assessed the prognostic significance of pyruvate-dehydrogenase-kinase isoenzyme 4 (PDK4) within liver tissue of patients undergoing surgical resection due to CRLM. METHODS Transcript levels of hypoxia-adaptive genes (such as PDK isoenzymes) were assessed in the tissue of healthy liver, corresponding CRLM, healthy colon mucosa and corresponding tumour. Uni- and multivariate analyses were performed. Responses to chemotherapy upon up- or down-regulation of PDK4 were studied in vitro. RESULTS PDK4 expression within healthy liver tissue was associated with increased overall survival and liver function following surgical resection of CRLM. This association was enhanced in patients with NC. PDK4 expression in CRLM tissue did not correlate with overall survival. Up-regulation of PDK4 increased the resistance of hepatocytes and colon cancer cells against chemotherapy-induced toxicity, whereas knockdown of PDK4 enhanced chemotherapy-associated cell damage. CONCLUSION Our findings suggest that up-regulated PDK4 expression reduces hepatic chemotherapy-induced oxidative stress and is associated with improved postoperative liver function in patients undergoing multimodal treatment and resection of CRLM.
Collapse
Affiliation(s)
- Moritz J Strowitzki
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Praveen Radhakrishnan
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Sandra Pavicevic
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Jana Scheer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gwendolyn Kimmer
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Alina S Ritter
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Christopher Tuffs
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Claudia Volz
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Florian Vondran
- Regenerative Medicine and Experimental Surgery (ReMediES), Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
- German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Jonathan M Harnoss
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Johannes Klose
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Martin Schneider
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
31
|
Pin F, Novinger LJ, Huot JR, Harris RA, Couch ME, O'Connell TM, Bonetto A. PDK4 drives metabolic alterations and muscle atrophy in cancer cachexia. FASEB J 2019; 33:7778-7790. [PMID: 30894018 DOI: 10.1096/fj.201802799r] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cachexia is frequently accompanied by severe metabolic derangements, although the mechanisms responsible for this debilitating condition remain unclear. Pyruvate dehydrogenase kinase (PDK)4, a critical regulator of cellular energetic metabolism, was found elevated in experimental models of cancer, starvation, diabetes, and sepsis. Here we aimed to investigate the link between PDK4 and the changes in muscle size in cancer cachexia. High PDK4 and abnormal energetic metabolism were found in the skeletal muscle of colon-26 tumor hosts, as well as in mice fed a diet enriched in Pirinixic acid, previously shown to increase PDK4 levels. Viral-mediated PDK4 overexpression in myotube cultures was sufficient to promote myofiber shrinkage, consistent with enhanced protein catabolism and mitochondrial abnormalities. On the contrary, blockade of PDK4 was sufficient to restore myotube size in C2C12 cultures exposed to tumor media. Our data support, for the first time, a direct role for PDK4 in promoting cancer-associated muscle metabolic alterations and skeletal muscle atrophy.-Pin, F., Novinger, L. J., Huot, J. R., Harris, R. A., Couch, M. E., O'Connell, T. M., Bonetto, A. PDK4 drives metabolic alterations and muscle atrophy in cancer cachexia.
Collapse
Affiliation(s)
- Fabrizio Pin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana University-Purdue University Indianapolis Center for Cachexia Research, Innovation, and Therapy, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Leah J Novinger
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Joshua R Huot
- Indiana University-Purdue University Indianapolis Center for Cachexia Research, Innovation, and Therapy, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert A Harris
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Marion E Couch
- Indiana University-Purdue University Indianapolis Center for Cachexia Research, Innovation, and Therapy, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Thomas M O'Connell
- Indiana University-Purdue University Indianapolis Center for Cachexia Research, Innovation, and Therapy, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Andrea Bonetto
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana University-Purdue University Indianapolis Center for Cachexia Research, Innovation, and Therapy, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
32
|
Abstract
Diabetes is a global epidemic and a leading cause of death with more than 422 million patients worldwide out of whom around 392 million alone suffer from type 2 diabetes (T2D). Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are novel and effective drugs in managing glycemia of T2D patients. These inhibitors gained recent clinical and basic research attention due to their clinically observed cardiovascular protective effects. Although interest in the study of various SGLT isoforms and the effect of their inhibition on cardiovascular function extends over the past 20 years, an explanation of the effects observed clinically based on available experimental data is not forthcoming. The remarkable reduction in cardiovascular (CV) mortality (38%), major CV events (14%), hospitalization for heart failure (35%), and death from any cause (32%) observed over a period of 2.6 years in patients with T2D and high CV risk in the EMPA-REG OUTCOME trial involving the SGLT2 inhibitor empagliflozin (Empa) have raised the possibility that potential novel, more specific mechanisms of SGLT2 inhibition synergize with the known modest systemic improvements, such as glycemic, body weight, diuresis, and blood pressure control. Multiple studies investigated the direct impact of SGLT2i on the cardiovascular system with limited findings and the pathophysiological role of SGLTs in the heart. The direct impact of SGLT2i on cardiac homeostasis remains controversial, especially that SGLT1 isoform is the only form expressed in the capillaries and myocardium of human and rodent hearts. The direct impact of SGLT2i on the cardiovascular system along with potential lines of future research is summarized in this review.
Collapse
|
33
|
The effects of PDK4 inhibition on AMPK protein levels and PGC-1? gene expression following endurance training in skeletal muscle of Wistar rats. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.06.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 529] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
35
|
Corrales P, Vidal-Puig A, Medina-Gómez G. PPARs and Metabolic Disorders Associated with Challenged Adipose Tissue Plasticity. Int J Mol Sci 2018; 19:ijms19072124. [PMID: 30037087 PMCID: PMC6073677 DOI: 10.3390/ijms19072124] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of a family of nuclear hormone receptors that exert their transcriptional control on genes harboring PPAR-responsive regulatory elements (PPRE) in partnership with retinoid X receptors (RXR). The activation of PPARs coordinated by specific coactivators/repressors regulate networks of genes controlling diverse homeostatic processes involving inflammation, adipogenesis, lipid metabolism, glucose homeostasis, and insulin resistance. Defects in PPARs have been linked to lipodystrophy, obesity, and insulin resistance as a result of the impairment of adipose tissue expandability and functionality. PPARs can act as lipid sensors, and when optimally activated, can rewire many of the metabolic pathways typically disrupted in obesity leading to an improvement of metabolic homeostasis. PPARs also contribute to the homeostasis of adipose tissue under challenging physiological circumstances, such as pregnancy and aging. Given their potential pathogenic role and their therapeutic potential, the benefits of PPARs activation should not only be considered relevant in the context of energy balance-associated pathologies and insulin resistance but also as potential relevant targets in the context of diabetic pregnancy and changes in body composition and metabolic stress associated with aging. Here, we review the rationale for the optimization of PPAR activation under these conditions.
Collapse
Affiliation(s)
- Patricia Corrales
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n. Alcorcón, 28922 Madrid, Spain.
| | - Antonio Vidal-Puig
- Metabolic Research Laboratories, Wellcome Trust MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK.
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK.
| | - Gema Medina-Gómez
- Área de Bioquímica y Biología Molecular, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n. Alcorcón, 28922 Madrid, Spain.
| |
Collapse
|
36
|
The Aspergillus nidulans Pyruvate Dehydrogenase Kinases Are Essential To Integrate Carbon Source Metabolism. G3-GENES GENOMES GENETICS 2018; 8:2445-2463. [PMID: 29794164 PMCID: PMC6027865 DOI: 10.1534/g3.118.200411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pyruvate dehydrogenase complex (PDH), that converts pyruvate to acetyl-coA, is regulated by pyruvate dehydrogenase kinases (PDHK) and phosphatases (PDHP) that have been shown to be important for morphology, pathogenicity and carbon source utilization in different fungal species. The aim of this study was to investigate the role played by the three PDHKs PkpA, PkpB and PkpC in carbon source utilization in the reference filamentous fungus Aspergillus nidulans, in order to unravel regulatory mechanisms which could prove useful for fungal biotechnological and biomedical applications. PkpA and PkpB were shown to be mitochondrial whereas PkpC localized to the mitochondria in a carbon source-dependent manner. Only PkpA was shown to regulate PDH activity. In the presence of glucose, deletion of pkpA and pkpC resulted in reduced glucose utilization, which affected carbon catabolite repression (CCR) and hydrolytic enzyme secretion, due to de-regulated glycolysis and TCA cycle enzyme activities. Furthermore, PkpC was shown to be required for the correct metabolic utilization of cellulose and acetate. PkpC negatively regulated the activity of the glyoxylate cycle enzyme isocitrate lyase (ICL), required for acetate metabolism. In summary, this study identified PDHKs important for the regulation of central carbon metabolism in the presence of different carbon sources, with effects on the secretion of biotechnologically important enzymes and carbon source-related growth. This work demonstrates how central carbon metabolism can affect a variety of fungal traits and lays a basis for further investigation into these characteristics with potential interest for different applications.
Collapse
|
37
|
Botta M, Audano M, Sahebkar A, Sirtori CR, Mitro N, Ruscica M. PPAR Agonists and Metabolic Syndrome: An Established Role? Int J Mol Sci 2018; 19:1197. [PMID: 29662003 PMCID: PMC5979533 DOI: 10.3390/ijms19041197] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/14/2022] Open
Abstract
Therapeutic approaches to metabolic syndrome (MetS) are numerous and may target lipoproteins, blood pressure or anthropometric indices. Peroxisome proliferator-activated receptors (PPARs) are involved in the metabolic regulation of lipid and lipoprotein levels, i.e., triglycerides (TGs), blood glucose, and abdominal adiposity. PPARs may be classified into the α, β/δ and γ subtypes. The PPAR-α agonists, mainly fibrates (including newer molecules such as pemafibrate) and omega-3 fatty acids, are powerful TG-lowering agents. They mainly affect TG catabolism and, particularly with fibrates, raise the levels of high-density lipoprotein cholesterol (HDL-C). PPAR-γ agonists, mainly glitazones, show a smaller activity on TGs but are powerful glucose-lowering agents. Newer PPAR-α/δ agonists, e.g., elafibranor, have been designed to achieve single drugs with TG-lowering and HDL-C-raising effects, in addition to the insulin-sensitizing and antihyperglycemic effects of glitazones. They also hold promise for the treatment of non-alcoholic fatty liver disease (NAFLD) which is closely associated with the MetS. The PPAR system thus offers an important hope in the management of atherogenic dyslipidemias, although concerns regarding potential adverse events such as the rise of plasma creatinine, gallstone formation, drug-drug interactions (i.e., gemfibrozil) and myopathy should also be acknowledged.
Collapse
Affiliation(s)
- Margherita Botta
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.
| | - Cesare R Sirtori
- Centro Dislipidemie, Azienda Socio Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy.
| | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| | - Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milan, Italy.
| |
Collapse
|
38
|
Schafer C, Young ZT, Makarewich CA, Elnwasany A, Kinter C, Kinter M, Szweda LI. Coenzyme A-mediated degradation of pyruvate dehydrogenase kinase 4 promotes cardiac metabolic flexibility after high-fat feeding in mice. J Biol Chem 2018. [PMID: 29540486 DOI: 10.1074/jbc.ra117.000268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiac energy is produced primarily by oxidation of fatty acids and glucose, with the relative contributions of each nutrient being sensitive to changes in substrate availability and energetic demand. A major contributor to cardiac metabolic flexibility is pyruvate dehydrogenase (PDH), which converts glucose-derived pyruvate to acetyl-CoA within the mitochondria. PDH is inhibited by phosphorylation dependent on the competing activities of pyruvate dehydrogenase kinases (PDK1-4) and phosphatases (PDP1-2). A single high-fat meal increases cardiac PDK4 content and subsequently inhibits PDH activity, reducing pyruvate utilization when abundant fatty acids are available. In this study, we demonstrate that diet-induced increases in PDK4 are reversible and characterize a novel pathway that regulates PDK4 degradation in response to the cardiac metabolic environment. We found that PDK4 degradation is promoted by CoA (CoASH), the levels of which declined in mice fed a high-fat diet and normalized following transition to a control diet. We conclude that CoASH functions as a metabolic sensor linking the rate of PDK4 degradation to fatty acid availability in the heart. However, prolonged high-fat feeding followed by return to a low-fat diet resulted in persistent in vitro sensitivity of PDH to fatty acid-induced inhibition despite reductions in PDK4 content. Moreover, increases in the levels of proteins responsible for β-oxidation and rates of palmitate oxidation by isolated cardiac mitochondria following long-term consumption of high dietary fat persisted after transition to the control diet. We propose that these changes prime PDH for inhibition upon reintroduction of fatty acids.
Collapse
Affiliation(s)
- Christopher Schafer
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Zachary T Young
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Catherine A Makarewich
- the Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Abdallah Elnwasany
- the Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573
| | - Caroline Kinter
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Michael Kinter
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | - Luke I Szweda
- From the Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, .,the Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8573
| |
Collapse
|
39
|
Brewer RA, Collins HE, Berry RD, Brahma MK, Tirado BA, Peliciari-Garcia RA, Stanley HL, Wende AR, Taegtmeyer H, Rajasekaran NS, Darley-Usmar V, Zhang J, Frank SJ, Chatham JC, Young ME. Temporal partitioning of adaptive responses of the murine heart to fasting. Life Sci 2018; 197:30-39. [PMID: 29410090 DOI: 10.1016/j.lfs.2018.01.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 12/16/2022]
Abstract
Recent studies suggest that the time of day at which food is consumed dramatically influences clinically-relevant cardiometabolic parameters (e.g., adiposity, insulin sensitivity, and cardiac function). Meal feeding benefits may be the result of daily periods of feeding and/or fasting, highlighting the need for improved understanding of the temporal adaptation of cardiometabolic tissues (e.g., heart) to fasting. Such studies may provide mechanistic insight regarding how time-of-day-dependent feeding/fasting cycles influence cardiac function. We hypothesized that fasting during the sleep period elicits beneficial adaptation of the heart at transcriptional, translational, and metabolic levels. To test this hypothesis, temporal adaptation was investigated in wild-type mice fasted for 24-h, or for either the 12-h light/sleep phase or the 12-h dark/awake phase. Fasting maximally induced fatty acid responsive genes (e.g., Pdk4) during the dark/active phase; transcriptional changes were mirrored at translational (e.g., PDK4) and metabolic flux (e.g., glucose/oleate oxidation) levels. Similarly, maximal repression of myocardial p-mTOR and protein synthesis rates occurred during the dark phase; both parameters remained elevated in the heart of fasted mice during the light phase. In contrast, markers of autophagy (e.g., LC3II) exhibited peak responses to fasting during the light phase. Collectively, these data show that responsiveness of the heart to fasting is temporally partitioned. Autophagy peaks during the light/sleep phase, while repression of glucose utilization and protein synthesis is maximized during the dark/active phase. We speculate that sleep phase fasting may benefit cardiac function through augmentation of protein/cellular constituent turnover.
Collapse
Affiliation(s)
- Rachel A Brewer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Helen E Collins
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ryan D Berry
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Manoja K Brahma
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian A Tirado
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rodrigo A Peliciari-Garcia
- Morphophysiology & Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Haley L Stanley
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam R Wende
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, McGovern Medical School UT Health Science Center, Houston, TX, USA
| | - Namakkal Soorappan Rajasekaran
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victor Darley-Usmar
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jianhua Zhang
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stuart J Frank
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Endocrinology Section, Birmingham VAMC Medical Service, Birmingham, AL, USA
| | - John C Chatham
- Division of Molecular Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
40
|
Gudiksen A, Pilegaard H. PGC-1 α and fasting-induced PDH regulation in mouse skeletal muscle. Physiol Rep 2017; 5:5/7/e13222. [PMID: 28400503 PMCID: PMC5392513 DOI: 10.14814/phy2.13222] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 02/04/2023] Open
Abstract
The purpose of the present study was to examine whether lack of skeletal muscle peroxisome proliferator‐activated receptor gamma coactivator 1 alpha (PGC‐1α) affects the switch in substrate utilization from a fed to fasted state and the fasting‐induced pyruvate dehydrogenase (PDH) regulation in skeletal muscle. Skeletal muscle‐specific PGC‐1α knockout (MKO) mice and floxed littermate controls were fed or fasted for 24 h. Fasting reduced PDHa activity, increased phosphorylation of all four known sites on PDH‐E1α and increased pyruvate dehydrogenase kinase (PDK4) and sirtuin 3 (SIRT3) protein levels, but did not alter total acetylation of PDH‐E1α. Lack of muscle PGC‐1α did not affect the switch from glucose to fat oxidation in the transition from the fed to fasted state, but was associated with lower and higher respiratory exchange ratio (RER) in the fed and fasted state, respectively. PGC‐1α MKO mice had lower skeletal muscle PDH‐E1α, PDK1, 2, 4, and pyruvate dehydrogenase phosphatase (PDP1) protein content than controls, but this did not prevent the fasting‐induced increase in PDH‐E1α phosphorylation in PGC‐1α MKO mice. However, lack of skeletal muscle PGC‐1α reduced SIRT3 protein content, increased total lysine PDH‐E1α acetylation in the fed state, and prevented a fasting‐induced increase in SIRT3 protein. In conclusion, skeletal muscle PGC‐1α is required for fasting‐induced upregulation of skeletal muscle SIRT3 and maintaining high fat oxidation in the fasted state, but is dispensable for preserving the capability to switch substrate during the transition from the fed to the fasted state and for fasting‐induced PDH regulation in skeletal muscle.
Collapse
Affiliation(s)
- Anders Gudiksen
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, August Krogh Building, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Colasante C, Chen J, Ahlemeyer B, Baumgart-Vogt E. Peroxisomes in cardiomyocytes and the peroxisome / peroxisome proliferator-activated receptor-loop. Thromb Haemost 2017; 113:452-63. [DOI: 10.1160/th14-06-0497] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 12/18/2014] [Indexed: 01/29/2023]
Abstract
SummaryIt is well established that the heart is strongly dependent on fatty acid metabolism. In cardiomyocytes there are two distinct sites for the β-oxidisation of fatty acids: the mitochondrion and the peroxisome. Although the metabolism of these two organelles is believed to be tightly coupled, the nature of this relationship has not been fully investigated. Recent research has established the significant contribution of mitochondrial function to cardiac ATP production under normal and pathological conditions. In contrast, limited information is available on peroxisomal function in the heart. This is despite these organelles harbouring metabolic pathways that are potentially cardioprotective, and findings that patients with peroxisomal diseases, such as adult Refsum’s disease, can develop heart failure. In this article, we provide a comprehensive overview on the current knowledge of peroxisomes and the regulation of lipid metabolism by PPARs in cardiomyocytes. We also present new experimental evidence on the differential expression of peroxisome-related genes in the heart chambers and demonstrate that even a mild peroxisomal biogenesis defect (Pex11α-/- ) can induce profound alterations in the cardiomyocyte’s peroxisomal compartment and related gene expression, including the concomitant deregulation of specific PPARs. The possible impact of peroxisomal dysfunction in the heart is discussed and a model for the modulation of myocardial metabolism via a peroxisome/PPAR-loop is proposed.
Collapse
|
42
|
Li T, Xu J, Qin X, Hou Z, Guo Y, Liu Z, Wu J, Zheng H, Zhang X, Gao F. Glucose oxidation positively regulates glucose uptake and improves cardiac function recovery after myocardial reperfusion. Am J Physiol Endocrinol Metab 2017; 313:E577-E585. [PMID: 28325730 DOI: 10.1152/ajpendo.00014.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 01/31/2023]
Abstract
Myocardial reperfusion decreases glucose oxidation and uncouples glucose oxidation from glycolysis. Therapies that increase glucose oxidation lessen myocardial ischemia-reperfusion (I/R) injury. However, the regulation of glucose uptake during reperfusion remains poorly understood. We found that glucose uptake was remarkably diminished in the myocardium following reperfusion in Sprague-Dawley rats as detected by 18F-labeled and fluorescent-labeled glucose analogs, even though GLUT1 was upregulated by threefold and GLUT4 translocation remained unchanged compared with those of sham-treated rats. The decreased glucose uptake was accompanied by suppressed glucose oxidation. Interestingly, stimulating glucose oxidation by inhibition of pyruvate dehydrogenase kinase 4 (PDK4), a rate-limiting enzyme for glucose oxidation, increased glucose uptake and alleviated I/R injury. In vitro data in neonatal myocytes showed that PDK4 overexpression decreased glucose uptake, whereas its knockdown increased glucose uptake, suggesting that PDK4 has a role in regulating glucose uptake. Moreover, inhibition of PDK4 increased myocardial glucose uptake with concomitant enhancement of cardiac insulin sensitivity following myocardial I/R. These results showed that the suppressed glucose oxidation mediated by PDK4 contributes to the reduced glucose uptake in the myocardium following reperfusion, and enhancement of glucose uptake exerts cardioprotection. The findings suggest that stimulating glucose oxidation via PDK4 could be an efficient approach to improve recovery from myocardial I/R injury.
Collapse
Affiliation(s)
- Tingting Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Jie Xu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Xinghua Qin
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Zuoxu Hou
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Yongzheng Guo
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Zhenhua Liu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Jianjiang Wu
- Department of Anesthesiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hong Zheng
- Department of Anesthesiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China; and
| |
Collapse
|
43
|
Patel MR, Kansagra KA, Parikh DP, Parmar DV, Patel HB, Soni MM, Patil US, Patel HV, Patel JA, Gujarathi SS, Parmar KV, Srinivas NR. Effect of Food on the Pharmacokinetics of Saroglitazar Magnesium, a Novel Dual PPARαγ Agonist, in Healthy Adult Subjects. Clin Drug Investig 2017; 38:57-65. [DOI: 10.1007/s40261-017-0584-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Noordali H, Loudon BL, Frenneaux MP, Madhani M. Cardiac metabolism - A promising therapeutic target for heart failure. Pharmacol Ther 2017; 182:95-114. [PMID: 28821397 DOI: 10.1016/j.pharmthera.2017.08.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Both heart failure with reduced ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF) are associated with high morbidity and mortality. Although many established pharmacological interventions exist for HFrEF, hospitalization and death rates remain high, and for those with HFpEF (approximately half of all heart failure patients), there are no effective therapies. Recently, the role of impaired cardiac energetic status in heart failure has gained increasing recognition with the identification of reduced capacity for both fatty acid and carbohydrate oxidation, impaired function of the electron transport chain, reduced capacity to transfer ATP to the cytosol, and inefficient utilization of the energy produced. These nodes in the genesis of cardiac energetic impairment provide potential therapeutic targets, and there is promising data from recent experimental and early-phase clinical studies evaluating modulators such as carnitine palmitoyltransferase 1 inhibitors, partial fatty acid oxidation inhibitors and mitochondrial-targeted antioxidants. Metabolic modulation may provide significant symptomatic and prognostic benefit for patients suffering from heart failure above and beyond guideline-directed therapy, but further clinical trials are needed.
Collapse
Affiliation(s)
- Hannah Noordali
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
| | - Brodie L Loudon
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | | - Melanie Madhani
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
45
|
Abstract
Although it is generally believed that oxidative phosphorylation and adequate oxygenation are essential for life, human development occurs in a profoundly hypoxic environment and "normal" levels of oxygen during embryogenesis are even harmful. The ability of embryos not only to survive but also to thrive in such an environment is made possible by adaptations related to metabolic pathways. Similarly, cancerous cells are able not only to survive but also to grow and spread in environments that would typically be fatal for healthy adult cells. Many biological states, both normal and pathological, share underlying similarities related to metabolism, the electron transport chain, and reactive species. The purpose of Part I of this review is to review the similarities among embryogenesis, mammalian adaptions to hypoxia (primarily driven by hypoxia-inducible factor-1), ischemia-reperfusion injury (and its relationship with reactive oxygen species), hibernation, diving animals, cancer, and sepsis, with a particular focus on the common characteristics that allow cells and organisms to survive in these states.
Collapse
Affiliation(s)
- Robert H Thiele
- From the Department of Anesthesiology, University of Virginia, Charlottesville, VA
| |
Collapse
|
46
|
Gopal K, Saleme B, Al Batran R, Aburasayn H, Eshreif A, Ho KL, Ma WK, Almutairi M, Eaton F, Gandhi M, Park EA, Sutendra G, Ussher JR. FoxO1 regulates myocardial glucose oxidation rates via transcriptional control of pyruvate dehydrogenase kinase 4 expression. Am J Physiol Heart Circ Physiol 2017; 313:H479-H490. [PMID: 28687587 DOI: 10.1152/ajpheart.00191.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 11/22/2022]
Abstract
Pyruvate dehydrogenase (PDH) is the rate-limiting enzyme for glucose oxidation and a critical regulator of metabolic flexibility during the fasting to feeding transition. PDH is regulated via both PDH kinases (PDHK) and PDH phosphatases, which phosphorylate/inactivate and dephosphorylate/activate PDH, respectively. Our goal was to determine whether the transcription factor forkhead box O1 (FoxO1) regulates PDH activity and glucose oxidation in the heart via increasing the expression of Pdk4, the gene encoding PDHK4. To address this question, we differentiated H9c2 myoblasts into cardiac myocytes and modulated FoxO1 activity, after which Pdk4/PDHK4 expression and PDH phosphorylation/activity were assessed. We assessed binding of FoxO1 to the Pdk4 promoter in cardiac myocytes in conjunction with measuring the role of FoxO1 on glucose oxidation in the isolated working heart. Both pharmacological (1 µM AS1842856) and genetic (siRNA mediated) inhibition of FoxO1 decreased Pdk4/PDHK4 expression and subsequent PDH phosphorylation in H9c2 cardiac myocytes, whereas 10 µM dexamethasone-induced Pdk4/PDHK4 expression was abolished via pretreatment with 1 µM AS1842856. Furthermore, transfection of H9c2 cardiac myocytes with a vector expressing FoxO1 increased luciferase activity driven by a Pdk4 promoter construct containing the FoxO1 DNA-binding element region, but not in a Pdk4 promoter construct lacking this region. Finally, AS1842856 treatment in fasted mice enhanced glucose oxidation rates during aerobic isolated working heart perfusions. Taken together, FoxO1 directly regulates Pdk4 transcription in the heart, thereby controlling PDH activity and subsequent glucose oxidation rates.NEW & NOTEWORTHY Although studies have shown an association between FoxO1 activity and pyruvate dehydrogenase kinase 4 expression, our study demonstrated that pyruvate dehydrogenase kinase 4 is a direct transcriptional target of FoxO1 (but not FoxO3/FoxO4) in the heart. Furthermore, we report here, for the first time, that FoxO1 inhibition increases glucose oxidation in the isolated working mouse heart.
Collapse
Affiliation(s)
- Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Rami Al Batran
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hanin Aburasayn
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amina Eshreif
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kim L Ho
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Wayne K Ma
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Malak Almutairi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Manoj Gandhi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Edwards A Park
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee; and.,Department of Veterans Affairs Medical Center, Memphis, Tennessee
| | - Gopinath Sutendra
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada; .,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
47
|
Gudiksen A, Bertholdt L, Vingborg MB, Hansen HW, Ringholm S, Pilegaard H. Muscle interleukin-6 and fasting-induced PDH regulation in mouse skeletal muscle. Am J Physiol Endocrinol Metab 2017; 312:E204-E214. [PMID: 28028037 DOI: 10.1152/ajpendo.00291.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 11/22/2022]
Abstract
Fasting prompts a metabolic shift in substrate utilization from carbohydrate to predominant fat oxidation in skeletal muscle, and pyruvate dehydrogenase (PDH) is seen as a controlling link between the competitive oxidation of carbohydrate and fat during metabolic challenges like fasting. Interleukin (IL)-6 has been proposed to be released from muscle with concomitant effects on both glucose and fat utilization. The aim was to test the hypothesis that muscle IL-6 has a regulatory impact on fasting-induced suppression of skeletal muscle PDH. Skeletal muscle-specific IL-6 knockout (IL-6 MKO) mice and floxed littermate controls (control) were either fed or fasted for 6 or 18 h. Lack of muscle IL-6 elevated the respiratory exchange ratio in the fed and early fasting state, but not with prolonged fasting. Activity of PDH in the active form (PDHa) was higher in fed and fasted IL-6 MKO than in control mice at 18 h, but not at 6 h, whereas lack of muscle IL-6 did not prevent downregulation of PDHa activity in skeletal muscle or changes in plasma and muscle substrate levels in response to 18 h of fasting. Phosphorylation of three of four sites on PDH-E1α increased with 18 h of fasting, but was lower in IL-6 MKO mice than in control. In addition, both PDK4 mRNA and protein increased with 6 and 18 h of fasting in both genotypes, but PDK4 protein was lower in IL-6 MKO than in control. In conclusion, skeletal muscle IL-6 seems to regulate whole body substrate utilization in the fed, but not fasted, state and influence skeletal muscle PDHa activity in a circadian manner. However, skeletal muscle IL-6 is not required for maintaining metabolic flexibility in response to fasting.
Collapse
Affiliation(s)
- Anders Gudiksen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Laerke Bertholdt
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Birkkjaer Vingborg
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Watson Hansen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stine Ringholm
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pilegaard
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Hendgen-Cotta UB, Esfeld S, Coman C, Ahrends R, Klein-Hitpass L, Flögel U, Rassaf T, Totzeck M. A novel physiological role for cardiac myoglobin in lipid metabolism. Sci Rep 2017; 7:43219. [PMID: 28230173 PMCID: PMC5322402 DOI: 10.1038/srep43219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/20/2017] [Indexed: 02/06/2023] Open
Abstract
Continuous contractile activity of the heart is essential and the required energy is mostly provided by fatty acid (FA) oxidation. Myocardial lipid accumulation can lead to pathological responses, however the underlying mechanisms remain elusive. The role of myoglobin in dioxygen binding in cardiomyocytes and oxidative skeletal muscle has widely been appreciated. Our recent work established myoglobin as a protector of cardiac function in hypoxia and disease states. We here unravel a novel role of cardiac myoglobin in governing FA metabolism to ensure the physiological energy production through β-oxidation, preventing myocardial lipid accumulation and preserving cardiac functions. In vivo1H magnetic resonance spectroscopy unveils a 3-fold higher deposition of lipids in mouse hearts lacking myoglobin, which was associated with depressed cardiac function compared to wild-type hearts as assessed by echocardiography. Mass spectrometry reveals a marked increase in tissue triglycerides with preferential incorporation of palmitic and oleic acids. Phospholipid levels as well as the metabolome, transcriptome and proteome related to FA metabolism tend to be unaffected by myoglobin ablation. Our results reveal a physiological role of myoglobin in FA metabolism with the lipid accumulation-suppressing effects of myoglobin preventing cardiac lipotoxicity.
Collapse
Affiliation(s)
- Ulrike B Hendgen-Cotta
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| | - Sonja Esfeld
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V. Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS e.V. Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Ludger Klein-Hitpass
- University Hospital Essen, Institute of Cell Biology, Medical Faculty, Virchowstr. 173, 45122 Essen, Germany
| | - Ulrich Flögel
- University Hospital Düsseldorf, Department of Molecular Cardiology, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tienush Rassaf
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| | - Matthias Totzeck
- University Hospital Essen, Medical Faculty, West German Heart and Vascular Center, Department of Cardiology and Department of Angiology, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
49
|
Zhao S, Kanno Y, Li W, Sasaki T, Zhang X, Wang J, Cheng M, Koike K, Nemoto K, Li H. Identification of Picrasidine C as a Subtype-Selective PPARα Agonist. JOURNAL OF NATURAL PRODUCTS 2016; 79:3127-3133. [PMID: 27958735 DOI: 10.1021/acs.jnatprod.6b00883] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Picrasidine C (1), a dimeric β-carboline-type alkaloid isolated from the root of Picrasma quassioides, was identified to have PPARα agonistic activity by a mammalian one-hybrid assay from a compound library. Among the PPAR subtypes, 1 selectively activated PPARα in a concentration-dependent manner. Remarkably, 1 also promoted PPARα transcriptional activity by a peroxisome proliferator response element-driven luciferase reporter assay. Furthermore, 1 induced the expression of PPARα-regulated genes involved in lipid, glucose, and cholesterol metabolism, such as CPT-1, PPARα, PDK4, and ABCA1, which was abrogated by the PPARα antagonist MK-886, indicating that the effect of 1 was dependent on PPARα activation. This is the first report to demonstrate 1 to be a subtype-selective PPARα agonist with potential application in treating metabolic diseases, such as hyperlipidemia, atherosclerosis, and hypercholesterolemia.
Collapse
Affiliation(s)
- Shuai Zhao
- College of Life Science, Northeast Forestry University , Harbin 150040, People's Republic of China
| | - Yuichiro Kanno
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Tatsunori Sasaki
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Xiangyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University , Shenyang 110016, People's Republic of China
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Kiyomitsu Nemoto
- Department of Molecular Toxicology, Faculty of Pharmaceutical Sciences, Toho University , Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Huicheng Li
- College of Life Science, Northeast Forestry University , Harbin 150040, People's Republic of China
| |
Collapse
|
50
|
Skovgaard C, Brandt N, Pilegaard H, Bangsbo J. Combined speed endurance and endurance exercise amplify the exercise-induced PGC-1α and PDK4 mRNA response in trained human muscle. Physiol Rep 2016; 4:4/14/e12864. [PMID: 27456910 PMCID: PMC4962071 DOI: 10.14814/phy2.12864] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to investigate the mRNA response related to mitochondrial biogenesis, metabolism, angiogenesis, and myogenesis in trained human skeletal muscle to speed endurance exercise (S), endurance exercise (E), and speed endurance followed by endurance exercise (S + E). Seventeen trained male subjects (maximum oxygen uptake (VO2-max): 57.2 ± 3.7 (mean ± SD) mL·min(-1)·kg(-1)) performed S (6 × 30 sec all-out), E (60 min ~60% VO2-max), and S + E on a cycle ergometer on separate occasions. Muscle biopsies were obtained at rest and 1, 2, and 3 h after the speed endurance exercise (S and S + E) and at rest, 0, 1, and 2 h after exercise in E In S and S + E, muscle peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1α) and pyruvate dehydrogenase kinase-4 (PDK4) mRNA were higher (P < 0.05) 2 and 3 h after speed endurance exercise than at rest. Muscle PGC-1α and PDK4 mRNA levels were higher (P < 0.05) after exercise in S + E than in S and E, and higher (P < 0.05) in S than in E after exercise. In S and S + E, muscle vascular endothelial growth factor mRNA was higher (P < 0.05) 1 (S only), 2 and 3 h after speed endurance exercise than at rest. In S + E, muscle regulatory factor-4 and muscle heme oxygenase-1 mRNA were higher (P < 0.05) 1, 2, and 3 h after speed endurance exercise than at rest. In S, muscle hexokinase II mRNA was higher (P < 0.05) 2 and 3 h after speed endurance exercise than at rest and higher (P < 0.05) than in E after exercise. These findings suggest that in trained subjects, speed endurance exercise provides a stimulus for muscle mitochondrial biogenesis, substrate regulation, and angiogenesis that is not evident with endurance exercise. These responses are reinforced when speed endurance exercise is followed by endurance exercise.
Collapse
Affiliation(s)
- Casper Skovgaard
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark Team Danmark (Danish elite sports institution), Copenhagen, Denmark
| | - Nina Brandt
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Jens Bangsbo
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|