1
|
Brown CN, Bayer KU. Studying CaMKII: Tools and standards. Cell Rep 2024; 43:113982. [PMID: 38517893 PMCID: PMC11088445 DOI: 10.1016/j.celrep.2024.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/24/2024] Open
Abstract
The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a ubiquitous mediator of cellular Ca2+ signals with both enzymatic and structural functions. Here, we briefly introduce the complex regulation of CaMKII and then provide a comprehensive overview of the expanding toolbox to study CaMKII. Beyond a variety of distinct mutants, these tools now include optical methods for measurement and manipulation, with the latter including light-induced inhibition, stimulation, and sequestration. Perhaps most importantly, there are now three mechanistically distinct classes of specific CaMKII inhibitors, and their combined use enables the interrogation of CaMKII functions in a manner that is powerful and sophisticated yet also accessible. This review aims to provide guidelines for the interpretation of the results obtained with these tools, with careful consideration of their direct and indirect effects.
Collapse
Affiliation(s)
- Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Karl Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
Gotthardt M, Badillo-Lisakowski V, Parikh VN, Ashley E, Furtado M, Carmo-Fonseca M, Schudy S, Meder B, Grosch M, Steinmetz L, Crocini C, Leinwand L. Cardiac splicing as a diagnostic and therapeutic target. Nat Rev Cardiol 2023; 20:517-530. [PMID: 36653465 DOI: 10.1038/s41569-022-00828-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 01/19/2023]
Abstract
Despite advances in therapeutics for heart failure and arrhythmias, a substantial proportion of patients with cardiomyopathy do not respond to interventions, indicating a need to identify novel modifiable myocardial pathobiology. Human genetic variation associated with severe forms of cardiomyopathy and arrhythmias has highlighted the crucial role of alternative splicing in myocardial health and disease, given that it determines which mature RNA transcripts drive the mechanical, structural, signalling and metabolic properties of the heart. In this Review, we discuss how the analysis of cardiac isoform expression has been facilitated by technical advances in multiomics and long-read and single-cell sequencing technologies. The resulting insights into the regulation of alternative splicing - including the identification of cardiac splice regulators as therapeutic targets and the development of a translational pipeline to evaluate splice modulators in human engineered heart tissue, animal models and clinical trials - provide a basis for improved diagnosis and therapy. Finally, we consider how the medical and scientific communities can benefit from facilitated acquisition and interpretation of splicing data towards improved clinical decision-making and patient care.
Collapse
Affiliation(s)
- Michael Gotthardt
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany.
- Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Victor Badillo-Lisakowski
- Neuromuscular and Cardiovascular Cell Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Berlin), Berlin, Germany
| | - Victoria Nicole Parikh
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Euan Ashley
- Stanford Center for Inherited Cardiovascular Disease, Stanford University School of Medicine, Palo Alto, CA, USA
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Marta Furtado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sarah Schudy
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies, Department of Medicine III, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research Partner Site Heidelberg-Mannheim), Heidelberg, Germany
| | - Markus Grosch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Lars Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA
- Department of Genetics, School of Medicine, Stanford University, Stanford, CA, USA
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Claudia Crocini
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | - Leslie Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| |
Collapse
|
3
|
Griem-Krey N, Clarkson AN, Wellendorph P. CaMKIIα as a Promising Drug Target for Ischemic Grey Matter. Brain Sci 2022; 12:1639. [PMID: 36552099 PMCID: PMC9775128 DOI: 10.3390/brainsci12121639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of Ca2+-dependent signaling pathways in various cell types throughout the body. Its neuronal isoform CaMKIIα (alpha) centrally integrates physiological but also pathological glutamate signals directly downstream of glutamate receptors and has thus emerged as a target for ischemic stroke. Previous studies provided evidence for the involvement of CaMKII activity in ischemic cell death by showing that CaMKII inhibition affords substantial neuroprotection. However, broad inhibition of this central kinase is challenging because various essential physiological processes like synaptic plasticity rely on intact CaMKII regulation. Thus, specific strategies for targeting CaMKII after ischemia are warranted which would ideally only interfere with pathological activity of CaMKII. This review highlights recent advances in the understanding of how ischemia affects CaMKII and how pathospecific pharmacological targeting of CaMKII signaling could be achieved. Specifically, we discuss direct targeting of CaMKII kinase activity with peptide inhibitors versus indirect targeting of the association (hub) domain of CaMKIIα with analogues of γ-hydroxybutyrate (GHB) as a potential way to achieve more specific pharmacological modulation of CaMKII activity after ischemia.
Collapse
Affiliation(s)
- Nane Griem-Krey
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9016, New Zealand
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
4
|
Cook SG, Rumian NL, Bayer KU. CaMKII T286 phosphorylation has distinct essential functions in three forms of long-term plasticity. J Biol Chem 2022; 298:102299. [PMID: 35872016 PMCID: PMC9403491 DOI: 10.1016/j.jbc.2022.102299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/12/2022] [Accepted: 07/17/2022] [Indexed: 10/25/2022] Open
Abstract
The Ca2+/calmodulin-dependent protein kinase II (CaMKII) mediates long-term potentiation or depression (LTP or LTD) after distinct stimuli of hippocampal NMDA-type glutamate receptors (NMDARs). NMDAR-dependent LTD prevails in juvenile mice, but a mechanistically different form of LTD can be readily induced in adults by instead stimulating metabotropic glutamate receptors (mGluRs). However, the role that CaMKII plays in the mGluR-dependent form of LTD is not clear. Here we show that mGluR-dependent LTD also requires CaMKII and its T286 autophosphorylation (pT286), which induces Ca2+-independent autonomous kinase activity. Additionally, we compared the role of pT286 among three forms of long-term plasticity (NMDAR-dependent LTP and LTD, and mGluR-dependent LTD) using simultaneous live imaging of endogenous CaMKII together with synaptic marker proteins. We determined that after LTP stimuli, pT286 autophosphorylation accelerated CaMKII movement to excitatory synapses. After NMDAR-LTD stimuli, pT286 was strictly required for any movement to inhibitory synapses. Similar to NMDAR-LTD, we found the mGluR-LTD stimuli did not induce CaMKII movement to excitatory synapses. However, in contrast to NMDAR-LTD, we demonstrate the mGluR-LTD did not involve CaMKII movement to inhibitory synapses and did not require additional T305/306 autophosphorylation. Thus, despite its prominent role in LTP, we conclude CaMKII T286 autophosphorylation is also required for both major forms of hippocampal LTD, albeit with differential requirements for the heterosynaptic communication of excitatory signals to inhibitory synapses.
Collapse
Affiliation(s)
- Sarah G Cook
- Department of Pharmacology, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, U.S.A; Present address: Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicole L Rumian
- Department of Pharmacology, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, U.S.A
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, U.S.A.
| |
Collapse
|
5
|
O'Brien BJ, Singer HA, Adam AP, Ginnan RG. CaMKIIδ is upregulated by pro-inflammatory cytokine IL-6 in a JAK/STAT3-dependent manner to promote angiogenesis. FASEB J 2021; 35:e21437. [PMID: 33749880 DOI: 10.1096/fj.202002755r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/17/2022]
Abstract
Ca2+ /calmodulin-dependent protein kinase II (CaMKII) is a ubiquitous serine threonine kinase with established roles in physiological and pathophysiological vascular remodeling. Based on our previous study demonstrating that CaMKIIδ promotes thrombin-induced endothelial permeability and recent reports that CaMKII may contribute to inflammatory remodeling in the heart, we investigated CaMKIIδ-dependent regulation of endothelial function downstream of an interleukin-6 (IL-6)/JAK/STAT3 signaling axis. Upon treatment with IL-6 and its soluble receptor (sIL-6r), CaMKIIδ expression is significantly induced in HUVEC. Using pharmacological inhibitors of JAK and siRNA targeting STAT3, we demonstrated that activation of STAT3 is sufficient to induce CaMKIIδ expression. Under these conditions, rather than promoting IL-6-induced permeability, we found that CaMKIIδ promotes endothelial cell migration as measured by live cell imaging of scratch wound closure and single-cell motility analysis. In a similar manner, endothelial cell proliferation was attenuated upon knockdown of CaMKIIδ as determined by growth curves, cell cycle analysis, and capacitance of cell-covered electrodes as measured by ECIS. Using inducible endothelial-specific STAT3 knockout mice, we demonstrate that STAT3 signaling promotes developmental angiogenesis in the neonatal mouse retina assessed at postnatal day 6. CaMKIIδ expression in retinal endothelium was attenuated in these animals as measured by qPCR. STAT3's effects on angiogenesis were phenocopied by the endothelial-specific knockout of CaMKIIδ, with significantly reduced vascular outgrowth and number of junctions in the developing P6 retina. For the first time, we demonstrate that transcriptional regulation of CaMKIIδ by STAT3 promotes endothelial motility, proliferation, and in vivo angiogenesis.
Collapse
Affiliation(s)
- Brendan J O'Brien
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roman G Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
6
|
Beghi S, Cavaliere F, Buschini A. Gene polymorphisms in calcium-calmodulin pathway: Focus on cardiovascular disease. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108325. [PMID: 33339582 DOI: 10.1016/j.mrrev.2020.108325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022]
Abstract
Cardiovascular disease is the leading cause of death in industrialized countries and affects an increasing number of people. Several risk factors play an important role in the etiology of this disease, such as an unhealthy lifestyle. It is increasingly clear that genetic factors influencing the molecular basis of excitation-contraction mechanisms in the heart could contribute to modify the individual's risk. Thanks to the progress that has been made in understanding calcium signaling in the heart, it is assumed that calmodulin can play a crucial role in the excitation-contraction coupling. In fact, calmodulin (CaM) binds calcium and consequently regulates calcium channels. Several works show how some polymorphic variants can be considered predisposing factors to complex pathologies. Therefore, we hypothesize that the identification of polymorphic variants of proteins involved in the CaM pathway could be important for understanding how genetic traits can influence predisposition to myocardial infarction. This review considers each pathway of the three different isoforms of calmodulin (CaM1; CaM2; CaM3) and focuses on some common proteins involved in the three pathways, with the aim of analyzing the polymorphisms studied in the literature and understanding if they are associated with cardiovascular disease.
Collapse
Affiliation(s)
- Sofia Beghi
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze 11A, 43124, Parma, Italy
| | - Francesca Cavaliere
- University of Parma, Department of Food and Drug, Parco Area Delle Scienze 17A, 43124, Parma, Italy
| | - Annamaria Buschini
- University of Parma, Department of Chemistry, Life Sciences and Environmental Sustainability, Parco Area Delle Scienze 11A, 43124, Parma, Italy.
| |
Collapse
|
7
|
Tullis JE, Rumian NL, Brown CN, Bayer KU. The CaMKII K42M and K42R mutations are equivalent in suppressing kinase activity and targeting. PLoS One 2020; 15:e0236478. [PMID: 32716967 PMCID: PMC7384616 DOI: 10.1371/journal.pone.0236478] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/06/2020] [Indexed: 12/05/2022] Open
Abstract
CaMKII is an important mediator of forms of synaptic plasticity that are thought to underly learning and memory. The CaMKII mutants K42M and K42R have been used interchangeably as research tools, although some reported phenotypic differences suggest that they may differ in the extent to which they impair ATP binding. Here, we directly compared the two mutations at the high ATP concentrations that exist within cells (~4 mM). We found that both mutations equally blocked GluA1 phosphorylation in vitro and GluN2B binding within cells. Both mutations also reduced but did not completely abolish CaMKII T286 autophosphorylation in vitro or CaMKII movement to excitatory synapses in neurons. Thus, despite previously suggested differences, both mutations appear to interfere with ATP binding to the same extent.
Collapse
Affiliation(s)
- Jonathan E. Tullis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Nicole L. Rumian
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Carolyn Nicole Brown
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - K. Ulrich Bayer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- Program in Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| |
Collapse
|
8
|
Han XC, Zhang YJ, Dong X, Xing QZ, Li KH, Zhang L. Sevoflurane modulates the cancer stem cell-like properties and mitochondrial membrane potential of glioma via Ca 2+-dependent CaMKII/JNK cascade. Life Sci 2020; 253:117675. [PMID: 32360621 DOI: 10.1016/j.lfs.2020.117675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/01/2020] [Accepted: 04/11/2020] [Indexed: 12/24/2022]
Abstract
AIMS Gliomas are responsible for the majority of deaths from primary brain tumours. Sevoflurane showed inhibition effects on the tumor progression in vitro. However, whether sevoflurane could affect the stemness of glioma stem cells (GSCs) and the potential molecular mechanism have not been well elucidated. MAIN METHODS Effects of sevoflurane on cell viability, proliferation and invasion ability of glioma cells as well as tumor growth in vivo were assessed. Sphere formation assay was performed to evaluate the effect of sevoflurane on the stemness of GSCs. Effects of sevoflurane on mitochondrial function was evaluated by intracellular/mitochondrial reactive oxygen species (ROS) level and mitochondrial membrane potential. Expression levels of proliferation-related proteins, stemness markers and proteins in CaMKII/JNK cascade were measured by Western blot. KEY FINDINGS Sevoflurane inhibited the viability, proliferation and invasion ability of glioma cells (U87MG and U373MG). Western blot showed that sevoflurane decreased the expression levels of proliferation and invasion-related proteins. Sphere formation ability of GSCs, expression levels of stemness markers and mitochondrial function were significantly suppressed by sevoflurane. Moreover, sevoflurane treatment significantly increased the Ca2+ concentration and stimulated phosphorylation of CaMKII, JNK and IRS1. Ca2+ chelator BAPTA-AM combined with sevoflurane synergistically inhibited colony forming ability and the expression levels of proliferation-related proteins and stemness markers. In addition, the in vivo study further confirmed that sevoflurane inhibited tumor growth via Ca2+-dependent CaMKII/JNK cascade. SIGNIFICANCE The present study demonstrated that sevoflurane inhibited glioma tumorigenesis and modulated the cancer stem cell-like properties and mitochondrial membrane potential via activation of Ca2+-dependent CaMKII/JNK cascade.
Collapse
Affiliation(s)
- Xue-Chang Han
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 JingHua Road, Jianxi District, Luoyang 471003, Henan Province, China.
| | - Ya-Jie Zhang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 JingHua Road, Jianxi District, Luoyang 471003, Henan Province, China
| | - Xu Dong
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 JingHua Road, Jianxi District, Luoyang 471003, Henan Province, China
| | - Qun-Zhi Xing
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 JingHua Road, Jianxi District, Luoyang 471003, Henan Province, China
| | - Ke-Han Li
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 JingHua Road, Jianxi District, Luoyang 471003, Henan Province, China
| | - Lu Zhang
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, No. 24 JingHua Road, Jianxi District, Luoyang 471003, Henan Province, China
| |
Collapse
|
9
|
Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int J Mol Sci 2020; 21:ijms21041538. [PMID: 32102377 PMCID: PMC7073220 DOI: 10.3390/ijms21041538] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
N-Methyl-d-Aspartate Receptors (NMDARs) are ionotropic glutamate-gated receptors. NMDARs are tetramers composed by several homologous subunits of GluN1-, GluN2-, or GluN3-type, leading to the existence in the central nervous system of a high variety of receptor subtypes with different pharmacological and signaling properties. NMDAR subunit composition is strictly regulated during development and by activity-dependent synaptic plasticity. Given the differences between GluN2 regulatory subunits of NMDAR in several functions, here we will focus on the synaptic pool of NMDARs containing the GluN2A subunit, addressing its role in both physiology and pathological synaptic plasticity as well as the contribution in these events of different types of GluN2A-interacting proteins.
Collapse
|
10
|
Regulation of Multifunctional Calcium/Calmodulin Stimulated Protein Kinases by Molecular Targeting. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:649-679. [PMID: 31646529 DOI: 10.1007/978-3-030-12457-1_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multifunctional calcium/calmodulin-stimulated protein kinases control a broad range of cellular functions in a multitude of cell types. This family of kinases contain several structural similarities and all are regulated by phosphorylation, which either activates, inhibits or modulates their kinase activity. As these protein kinases are widely or ubiquitously expressed, and yet regulate a broad range of different cellular functions, additional levels of regulation exist that control these cell-specific functions. Of particular importance for this specificity of function for multifunctional kinases is the expression of specific binding proteins that mediate molecular targeting. These molecular targeting mechanisms allow pools of kinase in different cells, or parts of a cell, to respond differently to activation and produce different functional outcomes.
Collapse
|
11
|
Tan H, Zhang G, Yang X, Jing T, Shen D, Wang X. Peimine inhibits the growth and motility of prostate cancer cells and induces apoptosis by disruption of intracellular calcium homeostasis through Ca
2+
/CaMKII/JNK pathway. J Cell Biochem 2019; 121:81-92. [PMID: 31081133 DOI: 10.1002/jcb.28870] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Hailin Tan
- Department of Urinary Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong Province China
| | - Guiming Zhang
- Department of Urinary Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong Province China
| | - Xuecheng Yang
- Department of Urinary Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong Province China
| | - Tao Jing
- Department of Urinary Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong Province China
| | - Daqing Shen
- Department of Urinary Surgery Affiliated Hospital of Jining Medical University Jining Shandong Province China
| | - Xinsheng Wang
- Department of Urinary Surgery The Affiliated Hospital of Qingdao University Qingdao Shandong Province China
| |
Collapse
|
12
|
Regulation of spinogenesis in mature Purkinje cells via mGluR/PKC-mediated phosphorylation of CaMKIIβ. Proc Natl Acad Sci U S A 2017; 114:E5256-E5265. [PMID: 28607044 DOI: 10.1073/pnas.1617270114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dendritic spines of Purkinje cells form excitatory synapses with parallel fiber terminals, which are the primary sites for cerebellar synaptic plasticity. Nevertheless, how density and morphology of these spines are properly maintained in mature Purkinje cells is not well understood. Here we show an activity-dependent mechanism that represses excessive spine development in mature Purkinje cells. We found that CaMKIIβ promotes spine formation and elongation in Purkinje cells through its F-actin bundling activity. Importantly, activation of group I mGluR, but not AMPAR, triggers PKC-mediated phosphorylation of CaMKIIβ, which results in dissociation of the CaMKIIβ/F-actin complex. Defective function of the PKC-mediated CaMKIIβ phosphorylation promotes excess F-actin bundling and leads to abnormally numerous and elongated spines in mature IP3R1-deficient Purkinje cells. Thus, our data suggest that phosphorylation of CaMKIIβ through the mGluR/IP3R1/PKC signaling pathway represses excessive spine formation and elongation in mature Purkinje cells.
Collapse
|
13
|
Wu X, Liang W, Guan H, Liu J, Liu L, Li H, He X, Zheng J, Chen J, Cao X, Li Y. Exendin-4 promotes pancreatic β-cell proliferation via inhibiting the expression of Wnt5a. Endocrine 2017; 55:398-409. [PMID: 27826714 DOI: 10.1007/s12020-016-1160-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023]
Abstract
Exendin-4, a glucagon-like peptide-1 receptor agonist, is currently regarded as an effective therapeutic strategy for type-2 diabetes. Previous studies indicated that exendin-4 promoted β cell proliferation. However, the underlying mechanisms remain largely unknown. Recently it was reported that exendin-4 promoted pancreatic β cell proliferation by regulating the expression level of Wnt4. The present study was designed to investigate whether other Wnt isoforms take part in accommodation of β-cell proliferation. We found that exendin-4 promotes the proliferation and suppresses the expression of Wnt5a in INS-1 cell line and C57Bl/6 mouse pancreatic β-cells. Further mechanistic study demonstrated that exendin-4 promoted INS-1 cell proliferation partly through down-regulating the expression of Wnt5a. Furthermore, Wnt5a could induce the activation of calmodulin-dependent protein kinase II in INS-1 cells, thereby decreasing the cellular stable β-catenin and its nuclear translocation, and finally reduce the expression of cyclin D1. In addition, we also found that both of the receptors (Frz-2 and Ror-2) mediated the effect of Wnt5a on β cell line INS-1 proliferation. Taken together, this study suggests that Wnt5a plays a critical role in exendin-4-induced β-cell proliferation, indicating that Wnt5a might be a novel regulator in counterbalance of β cell mass.
Collapse
Affiliation(s)
- Xinger Wu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Southern Medical University, Guangzhou, China
| | - Weiwei Liang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Juan Liu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liehua Liu
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoying He
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Zheng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaopei Cao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
A First-in-Class Small-Molecule that Acts as a Dual Inhibitor of HDAC and PDE5 and that Rescues Hippocampal Synaptic Impairment in Alzheimer's Disease Mice. Neuropsychopharmacology 2017; 42:524-539. [PMID: 27550730 PMCID: PMC5399234 DOI: 10.1038/npp.2016.163] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/27/2016] [Accepted: 07/30/2016] [Indexed: 12/26/2022]
Abstract
The targeting of two independent but synergistic enzymatic activities, histone deacetylases (HDACs, class I and HDAC6) and phosphodiesterase 5 (PDE5), has recently been validated as a potentially novel therapeutic approach for Alzheimer's disease (AD). Here we report the discovery of a new first-in-class small-molecule (CM-414) that acts as a dual inhibitor of PDE5 and HDACs. We have used this compound as a chemical probe to validate this systems therapeutics strategy, where an increase in the activation of cAMP/cGMP-responsive element-binding protein (CREB) induced by PDE5 inhibition, combined with moderate HDAC class I inhibition, leads to efficient histone acetylation. This molecule rescued the impaired long-term potentiation evident in hippocampal slices from APP/PS1 mice. Chronic treatment of Tg2576 mice with CM-414 diminished brain Aβ and tau phosphorylation (pTau) levels, increased the inactive form of GSK3β, reverted the decrease in dendritic spine density on hippocampal neurons, and reversed their cognitive deficits, at least in part by inducing the expression of genes related to synaptic transmission. Thus, CM-414 may serve as the starting point to discover balanced dual inhibitors with an optimal efficacy and safety profile for clinical testing on AD patients.
Collapse
|
15
|
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) has emerged as key enzyme in many cardiac pathologies, especially heart failure (HF), myocardial infarction and cardiomyopathies, thus leading to contractile dysfunction and malignant arrhythmias. While many pathways leading to CaMKII activation have been elucidated in recent years, hardly any clinically viable compounds affecting CaMKII activity have progressed from basic in vitro science to in vivo studies. This review focuses on recent advances in anti-arrhythmic strategies involving CaMKII. Specifically, both inhibition of CaMKII itself to prevent arrhythmias, as well as anti-arrhythmic approaches affecting CaMKII activity via alterations in signaling cascades upstream and downstream of CaMKII will be discussed.
Collapse
Affiliation(s)
- Julian Mustroph
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Stefan Neef
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany
| | - Lars S Maier
- Universitäres Herzzentrum Regensburg, Klinik und Poliklinik für Innere Medizin II, Universitätsklinikum Regensburg, Germany.
| |
Collapse
|
16
|
CaMKII inhibition promotes neuronal apoptosis by transcriptionally upregulating Bim expression. Neuroreport 2016; 27:1018-23. [DOI: 10.1097/wnr.0000000000000648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Katano T, Fukuda M, Furue H, Yamazaki M, Abe M, Watanabe M, Nishida K, Yao I, Yamada A, Hata Y, Okumura N, Nakazawa T, Yamamoto T, Sakimura K, Takao T, Ito S. Involvement of Brain-Enriched Guanylate Kinase-Associated Protein (BEGAIN) in Chronic Pain after Peripheral Nerve Injury. eNeuro 2016; 3:ENEURO.0110-16.2016. [PMID: 27785460 PMCID: PMC5066261 DOI: 10.1523/eneuro.0110-16.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/01/2016] [Accepted: 10/04/2016] [Indexed: 02/07/2023] Open
Abstract
Maintenance of neuropathic pain caused by peripheral nerve injury crucially depends on the phosphorylation of GluN2B, a subunit of the N-methyl-d-aspartate (NMDA) receptor, at Tyr1472 (Y1472) and subsequent formation of a postsynaptic density (PSD) complex of superficial spinal dorsal horn neurons. Here we took advantage of comparative proteomic analysis based on isobaric stable isotope tags (iTRAQ) between wild-type and knock-in mice with a mutation of Y1472 to Phe of GluN2B (Y1472F-KI) to search for PSD proteins in the spinal dorsal horn that mediate the signaling downstream of phosphorylated Y1472 GluN2B. Among several candidate proteins, we focused on brain-enriched guanylate kinase-associated protein (BEGAIN), which was specifically up-regulated in wild-type mice after spared nerve injury (SNI). Immunohistochemical analysis using the generated antibody demonstrated that BEGAIN was highly localized at the synapse of inner lamina II in the spinal dorsal horn and that its expression was up-regulated after SNI in wild-type, but not in Y1472F-KI, mice. In addition, alteration of the kinetics of evoked excitatory postsynaptic currents for NMDA but not those for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in spinal lamina II was demonstrated by BEGAIN deletion. We demonstrated that mechanical allodynia, a condition of abnormal pain induced by innocuous stimuli, in the SNI model was significantly attenuated in BEGAIN-deficient mice. However, there was no significant difference between naive wild-type and BEGAIN-knockout mice in terms of physiological threshold for mechanical stimuli. These results suggest that BEGAIN was involved in pathological pain transmission through NMDA receptor activation by the phosphorylation of GluN2B at Y1472 in spinal inner lamina II.
Collapse
Affiliation(s)
- Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| | - Masafumi Fukuda
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Hidemasa Furue
- Division of Neural Signaling, Department of Information Physiology, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Maya Yamazaki
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Neurology, University of California, San Francisco, CA 94158
| | - Manabu Abe
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Kazuhiko Nishida
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| | - Ikuko Yao
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
- Department of Optical Imaging, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, 431-3192, Japan
| | - Akihiro Yamada
- Division of Neural Signaling, Department of Information Physiology, National Institute for Physiological Sciences, Okazaki 444-8787, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Nobuaki Okumura
- Laboratory of Homeostatic Integration, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Takanobu Nakazawa
- Drug Innovation Center, Graduate School of Pharmaceutical Science, Osaka University, Suita, 565-0871, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Toshifumi Takao
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Hirakata 573-1010, Japan
| |
Collapse
|
18
|
Khan S, Conte I, Carter T, Bayer KU, Molloy JE. Multiple CaMKII Binding Modes to the Actin Cytoskeleton Revealed by Single-Molecule Imaging. Biophys J 2016; 111:395-408. [PMID: 27463141 PMCID: PMC4968397 DOI: 10.1016/j.bpj.2016.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 11/22/2022] Open
Abstract
Localization of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) to dendritic spine synapses is determined in part by the actin cytoskeleton. We determined binding of GFP-tagged CaMKII to tag-RFP-labeled actin cytoskeleton within live cells using total internal reflection fluorescence microscopy and single-molecule tracking. Stepwise photobleaching showed that CaMKII formed oligomeric complexes. Photoactivation experiments demonstrated that diffusion out of the evanescent field determined the track lifetimes. Latrunculin treatment triggered a coupled loss of actin stress fibers and the colocalized, long-lived CaMKII tracks. The CaMKIIα (α) isoform, which was previously thought to lack F-actin interactions, also showed binding, but this was threefold weaker than that observed for CaMKIIβ (β). The βE' splice variant bound more weakly than α, showing that binding by β depends critically on the interdomain linker. The mutations βT287D and αT286D, which mimic autophosphorylation states, also abolished F-actin binding. Autophosphorylation triggers autonomous CaMKII activity, but does not impair GluN2B binding, another important synaptic protein interaction of CaMKII. The CaMKII inhibitor tatCN21 or CaMKII mutations that inhibit GluN2B association by blocking binding of ATP (βK43R and αK42M) or Ca(2+)/calmodulin (βA303R) had no effect on the interaction with F-actin. These results provide the first rationale for the reduced synaptic spine localization of the αT286D mutant, indicating that transient F-actin binding contributes to the synaptic localization of the CaMKIIα isoform. The track lifetime distributions had a stretched exponential form consistent with a heterogeneously diffusing population. This heterogeneity suggests that CaMKII adopts different F-actin binding modes, which is most easily rationalized by multiple subunit contacts between the CaMKII dodecamer and the F-actin cytoskeleton that stabilize the initial weak (micromolar) monovalent interaction.
Collapse
Affiliation(s)
- Shahid Khan
- Molecular Biology Consortium, Lawrence Berkeley National Laboratory, Berkeley, California.
| | - Ianina Conte
- Cardiovascular and Cell Science Research Institute, St. George's University of London, London, UK
| | - Tom Carter
- Cell Biology and Genetics, St. George's University of London, London, UK
| | - K Ulrich Bayer
- Department of Pharmacology, University of Colorado Denver, Aurora, Colorado
| | - Justin E Molloy
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| |
Collapse
|
19
|
Stegen B, Klumpp L, Misovic M, Edalat L, Eckert M, Klumpp D, Ruth P, Huber SM. K + channel signaling in irradiated tumor cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:585-598. [PMID: 27165704 DOI: 10.1007/s00249-016-1136-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/24/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
Abstract
K+ channels crosstalk with biochemical signaling cascades and regulate virtually all cellular processes by adjusting the intracellular K+ concentration, generating the membrane potential, mediating cell volume changes, contributing to Ca2+ signaling, and directly interacting within molecular complexes with membrane receptors and downstream effectors. Tumor cells exhibit aberrant expression and activity patterns of K+ channels. The upregulation of highly "oncogenic" K+ channels such as the Ca2+-activated IK channel may drive the neoplastic transformation, malignant progression, metastasis, or therapy resistance of tumor cells. In particular, ionizing radiation in doses used for fractionated radiotherapy in the clinic has been shown to activate K+ channels. Radiogenic K+ channel activity, in turn, contributes to the DNA damage response and promotes survival of the irradiated tumor cells. Tumor-specific overexpression of certain K+ channel types together with the fact that pharmacological K+ channel modulators are already in clinical use or well tolerated in clinical trials suggests that K+ channel targeting alone or in combination with radiotherapy might become a promising new strategy of anti-cancer therapy. The present article aims to review our current knowledge on K+ channel signaling in irradiated tumor cells. Moreover, it provides new data on molecular mechanisms of radiogenic K+ channel activation and downstream signaling events.
Collapse
Affiliation(s)
- Benjamin Stegen
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Lukas Klumpp
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany.,Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Milan Misovic
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Lena Edalat
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Marita Eckert
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Dominik Klumpp
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
20
|
Oligodendrocytes Are Targets of HIV-1 Tat: NMDA and AMPA Receptor-Mediated Effects on Survival and Development. J Neurosci 2015; 35:11384-98. [PMID: 26269645 DOI: 10.1523/jneurosci.4740-14.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
UNLABELLED Myelin pallor in HIV(+) individuals can occur very early during the disease process. While myelin damage might partly originate from HIV-induced vascular changes, the timing suggests that myelin and/or oligodendrocytes (OLs) may be directly affected. Histological (Golgi-Kopsch, electron microscopy) and biochemical studies have revealed an increased occurrence of abnormal OL/myelin morphology and dysregulated myelin protein expression in transgenic mice expressing the HIV-1 transactivator of transcription (Tat) protein. This suggests that viral proteins by themselves might cause OL injury. Since Tat interacts with NMDARs, we hypothesized that activation of NMDARs and subsequent disruption of cytoplasmic Ca(2+) ([Ca(2+)]i) homeostasis might be one cause of white matter injury after HIV infection. In culture, HIV-1 Tat caused concentration-dependent death of immature OLs, while more mature OLs remained alive but had reduced myelin-like membranes. Tat also induced [Ca(2+)]i increases and Thr-287 autophosphorylation of Ca(2+)/calmodulin-dependent protein kinase II β (CaMKIIβ) in OLs. Tat-induced [Ca(2+)]i was attenuated by the NMDAR antagonist MK801, and also by the AMPA/kainate receptor antagonist CNQX. Importantly, both MK801 and CNQX blocked Tat-induced death of immature OLs, but only MK801 reversed Tat effects on myelin-like membranes. These results suggest that OLs can be direct targets of HIV proteins released from infected cells. Although viability and membrane production are both affected by glutamatergic receptor-mediated Ca(2+) influx, and possibly the ensuing CaMKIIβ activation, the roles of AMPARs and NMDARs appear to be different and dependent on the stage of OL differentiation. SIGNIFICANCE STATEMENT Over 33 million individuals are currently infected by HIV. Among these individuals, ∼60% develop HIV-associated neurocognitive disorders. Myelin damage and white matter injury have been frequently reported in HIV patients but not extensively studied. Clinical studies using combined antiretroviral therapy (cART) together with adjunctive "anti-inflammatory" drugs show no improvement over cART alone, suggesting existence of injury mechanisms in addition to inflammation. In our studies, oligodendrocytes exhibited rapid increases in intracellular Ca(2+) level upon HIV-1 transactivator of transcription (Tat) exposure. Thus, immature and mature oligodendrocytes can be direct targets of Tat. Since ionotropic glutamate receptor antagonists can partially or fully reverse the detrimental effects of Tat, glutamate receptors could be a potential therapeutic target for white matter damage in HIV patients.
Collapse
|
21
|
Mollova MY, Katus HA, Backs J. Regulation of CaMKII signaling in cardiovascular disease. Front Pharmacol 2015; 6:178. [PMID: 26379551 PMCID: PMC4548452 DOI: 10.3389/fphar.2015.00178] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/10/2015] [Indexed: 01/08/2023] Open
Abstract
Heart failure (HF) is a major cause of death in the developed countries (Murray and Lopez, 1996; Koitabashi and Kass, 2012). Adverse cardiac remodeling that precedes heart muscle dysfunction is characterized by a myriad of molecular changes affecting the cardiomyocyte. Among these, alterations in protein kinase pathways play often an important mediator role since they link upstream pathologic stress signaling with downstream regulatory programs and thus affect both the structural and functional integrity of the heart muscle. In the context of cardiac disease, a profound understanding for the overriding mechanisms that regulate protein kinase activity (protein-protein interactions, post-translational modifications, or targeting via anchoring proteins) is crucial for the development of specific and effective pharmacological treatment strategies targeting the failing myocardium. In this review, we focus on several mechanisms of upstream regulation of Ca2+-calmodulin-dependent protein kinase II that play a relevant pathophysiological role in the development and progression of cardiovascular disease; precise targeting of these mechanisms might therefore represent novel and promising tools for prevention and treatment of HF.
Collapse
Affiliation(s)
- Mariya Y Mollova
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of Heidelberg , Heidelberg, Germany ; Department of Cardiology, Angiology and Pneumology, University of Heidelberg , Heidelberg, Germany ; Partner Site Heidelberg/Mannheim, German Center for Cardiovascular Research , Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, University of Heidelberg , Heidelberg, Germany ; Partner Site Heidelberg/Mannheim, German Center for Cardiovascular Research , Heidelberg, Germany
| | - Johannes Backs
- Research Unit Cardiac Epigenetics, Department of Cardiology, Angiology and Pneumology, University of Heidelberg , Heidelberg, Germany ; Partner Site Heidelberg/Mannheim, German Center for Cardiovascular Research , Heidelberg, Germany
| |
Collapse
|
22
|
Pellicena P, Schulman H. CaMKII inhibitors: from research tools to therapeutic agents. Front Pharmacol 2014; 5:21. [PMID: 24600394 PMCID: PMC3929941 DOI: 10.3389/fphar.2014.00021] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/03/2014] [Indexed: 11/23/2022] Open
Abstract
The cardiac field has benefited from the availability of several CaMKII inhibitors serving as research tools to test putative CaMKII pathways associated with cardiovascular physiology and pathophysiology. Successful demonstrations of its critical pathophysiological roles have elevated CaMKII as a key target in heart failure, arrhythmia, and other forms of heart disease. This has caught the attention of the pharmaceutical industry, which is now racing to develop CaMKII inhibitors as safe and effective therapeutic agents. While the first generation of CaMKII inhibitor development is focused on blocking its activity based on ATP binding to its catalytic site, future inhibitors can also target sites affecting its regulation by Ca2+/CaM or translocation to some of its protein substrates. The recent availability of crystal structures of the kinase in the autoinhibited and activated state, and of the dodecameric holoenzyme, provides insights into the mechanism of action of existing inhibitors. It is also accelerating the design and development of better pharmacological inhibitors. This review examines the structure of the kinase and suggests possible sites for its inhibition. It also analyzes the uses and limitations of current research tools. Development of new inhibitors will enable preclinical proof of concept tests and clinical development of successful lead compounds, as well as improved research tools to more accurately examine and extend knowledge of the role of CaMKII in cardiac health and disease.
Collapse
|
23
|
Giudice J, Cooper TA. RNA-binding proteins in heart development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:389-429. [PMID: 25201112 DOI: 10.1007/978-1-4939-1221-6_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RNA-binding proteins (RBPs) are key players of posttranscriptional regulation occurring during normal tissue development. All tissues examined thus far have revealed the importance of RBPs in the regulation of complex networks involved in organ morphogenesis, maturation, and function. They are responsible for controlling tissue-specific gene expression by regulating alternative splicing, mRNA stability, translation, and poly-adenylation. The heart is the first organ form during embryonic development and is also the first to acquire functionality. Numerous remodeling processes take place during late cardiac development since fetal heart first adapts to birth and then undergoes a transition to adult functionality. This physiological remodeling involves transcriptional and posttranscriptional networks that are regulated by RBPs. Disruption of the normal regulatory networks has been shown to cause cardiomyopathy in humans and animal models. Here we review the complexity of late heart development and the current information regarding how RBPs control aspects of postnatal heart development. We also review how activities of RBPs are modulated adding complexity to the regulation of developmental networks.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA,
| | | |
Collapse
|
24
|
|
25
|
Aversa Z, Alamdari N, Castillero E, Muscaritoli M, Fanelli FR, Hasselgren PO. CaMKII activity is reduced in skeletal muscle during sepsis. J Cell Biochem 2013; 114:1294-305. [DOI: 10.1002/jcb.24469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 11/27/2012] [Indexed: 12/23/2022]
|
26
|
Savina TA, Shchipakina TG, Levin SG, Godukhin OV. Interleukin-10 prevents the hypoxia-induced decreases in expressions of AMPA receptor subunit GluA1 and alpha subunit of Ca2+/calmodulin-dependent protein kinase II in hippocampal neurons. Neurosci Lett 2013. [DOI: 10.1016/j.neulet.2012.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
27
|
Ann EJ, Kim HY, Seo MS, Mo JS, Kim MY, Yoon JH, Ahn JS, Park HS. Wnt5a controls Notch1 signaling through CaMKII-mediated degradation of the SMRT corepressor protein. J Biol Chem 2012; 287:36814-29. [PMID: 22888005 DOI: 10.1074/jbc.m112.356048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Serine-threonine Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is the key component in noncanonical Wnt5a signaling and has been shown to regulate its signaling. In this study, we found that CaMKII induced by Wnt5a remarkably reduced the protein stability of the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT), a co-repressor of Notch signaling, through proteasomal degradation. Wnt5a was found to enhance Notch1 intracellular domain (Notch1-IC) transcription activity, which could be inhibited by treatment with KN93, a CaMKII inhibitor. The kinase activity of CaMKII was essential for the activation of Notch signaling. We also determined that CaMKII could enhance the association between Notch1-IC and RBP-Jk. Furthermore, the physical association between RBP-Jk and SMRT was substantially suppressed by CaMKII. We demonstrated that CaMKII directly bound and phosphorylated SMRT at Ser-1407, thereby facilitating SMRT translocation from the nucleus to the cytoplasm and proteasome-dependent degradation. These results suggest that CaMKII down-regulated the protein stability of SMRT through proteasomal degradation.
Collapse
Affiliation(s)
- Eun-Jung Ann
- Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jalan-Sakrikar N, Bartlett RK, Baucum AJ, Colbran RJ. Substrate-selective and calcium-independent activation of CaMKII by α-actinin. J Biol Chem 2012; 287:15275-83. [PMID: 22427672 PMCID: PMC3346149 DOI: 10.1074/jbc.m112.351817] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 03/14/2012] [Indexed: 11/06/2022] Open
Abstract
Protein-protein interactions are thought to modulate the efficiency and specificity of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling in specific subcellular compartments. Here we show that the F-actin-binding protein α-actinin targets CaMKIIα to F-actin in cells by binding to the CaMKII regulatory domain, mimicking CaM. The interaction with α-actinin is blocked by CaMKII autophosphorylation at Thr-306, but not by autophosphorylation at Thr-305, whereas autophosphorylation at either site blocks Ca(2+)/CaM binding. The binding of α-actinin to CaMKII is Ca(2+)-independent and activates the phosphorylation of a subset of substrates in vitro. In intact cells, α-actinin selectively stabilizes CaMKII association with GluN2B-containing glutamate receptors and enhances phosphorylation of Ser-1303 in GluN2B, but inhibits CaMKII phosphorylation of Ser-831 in glutamate receptor GluA1 subunits by competing for activation by Ca(2+)/CaM. These data show that Ca(2+)-independent binding of α-actinin to CaMKII differentially modulates the phosphorylation of physiological targets that play key roles in long-term synaptic plasticity.
Collapse
Affiliation(s)
| | | | | | - Roger J. Colbran
- From the Department of Molecular Physiology and Biophysics
- Vanderbilt Brain Institute, and
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
29
|
Lebonvallet N, Boulais N, Le Gall C, Chéret J, Pereira U, Mignen O, Bardey V, Jeanmaire C, Danoux L, Pauly G, Misery L. Characterization of neurons from adult human skin-derived precursors in serum-free medium : a PCR array and immunocytological analysis. Exp Dermatol 2012; 21:195-200. [DOI: 10.1111/j.1600-0625.2011.01422.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Zizak M, Chen T, Bartonicek D, Sarker R, Zachos NC, Cha B, Kovbasnjuk O, Korac J, Mohan S, Cole R, Chen Y, Tse CM, Donowitz M. Calmodulin kinase II constitutively binds, phosphorylates, and inhibits brush border Na+/H+ exchanger 3 (NHE3) by a NHERF2 protein-dependent process. J Biol Chem 2012; 287:13442-56. [PMID: 22371496 DOI: 10.1074/jbc.m111.307256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial brush border (BB) Na(+)/H(+) exchanger 3 (NHE3) accounts for most renal and intestinal Na(+) absorption. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibits NHE3 activity under basal conditions in intact intestine, acting in the BB, but the mechanism is unclear. We now demonstrate that in both PS120 fibroblasts and polarized Caco-2BBe cells expressing NHE3, CaMKII inhibits basal NHE3 activity, because the CaMKII-specific inhibitors KN-93 and KN-62 stimulate NHE3 activity. This inhibition requires NHERF2. CaMKIIγ associates with NHE3 between aa 586 and 605 in the NHE3 C terminus in a Ca(2+)-dependent manner, with less association when Ca(2+) is increased. CaMKII inhibits NHE3 by an effect on its turnover number, not changing surface expression. Back phosphorylation demonstrated that NHE3 is phosphorylated by CaMKII under basal conditions. This overall phosphorylation of NHE3 is not affected by the presence of NHERF2. Amino acids downstream of NHE3 aa 690 are required for CaMKII to inhibit basal NHE3 activity, and mutations of the three putative CaMKII phosphorylation sites downstream of aa 690 each prevented KN-93 stimulation of NHE3 activity. These studies demonstrate that CaMKIIγ is a novel NHE3-binding protein, and this association is reduced by elevated Ca(2+). CaMKII inhibits basal NHE3 activity associated with phosphorylation of NHE3 by effects requiring aa downstream of NHE3 aa 690 and of the CaMKII-binding site on NHE3. CaMKII binding to and phosphorylation of the NHE3 C terminus are parts of the physiologic regulation of NHE3 that occurs in fibroblasts as well as in the BB of an intestinal Na(+)-absorptive cell.
Collapse
Affiliation(s)
- Mirza Zizak
- Division of Gastroenterology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lyons MR, West AE. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94:259-95. [PMID: 21620929 PMCID: PMC3134613 DOI: 10.1016/j.pneurobio.2011.05.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
32
|
Abstract
Ischemic insults on neurons trigger excessive, pathological glutamate release that causes Ca²⁺ overload resulting in neuronal cell death (excitotoxicity). The Ca²⁺/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a major mediator of physiological excitatory glutamate signals underlying neuronal plasticity and learning. Glutamate stimuli trigger autophosphorylation of CaMKII at T286, a process that makes the kinase "autonomous" (partially active independent from Ca²⁺ stimulation) and that is required for forms of synaptic plasticity. Recent studies suggested autonomous CaMKII activity also as potential drug target for post-insult neuroprotection, both after glutamate insults in neuronal cultures and after focal cerebral ischemia in vivo. However, CaMKII and other members of the CaM kinase family have been implicated in regulation of both neuronal death and survival. Here, we discuss past findings and possible mechanisms of CaM kinase functions in excitotoxicity and cerebral ischemia, with a focus on CaMKII and its regulation.
Collapse
|
33
|
Hussain SK, Broederdorf LJ, Sharma UM, Voth DE. Host Kinase Activity is Required for Coxiella burnetii Parasitophorous Vacuole Formation. Front Microbiol 2010; 1:137. [PMID: 21772829 PMCID: PMC3119423 DOI: 10.3389/fmicb.2010.00137] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/04/2010] [Indexed: 11/24/2022] Open
Abstract
Coxiella burnetii is the etiologic agent of human Q fever and targets alveolar phagocytic cells in vivo wherein the pathogen generates a phagolysosome-like parasitophorous vacuole (PV) for replication. C. burnetii displays a prolonged growth cycle, making PV maintenance critical for bacterial survival. Previous studies showed that C. burnetii mediates activation of eukaryotic kinases to inhibit cell death, indicating the importance of host signaling during infection. In the current study, we examined the role of eukaryotic kinase signaling in PV establishment. A panel of 113 inhibitors was analyzed for their impact on C. burnetii infection of human THP-1 macrophage-like cells and HeLa cells. Inhibition of 11 kinases or two phosphatases altered PV formation and prevented pathogen growth, with most inhibitor-treated cells harboring organisms in tight-fitting phagosomes, indicating kinase/phosphatase activation is required for PV maturation. Five inhibitors targeted protein kinase C (PKC), suggesting a critical role for this protein during intracellular growth. The PKC-specific substrate MARCKS was phosphorylated at 24 h post-infection and remained phosphorylated through 5 days post-infection, indicating prolonged regulation of the PKC pathway by C. burnetii. Infection also altered the activation status of p38, myosin light chain kinase, and cAMP-dependent protein kinase, suggesting C. burnetii subverts numerous phosphorylation cascades. These results underscore the importance of intracellular host signaling for C. burnetii PV biogenesis.
Collapse
Affiliation(s)
- S Kauser Hussain
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences Little Rock, AR, USA
| | | | | | | |
Collapse
|
34
|
Wang HH, Hsieh HL, Yang CM. Calmodulin kinase II-dependent transactivation of PDGF receptors mediates astrocytic MMP-9 expression and cell motility induced by lipoteichoic acid. J Neuroinflammation 2010; 7:84. [PMID: 21092323 PMCID: PMC2997088 DOI: 10.1186/1742-2094-7-84] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 11/24/2010] [Indexed: 12/20/2022] Open
Abstract
Background Lipoteichoic acid (LTA) is a component of Gram-positive bacterial cell walls, which has been found to be elevated in cerebrospinal fluid of patients suffering from meningitis. Moreover, matrix metalloproteinases (MMPs), MMP-9 especially, have been observed in patients with brain inflammatory diseases and may contribute to brain disease pathology. However, the molecular mechanisms underlying LTA-induced MMP-9 expression in brain astrocytes remain unclear. Objective The goal of this study was to examine whether LTA-induced cell migration is mediated by calcium/calmodulin (CaM)/CaM kinase II (CaMKII)-dependent transactivation of the PDGFR pathway in rat brain astrocytes (RBA-1 cells). Methods Expression and activity of MMP-9 induced by LTA was evaluated by zymographic, western blotting, and RT-PCR analyses. MMP-9 regulatory signaling pathways were investigated by treatment with pharmacological inhibitors or using dominant negative mutants or short hairpin RNA (shRNA) transfection, and chromatin immunoprecipitation (ChIP)-PCR and promoter activity reporter assays. Finally, we determined the cell functional changes by cell migration assay. Results The data show that c-Jun/AP-1 mediates LTA-induced MMP-9 expression in RBA-1 cells. Next, we demonstrated that LTA induces MMP-9 expression via a calcium/CaM/CaMKII-dependent transactivation of PDGFR pathway. Transactivation of PDGFR led to activation of PI3K/Akt and JNK1/2 and then activated c-Jun/AP-1 signaling. Activated-c-Jun bound to the AP-1-binding site of the MMP-9 promoter, and thereby turned on transcription of MMP-9. Eventually, up-regulation of MMP-9 by LTA enhanced cell migration of astrocytes. Conclusions These results demonstrate that in RBA-1 cells, activation of c-Jun/AP-1 by a CaMKII-dependent PI3K/Akt-JNK activation mediated through transactivation of PDGFR is essential for up-regulation of MMP-9 and cell migration induced by LTA. Understanding the regulatory mechanisms underlying LTA-induced MMP-9 expression and functional changes in astrocytes may provide a new therapeutic strategy for Gram-positive bacterial infections in brain disorders.
Collapse
Affiliation(s)
- Hui-Hsin Wang
- Department of Physiology and Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
| | | | | |
Collapse
|
35
|
Wang Z, Ginnan R, Abdullaev IF, Trebak M, Vincent PA, Singer HA. Calcium/Calmodulin-dependent protein kinase II delta 6 (CaMKIIdelta6) and RhoA involvement in thrombin-induced endothelial barrier dysfunction. J Biol Chem 2010; 285:21303-12. [PMID: 20442409 DOI: 10.1074/jbc.m110.120790] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multiple Ca(2+) release and entry mechanisms and potential cytoskeletal targets have been implicated in vascular endothelial barrier dysfunction; however, the immediate downstream effectors of Ca(2+) signals in the regulation of endothelial permeability still remain unclear. In the present study, we evaluated the contribution of multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) as a mediator of thrombin-stimulated increases in human umbilical vein endothelial cell (HUVEC) monolayer permeability. For the first time, we identified the CaMKIIdelta(6) isoform as the predominant CaMKII isoform expressed in endothelium. As little as 2.5 nM thrombin maximally increased CaMKIIdelta(6) activation assessed by Thr(287) autophosphorylation. Electroporation of siRNA targeting endogenous CaMKIIdelta (siCaMKIIdelta) suppressed expression of the kinase by >80% and significantly inhibited 2.5 nM thrombin-induced increases in monolayer permeability assessed by electrical cell-substrate impedance sensing (ECIS). siCaMKIIdelta inhibited 2.5 nM thrombin-induced activation of RhoA, but had no effect on thrombin-induced ERK1/2 activation. Although Rho kinase inhibition strongly suppressed thrombin-induced HUVEC hyperpermeability, inhibiting ERK1/2 activation had no effect. In contrast to previous reports, these results indicate that thrombin-induced ERK1/2 activation in endothelial cells is not mediated by CaMKII and is not involved in endothelial barrier hyperpermeability. Instead, CaMKIIdelta(6) mediates thrombin-induced HUVEC barrier dysfunction through RhoA/Rho kinase as downstream intermediates. Moreover, the relative contribution of the CaMKIIdelta(6)/RhoA pathway(s) diminished with increasing thrombin stimulation, indicating recruitment of alternative signaling pathways mediating endothelial barrier dysfunction, dependent upon thrombin concentration.
Collapse
Affiliation(s)
- Zhen Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | | | | | | | | | | |
Collapse
|
36
|
Santos SD, Manadas B, Duarte CB, Carvalho AL. Proteomic Analysis of an Interactome for Long-Form AMPA Receptor Subunits. J Proteome Res 2010; 9:1670-82. [DOI: 10.1021/pr900766r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sandra D. Santos
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Bruno Manadas
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carlos B. Duarte
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ana Luísa Carvalho
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
37
|
Activity-dependent anchoring of importin alpha at the synapse involves regulated binding to the cytoplasmic tail of the NR1-1a subunit of the NMDA receptor. J Neurosci 2010; 29:15613-20. [PMID: 20016075 DOI: 10.1523/jneurosci.3314-09.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Synaptic plasticity, the capacity of neurons to change the strength of their connections with experience, provides a mechanism for learning and memory in the brain. Long-term plasticity requires new transcription, indicating that synaptically generated signals must be transported to the nucleus. Previous studies have described a role for importin nuclear transport adaptors in mediating the retrograde transport of signals from synapse to nucleus during plasticity. Here, we investigated the possibility that stimulus-induced translocation of importins from synapse to nucleus involves activity-dependent anchoring of importins at the synapse. We show that importin alpha binds to a nuclear localization signal (NLS) present in the cytoplasmic tail of NR1-1a. This interaction is disrupted by activation of NMDA receptors in cultured neurons and by stimuli that trigger late-phase, but not early-phase, long-term potentiation of CA3-CA1 synapses in acute hippocampal slices. In vitro PKC phosphorylation of GST-NR1-1a abolishes its ability to bind importin alpha in brain lysates, and the interaction of importin alpha and NR1 in neurons is modulated by PKC activity. Together, our results indicate that importin alpha is tethered at the postsynaptic density by binding to the NLS present in NR1-1a. This interaction is activity dependent, with importin alpha being released following NMDA receptor activation and phosphorylation rendering it available to bind soluble cargoes and transport them to the nucleus during transcription-dependent forms of neuronal plasticity.
Collapse
|
38
|
Wu CY, Hsieh HL, Sun CC, Yang CM. IL-1beta induces MMP-9 expression via a Ca2+-dependent CaMKII/JNK/c-JUN cascade in rat brain astrocytes. Glia 2010; 57:1775-89. [PMID: 19455716 DOI: 10.1002/glia.20890] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interleukin (IL)-1beta has been shown to induce matrix metalloproteinase (MMP)-9 expression through mitogen-activated protein kinases, including JNK, in rat brain astrocyte-1 (RBA-1) cells. However, little is known about whether JNK activated by Ca(2+)-dependent CaMKII is associated with MMP-9 expression induced by IL-1beta. Here, we report that the Ca(2+)/CaMKII/JNK/c-Jun participates in the MMP-9 expression induced by IL-1beta. Zymographic, Western blotting, and RT-PCR analyses showed that IL-1beta-induced expression of MMP-9 mRNA and protein was attenuated by Ca(2+) chelator (BAPTA), and the inhibitors of ER Ca(2+)-ATPase (thapsigargin), CaMKII (KN-62), and JNK1/2 (SP600125). IL-1beta also stimulated phosphorylation of CaMKII and JNK1/2, and increase in intracellular Ca(2+) ([Ca(2+)](i)), which were inhibited by pretreatment with BAPTA, thapsigargin (TG), KN-62, or SP600125. Furthermore, the upregulation of MMP-9 protein was blocked by transfection with c-Jun or CaMKII short hairpin RNA (shRNA). We further confirmed that IL-1beta stimulated c-Jun associated with AP-1-binding sites within MMP-9 promoter (-87 to -80 bp and -511 to -497 bp) by immunoprecipitation and chromatin immunoprecipitation (ChIP)-PCR assays. The activation and recruitment of c-Jun to MMP-9 promoter were inhibited by pretreatment with BAPTA, TG, KN-62, or SP600125. Moreover, IL-1beta-induced MMP-9 gene transcription by AP-1 was confirmed by transfection with a MMP-9 promoter-luciferase reporter plasmid with a distal AP-1-binding site (-511 to -497 bp) adjacent to an Ets-binding site-mutation (mt-AP1/Ets-MMP-9). These results demonstrated that in RBA-1 cells, JNK/c-Jun activation was mediated through a Ca(2+)-dependent CaMKII pathway that promoted transcription factor c-Jun/AP-1 recruitment and eventually led to increase in MMP-9 expression by IL-1beta.
Collapse
Affiliation(s)
- Cheng-Ying Wu
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|
39
|
Biochemical characterization and expression analysis of a novel EF-hand Ca2+ binding protein calmyrin2 (Cib2) in brain indicates its function in NMDA receptor mediated Ca2+ signaling. Arch Biochem Biophys 2009; 487:66-78. [PMID: 19433056 DOI: 10.1016/j.abb.2009.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 04/26/2009] [Accepted: 05/02/2009] [Indexed: 12/12/2022]
Abstract
Calmyrin2 (CaMy2, Cib2) is a novel EF-hand calcium-binding protein found recently in skeletal muscles. CaMy2 mRNA was also detected in brain, but nothing is known about CaMy2 protein localization and properties in the brain. We report cloning and characterization of CaMy2 in rat brain: its expression pattern, intracellular localization and biochemical features. CaMy2 binds Ca2+ and exhibits Ca2+/conformational switch. Moreover, CaMy2 undergoes N-myristoylation without Ca2+/myristoyl switch, is membrane-associated and localizes in neurons together with Golgi apparatus and dendrite markers. CaMy2 transcript and protein are present mainly in the hippocampus and cortex. In cultured hippocampal neurons, CaMy2 is induced upon neuronal activation. Most prominent increase in CaMy2 protein (7-fold), and mRNA (2-fold) occurs upon stimulation of NMDA receptor (NMDAR). The induction is blocked by translation inhibitors, specific antagonists of NMDAR, the Ca2+-chelator BAPTA, and inhibitors of ERK1/2 and PKC, kinases transmitting NMDAR-linked Ca2+ signal. Our results show that CaMy2 level is controlled by NMDAR and Ca2+ and suggest CaMy2 role in Ca2+ signaling underlying NMDAR activation.
Collapse
|
40
|
Affiliation(s)
- Marc D. Binder
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle Washington, USA
| | - Nobutaka Hirokawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine University of Tokyo Hongo, Bunkyo‐ku Tokyo, Japan
| | | |
Collapse
|
41
|
Shetty PK, Huang FL, Huang KP. Ischemia-elicited Oxidative Modulation of Ca2+/Calmodulin-dependent Protein Kinase II. J Biol Chem 2008; 283:5389-401. [DOI: 10.1074/jbc.m708479200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
Connolly SF, Kusner DJ. The regulation of dendritic cell function by calcium-signaling and its inhibition by microbial pathogens. Immunol Res 2008; 39:115-27. [PMID: 17917060 DOI: 10.1007/s12026-007-0076-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/25/2022]
Abstract
Dendritic cells (DC) are the sentinels of the immune system, linking innate with adaptive responses. The functional responses of DC are subject to complex regulation and serve as targets for pathogens. Ca2+-mediated signal transduction pathways serve a central regulatory role in DC responses to diverse antigens, including TLR ligands, intact bacteria, and microbial toxins. This review summarizes the major mechanisms of Ca2+-signaling that DC utilize to regulate maturation and antigen presentation, including a Ca2+-calmodulin (CaM)-CaM kinase II pathway that is localized to phagosomes and is targeted by the human intracellular pathogen, Mycobacterium tuberculosis. Restoration of functional Ca2+ signaling in DC may provide a novel mechanism to enhance therapy and promote vaccine efficacy to infectious diseases, including tuberculosis.
Collapse
Affiliation(s)
- S F Connolly
- Department of Medicine, The Graduate Program in Immunology, The University of Iowa, Iowa City, IA 52242, USA.
| | | |
Collapse
|
43
|
Vest RS, Davies KD, O'Leary H, Port JD, Bayer KU. Dual mechanism of a natural CaMKII inhibitor. Mol Biol Cell 2007; 18:5024-33. [PMID: 17942605 DOI: 10.1091/mbc.e07-02-0185] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) is a major mediator of cellular Ca(2+) signaling. Several inhibitors are commonly used to study CaMKII function, but these inhibitors all lack specificity. CaM-KIIN is a natural, specific CaMKII inhibitor protein. CN21 (derived from CaM-KIIN amino acids 43-63) showed full specificity and potency of CaMKII inhibition. CNs completely blocked Ca(2+)-stimulated and autonomous substrate phosphorylation by CaMKII and autophosphorylation at T305. However, T286 autophosphorylation (the autophosphorylation generating autonomous activity) was only mildly affected. Two mechanisms can explain this unusual differential inhibitor effect. First, CNs inhibited activity by interacting with the CaMKII T-site (and thereby also interfered with NMDA-type glutamate receptor binding to the T-site). Because of this, the CaMKII region surrounding T286 competed with CNs for T-site interaction, whereas other substrates did not. Second, the intersubunit T286 autophosphorylation requires CaM binding both to the "kinase" and the "substrate" subunit. CNs dramatically decreased CaM dissociation, thus facilitating the ability of CaM to make T286 accessible for phosphorylation. Tat-fusion made CN21 cell penetrating, as demonstrated by a strong inhibition of filopodia motility in neurons and insulin secrection from isolated Langerhans' islets. These results reveal the inhibitory mechanism of CaM-KIIN and establish a powerful new tool for dissecting CaMKII function.
Collapse
Affiliation(s)
- Rebekah S Vest
- Department of Pharmacology, University of Colorado Denver-School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
44
|
Park CS, Elgersma Y, Grant SGN, Morrison JH. alpha-Isoform of calcium-calmodulin-dependent protein kinase II and postsynaptic density protein 95 differentially regulate synaptic expression of NR2A- and NR2B-containing N-methyl-d-aspartate receptors in hippocampus. Neuroscience 2007; 151:43-55. [PMID: 18082335 DOI: 10.1016/j.neuroscience.2007.09.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 08/10/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are critical determinants of bidirectional synaptic plasticity, however, studies of NMDAR function have been based primarily on pharmacological and electrophysiological manipulations, and it is still debated whether there are subunit-selective forms of long-term potentiation (LTP) and long-term depression (LTD). Here we provide ultrastructural analyses of axospinous synapses in cornu ammonis field 1 of hippocampus (CA1) stratum radiatum of transgenic mice with mutations to two key underlying postsynaptic density (PSD) proteins, postsynaptic density protein 95 (PSD-95) and the alpha-isoform of calcium-calmodulin-dependent protein kinase II (alphaCaMKII). Distribution profiles of synaptic proteins in these mice reveal very different patterns of subunit-specific NMDAR localization, which may be related to the divergent phenotypes of the two mutants. In PSD-95, Dlg, ZO-1/Dlg-homologous region (PDZ) 3-truncated mutant mice in which LTD could not be induced but LTP was found to be enhanced, we found a subtle, yet preferential displacement of synaptic N-methyl-d-aspartate receptor subunit 2B (NR2B) subunits in lateral regions of the synapse without affecting changes in the localization of N-methyl-d-aspartate receptor subunit 2A (NR2A) subunits. In persistent inhibitory alphaCaMKII Thr305 substituted with Asp in alpha-isoform of calcium-calmodulin kinase II (T305D) mutant mice with severely impaired LTP but stable LTD expression, we found a selective reduction of NR2A subunits at both the synapse and throughout the cytoplasm of the spine without any effect on the NR2B subunit. In an experiment of mutual exclusivity, neither PSD-95 nor alphaCaMKII localization was found to be affected by mutations to the corresponding PSD protein suggesting that they are functionally independent of the other in the regulation of NR2A- and NR2B-containing NMDARs preceding synaptic activity. Consequently, there may exist at least two distinct PSD-95 and alphaCaMKII-specific NMDAR complexes involved in mediating LTP and LTD through opposing signal transduction pathways in synapses of the hippocampus. The contrasting phenotypes of the PSD-95 and alphaCaMKII mutant mice further establish the prospect of an independent and, possibly, competing mechanism for the regulation of NMDAR-dependent bidirectional synaptic plasticity.
Collapse
Affiliation(s)
- C S Park
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
45
|
Liu S, Fa M, Ninan I, Trinchese F, Dauer W, Arancio O. Alpha-synuclein involvement in hippocampal synaptic plasticity: role of NO, cGMP, cGK and CaMKII. Eur J Neurosci 2007; 25:3583-96. [PMID: 17610578 DOI: 10.1111/j.1460-9568.2007.05569.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synaptic plasticity involves a series of coordinate changes occurring both pre- and postsynaptically, of which alpha-synuclein is an integral part. We have investigated on mouse primary hippocampal neurons in culture whether redistribution of alpha-synuclein during plasticity involves retrograde signaling activation through nitric oxide (NO), cGMP, cGMP-dependent protein kinase (cGK) and calmodulin-dependent protein kinase II. We have found that deletion of the alpha-synuclein gene blocks both the long-lasting enhancement of evoked and miniature transmitter release and the increase in the number of functional presynaptic boutons evoked through the NO donor, DEA/NO, and the cGMP analog, 8-Br-cGMP. In agreement with these findings both DEA/NO and 8-Br-cGMP were capable of producing a long-lasting increase in number of clusters for alpha-synuclein through activation of soluble guanylyl cyclase, cGK and calcium/calmodulin-dependent protein kinase IIalpha. Thus, our results suggest that NO, cGMP, GMP-dependent protein kinase and calmodulin-dependent protein kinase II play a key role in the redistribution of alpha-synuclein during plasticity.
Collapse
Affiliation(s)
- Shumin Liu
- Department of Pathology, Taub Institute, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
46
|
Rose AJ, Frøsig C, Kiens B, Wojtaszewski JFP, Richter EA. Effect of endurance exercise training on Ca2+ calmodulin-dependent protein kinase II expression and signalling in skeletal muscle of humans. J Physiol 2007; 583:785-95. [PMID: 17627985 PMCID: PMC2277010 DOI: 10.1113/jphysiol.2007.138529] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Here the hypothesis that skeletal muscle Ca(2+)-calmodulin-dependent kinase II (CaMKII) expression and signalling would be modified by endurance training was tested. Eight healthy, young men completed 3 weeks of one-legged endurance exercise training with muscle samples taken from both legs before training and 15 h after the last exercise bout. Along with an approximately 40% increase in mitochondrial F(1)-ATP synthase expression, there was an approximately 1-fold increase in maximal CaMKII activity and CaMKII kinase isoform expression after training in the active leg only. Autonomous CaMKII activity and CaMKII autophosphorylation were increased to a similar extent. However, there was no change in alpha-CaMKII anchoring protein expression with training. Nor was there any change in expression or Thr(17) phosphorylation of the CaMKII substrate phospholamban with training. However, another CaMKII substrate, serum response factor (SRF), had an approximately 60% higher phosphorylation at Ser(103) after training, with no change in SRF expression. There were positive correlations between the increases in CaMKII expression and SRF phosphorylation as well as F(1)ATPase expression with training. After training, there was an increase in cyclic-AMP response element binding protein phosphorylation at Ser(133), but not expression, in muscle of both legs. Taken together, skeletal muscle CaMKII kinase isoform expression and SRF phosphorylation is higher with endurance-type exercise training, adaptations that are restricted to active muscle. This may contribute to greater Ca(2+) mediated regulation during exercise and the altered muscle phenotype with training.
Collapse
Affiliation(s)
- Adam J Rose
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark 2100.
| | | | | | | | | |
Collapse
|
47
|
Livshitz LM, Rudy Y. Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CAMKII and repolarizing currents. Am J Physiol Heart Circ Physiol 2007; 292:H2854-66. [PMID: 17277017 PMCID: PMC2274911 DOI: 10.1152/ajpheart.01347.2006] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alternans of cardiac repolarization is associated with arrhythmias and sudden death. At the cellular level, alternans involves beat-to-beat oscillation of the action potential (AP) and possibly Ca(2+) transient (CaT). Because of experimental difficulty in independently controlling the Ca(2+) and electrical subsystems, mathematical modeling provides additional insights into mechanisms and causality. Pacing protocols were conducted in a canine ventricular myocyte model with the following results: 1) CaT alternans results from refractoriness of the sarcoplasmic reticulum Ca(2+) release system; alternation of the L-type calcium current has a negligible effect; 2) CaT-AP coupling during late AP occurs through the sodium-calcium exchanger and underlies AP duration (APD) alternans; 3) increased Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity extends the range of CaT and APD alternans to slower frequencies and increases alternans magnitude; its decrease suppresses CaT and APD alternans, exerting an antiarrhythmic effect; and 4) increase of the rapid delayed rectifier current (I(Kr)) also suppresses APD alternans but without suppressing CaT alternans. Thus CaMKII inhibition eliminates APD alternans by eliminating its cause (CaT alternans) while I(Kr) enhancement does so by weakening CaT-APD coupling. The simulations identify combined CaMKII inhibition and I(Kr) enhancement as a possible antiarrhythmic intervention.
Collapse
Affiliation(s)
- Leonid M Livshitz
- Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, Missouri 63130-4899, USA
| | | |
Collapse
|
48
|
Saha S, Datta K, Rangarajan P. Characterization of mouse neuronal Ca2+/calmodulin kinase II inhibitor alpha. Brain Res 2007; 1148:38-42. [PMID: 17350603 DOI: 10.1016/j.brainres.2007.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Revised: 02/06/2007] [Accepted: 02/12/2007] [Indexed: 11/28/2022]
Abstract
We have overexpressed an 8.5-kDa mouse Ca(2+)/calmodulin kinase II inhibitor alpha protein (mCaMKIINalpha) in Escherichia coli and demonstrate that the recombinant protein is a potent inhibitor of Ca(2+)/calmodulin kinase II (CaMKII) in vitro. However, antibodies raised against recombinant mCaMKIINalpha react with an approximately 37-kDa protein present in mouse brain. The pattern of expression of the approximately 37-kDa protein is similar to that of mCaMKIINalpha mRNA as both are expressed in normal but not Japanese encephalitis virus (JEV)-infected mouse brain. Subcellular localization studies indicate that the approximately 37-kDa protein is present in the post-synaptic density (PSD) where mCaMKIIalpha is known to perform key regulatory functions. We conclude that the approximately 37-kDa protein identified in this study is mCaMKIINalpha and its localization in the PSD indicates a novel role for this protein in the regulation of neuronal CaMKIIalpha.
Collapse
Affiliation(s)
- Sougata Saha
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
49
|
Rose AJ, Alsted TJ, Kobberø JB, Richter EA. Regulation and function of Ca2+-calmodulin-dependent protein kinase II of fast-twitch rat skeletal muscle. J Physiol 2007; 580:993-1005. [PMID: 17272343 PMCID: PMC2075445 DOI: 10.1113/jphysiol.2006.127464] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The activation and function of Ca(2+)-calmodulin-dependent kinase II (CaMKII) in contracting rat skeletal muscle was examined. The increase in autonomous activity and phosphorylation at Thr(287) of CaMKII of gastrocnemius muscle in response to contractions in situ was rapid and transient, peaking at 1-3 min, but reversed after 30 min of contractions. There was a positive correlation between CaMKII phosphorylation at Thr(287) and autonomous CaMKII activity. In contrast to the rapid and transient increase in autonomous CaMKII activity, the phosphorylation of the putative CaMKII substrate trisk95/triadin was rapid and sustained during contractions. There were no changes in CaMKII activity and phosphorylation or trisk95 phosphorylation in the resting contralateral muscles during stimulation. When fast-twitch muscles were contracted ex vivo, CaMKII inhibition resulted in a greater magnitude of fatigue as well as blunted CaMKII and trisk95 phosphorylation, identifying trisk95 as a physiological CaMKII substrate. In summary, skeletal muscle CaMKII activation was rapid and sustained during exercise/contraction and is mediated by factors within the contracting muscle, probably through allosteric activation via Ca(2+)-CaM. CaMKII may signal through trisk95 to modulate Ca(2+) release in fast-twitch rat skeletal muscle during exercise/contraction.
Collapse
Affiliation(s)
- Adam J Rose
- Copenhagen Muscle Research Centre, Department of Exercise and Sport Sciences, Section of Human Physiology, University of Copenhagen, Universitetsparken 13, Copenhagen, Denmark, 2100.
| | | | | | | |
Collapse
|
50
|
Harvey-Girard E, Dunn RJ, Maler L. Regulated expression of N-methyl-D-aspartate receptors and associated proteins in teleost electrosensory system and telencephalon. J Comp Neurol 2007; 505:644-68. [DOI: 10.1002/cne.21521] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|