1
|
Lin H, Tan B, Chi S, Yang Q. Guanidinoacetic Acid Significantly Improves Growth, Antioxidant Capacity, and Nonspecific Immunity for Juvenile Litopenaeus vannamei. AQUACULTURE NUTRITION 2025; 2025:5538869. [PMID: 40260155 PMCID: PMC12009678 DOI: 10.1155/anu/5538869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 12/21/2024] [Accepted: 03/05/2025] [Indexed: 04/23/2025]
Abstract
Guanidinoacetic acid (GAA)-a nutritional additive-is essential for the healthy growth of aquatic animals. The experiment was conducted to examine the effects of dietary GAA on growth, muscle amino acid composition, antioxidative indices, and nonspecific immunity for juvenile Litopenaeus vannamei. Total 800 healthy shrimp (initial mean weight = 0.27 ± 0.03 g) were equally distributed into 15 tanks (0.3 m3; five groups, and three repeats per group) and fed with diets containing GAA levels (e.g., 0, 0.04%, 0.10%, 0.13%, and 0.16%, named G0, G004, G010, G013, and G016, respectively) for 8 weeks (four times a day). At the end of the trial, shrimps from all replicate groups were weighed, and serum, hepatopancreas, and muscle were collected from three random tails. The weight gain rate (WGR) and specific growth rate (SGR) were significantly higher, and feed conversion rate (FCR) was significantly lower in G010 and G013 groups than in G0 group. No significant effect of GAA on the total amino acids of each treatment was observed. Serum superoxide dismutase (SOD) activity and total antioxidant capacity (T-AOC) were significantly higher, and malondialdehyde (MDA) levels were significantly lower in G010, G013, and G016 groups compared to G0 group. Alkaline phosphatase (AKP), phenoloxidase (PO), lysozyme (LZM), and acid phosphatase (ACP) activities were significantly higher in G010, G013, and G016 groups than in G0 group. The mRNA expressions of immune deficiency (imd) and lzm genes in G010 and G013 groups were significantly upregulated. Following the challenge with Vibrio harveyi, the overall percent mortality of shrimp showed a gradually decreasing trend with the increase of GAA supplementary but was not significantly different from each other. In conclusion, GAA can improve the growth, antioxidant ability, and nonspecific immunity for L. vannamei.
Collapse
Affiliation(s)
- Huaxing Lin
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuyan Chi
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qihui Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Engineering Technology Research Center of Aquatic Animals Precision Nutrition and High Efficiency Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
2
|
Cella PS, de Matos RLN, Marinello PC, Guimarães TAS, Nunes JHC, Moura FA, Bracarense APFRL, Chimin P, Deminice R. Creatine Supplementation Mitigates Doxorubicin-Induced Skeletal Muscle Dysfunction but Not Cardiotoxicity. Nutr Cancer 2025; 77:506-517. [PMID: 39907272 DOI: 10.1080/01635581.2025.2461257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Creatine has demosntrated protective effects against muscle dysfunction, but its potential protection against doxorubicin-induced cardio and skeletal muscle toxicity remains poorly understood. We aimed to investigate the protective effects of creatine supplementation against doxorubicin-induced cardio and skeletal muscle myotoxicity. This study analyzed twenty male C57BL/6J mice, divided into three groups: Control (C; n = 6), Dox (n = 7) which received weekly doxorubicin injections (16 mg/kg i.p. in 20 days) and DoxCr (n = 7) with both doxorubicin and creatine supplementation (4%). Doxorubicin administration induced skeletal muscle atrophy in extensor digitorum longus (EDL) (-28%) and soleus muscles (-17%), accompanied by a decline in muscle strength. This atrophic response was concomitant with increased oxidative stress and elevated levels of IL-6. Cardiotoxic effects of doxorubicin were marked by a 15% reduction in cardiac mass and a significant 21% decrease in cardiomyocyte diameter, alongside a substantial 58% rise in IL-6 levels. On the opposite creatine supplementation mitigated doxorubicin-induced oxidative stress (elevated MDA and IL-6, and reduced GSH/GSSG ratio) and prevented skeletal muscle atrophy in both the EDL and soleus muscles, while also enhancing muscle strength. However, protective effects were not observed in cardiac muscle. Creatine protects skeletal, but not cardiac muscle against doxorubicin-induced toxicity, atrophy and strength loss.
Collapse
Affiliation(s)
- Paola Sanches Cella
- Department of Physical Education, State University of Londrina, Londrina, PR, Brazil
| | | | | | - T A S Guimarães
- Department of Physical Education, State University of Londrina, Londrina, PR, Brazil
| | - J H C Nunes
- Department of Physical Education, State University of Londrina, Londrina, PR, Brazil
| | - Felipe Arruda Moura
- Laboratory of Applied Biomechanics State University of Londrina, Londrina, Paraná, Brazil
| | | | - Patrícia Chimin
- Department of Physical Education, State University of Londrina, Londrina, PR, Brazil
| | - Rafael Deminice
- Department of Physical Education, State University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
3
|
Sharif SM, Hydock D. Insights into mitochondrial creatine kinase: examining preventive role of creatine supplement in doxorubicin-induced cardiotoxicity. Toxicol Mech Methods 2025; 35:136-145. [PMID: 39169611 DOI: 10.1080/15376516.2024.2393825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Doxorubicin (Dox) is an effective and commonly used anticancer drug; however, it leads to several side effects including cardiotoxicity which contributes to poor quality of life for cancer patients. Creatine (Cr) is a promising intervention to alleviate Dox-induced cardiotoxicity. This study aimed to examine the effects of Cr beforeDox on cardiac mitochondrial creatine kinase (MtCK). Male rats were randomly assigned to one of two 4-week Cr feeding interventions (standard Cr diet or Cr loading diet) or a control diet (Con, n = 20). Rats in the standard Cr diet (Cr1, n = 20) were fed 2% Cr for 4-weeks. Rats in the Cr loading diet (Cr2, n = 20) were fed 4% Cr for 1-week followed by 2% Cr for 3-weeks. After 4-weeks, rats received either a bolus injection of 15 mg/kg Dox or a placebo saline injection (Sal). Five days post-injections left ventricle (LV) was excised and analyzed for MtCK expression using Western blot and ELISA. A significant drug effect was observed for LV mass (p < 0.05), post hoc testing revealed LV mass of Con + Dox and Cr2 + Dox was significantly lower than Con + Sal (p < 0.05). A significant drug effect was observed for MtCK (p = 0.03) through Western blot. A significant drug effect (p = 0.03) and interaction (p = 0.02) was observed for MtCK using ELISA. Post hoc testing revealed that Cr2 + Dox had significantly higher MtCK than Cr1 + Sal and Cr2 + Sal. Data suggest that a reduction in LV mass and MtCK may contribute to Dox-induced cardiotoxicity, and Cr supplementation may play a potential role in mitigating cardiotoxicity by preserving mitochondrial CK.
Collapse
Affiliation(s)
- Salaheddin M Sharif
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - David Hydock
- Department of Kinesiology, Nutrition, and Dietetics, University of Northern Colorado, Greeley, Colorado, USA
| |
Collapse
|
4
|
Clarke HE, Akhavan NS, Behl TA, Ormsbee MJ, Hickner RC. Effect of Creatine Monohydrate Supplementation on Macro- and Microvascular Endothelial Function in Older Adults: A Pilot Study. Nutrients 2024; 17:58. [PMID: 39796490 PMCID: PMC11723049 DOI: 10.3390/nu17010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: A pilot study was conducted to investigate the effect of four weeks of creatine monohydrate (CrM) on vascular endothelial function in older adults. Methods: In a double-blind, randomized crossover trial, twelve sedentary, healthy older adults were allocated to either the CrM or placebo (PL) group for four weeks, at a dose of 4 × 5 g/day for 5 days, followed by 1 × 5 g/day for 23 days. Macrovascular function (flow-mediated dilation [FMD%], normalized FMD%, brachial-ankle pulse wave velocity [baPWV], pulse wave analysis [PWA]), microvascular function (microvascular reperfusion rate [% StO2/sec]), and biomarkers of vascular function (tetrahydrobiopterin [BH4], malondialdehyde [MDA], oxidized low-density lipoprotein [oxLDL], glucose, lipids) were assessed pre- and post-supplementation with a four-week washout period. Results: CrM significantly increased FMD% (pre-CrM, 7.68 ± 2.25%; post-CrM, 8.9 ± 1.99%; p < 0.005), and normalized FMD% (pre-CrM, 2.57 × 10-4 ± 1.03 × 10-4%/AUCSR; post-CrM, 3.42 × 10-4 ± 1.69 × 10-4%/AUCSR; p < 0.05), compared to PL. Microvascular reperfusion rates increased following CrM (pre-CrM, 2.29 ± 1.42%/sec; post-CrM, 3.71 ± 1.44%/sec; p < 0.05), with no change following PL. A significant reduction in fasting glucose (pre-CrM, 103.64 ± 6.28; post-CrM, 99 ± 4.9 mg/dL; p < 0.05) and triglycerides (pre-CrM, 99.82 ± 35.35; post-CrM, 83.82 ± 37.65 mg/dL; p < 0.05) was observed following CrM. No significant differences were observed for any other outcome. Conclusions: These pilot data indicate that four weeks of CrM supplementation resulted in favorable effects on several indices of vascular function in older adults.
Collapse
Affiliation(s)
- Holly E. Clarke
- Department of Health, Nutrition, and Food Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306, USA; (H.E.C.); (M.J.O.)
| | - Neda S. Akhavan
- Department of Kinesiology & Nutrition Sciences, School of Integrated Health Sciences, University of Nevada, Las Vegas, NV 89154, USA;
| | - Taylor A. Behl
- Department of Applied Management, Flagler College, St. Augustine, FL 32084, USA;
| | - Michael J. Ormsbee
- Department of Health, Nutrition, and Food Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306, USA; (H.E.C.); (M.J.O.)
- Department of Biokenetics, Exercise and Leisure Sciences, School of Health Science, University of KwaZulu-Natal, Durban 4041, South Africa
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Robert C. Hickner
- Department of Health, Nutrition, and Food Sciences, Florida State University, 120 Convocation Way, Tallahassee, FL 32306, USA; (H.E.C.); (M.J.O.)
- Department of Biokenetics, Exercise and Leisure Sciences, School of Health Science, University of KwaZulu-Natal, Durban 4041, South Africa
- Institute of Sports Sciences and Medicine, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
5
|
Laoung-on J, Nuchniyom P, Intui K, Jaikang C, Saenphet K, Boonyapranai K, Konguthaithip G, Outaitaveep N, Phankhieo S, Sudwan P. The Potential Effect of Bualuang (White Nelumbo nucifera Gaertn.) Extract on Sperm Quality and Metabolomic Profiles in Mancozeb-Induced Oxidative Stress in Male Rats. Life (Basel) 2024; 15:6. [PMID: 39859946 PMCID: PMC11767100 DOI: 10.3390/life15010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Mancozeb (MZ), an EBDC fungicide, has been found to contaminate agricultural products and cause male reproductive toxicity. The phytochemical compounds of white N. nucifera petal extract (WNPE) and its effects on metabolomic profiles and reproductive function in male rats poisoned with MZ were investigated. Seventy-two mature male Wistar rats were divided into nine groups (n = 8) and, for 30 days, were gavaged with WNPE at doses of 0.55, 1.10, and 2.20 mg/kg; were given distilled water; or were co-gavaged with MZ and WNPE. By evaluating the 1H-NMR of WNPE, myricetin, apigenin, luteolin, ferulic acid, caffeic acid, ascorbic acid, genistein, chlorogenic acid, naringenin, and ellagic acid were found, and the essential minerals were evaluated by AAS. The NMR spectra demonstrated that creatine, carnitine, ACh, and choline in WNPE were significantly higher than that in MZ. The gavaging of the rats with WNPE before poisoning them with MZ improved creatine, carnitine, acetylcholine, progressive sperm motility, sperm viability, and normal sperm morphology compared to rats who only received MZ. It was concluded that MZ had a toxicity effect on the male reproductive system via decreased metabolomic profiles, affecting sperm motility, sperm viability, and normal sperm morphology. Nevertheless, WNPE had plenty of bioactive compounds that could enhance creatine, carnitine, and acetylcholine, which are related to sperm quality in male rats. WNPE should be considered as an alternative dietary supplement that can protect against MZ toxicity and enhance sperm quality in the male rat reproductive system.
Collapse
Affiliation(s)
- Jiraporn Laoung-on
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (K.I.); (S.P.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pimchanok Nuchniyom
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (K.I.); (S.P.)
| | - Ketsarin Intui
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (K.I.); (S.P.)
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.J.); (G.K.)
| | - Kanokporn Saenphet
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kongsak Boonyapranai
- Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Giatgong Konguthaithip
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.J.); (G.K.)
| | - Nopparuj Outaitaveep
- School of Health Sciences Research, Research Institute for Health Sciences (RIHES), Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sasitorn Phankhieo
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (K.I.); (S.P.)
| | - Paiwan Sudwan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.N.); (K.I.); (S.P.)
| |
Collapse
|
6
|
Margaritelis NV, Cobley JN, Nastos GG, Papanikolaou K, Bailey SJ, Kritsiligkou P, Nikolaidis MG. Evidence-based sports supplements: A redox analysis. Free Radic Biol Med 2024; 224:62-77. [PMID: 39147071 DOI: 10.1016/j.freeradbiomed.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Despite the overwhelming number of sports supplements on the market, only seven are currently recognized as effective. Biological functions are largely regulated through redox reactions, yet no comprehensive analysis of the redox properties of these supplements has been compiled. Here, we analyze the redox characteristics of these seven supplements: bicarbonates, beta-alanine, caffeine, creatine, nitrates, carbohydrates, and proteins. Our findings suggest that all sports supplements exhibit some degree of redox activity. However, the precise physiological implications of these redox properties remain unclear. Future research, employing unconventional perspectives and methodologies, will reveal new redox pixels of the exercise physiology and sports nutrition picture.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| | - James N Cobley
- School of Life Sciences, The University of Dundee, Dundee, Scotland, UK
| | - George G Nastos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | | | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Paraskevi Kritsiligkou
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
7
|
Koike S, Mitsuhashi H, Kishida A, Ogasawara Y. Elucidating the Antiglycation Effect of Creatine on Methylglyoxal-Induced Carbonyl Stress In Vitro. Int J Mol Sci 2024; 25:10880. [PMID: 39456665 PMCID: PMC11506949 DOI: 10.3390/ijms252010880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Advanced glycation end products (AGEs) with multiple structures are formed at the sites where carbonyl groups of reducing sugars bind to free amino groups of proteins through the Maillard reaction. In recent years, it has been highlighted that the accumulation of AGEs, which are generated when carbonyl compounds produced in the process of sugar metabolism react with proteins, is involved in various diseases. Creatine is a biocomponent that is homeostatically present throughout the body and is known to react nonenzymatically with α-dicarbonyl compounds. This study evaluated the antiglycation potential of creatine against methylglyoxal (MGO), a glucose metabolite that induces carbonyl stress with formation of AGEs in vitro. Further, to elucidate the mechanism of the cytoprotective action of creatine, its effect on the accumulation of carbonyl proteins in the cells and the MGO-induced cellular damage were investigated using neuroblastoma cells. The results revealed that creatine significantly inhibits protein carbonylation by directly reacting with MGO, and creatine added to the culture medium suppressed MGO-derived carbonylation of intracellular proteins and exerted a protective effect on MGO-induced cytotoxicity. These findings suggest that endogenous and supplemented creatine may contribute to the attenuation of carbonyl stress in vivo.
Collapse
Affiliation(s)
- Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan; (S.K.); (H.M.)
| | - Haruka Mitsuhashi
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan; (S.K.); (H.M.)
| | - Atsushi Kishida
- Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan;
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan; (S.K.); (H.M.)
| |
Collapse
|
8
|
Aron A, Landrum EJ, Schneider AD, Via M, Evans L, Rawson ES. Effects of acute creatine supplementation on cardiac and vascular responses in older men; a randomized controlled trial. Clin Nutr ESPEN 2024; 63:557-563. [PMID: 39047868 DOI: 10.1016/j.clnesp.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND AIMS In the recent years creatine has been shown promising results in patients with neurodegenerative diseases, myopathies and dystrophies. Cardiovascular diseases could be another pathology that can benefit from creatine supplementation, considering the influence on the risk factors associated with the development of cardiovascular diseases including reduction in chronic inflammation, and improved control of hyperglycemia and dyslipidemia The aim of the present study was to investigate the impact of short-term creatine supplementation on cardiac and vascular health in older adults. METHODS Males between the ages of 55-80 were randomly assigned to three groups: creatine, placebo and control. Creatine or placebo was provided for 7-day supplementation, at a dose of 20 g/day. Testing was performed at the same time of the day at baseline and on the eighth day. Vascular responses were assessed using an arterial pulse wave velocity equipment, while cardiac assessment was performed using an impedance cardiography device. RESULTS The placebo group was older (71.1 ± 8.2 yr) compared to creatine (61.4 ± 5.2 yr) and control (62.5 ± 7.1 yr). Cardio-ankle vascular index improved just in the creatine group (8.7 ± 0.5 to 8.2 ± 0.5, p = 0.03). While the upstroke time of the placebo and control groups did not change after 7 days, the creatine group had a nonsignificant reduction, 178.9 ± 26.5 ms to 158.4 ± 28.6 ms, p = 0.07. Similar tendency was seen with the systolic blood pressures, while the placebo and control did not change, the creatine group showed nonsignificant improvement, especially on the right, 144.0 ± 12.7 mmHg to 136.1 ± 13.4 mmHg, p = 0.08. All three groups had similar responses in stroke volume (p = 0.61), contractility index (p = 0.64) and ejection fraction (p = 0.72). CONCLUSIONS In older adults, acute creatine supplementation can positively affect vascular parameters of arterial stiffness and atherosclerosis. Creatine supplementation has the potential to serve as a potent adjuvant in the management of CVD for older adults. CLINICAL TRIAL REGISTRATION clinicaltrials.gov; ID: NCT05329480.
Collapse
Affiliation(s)
- Adrian Aron
- Department of Physical Therapy, Waldron College of Health and Human Services, Radford University, Radford, VA, USA.
| | - Eryn J Landrum
- Department of Physical Therapy, Waldron College of Health and Human Services, Radford University, Radford, VA, USA
| | - Adam D Schneider
- Department of Physical Therapy, Waldron College of Health and Human Services, Radford University, Radford, VA, USA
| | - Megan Via
- Department of Physical Therapy, Waldron College of Health and Human Services, Radford University, Radford, VA, USA
| | - Logan Evans
- Department of Physical Therapy, Waldron College of Health and Human Services, Radford University, Radford, VA, USA
| | - Eric S Rawson
- Department of Health, Nutrition, and Exercise Science, Messiah University, Mechanicsburg, PA, USA
| |
Collapse
|
9
|
Gonzalez DE, Forbes SC, Zapp A, Jagim A, Luedke J, Dickerson BL, Root A, Gil A, Johnson SE, Coles M, Brager A, Sowinski RJ, Candow DG, Kreider RB. Fueling the Firefighter and Tactical Athlete with Creatine: A Narrative Review of a Key Nutrient for Public Safety. Nutrients 2024; 16:3285. [PMID: 39408252 PMCID: PMC11478539 DOI: 10.3390/nu16193285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Firefighters, tactical police officers, and warriors often engage in periodic, intermittent, high-intensity physical work in austere environmental conditions and have a heightened risk of premature mortality. In addition, tough decision-making challenges, routine sleep deprivation, and trauma exacerbate this risk. Therefore, identifying strategies to bolster these personnel's health and occupational performance is critical. Creatine monohydrate (CrM) supplementation may offer several benefits to firefighters and tactical athletes (e.g., police, security, and soldiers) due to its efficacy regarding physical performance, muscle, cardiovascular health, mental health, and cognitive performance. Methods: We conducted a narrative review of the literature with a focus on the benefits and application of creatine monohydrate among firefighters. Results: Recent evidence demonstrates that CrM can improve anaerobic exercise capacity and muscular fitness performance outcomes and aid in thermoregulation, decision-making, sleep, recovery from traumatic brain injuries (TBIs), and mental health. Emerging evidence also suggests that CrM may confer an antioxidant/anti-inflammatory effect, which may be particularly important for firefighters and those performing tactical occupations exposed to oxidative and physiological stress, which can elicit systemic inflammation and increase the risk of chronic diseases. Conclusions: This narrative review highlights the potential applications of CrM for related tactical occupations, with a particular focus on firefighters, and calls for further research into these populations.
Collapse
Affiliation(s)
- Drew E. Gonzalez
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Scott C. Forbes
- Department of Physical Education Studies, Faculty of Education, Brandon University, Brandon, MB R7A 6A9, Canada;
| | | | - Andrew Jagim
- Sports Medicine, Mayo Clinic Health System, La Crosse, WI 54601, USA;
| | - Joel Luedke
- Olmsted Medical Center-Sports Medicine, La Crosse, WI 54601, USA;
| | - Broderick L. Dickerson
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| | | | - Adriana Gil
- College of Medicine, University of Houston, Houston, TX 77021, USA;
| | - Sarah E. Johnson
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Macilynn Coles
- Tactical Athlete Research Unit, Texas A&M University, College Station, TX 77843, USA;
| | - Allison Brager
- U.S. Army John F. Kennedy Special Warfare Center and School, Fort Liberty, NC 48397, USA;
| | - Ryan J. Sowinski
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Richard B. Kreider
- Exercise and Sport Nutrition Laboratory, Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX 77843, USA; (B.L.D.); (S.E.J.); (R.J.S.); (R.B.K.)
| |
Collapse
|
10
|
Giraldi GC, Wolschick GJ, Signor MH, Lago RVP, de Souza Muniz AL, Draszevski TMR, Balzan MM, Wagner R, da Silva AS. Effects of Dietary Guanidinoacetic Acid on the Performance, Rumen Fermentation, Metabolism, and Meat of Confined Steers. Animals (Basel) 2024; 14:2617. [PMID: 39272402 PMCID: PMC11394018 DOI: 10.3390/ani14172617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
With the increase in population, it is increasingly necessary to produce food more efficiently. This has expanded the market for additives, which are products that directly (nutritional effect) or indirectly (effect on animal health) favor productivity. Guanidinoacetic acid (GAA) is a natural precursor of creatine. It acts as an energy reserve in skeletal muscle. In addition to being a compound with more significant bioavailability, it is more thermally stable and less expensive than creatine. Therefore, this study aimed to determine whether adding GAA to the cattle diet would alter the meat's composition and fatty acid profile. We used 24 Holstein cattle males (409 ± 5.6 kg), approximately 15 months old, and separated them into four homogeneous groups, one being the control group and three groups with various dosages of GAA in the diets (3.3; 6.6, and 9.9 g/animal/day), for an experimental period of 60 days. Blood, rumen fluid, and animal weighing were performed at three points (days 1, 30, and 60), and daily feed consumption was measured. Steers fed with GAA (9.9 g/d) showed a 16.9% increase in average daily gain (ADG) compared to the control group. These same animals (T-9.9 group) fed with GAA showed a 20% increase in fed efficiency compared to the control group. Lower leukocyte, lymphocyte, and granulocyte counts and lower cholesterol levels were observed in animals that consumed 6.6 g and 9.9 g/d GAA compared to the control group. Animals from the T-6.6 and T-9.9 groups showed 30% and 27.6% reduced bacterial activity in the rumen compared to the control group, respectively. Steers from the T-6.6 and T-9.9 groups fed with GAA showed a 20% and 37% increase in short-chain fatty acids (SCFAs) compared to the control group, respectively. A higher concentration of acetic, propionic, and butyric acids in the ruminal fluid of cattle T-9.9 group was observed at day 60. The two highest doses of GAA showed lower fat levels in the meat, just as the cattle that received 9.9 g/d showed higher levels of total polyunsaturated fatty acids. Complementary data results draw attention to the dose of 9.9 g/d GAA in cattle diets, as anti-inflammatory action can be seen and combined with a higher concentration of SCFAs, consequently increases weight gain. We concluded that consuming this GAA increases the concentration of some unsaturated fatty acids (omegas) in the meat, which adds quality to the product for the consumer.
Collapse
Affiliation(s)
- Gabrielly Chechi Giraldi
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
| | - Gabriel Jean Wolschick
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
| | - Mateus Henrique Signor
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
| | - Rafael Vinicius Pansera Lago
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
| | - Ana Luiza de Souza Muniz
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
| | | | - Manoela Meira Balzan
- Department of Food Science, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Roger Wagner
- Department of Food Science, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Aleksandro Schafer da Silva
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
| |
Collapse
|
11
|
Weng H, Zeng H, Wang H, Chang H, Zhai Y, Li S, Han Z. Differences in Lactation Performance, Rumen Microbiome, and Metabolome between Montbéliarde × Holstein and Holstein Cows under Heat Stress. Microorganisms 2024; 12:1729. [PMID: 39203571 PMCID: PMC11357101 DOI: 10.3390/microorganisms12081729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/03/2024] Open
Abstract
Heat stress negatively affects lactation performance and rumen microbiota of dairy cows, with different breeds showing varying levels of heat tolerance. This study aimed to compare the lactation performance of Montbéliarde × Holstein (MH, n = 13) and Holstein (H, n = 13) cows under heat stress, and 16S rRNA sequencing and liquid chromatography-mass spectrometry (LC-MS) were used to determine the rumen microbiome and metabolome in experimental cows. The results indicated that during heat stress, milk yield (p = 0.101), milk fat yield, milk protein yield, milk protein, and milk lactose (p < 0.05) in Montbéliarde × Holstein cows were higher than those in Holstein cows, whereas milk yield variation and somatic cell counts (p < 0.05) were lower than those in Holstein cows. The sequencing results indicated that the rumen of Montbéliarde × Holstein cows was significantly enriched with beneficial bacteria, such as Rikenellaceae, Allobaculum, and YRC22 (p < 0.05). In addition, correlations were observed between specific ruminal bacteria and lactation performance. Ruminal metabolites related to antioxidant and anti-inflammatory properties were significantly higher (p < 0.05) in Montbéliarde × Holstein cows than in Holstein cows. Overall, Montbéliarde × Holstein cows showed higher production efficiency under heat stress, which may be related to the different rumen mechanisms of crossbred and Holstein cows in adapting to heat stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhaoyu Han
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Jin H, Du Z, Fan X, Qin L, Liu W, Zhang Y, Ren J, Ye C, Liu Q. Effect of Guanidinoacetic Acid on Production Performance, Serum Biochemistry, Meat Quality and Rumen Fermentation in Hu Sheep. Animals (Basel) 2024; 14:2052. [PMID: 39061514 PMCID: PMC11273408 DOI: 10.3390/ani14142052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Guanidinoacetic acid (GAA) can effectively improve the metabolism of energy and proteins by stimulating creatine biosynthesis. We present a study exploring the impact of GAA on production performance, serum biochemistry, meat quality and rumen fermentation in Hu sheep. A total of 144 weaned male Hu sheep (body weight 16.91 ± 3.1 kg) were randomly assigned to four groups with three replicates of twelve sheep in each group. The diets were supplemented with 0 (CON), 500 (GAA-1), 750 (GAA-2) and 1000 mg/kg (GAA-3) of GAA (weight of feed), respectively. After a comprehensive 90-day experimental period, we discovered that the supplementation of GAA had a remarkable impact on various muscle parameters. Specifically, it significantly enhanced the average daily growth (ADG) of the animals and improved the shear force and fiber diameter of the muscle, while also reducing the drip loss and muscle fiber density. Furthermore, the addition of GAA to the feed notably elevated the serum concentrations of high-density lipoprotein cholesterol (HDL-C), total protein (TP) and globulin (GLB), as well as the enzyme activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Concurrently, there was a decrease in the levels of triglycerides (TG) and malondialdehyde (MDA) in the serum. In addition, GAA decreased the pH and the acetate-to-propionate ratio and increased the total volatile fatty acids (TVFA) and ammoniacal nitrogen (NH3-N) levels of rumen fluid. Additionally, GAA upregulated acetyl-CoA carboxylase (ACC) gene expression in the Hu sheep's muscles. In conclusion, our findings suggest that GAA supplementation not only enhances muscle quality but also positively affects serum biochemistry and ruminal metabolism, making it a potential candidate for improving the overall health and performance of Hu sheep.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changchuan Ye
- Department of Animal Science, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (Z.D.); (X.F.); (L.Q.); (W.L.); (Y.Z.); (J.R.)
| | - Qinghua Liu
- Department of Animal Science, College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (H.J.); (Z.D.); (X.F.); (L.Q.); (W.L.); (Y.Z.); (J.R.)
| |
Collapse
|
13
|
Choi YJ, Williams E, Dahl MJ, Amos SE, James C, Bautista AP, Kurup V, Musk GC, Kershaw H, Arthur PG, Kicic A, Choi YS, Terrill JR, Pillow JJ. Antenatal creatine supplementation reduces persistent fetal lung inflammation and oxidative stress in an ovine model of chorioamnionitis. Am J Physiol Lung Cell Mol Physiol 2024; 327:L40-L53. [PMID: 38712443 DOI: 10.1152/ajplung.00241.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Chorioamnionitis is a common antecedent of preterm birth and induces inflammation and oxidative stress in the fetal lungs. Reducing inflammation and oxidative stress in the fetal lungs may improve respiratory outcomes in preterm infants. Creatine is an organic acid with known anti-inflammatory and antioxidant properties. The objective of the study was to evaluate the efficacy of direct fetal creatine supplementation to reduce inflammation and oxidative stress in fetal lungs arising from an in utero proinflammatory stimulus. Fetal lambs (n = 51) were instrumented at 90 days gestation to receive a continuous infusion of creatine monohydrate (6 mg·kg-1·h-1) or saline for 17 days. Maternal chorioamnionitis was induced with intra-amniotic lipopolysaccharide (LPS; 1 mg, O55:H6) or saline 7 days before delivery at 110 days gestation. Tissue creatine content was assessed with capillary electrophoresis, and inflammatory markers were analyzed with Luminex Magpix and immunohistochemistry. Oxidative stress was measured as the level of protein thiol oxidation. The effects of LPS and creatine were analyzed using a two-way ANOVA. Fetal creatine supplementation increased lung creatine content by 149% (PCr < 0.0001) and had no adverse effects on lung morphology. LPS-exposed groups showed increased levels of interleukin-8 in the bronchoalveolar lavage (PLPS < 0.0001) and increased levels of CD45+ leukocytes (PLPS < 0.0001) and MPO+ (PLPS < 0.0001) cells in the lung parenchyma. Creatine supplementation significantly reduced the levels of CD45+ (PCr = 0.045) and MPO+ cells (PCr = 0.012) in the lungs and reduced thiol oxidation in plasma (PCr < 0.01) and lung tissue (PCr = 0.02). In conclusion, fetal creatine supplementation reduced markers of inflammation and oxidative stress in the fetal lungs arising from chorioamnionitis.NEW & NOTEWORTHY We evaluated the effect of antenatal creatine supplementation to reduce pulmonary inflammation and oxidative stress in the fetal lamb lungs arising from lipopolysaccharide (LPS)-induced chorioamnionitis. Fetal creatine supplementation increased lung creatine content and had no adverse effects on systemic fetal physiology and overall lung architecture. Importantly, fetuses that received creatine had significantly lower levels of inflammation and oxidative stress in the lungs, suggesting an anti-inflammatory and antioxidant benefit of creatine.
Collapse
Affiliation(s)
- Y Jane Choi
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Ellen Williams
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Mar Janna Dahl
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Sebastian E Amos
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Christopher James
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Angelo P Bautista
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Veena Kurup
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Gabrielle C Musk
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Helen Kershaw
- Animal Care Services, University of Western Australia, Perth, Western Australia, Australia
| | - Peter G Arthur
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
- School of Population Health, Curtin University, Perth, Western Australia, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Perth, Western Australia, Australia
- Center for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Yu Suk Choi
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Jessica R Terrill
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - J Jane Pillow
- School of Human Sciences, University of Western Australia, Perth, Western Australia, Australia
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth, Western Australia, Australia
| |
Collapse
|
14
|
Gouveia HJCB, Manhães-de-Castro R, Costa-de-Santana BJR, Vasconcelos EEM, Silva ER, Roque A, Torner L, Guzmán-Quevedo O, Toscano AE. Creatine supplementation increases postnatal growth and strength and prevents overexpression of pro-inflammatory interleukin 6 in the hippocampus in an experimental model of cerebral palsy. Nutr Neurosci 2024; 27:425-437. [PMID: 37141266 DOI: 10.1080/1028415x.2023.2206688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
ABSTRACTObjectives: The aim of this study was thus to evaluate the effect of Cr supplementation on morphological changes and expression of pro-inflammatory cytokines in the hippocampus and on developmental parameters. Methods: Male Wistar rat pups were submitted to an experimental model of CP. Cr was administered via gavage from the 21st to the 28th postnatal day, and in water after the 28th, until the end of the experiment. Body weight (BW), food consumption (FC), muscle strength, and locomotion were evaluated. Expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α) were assessed in the hippocampus by quantitative real-time polymerase chain reaction. Iba1 immunoreactivity was assessed by immunocytochemistry in the hippocampal hilus. Results: Experimental CP caused increased density and activation of microglial cells, and overexpression of IL-6. The rats with CP also presented abnormal BW development and impairment of strength and locomotion. Cr supplementation was able to reverse the overexpression of IL-6 in the hippocampus and mitigate the impairments observed in BW, strength, and locomotion. Discussion: Future studies should evaluate other neurobiological characteristics, including changes in neural precursor cells and other cytokines, both pro- and anti-inflammatory.
Collapse
Affiliation(s)
- Henrique J C B Gouveia
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Brazil
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Tecnológico Nacional de México (TECNM) - Instituto Tecnológico Superior de Tacámbaro, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Raul Manhães-de-Castro
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Bárbara J R Costa-de-Santana
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Emanuel Ewerton M Vasconcelos
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Eliesly Roberto Silva
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Angélica Roque
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Luz Torner
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - Omar Guzmán-Quevedo
- Tecnológico Nacional de México (TECNM) - Instituto Tecnológico Superior de Tacámbaro, Tacámbaro, Michoacán, Mexico
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
| | - Ana E Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
- Postgraduate Program in Neuropsychiatry and Behavioral Sciences, Federal University of Pernambuco, Recife, Brazil
- Department of Nursing, CAV, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
15
|
Nersesova L, Petrosyan M, Tsakanova G. Review of the evidence of radioprotective potential of creatine and arginine as dietary supplements. Int J Radiat Biol 2024; 100:849-864. [PMID: 38683545 DOI: 10.1080/09553002.2024.2345098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Creatine (Cr) and l-arginine are naturally occurring guanidino compounds, commonly used as ergogenic dietary supplements. Creatine and l-arginine exhibit also a number of non-energy-related features, such as antioxidant, anti-apoptotic, and anti-inflammatory properties, which contribute to their protective action against oxidative stress (OS). In this regard, there are a number of studies emphasizing the protective effect of Cr against OS, which develops in the process of aging, increased physical loads as part of athletes' workouts, as well as a number of neurological diseases and toxic effects associated with xenobiotics and UV irradiation. Against this backdrop, and since ionizing radiation causes OS in cells, leading to radiotoxicity, there is an increasing interest to understand whether Cr has the full potential to serve as an effective radioprotective agent. The extensive literature search did not provide any data on this issue. In this narrative review, we have summarized some of our own experimental data published over the last years addressing the respective radioprotective effects of Cr. Next, we have additionally reviewed the existing data on the radiomodifying effects of l-arginine presented earlier by other research groups. CONCLUSIONS Creatine possesses significant radioprotective potential including: (1) radioprotective effect on the survival rate of rats subjected to acute whole-body X-ray irradiation in a LD70/30 dose of 6.5 Gy, (2) radioprotective effect on the population composition of peripheral blood cells, (3) radioprotective effect on the DNA damage of peripheral blood mononuclear cells, (4) radioprotective effect on the hepatocyte nucleus-nucleolar apparatus, and (5) radioprotective effect on the brain and liver Cr-Cr kinase systems of the respective animals. Taking into account these cytoprotective, gene-protective, hepatoprotective and energy-stimulating features of Cr, as well as its significant radioprotective effect on the survival rate of rats, it can be considered as a potentially promising radioprotector for further preclinical and clinical studies. The review of the currently available data on radiomodifying effects of l-arginine has indicated its significant potential as a radioprotector, radiomitigator, and radiosensitizer. However, to prove the effectiveness of arginine (Arg) as a radioprotective agent, it appears necessary to expand and deepen the relevant preclinical studies, and, most importantly, increase the number of proof-of-concept clinical trials, which are evidently lacking as of now.
Collapse
Affiliation(s)
| | | | - Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, Yerevan, Armenia
| |
Collapse
|
16
|
Lygate CA. Maintaining energy provision in the heart: the creatine kinase system in ischaemia-reperfusion injury and chronic heart failure. Clin Sci (Lond) 2024; 138:491-514. [PMID: 38639724 DOI: 10.1042/cs20230616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
The non-stop provision of chemical energy is of critical importance to normal cardiac function, requiring the rapid turnover of ATP to power both relaxation and contraction. Central to this is the creatine kinase (CK) phosphagen system, which buffers local ATP levels to optimise the energy available from ATP hydrolysis, to stimulate energy production via the mitochondria and to smooth out mismatches between energy supply and demand. In this review, we discuss the changes that occur in high-energy phosphate metabolism (i.e., in ATP and phosphocreatine) during ischaemia and reperfusion, which represents an acute crisis of energy provision. Evidence is presented from preclinical models that augmentation of the CK system can reduce ischaemia-reperfusion injury and improve functional recovery. Energetic impairment is also a hallmark of chronic heart failure, in particular, down-regulation of the CK system and loss of adenine nucleotides, which may contribute to pathophysiology by limiting ATP supply. Herein, we discuss the evidence for this hypothesis based on preclinical studies and in patients using magnetic resonance spectroscopy. We conclude that the correlative evidence linking impaired energetics to cardiac dysfunction is compelling; however, causal evidence from loss-of-function models remains equivocal. Nevertheless, proof-of-principle studies suggest that augmentation of CK activity is a therapeutic target to improve cardiac function and remodelling in the failing heart. Further work is necessary to translate these findings to the clinic, in particular, a better understanding of the mechanisms by which the CK system is regulated in disease.
Collapse
Affiliation(s)
- Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
17
|
Hossain MM, Cho SB, Kang DK, Nguyen QT, Kim IH. Comparative effects of dietary herbal mixture or guanidinoacetic acid supplementation on growth performance, cecal microbiota, blood profile, excreta gas emission, and meat quality in Hanhyup-3-ho chicken. Poult Sci 2024; 103:103553. [PMID: 38417333 PMCID: PMC10907848 DOI: 10.1016/j.psj.2024.103553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 03/01/2024] Open
Abstract
Phytogenic feed additives are renowned for their growth promotion, gut health enhancement, and disease prevention properties, which is important factors for sustaining prolonged poultry rearing. The study aimed to evaluate the effect of herbal mixture (mixture of ginseng and artichoke) or guanidinoacetic acid (GAA) on growth performance, cecal microbiota, excretal gas emission, blood profile, and meat quality in Hanhyup-3-ho chicken. A total of 360 one-day-old chickens (half males and half females) were allocated into one of 3 dietary treatments (12 replicate cages/treatment; 10 broilers/replicate cage) for 100 d of age. Experimental diets were CON: basal diet; TRT1: basal diet combined with 0.05% herbal mixture; and TRT2: basal diet combined with 0.06% GAA. All birds received a basal diet during the first 30 d, but from d 31 to 100, an experimental diet was supplied. The addition of 0.05% herbal mixture improved the average body weight gain and feed conversion ratio from d 31 to 100 as well as the overall experimental period. The cecal Lactobacillus, Escherichia coli, and Salmonella count remained consistent across all dietary treatments. Blood albumin and Superoxide Dismutase (SOD) levels increased in the herbal mixture supplemented diet. Additionally, there was a notable reduction in excretal NH3 and H2S emissions in the herbal mixture group. Furthermore, the herbal mixture group exhibited increased breast muscle weight, improved breast muscle color, improved water holding capacity, and a decrease in abdominal fat compared to the control group. Additionally, the supplementation of 0.06% GAA did not demonstrate any statistically significant impact on any evaluated parameter throughout the experiment. The results from the present investigation underscore the potential of ginseng together with artichoke extract supplementation as a viable feed additive, conferring improvements in growth performance, feed efficiency, excreta gas emission, meat quality parameters, and defense mechanism against oxidative stress in Hanhyup-3-ho chicken.
Collapse
Affiliation(s)
- Md Mortuza Hossain
- Department of Animal Biotechnology, Dankook University, Choongnam 330-714, South Korea; Smart Animal Bio Institute Dankook University, Cheonan, Korea
| | - Sung Bo Cho
- Department of Animal Biotechnology, Dankook University, Choongnam 330-714, South Korea; Smart Animal Bio Institute Dankook University, Cheonan, Korea
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Choongnam 330-714, South Korea; Smart Animal Bio Institute Dankook University, Cheonan, Korea
| | | | - In Ho Kim
- Department of Animal Biotechnology, Dankook University, Choongnam 330-714, South Korea; Smart Animal Bio Institute Dankook University, Cheonan, Korea..
| |
Collapse
|
18
|
Yi S, Hu S, Wang J, Abudukelimu A, Wang Y, Li X, Wu H, Meng Q, Zhou Z. Effect of Guanidinoacetic Acid Supplementation on Growth Performance, Rumen Fermentation, Blood Indices, Nutrient Digestion, and Nitrogen Metabolism in Angus Steers. Animals (Basel) 2024; 14:401. [PMID: 38338043 PMCID: PMC10854538 DOI: 10.3390/ani14030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Guanidinoacetic acid (GAA) functions as a precursor for creatine synthesis in the animal body, and maintaining ample creatine reserves is essential for fostering rapid growth. This study aimed to explore the impact of GAA supplementation on growth performance, rumen fermentation, blood indices, nutrient digestion, and nitrogen metabolism in Angus steers through two experiments: a feeding experiment (Experiment 1) and a digestive metabolism experiment (Experiment 2). In Experiment 1, thirty-six Angus steers (485.64 ± 39.41 kg of BW) at 16 months of age were randomly assigned to three groups: control (CON), a conventional dose of GAA (CGAA, 0.8 g/kg), and a high dose of GAA (HGAA, 1.6 g/kg), each with twelve steers. The adaptation period lasted 14 days, and the test period was 130 days. Weighing occurred before morning feeding on days 0, 65, and 130, with rumen fluid and blood collected before morning feeding on day 130. Experiment 2 involved fifteen 18-month-old Angus steers (575.60 ± 7.78 kg of BW) randomly assigned to the same three groups as in Experiment 1, with a 7-day adaptation period and a 3-day test period. Fecal and urine samples were collected from all steers during this period. Results showed a significantly higher average daily gain (ADG) in the CGAA and HGAA groups compared to the CON group (p = 0.043). Additionally, the feed conversion efficiency (FCE) was significantly higher in the CGAA and HGAA groups than in the CON group (p = 0.018). The concentrations of acetate and the acetate:propionate ratio were significantly lower in the CGAA and HGAA groups, while propionate concentration was significantly higher (p < 0.01). Serum concentration of urea (UREA), blood ammonia (BA), GAA, creatine, and catalase (CAT) in the CGAA and HGAA groups were significantly higher than in the CON group, whereas malondialdehyde (MDA) concentrations were significantly lower (p < 0.05). Digestibility of dry matter (DM) and crude protein (CP) and the nitrogen retention ratio were significantly higher in the CGAA and HGAA groups than in the CON group (p < 0.05). In conclusion, dietary addition of both 0.8 g/kg and 1.6 g/kg of GAA increased growth performance, regulated rumen fermentation and blood indices, and improved digestibility and nitrogen metabolism in Angus steers. However, higher doses of GAA did not demonstrate a linear stacking effect.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhenming Zhou
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.Y.)
| |
Collapse
|
19
|
Al-Shammari KIA, Zamil SJ, Batkowska J. The antioxidative influence of dietary creatine monohydrate and L-carnitine on laying performance, egg quality, ileal microbiota, blood biochemistry, and redox status of stressed laying quails. Poult Sci 2024; 103:103166. [PMID: 37939584 PMCID: PMC10665932 DOI: 10.1016/j.psj.2023.103166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023] Open
Abstract
The experiment was implemented to assess the influence of dietary supplementation of laying quails with creatine monohydrate (CrM), L-carnitine (CAR) and their mixture (CrMCAR) as antioxidants against oxidative stress (OS) induced by 2.5 ppm lead acetate (LA) in drinking water on productive, physiological and microbial aspects. In total, 400 laying quail females at 10 wk of age were divided into a randomized design with 5 groups and 4 replicates of 20 birds each. Birds were fed ad libitum with a balanced diet for 8 wk. The control group was kept under no-stress conditions and was given fresh water without any additives (G1). While birds in other groups were exposed to OS induced experimentally by 2.5 ppm LA in drinking water with no feed additive (G2) or supplemented with 500 mg/kg CrM (G3) or 500 mg/kg CAR (G4) or combination of 250 mg/kg each of CrM and CAR (CrMCAR, G5) to feed mixture. Compared to G2, G5 demonstrated the reduction (P ≤ 0.05) of feed conversion ratio, feed intake, mortality and ileal total coliform, as well as serum and egg malondialdehyde and serum lipid hydroperoxide, uric acid, glucose, cholesterol, enzymatic activities (alanine aminotransferase, aspartate transaminase, alkaline phosphatase, creatine phosphokinase, γ-glutamyl transferase), and heterophils/lymphocytes ratio. In the meanwhile, there was an increase (P ≤ 0.05) in egg production, egg mass, and weight with the improvement of egg quality, serum sex hormones level and ileal lactic acid bacteria for G5 followed by G4 and G3. Moreover, G5 enhanced (P ≤ 0.05), the total antioxidant capacity of egg and serum glutathione, superoxide dismutase, catalase, glutathione peroxidase, protein and calcium levels. Therefore, dietary CrMCAR, CAR and CrM have analogous influence to control by improving the antioxidant and physiological parameters which resulted in better productive performance and egg characteristics of stressed quails. These antioxidants, especially in their equal combination, are beneficial to alleviate oxidative stress incidence and can be recommended for poultry feeding under various aspects of environmental stresses.
Collapse
Affiliation(s)
| | - Sarah Jasim Zamil
- Department of Animal Production Techniques, Al-Musaib Technical College, Al-Furat Al-Awsat Technical University, Babylon, Iraq
| | - Justyna Batkowska
- Institute of Biological Bases of Animal Production, University of Life Sciences in Lublin, 20-950 Lublin, Poland.
| |
Collapse
|
20
|
Chang H, Leem YH. The potential role of creatine supplementation in neurodegenerative diseases. Phys Act Nutr 2023; 27:48-54. [PMID: 38297476 PMCID: PMC10844727 DOI: 10.20463/pan.2023.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
PURPOSE The maintenance of energy balance in the body, especially in energy-demanding tissues like the muscles and the central nervous system, depends on creatine (Cr). In addition to improving muscle function, Cr is necessary for the bioenergetics of the central nervous system because it replenishes adenosine triphosphate without needing oxygen. Furthermore, Cr possesses anti-oxidant, anti-apoptotic, and anti-excitotoxic properties. Clinical research on neurodegenerative illnesses has shown that Cr supplementation results in less effective outcomes. With a brief update on the possible role of Cr in human, animal, and in vitro experiments, this review seeks to offer insights into the ideal dosage regimen. METHODS Using specified search phrases, such as "creatine and neurological disorder," "creatine supplementation and neurodegenerative disorders," and "creatine and brain," we searched articles in the PubMed database and Google Scholar. We investigated the association between creatine supplementation and neurodegenerative illnesses by examining references. RESULTS The neuroprotective effects of Cr were observed in in vitro and animal models of certain neurodegenerative diseases, while clinical trials failed to reproduce favorable outcomes. CONCLUSION Determining the optimal creatinine regime for increasing brain creatinine levels is essential for maintaining brain health and treating neurodegeneration.
Collapse
Affiliation(s)
- Hyukki Chang
- Department of Sport and Exercise Science, Seoul Women’s University, Seoul, Republic of Korea
| | - Yea-Hyun Leem
- Department of Molecular Medicine and Tissue Injury Defense Research Center, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Xu J, Xing T, Li J, Zhang L, Gao F. Efficacy of creatine nitrate supplementation on redox status and mitochondrial function in pectoralis major muscle of preslaughter transported broilers. Anim Biotechnol 2023; 34:3988-3999. [PMID: 37747460 DOI: 10.1080/10495398.2023.2249957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
This study was purposed to investigate the efficacy of dietary creatine nitrate (CrN) supplementation on redox status and mitochondrial function in pectoralis major (PM) muscle of broilers that experienced preslaughter transport. A total of 288 Arbor Acres broilers (28-day-old) were randomly assigned into five dietary treatments, including a basal diet or the basal diet supplemented with 600 mg/kg guanidinoacetic acid (GAA), 300, 600, or 900 mg/kg CrN for 14 days, respectively. On the transportation day, the basal diet group was divided into two groups on average, resulting in six groups. The control group was transported for 0.5 h and the other groups for 3 h (identified as Control, T3h, GAA600, CrN300, CrN600, and CrN900 group, respectively), and all crates were randomly placed on the truck travelling at an average speed of 80 km/h. Our results showed that GAA600 and CrN treatments decreased the muscle ROS level and MDA content (P < 0.05) and increased the mitochondrial membrane potential (P < 0.001), as well as a higher mRNA expression of avUCP (P < 0.001) and lower mRNA expressions of Nrf2 (P < 0.001), Nrf2 and PGC-1α (P < 0.05) compared with T3h group. Meanwhile, the mRNA and protein expressions of Nrf1, TFAM, and PGC-1α in CrN600 and CrN900 groups were lower than those in the T3h group (P < 0.05). Conclusively, dietary supplementation with GAA and CrN decreased muscle oxidative products and enhanced mitochondrial uncoupling mechanism and mtDNA copy number, which relieved muscle oxidative damage and maintained mitochondrial function.
Collapse
Affiliation(s)
- Jiawen Xu
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Tong Xing
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Jiaolong Li
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, P.R. China
| | - Lin Zhang
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| | - Feng Gao
- College of Animal Science and Technology, Jiangsu Provincial Key Laboratory of Animal Origin Food Production and Safety Guarantee, Jiangsu Provincial Key Laboratory of Gastrointestinal Nutrition and Animal Health, Jiangsu Provincial Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing, Jiangsu, P.R. China
| |
Collapse
|
22
|
Morales A, Valle JA, Castillo G, González F, Hernández C, Arce N, Htoo JK, Cervantes M. Effects of dietary supplementation with L-arginine on the endogenous losses of amino acids in growing pigs exposed to heat stress. J Therm Biol 2023; 118:103739. [PMID: 37926009 DOI: 10.1016/j.jtherbio.2023.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Exposing pigs to heat stress (HS) provokes higher death of intestinal cells, resulting in elevated endogenous intestinal losses (EIL) of amino acids (AA) and damage to intestinal epithelia. Arginine (Arg) is precursor for the synthesis of polyamines, which are involved in proliferation of intestinal cells and restoration of the intestinal epithelia. Thus the effect of adding L-Arg to diets for HS pigs on the EIL of AA was analyzed. Twelve pigs (23.1 ± 1.1 kg body weight) implanted with T-type cannulas at the end of ileum were individually housed and allowed 15-days for surgery recovery under thermoneutral (TN) conditions (22 ± 2 °C). Following, the pigs were randomly assigned to one of three treatments: TN pigs fed a semi-purified, corn starch-3% casein basal diet (TN-B); HS pigs with the basal diet (HS-B); HS pigs consuming the basal diet supplemented with 0.20% L-Arg (HS-Arg). The experiment consisted of two 9-day periods; each period included 7-days of adaptation to their respective diet, followed by a 2-day ileal digesta collection period. Digesta was collected during 12 consecutive hours each day. The pigs were fed twice a-day. Ambient temperature (AT) inside the TN and HS rooms ranged from 18.6 to 27.6 °C and from 29.5 to 40.7 °C, respectively. Body temperature followed a pattern similar to that of AT. The daily EIL of indispensable AA increased (P < 0.01) in the HS-B pigs compared to both the TN-B and the HS-Arg pigs, however, there was no EIL difference between the TN-B and the HS-Arg pigs (P > 0.05). Likewise, with the exception of serine, daily losses of endogenous dispensable AA in the HS-B pigs were higher (P < 0.01) in comparison with those of TN-B and HS-Arg pigs. In summary, HS exposure compared to TN conditions increases the loss of endogenous AA, but dietary supplementation with L-Arg helped to counteract the negative HS effect.
Collapse
Affiliation(s)
- Adriana Morales
- Universidad Autónoma de Baja California, Mexicali, B. C., Mexico
| | - José A Valle
- Universidad Autónoma de Baja California, Mexicali, B. C., Mexico
| | | | | | | | - Néstor Arce
- Universidad Autónoma de Baja California, Mexicali, B. C., Mexico
| | - John K Htoo
- Evonik Operations GmbH, 63457, Hanau, Germany
| | - Miguel Cervantes
- Universidad Autónoma de Baja California, Mexicali, B. C., Mexico.
| |
Collapse
|
23
|
Smith AN, Morris JK, Carbuhn AF, Herda TJ, Keller JE, Sullivan DK, Taylor MK. Creatine as a Therapeutic Target in Alzheimer's Disease. Curr Dev Nutr 2023; 7:102011. [PMID: 37881206 PMCID: PMC10594571 DOI: 10.1016/j.cdnut.2023.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, affecting approximately 6.5 million older adults in the United States. Development of AD treatment has primarily centered on developing pharmaceuticals that target amyloid-β (Aβ) plaques in the brain, a hallmark pathological biomarker that precedes symptomatic AD. Though recent clinical trials of novel drugs that target Aβ have demonstrated promising preliminary data, these pharmaceuticals have a poor history of developing into AD treatments, leading to hypotheses that other therapeutic targets may be more suitable for AD prevention and treatment. Impaired brain energy metabolism is another pathological hallmark that precedes the onset of AD that may provide a target for intervention. The brain creatine (Cr) system plays a crucial role in maintaining bioenergetic flux and is disrupted in AD. Recent studies using AD mouse models have shown that supplementing with Cr improves brain bioenergetics, as well as AD biomarkers and cognition. Despite these promising findings, no human trials have investigated the potential benefits of Cr supplementation in AD. This narrative review discusses the link between Cr and AD and the potential for Cr supplementation as a treatment for AD.
Collapse
Affiliation(s)
- Aaron N. Smith
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jill K. Morris
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aaron F. Carbuhn
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Trent J. Herda
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - Jessica E. Keller
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
| | - Matthew K. Taylor
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
| |
Collapse
|
24
|
Law D, Magrini MA, Siedlik JA, Eckerson J, Drescher KM, Bredahl EC. Creatine and Resistance Training: A Combined Approach to Attenuate Doxorubicin-Induced Cardiotoxicity. Nutrients 2023; 15:4048. [PMID: 37764831 PMCID: PMC10536171 DOI: 10.3390/nu15184048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Doxorubicin (DOX), a potent chemotherapy agent, useful in the treatment of solid tumors, lymphomas, and leukemias, is limited by its potentially lethal cardiotoxicity. However, exercise has been consistently shown to mitigate the side effects of DOX, including cardiotoxicity. To date, most studies examining the relationship between exercise and DOX-induced cardiotoxicity have focused on aerobic exercise, with very few examining the role of anerobic activity. Therefore, this investigation explored the potential of creatine (CR) and resistance training (RT) in preserving cardiac health during DOX therapy. Male Sprague-Dawley rats were grouped into RT, RT + CR, sedentary (SED), and SED + CR, with each division further branching into saline (SAL) or DOX-treated subsets post-10 weeks of RT or SED activity. RT comprised progressive training utilizing specialized cages for bipedal stance feeding. CR-treated groups ingested water mixed with 1% CR monohydrate and 5% dextrose, while control animals received 5% dextrose. At week 10, DOX was administered (2 mg/kg/week) over 4-weeks to an 8 mg/kg cumulative dose. Cardiac function post-DOX treatment was assessed via transthoracic echocardiography. Left ventricular diameter during diastole was lower in DOX + CR, RT + DOX, and RT + CR + DOX compared to SED + DOX (p < 0.05). Additionally, cardiac mass was significantly greater in RT + CR + DOX SED + DOX animals (p < 0.05). These results suggest RT and CR supplementation, separately and in combination, could attenuate some measures of DOX-induced cardiotoxicity and may offer a cost-effective way to complement cancer treatments and enhance patient outcomes. More investigations are essential to better understand CR's prolonged effects during DOX therapy and its clinical implications.
Collapse
Affiliation(s)
- David Law
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Mitchel A Magrini
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Jacob A Siedlik
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
- Department of Medical Microbiology and Immunology, Creighton University, Omaha NE 68178, USA
| | - Joan Eckerson
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Kristen M Drescher
- Department of Medical Microbiology and Immunology, Creighton University, Omaha NE 68178, USA
| | - Eric C Bredahl
- Department of Exercise Science and Pre-Health Professions, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
- Department of Medical Microbiology and Immunology, Creighton University, Omaha NE 68178, USA
| |
Collapse
|
25
|
Alraddadi EA, Khojah AM, Alamri FF, Kecheck HK, Altaf WF, Khouqeer Y. Potential role of creatine as an anticonvulsant agent: evidence from preclinical studies. Front Neurosci 2023; 17:1201971. [PMID: 37456992 PMCID: PMC10339234 DOI: 10.3389/fnins.2023.1201971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders affecting people of all ages representing a significant social and public health burden. Current therapeutic options for epilepsy are not effective in a significant proportion of patients suggesting a need for identifying novel targets for the development of more effective therapeutics. There is growing evidence from animal and human studies suggesting a role of impaired brain energy metabolism and mitochondrial dysfunction in the development of epilepsy. Candidate compounds with the potential to target brain energetics have promising future in the management of epilepsy and other related neurological disorders. Creatine is a naturally occurring organic compound that serves as an energy buffer and energy shuttle in tissues, such as brain and skeletal muscle, that exhibit dynamic energy requirements. In this review, applications of creatine supplements in neurological conditions in which mitochondrial dysfunction is a central component in its pathology will be discussed. Currently, limited evidence mainly from preclinical animal studies suggest anticonvulsant properties of creatine; however, the exact mechanism remain to be elucidated. Future work should involve larger clinical trials of creatine used as an add-on therapy, followed by large clinical trials of creatine as monotherapy.
Collapse
Affiliation(s)
- Eman A. Alraddadi
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Abdulrahman M. Khojah
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Faisal F. Alamri
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Husun K. Kecheck
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Wid F. Altaf
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Yousef Khouqeer
- Department of Basic Sciences, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
26
|
Leveque C, Mrakic Sposta S, Theunissen S, Germonpré P, Lambrechts K, Vezzoli A, Gussoni M, Levenez M, Lafère P, Guerrero F, Balestra C. Oxidative Stress Response Kinetics after 60 Minutes at Different Levels (10% or 15%) of Normobaric Hypoxia Exposure. Int J Mol Sci 2023; 24:10188. [PMID: 37373334 DOI: 10.3390/ijms241210188] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, the metabolic responses of hypoxic breathing for 1 h to inspired fractions of 10% and 15% oxygen were investigated. To this end, 14 healthy nonsmoking subjects (6 females and 8 males, age: 32.2 ± 13.3 years old (mean ± SD), height: 169.1 ± 9.9 cm, and weight: 61.6 ± 16.2 kg) volunteered for the study. Blood samples were taken before, and at 30 min, 2 h, 8 h, 24 h, and 48 h after a 1 h hypoxic exposure. The level of oxidative stress was evaluated by considering reactive oxygen species (ROS), nitric oxide metabolites (NOx), lipid peroxidation, and immune-inflammation by interleukin-6 (IL-6) and neopterin, while antioxidant systems were observed in terms of the total antioxidant capacity (TAC) and urates. Hypoxia abruptly and rapidly increased ROS, while TAC showed a U-shape pattern, with a nadir between 30 min and 2 h. The regulation of ROS and NOx could be explained by the antioxidant action of uric acid and creatinine. The kinetics of ROS allowed for the stimulation of the immune system translated by an increase in neopterin, IL-6, and NOx. This study provides insights into the mechanisms through which acute hypoxia affects various bodily functions and how the body sets up the protective mechanisms to maintain redox homeostasis in response to oxidative stress.
Collapse
Affiliation(s)
- Clément Leveque
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Laboratoire ORPHY, Université de Bretagne Occidentale, UFR Sciences et Techniques, 93837 Brest, France
| | - Simona Mrakic Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Sigrid Theunissen
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Peter Germonpré
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Hyperbaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Kate Lambrechts
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Maristella Gussoni
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council (SCITEC-CNR), 20133 Milan, Italy
| | - Morgan Levenez
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
| | - François Guerrero
- Laboratoire ORPHY, Université de Bretagne Occidentale, UFR Sciences et Techniques, 93837 Brest, France
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
27
|
Yang B, Zhang W, Sun L, Lu B, Yin C, Zhang Y, Jiang H. Creatine kinase brain-type regulates BCAR1 phosphorylation to facilitate DNA damage repair. iScience 2023; 26:106684. [PMID: 37182100 PMCID: PMC10173731 DOI: 10.1016/j.isci.2023.106684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/07/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
Creatine kinase (CK) is an essential metabolic enzyme mediating creatine/phosphocreatine interconversion and shuttle to replenish ATP for energy needs. Ablation of CK causes a deficiency in energy supply that eventually results in reduced muscle burst activity and neurological disorders in mice. Besides the well-established role of CK in energy-buffering, the mechanism underlying the non-metabolic function of CK is poorly understood. Here we demonstrate that creatine kinase brain-type (CKB) may function as a protein kinase to regulate BCAR1 Y327 phosphorylation that enhances the association between BCAR1 and RBBP4. Then the complex of BCAR1 and RPPB4 binds to the promoter region of DNA damage repair gene RAD51 and activates its transcription by modulating histone H4K16 acetylation to ultimately promote DNA damage repair. These findings reveal the possible role of CKB independently of its metabolic function and depict the potential pathway of CKB-BCAR1-RBBP4 operating in DNA damage repair.
Collapse
Affiliation(s)
- Bo Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wentao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Le Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Changsong Yin
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Corresponding author
| |
Collapse
|
28
|
Costa Godinho LRL, Cella PS, Guimarães TAS, Palma GHD, Nunes JHC, Deminice R. Creatine Supplementation Potentiates Exercise Protective Effects against Doxorubicin-Induced Hepatotoxicity in Mice. Antioxidants (Basel) 2023; 12:antiox12040823. [PMID: 37107198 PMCID: PMC10135080 DOI: 10.3390/antiox12040823] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
We tested the hypothesis that creatine supplementation may potentiate exercise’s protective effects against doxorubicin-induced hepatotoxicity. Thirty-eight Swiss mice were randomly allocated into five groups: control (C, n = 7), exercised (Ex, n = 7), treated with doxorubicin (Dox, n = 8), treated with doxorubicin and exercised (DoxEx, n = 8), and treated with doxorubicin, exercised, and supplemented with creatine (DoxExCr, n = 8). Doxorubicin was administered weekly (i.p.) for a total dose of 12 mg/kg. Creatine supplementation (2% added to the diet) and strength training (climbing stairs, 3 times a week) were performed for a total of 5 weeks. The results demonstrated that doxorubicin caused hepatotoxicity, which was evidenced by increased (p < 0.05) hepatic markers of inflammation (i.e., TNF-α and IL-6) and oxidative damage, while the redox status (GSH/GSSG) was reduced. The plasma concentrations of liver transaminases were also significantly (p < 0.05) elevated. Furthermore, doxorubicin-treated animals presented hepatic fibrosis and histopathological alterations such as cellular degeneration and the infiltration of interstitial inflammatory cells. Exercise alone partly prevented doxorubicin-induced hepatotoxicity; thus, when combined with creatine supplementation, exercise was able to attenuate inflammation and oxidative stress, morphological alterations, and fibrosis. In conclusion, creatine supplementation potentiates the protective effects of exercise against doxorubicin-induced hepatotoxicity in mice.
Collapse
|
29
|
Li W, Cui Z, Jiang Y, Aisikaer A, Wu Q, Zhang F, Wang W, Bo Y, Yang H. Dietary Guanidine Acetic Acid Improves Ruminal Antioxidant Capacity and Alters Rumen Fermentation and Microflora in Rapid-Growing Lambs. Antioxidants (Basel) 2023; 12:antiox12030772. [PMID: 36979020 PMCID: PMC10044800 DOI: 10.3390/antiox12030772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Guanidine acetic acid (GAA) has been reported to improve growth performance, nutrient utilization, and meat quality in livestock. This study aimed to investigate whether coated GAA (CGAA) in comparison with uncoated GAA (UGAA) could have different effects on rumen fermentation, antioxidant capacity, and microflora composition in the rumen. Seventy-two lambs were randomly arranged in a 2 × 3 factorial experiment design with two diets of different forage type (OH: oaten hay; OHWS: oaten hay plus wheat silage) and three GAA treatments within each diet (control, diet without GAA addition; UGAA, uncoated GAA; CGAA, coated GAA). The whole feeding trial lasted for 120 days. The lambs in the OH group presented lower total volatile fatty acid (VFA), alpha diversity, Firmicutes, NK4A214_group, and Lachnospiraceae_NK3A20_group than those on the OHWS diet in the last 60 days of the feeding stage (p < 0.05). Regardless of what GAA form was added, dietary GAA supplementation increased the total VFA, microbial crude protein (MCP), adenosine triphosphate (ATP), and antioxidant capacity in rumen during lamb feedlotting (p < 0.05). However, molar propionate proportion, acetate:propionate ratio (A:P), and relative Succiniclasticum abundance decreased with GAA addition in the first 60 days of the growing stage, while the molar butyrate proportion and NK4A214_group (p < 0.05) in response to GAA addition increased in the last 60 days of feeding. These findings indicated that dietary GAA enhanced antioxidant capacity and fermentation characteristics in the rumen, but the addition of uncoated GAA in diets might cause some dysbacteriosis of the rumen microbiota.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zhaoyang Cui
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yaowen Jiang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ailiyasi Aisikaer
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Qichao Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fang Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Weikang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yukun Bo
- Zhangjiakou Animal Husbandry Technology Promotion Institution, Zhangjiakou 075000, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
30
|
Chen X, Cao J, Geng A, Zhang X, Wang H, Chu Q, Yan Z, Zhang Y, Liu H, Zhang J. Integration of GC-MS and LC-MS for metabolite characteristics of thigh meat between fast- and slow-growing broilers at marketable age. Food Chem 2023; 403:134362. [PMID: 36183464 DOI: 10.1016/j.foodchem.2022.134362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 11/26/2022]
|
31
|
Majdeddin M, Braun U, Lemme A, Golian A, Kermanshahi H, De Smet S, Michiels J. Effects of feeding guanidinoacetic acid on oxidative status and creatine metabolism in broilers subjected to chronic cyclic heat stress in the finisher phase. Poult Sci 2023; 102:102653. [PMID: 37030259 PMCID: PMC10113889 DOI: 10.1016/j.psj.2023.102653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Dietary guanidinoacetic acid (GAA) has been shown to affect creatine (Cr) metabolic pathways resulting in increased cellular Cr and hitherto broiler performances. Yet, the impact of dietary GAA on improving markers of oxidative status remains equivocal. A model of chronic cyclic heat stress, known to inflict oxidative stress, was employed to test the hypothesis that GAA could modify bird's oxidative status. A total of 720-day-old male Ross 308 broilers were allocated to 3 treatments: 0, 0.6 or 1.2 g/kg GAA was added to corn-SBM diets and fed for 39 d, with 12 replicates (20 birds each) per treatment. The chronic cyclic heat stress model (34°C with 50-60% RH for 7 h daily) was applied in the finisher phase (d 25-39). Samples from 1 bird per pen were taken on d 26 (acute heat stress) and d 39 (chronic heat stress). GAA and Cr in plasma were linearly increased by feeding GAA on either sampling day, illustrating efficient absorption and methylation, respectively. Energy metabolism in breast and heart muscle was greatly supported as visible by increased Cr and phosphocreatine: ATP, thus providing higher capacity for rapid ATP generation in cells. Glycogen stores in breast muscle were linearly elevated by incremental GAA, on d 26 only. More Cr seems to be directed to heart muscle as opposed to skeletal muscle during chronic heat stress as tissue Cr was higher in heart but lower in breast muscle on d 39 as opposed to d 26. The lipid peroxidation marker malondialdehyde, and the antioxidant enzymes superoxide dismutase and glutathione peroxidase showed no alterations by dietary GAA in plasma. Opposite to that, superoxide dismutase activity in breast muscle was linearly lowered when feeding GAA (trend on d 26, effect on d 39). Significant correlations between the assessed parameters and GAA inclusion were identified on d 26 and d 39 using principal component analysis. To conclude, beneficial performance in heat-stressed broilers by GAA is associated with enhanced muscle energy metabolism which indirectly may also support tolerance against oxidative stress.
Collapse
|
32
|
Gouveia HJCB, Manhães-de-Castro R, Lacerda DC, Toscano AE. Creatine supplementation to improve the peripheral and central inflammatory profile in cerebral palsy. Clin Nutr ESPEN 2022; 52:254-256. [PMID: 36513462 DOI: 10.1016/j.clnesp.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
This opinion paper presents a brief review on the potential use of Creatine (Cr) to improve the inflammatory profile in individuals with Cerebral Palsy (CP). CP is a condition that causes muscle atrophy followed by reduced strength and altered muscle tone. The prevalence of chronic diseases is higher in people with CP due to this, which are often associated with peripheral inflammation, but there are no studies that have evaluated central inflammation in this condition. Nevertheless, the anti-inflammatory action of Cr has already been observed in different types of studies. Thus, the use of experimental models of CP to evaluate the expression of the inflammatory markers, especially in the brain, as well as approaches to reduce the impairments already observed becomes essential. Results obtained in these preclinical studies may contribute to the quality of therapeutic strategies offered to children suffering from CP, the most common cause of chronic motor disability in childhood.
Collapse
Affiliation(s)
- Henrique J C B Gouveia
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Manhães-de-Castro
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Diego Cabral Lacerda
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Ana Elisa Toscano
- Postgraduate Program in Nutrition, Health Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Department of Nursing, CAV, Federal University of Pernambuco, Vitória de Santo Antão, Pernambuco, Brazil.
| |
Collapse
|
33
|
Creatine supplementation protects against diet-induced non-alcoholic fatty liver but exacerbates alcoholic fatty liver. Life Sci 2022; 310:121064. [PMID: 36220368 DOI: 10.1016/j.lfs.2022.121064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
AIMS This work investigated the effects of creatine supplementation on different pathways related to the pathogenesis of non-alcoholic fatty liver disease and alcoholic liver disease. MAIN METHODS To induce alcoholic liver disease, male Swiss mice were divided into three groups: control, ethanol and ethanol supplemented with creatine. To induce non-alcoholic fatty liver disease, mice were divided into three groups: control, high-fat diet and high-fat diet supplemented with creatine. Each group consisted of eight animals. In both cases, creatine monohydrate was added to the diets (1 %; weight/vol). KEY FINDINGS Creatine supplementation prevented high-fat diet-induced non-alcoholic fatty liver disease progression, demonstrated by attenuated liver fat accumulation and liver damage. On the other hand, when combined with ethanol, creatine supplementation up-regulated key genes related to ethanol metabolism, oxidative stress, inflammation and lipid synthesis, and exacerbated ethanol-induced liver steatosis and damage, demonstrated by increased liver fat accumulation and histopathological score, as well as elevated oxidative damage markers and inflammatory mediators. SIGNIFICANCE Our results clearly demonstrated creatine supplementation exerts different outcomes in relation to non-alcoholic fatty liver disease and alcoholic liver disease, namely it protects against high-fat diet-induced non-alcoholic fatty liver disease but exacerbates ethanol-induced alcoholic liver disease. The exacerbating effects of the creatine and ethanol combination appear to be related to oxidative stress and inflammation-mediated up-regulation of ethanol metabolism.
Collapse
|
34
|
Valle A, Cervantes M, Morales A, Castillo G, Montoya E, González‐Vega JC, Htoo JK, Avelar E. Apparent and standardised ileal amino acid digestibilities in heat‐stressed pigs fed wheat‐soybean meal diets supplemented with l‐arginine and dl‐methionine. J Anim Physiol Anim Nutr (Berl) 2022; 107:859-866. [PMID: 36453690 DOI: 10.1111/jpn.13793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022]
Abstract
Heat stress (HS) exposure may damage the small intestine epithelia of pigs affecting the digestibility and absorption of amino acids (AA). Arg and Met can enhance antioxidant and intestinal cell proliferation activity, thus supplementing them in diets might alleviate epithelial damage and correct the reduced AA digestibility. The effect of adding extra l-Arg and dl-Met to diets on the apparent (AID) and standardised ileal digestibility (SID) of AA was analysed in a 10-day experiment conducted with 10 ileal-cannulated HS pigs (25.3 ± 2.4 kg body weight). The pigs were divided into two treatments: Control, wheat-soybean meal diet supplemented with l-Lys, l-Thr, dl-Met and l-Trp; and control diet plus 0.20% l-Arg and 0.20% dl-Met (Arg + Met). Following an 8-day diet adaptation period, ileal digesta was continuously collected for 12 h, starting at 0700, on Days 9 and 10. All pigs were daily exposed to 29.6-36.1°C; ileal temperature was continuously monitored at 15-min intervals. Feed was provided twice a day. The ileal temperature ranged from 40.3 to 41.5°C. Daily ileal outflow of His, Ile, Leu, Phe, Thr, Ser and Tyr decreased (p < 0.05), and that of Arg, Val and Pro tended to decrease (p < 0.10) in the Arg + Met pigs. The AID of Arg, His, Met, Thr and Tyr, and the SID of His, Met, and Thr increased in pigs fed the Arg + Met diet (p < 0.05). Thr and Val had the lowest AID values whereas Arg, Met, and Lys had the highest values. Arg (r = 0.64) and Met (r = 0.84) intake were highly correlated with their AID values; Met intake was highly correlated with its SID value (r = 0.72). Valine and Arg had the lowest whereas Arg had the highest SID values. In conclusion, supplementing l-Arg and dl-Met above the requirement decreases the ileal outflow of several AA, and increases the AID and SID of some essential AA in HS pigs.
Collapse
Affiliation(s)
- Alan Valle
- Instituto de Ciencias Agrícolas Universidad Autónoma de Baja CaliforniaMexicali Baja California México
| | - Miguel Cervantes
- Instituto de Ciencias Agrícolas Universidad Autónoma de Baja CaliforniaMexicali Baja California México
| | - Adriana Morales
- Instituto de Ciencias Agrícolas Universidad Autónoma de Baja CaliforniaMexicali Baja California México
| | - Gilberto Castillo
- Complejo Regional Centro, Ingeniería Agronómica y Zootecnia Benemérita Universidad Autónoma de Puebla Puebla México
| | - Estela Montoya
- Instituto de Ciencias Agrícolas Universidad Autónoma de Baja CaliforniaMexicali Baja California México
| | | | | | - Ernesto Avelar
- Instituto de Ciencias Agrícolas Universidad Autónoma de Baja CaliforniaMexicali Baja California México
| |
Collapse
|
35
|
Neto FTL, Marques RA, Cavalcanti Filho ADF, Fonte JEFD, Lima SVC, Silva RO. Prediction of semen analysis parameter improvement after varicocoelectomy using 1 H NMR-based metabonomics assays. Andrology 2022; 10:1581-1592. [PMID: 36018886 DOI: 10.1111/andr.13281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Varicocoele is the most common correctable cause of male infertility; however, predicting varicocoelectomy outcomes is difficult. "Omics" techniques have been increasingly used to develop new diagnostic and prognostics tools for several male infertility causes, and could be applied to study varicocoele. OBJECTIVES The objective is to create metabolomics models capable of segregating men who improved semen analysis (SA) parameters or achieved natural pregnancy after microsurgical varicocoelectomy (MV) from those who did not, using hydrogen-1 nuclear magnetic resonance (1 H NMR) spectra of seminal plasma of pre-operative samples. MATERIAL AND METHODS We recruited 29 infertile men with palpable varicocoele. 1 H NMR spectra of seminal plasma were obtained from pre-operative samples and used to create metabonomics models. Improvement was defined as an increase in the total motile progressive sperm count (TMC) of the post-operative SA when compared to the baseline, and pregnancy was assessed for 24 months after MV. RESULTS Using linear discriminant analysis (LDA), we created a model that discriminated the men who improved SA from those who did not with accuracy of 93.1%. Another model segregated men who achieved natural pregnancy from men who did not. We identified seven metabolites that were important for group segregation: caprylate, isoleucine, N-acetyltyrosine, carnitine, N-acetylcarnitine, creatine, and threonine. DISCUSSION We described the use of metabonomics model to predict with high accuracy the outcomes of MV in infertile men with varicocoele. The most important metabolites for group segregation are involved in energy metabolism and oxidative stress response, highlighting the pivotal role of these mechanisms in the pathophysiology of varicocoele. CONCLUSIONS 1 H NMR spectroscopy of seminal plasma can be used in conjunction with multivariate statistical tools to create metabonomics models useful to segregate men with varicocoele based on the reproductive outcomes of MV. These models may help counseling infertile men with varicocoele regarding their prognosis after surgery.
Collapse
Affiliation(s)
- Filipe Tenorio Lira Neto
- Andros Recife, Recife, Brazil. Department of Urology, Instituto de Medicina Integral Prof. Fernando Figueira, Recife, Brazil. Departamento de Cirurgia, Universidade Federal de Pernambuco, Recife, Brazil
- Instituto de Medicina Integral Prof. Fernando Figueira, Recife, Brazil
- Department of Surgery, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Prokic VZ, Rankovic MR, Draginic ND, Andjic MM, Sretenovic JZ, Zivkovic VI, Jeremic JN, Milinkovic MV, Bolevich S, Jakovljevic VLJ, Pantovic SB. Guanidinoacetic acid provides superior cardioprotection to its combined use with betaine and (or) creatine in HIIT-trained rats. Can J Physiol Pharmacol 2022; 100:772-786. [PMID: 35894232 DOI: 10.1139/cjpp-2021-0801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to determine how guanidinoacetic acid (GAA) or its combined administration with betaine (B) or creatine (C) influences the cardiac function, morphometric parameters, and redox status of rats subjected to high-intensity interval training (HIIT). This research was conducted on male Wistar albino rats exposed to HIIT for 4 weeks. The animals were randomly divided into five groups: HIIT, HIIT + GAA, HIIT + GAA + C, HIIT + GAA + B, and HIIT + GAA + C + B. After completing the training protocol, GAA (300 mg/kg), C (280 mg/kg), and B (300 mg/kg) were applied daily per os for 4 weeks. GAA supplementation in combination with HIIT significantly decreased the level of both systemic and cardiac prooxidants ( O 2 - , H2O2, NO 2 - , and thiobarbituric acid reactive substances) compared with nontreated HIIT (p < 0.05). Also, GAA treatment led to an increase in glutathione and superoxide dismutase levels. None of the treatment regimens altered cardiac function. A larger degree of cardiomyocyte hypertrophy was observed in the HIIT + GAA group, which was reflected through an increase of the cross-sectional area of 27% (p < 0.05) and that of the left ventricle wall thickness of 27% (p < 0.05). Since we showed that GAA in combination with HIIT may ameliorate oxidative stress and does not alter cardiac function, the present study is a basis for future research exploring the mechanisms of cardioprotection induced by this supplement in an HIIT scenario.
Collapse
Affiliation(s)
- Veljko Z Prokic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marina R Rankovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena D Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marijana M Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jasmina Z Sretenovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Vladimir I Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana N Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Milica V Milinkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Sergey Bolevich
- Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Vladimir L J Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Human Pathology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Suzana B Pantovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
37
|
Tran NT, Kowalski GM, Muccini AM, Nitsos I, Hale N, Snow RJ, Walker DW, Ellery SJ. Creatine supplementation reduces the cerebral oxidative and metabolic stress responses to acute in utero hypoxia in the late-gestation fetal sheep. J Physiol 2022; 600:3193-3210. [PMID: 35587817 PMCID: PMC9542404 DOI: 10.1113/jp282840] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/22/2022] [Indexed: 11/24/2022] Open
Abstract
Abstract Prophylactic creatine treatment may reduce hypoxic brain injury due to its ability to sustain intracellular ATP levels thereby reducing oxidative and metabolic stress responses during oxygen deprivation. Using microdialysis, we investigated the real‐time in vivo effects of fetal creatine supplementation on cerebral metabolism following acute in utero hypoxia caused by umbilical cord occlusion (UCO). Fetal sheep (118 days’ gestational age (dGA)) were implanted with an inflatable Silastic cuff around the umbilical cord and a microdialysis probe inserted into the right cerebral hemisphere for interstitial fluid sampling. Creatine (6 mg kg−1 h−1) or saline was continuously infused intravenously from 122 dGA. At 131 dGA, a 10 min UCO was induced. Hourly microdialysis samples were obtained from −24 to 72 h post‐UCO and analysed for percentage change of hydroxyl radicals (•OH) and interstitial metabolites (lactate, pyruvate, glutamate, glycerol, glycine). Histochemical markers of protein and lipid oxidation were assessed at post‐mortem 72 h post‐UCO. Prior to UCO, creatine treatment reduced pyruvate and glycerol concentrations in the microdialysate outflow. Creatine treatment reduced interstitial cerebral •OH outflow 0 to 24 h post‐UCO. Fetuses with higher arterial creatine concentrations before UCO presented with reduced levels of hypoxaemia (PO2 and SO2) during UCO which associated with reduced interstitial cerebral pyruvate, lactate and •OH accumulation. No effects of creatine treatment on immunohistochemical markers of oxidative stress were found. In conclusion, fetal creatine treatment decreased cerebral outflow of •OH and was associated with an improvement in cerebral bioenergetics following acute hypoxia.
![]() Key points Fetal hypoxia can cause persistent metabolic and oxidative stress responses that disturb energy homeostasis in the brain. Creatine in its phosphorylated form is an endogenous phosphagen; therefore, supplementation is a proposed prophylactic treatment for fetal hypoxia. Fetal sheep instrumented with a cerebral microdialysis probe were continuously infused with or without creatine‐monohydrate for 10 days before induction of 10 min umbilical cord occlusion (UCO; 131 days’ gestation). Cerebral interstitial fluid was collected up to 72 h following UCO. Prior to UCO, fetal creatine supplementation reduced interstitial cerebral pyruvate and glycerol concentrations. Fetal creatine supplementation reduced cerebral hydroxyl radical efflux up to 24 h post‐UCO. Fetuses with higher arterial creatine concentrations before UCO and reduced levels of systemic hypoxaemia during UCO were associated with reduced cerebral interstitial pyruvate, lactate and •OH following UCO. Creatine supplementation leads to some improvements in cerebral bioenergetics following in utero acute hypoxia.
Collapse
Affiliation(s)
- Nhi Thao Tran
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia
| | - Greg M Kowalski
- Institute for Physical Activity & Nutrition, Deakin University, Burwood, School of Exercise & Nutrition Sciences, Deakin University, Geelong Melbourne, Victoria, Australia.,Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Anna M Muccini
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia.,Genetic Research Services, University of Queensland, Queensland, Australia
| | - Ilias Nitsos
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia.,Department of Obstetrics & Gynecology, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Nadia Hale
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia.,The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia
| | - Rod J Snow
- Institute for Physical Activity & Nutrition, Deakin University, Burwood, School of Exercise & Nutrition Sciences, Deakin University, Geelong Melbourne, Victoria, Australia
| | - David W Walker
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Stacey J Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Medical Centre, Clayton, Melbourne, Victoria, Australia.,Department of Obstetrics & Gynecology, Monash University, Clayton, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Banerjee P, Saha I, Sarkar D, Maiti AK. Contributions and Limitations of Mitochondria-Targeted and Non-Targeted Antioxidants in the Treatment of Parkinsonism: an Updated Review. Neurotox Res 2022; 40:847-873. [PMID: 35386026 DOI: 10.1007/s12640-022-00501-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
Abstract
As conventional therapeutics can only treat the symptoms of Parkinson's disease (PD), major focus of research in recent times is to slow down or prevent the progression of neuronal degeneration in PD. Non-targeted antioxidants have been an integral part of the conventional therapeutics regimen; however, their importance have lessened over time because of their controversial outcomes in clinical PD trials. Inability to permeate and localize within the mitochondria remains the main drawback on the part of non-targeted antioxidants inspite of possessing free radical scavenging properties. In contrast, mitochondrial-targeted antioxidants (MTAs), a special class of compounds have emerged having high advantages over non-targeted antioxidants by virtue of efficient pharmacokinetics and better absorption rate with capability to localize many fold inside the mitochondrial matrix. Preclinical experimentations indicate that MTAs have the potential to act as better alternatives compared to conventional non-targeted antioxidants in treating PD; however, sufficient clinical trials have not been conducted to investigate the efficacies of MTAs in treating PD. Controversial clinical outcomes on the part of non-targeted antioxidants and lack of clinical trials involving MTAs have made it difficult to go ahead with a direct comparison and in turn have slowed down the progress of development of safer and better alternate strategies in treating PD. This review provides an insight on the roles MTAs and non-targeted antioxidants have played in the treatment of PD till date in preclinical and clinical settings and discusses about the limitations of mitochondria-targeted and non-targeted antioxidants that can be resolved for developing effective strategies in treating Parkinsonism.
Collapse
Affiliation(s)
- Priyajit Banerjee
- Department of Zoology, University of Burdwan, Burdwan, West Bengal, Pin-713104, India
| | - Ishita Saha
- Department of Physiology, Medical College Kolkata, Kolkata, West Bengal, Pin-700073, India
| | - Diptendu Sarkar
- Department of Microbiology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, West Bengal, 711202, India
| | - Arpan Kumar Maiti
- Mitochondrial Biology and Experimental Therapeutics Laboratory, Department of Zoology, University of North Bengal, District - Darjeeling, P.O. N.B.U, Raja Rammohunpur, West Bengal, Pin-734013, India.
| |
Collapse
|
39
|
Sun Y, Kong L, Zhang AH, Han Y, Sun H, Yan GL, Wang XJ. A Hypothesis From Metabolomics Analysis of Diabetic Retinopathy: Arginine-Creatine Metabolic Pathway May Be a New Treatment Strategy for Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:858012. [PMID: 35399942 PMCID: PMC8987289 DOI: 10.3389/fendo.2022.858012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic retinopathy is one of the serious complications of diabetes, which the leading causes of blindness worldwide, and its irreversibility renders the existing treatment methods unsatisfactory. Early detection and timely intervention can effectively reduce the damage caused by diabetic retinopathy. Metabolomics is a branch of systems biology and a powerful tool for studying pathophysiological processes, which can help identify the characteristic metabolic changes marking the progression of diabetic retinopathy, discover potential biomarkers to inform clinical diagnosis and treatment. This review provides an update on the known metabolomics biomarkers of diabetic retinopathy. Through comprehensive analysis of biomarkers, we found that the arginine biosynthesis is closely related to diabetic retinopathy. Meanwhile, creatine, a metabolite with arginine as a precursor, has attracted our attention due to its important correlation with diabetic retinopathy. We discuss the possibility of the arginine-creatine metabolic pathway as a therapeutic strategy for diabetic retinopathy.
Collapse
Affiliation(s)
- Ye Sun
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ling Kong
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Han
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guang-Li Yan
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center and National Traditional Chinese Medicine (TCM) Key Laboratory of Serum Pharmacochemistry, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Harbin, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning, China
| |
Collapse
|
40
|
Nersesova LS, Petrosyan MS, Arutjunyan AV. Neuroprotective Potential of Creatine. Hidden Resources of Its Therapeutic and Preventive Use. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Brugnara L, García AI, Murillo S, Ribalta J, Fernandez G, Marquez S, Rodriguez MA, Vinaixa M, Amigó N, Correig X, Kalko S, Pomes J, Novials A. Muscular carnosine is a marker for cardiorespiratory fitness and cardiometabolic risk factors in men with type 1 diabetes. Eur J Appl Physiol 2022; 122:1429-1440. [PMID: 35298695 DOI: 10.1007/s00421-022-04929-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 03/04/2022] [Indexed: 12/01/2022]
Abstract
PURPOSE Muscle is an essential organ for glucose metabolism and can be influenced by metabolic disorders and physical activity. Elevated muscle carnosine levels have been associated with insulin resistance and cardiometabolic risk factors. Little is known about muscle carnosine in type 1 diabetes (T1D) and how it is influenced by physical activity. The aim of this study was to characterize muscle carnosine in vivo by proton magnetic resonance spectroscopy (1H MRS) and evaluate the relationship with physical activity, clinical characteristics and lipoprotein subfractions. METHODS 16 men with T1D (10 athletes/6 sedentary) and 14 controls without diabetes (9/5) were included. Body composition by DXA, cardiorespiratory capacity (VO2peak) and serum lipoprotein profile by proton nuclear magnetic resonance (1H NMR) were obtained. Muscle carnosine scaled to water (carnosineW) and to creatine (carnosineCR), creatine and intramyocellular lipids (IMCL) were quantified in vivo using 1H MRS in a 3T MR scanner in soleus muscle. RESULTS Subjects with T1D presented higher carnosine CR levels compared to controls. T1D patients with a lower VO2peak presented higher carnosineCR levels compared to sedentary controls, but both T1D and control groups presented similar levels of carnosineCR at high VO2peak levels. CarnosineW followed the same trend. Integrated correlation networks in T1D demonstrated that carnosineW and carnosineCR were associated with cardiometabolic risk factors including total and abdominal fat, pro-atherogenic lipoproteins (very low-density lipoprotein subfractions), low VO2peak, and IMCL. CONCLUSIONS Elevated muscle carnosine levels in persons with T1D and their effect on atherogenic lipoproteins can be modulated by physical activity.
Collapse
Affiliation(s)
- Laura Brugnara
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ana Isabel García
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain.,Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Serafín Murillo
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Josep Ribalta
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili/Unitat de Recerca en Lípids i Arteriosclerosi, IISRV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Guerau Fernandez
- Bioinformatics Unit, Genetics and Molecular Medicine Service, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Susanna Marquez
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Maria Vinaixa
- Metabolomics Platform, Universitat Rovira i Virgili, IISRV, Reus, Spain
| | - Núria Amigó
- Metabolomics Platform, Universitat Rovira i Virgili, IISRV, Reus, Spain.,Biosfer Teslab, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Xavier Correig
- Metabolomics Platform, Universitat Rovira i Virgili, IISRV, Reus, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Susana Kalko
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain.,Bioinformatics Core Facility (IDIBAPS), Barcelona, Spain
| | - Jaume Pomes
- Department of Radiology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Anna Novials
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clínic de Barcelona, Carrer del Rosselló, 149, 08036, Barcelona, Spain. .,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain.
| |
Collapse
|
42
|
Doma K, Ramachandran AK, Boullosa D, Connor J. The Paradoxical Effect of Creatine Monohydrate on Muscle Damage Markers: A Systematic Review and Meta-Analysis. Sports Med 2022; 52:1623-1645. [PMID: 35218552 PMCID: PMC9213373 DOI: 10.1007/s40279-022-01640-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2022] [Indexed: 11/07/2022]
Abstract
Background Several studies have examined the effect of creatine monohydrate (CrM) on indirect muscle damage markers and muscle performance, although pooled data from several studies indicate that the benefits of CrM on recovery dynamics are limited. Objective This systematic review and meta-analysis determined whether the ergogenic effects of CrM ameliorated markers of muscle damage and performance following muscle-damaging exercises. Methods In total, 23 studies were included, consisting of 240 participants in the CrM group (age 23.9 ± 10.4 years, height 178 ± 5 cm, body mass 76.9 ± 7.6 kg, females 10.4%) and 229 participants in the placebo group (age 23.7 ± 8.5 years, height 177 ± 5 cm, body mass 77.0 ± 6.6 kg, females 10.0%). These studies were rated as fair to excellent following the PEDro scale. The outcome measures were compared between the CrM and placebo groups at 24–36 h and 48–90 h following muscle-damaging exercises, using standardised mean differences (SMDs) and associated p-values via forest plots. Furthermore, sub-group analyses were conducted by separating studies into those that examined the effects of CrM as an acute training response (i.e., after one muscle-damaging exercise bout) and those that examined the chronic training response (i.e., examining the acute response after the last training session following several weeks of training). Results According to the meta-analysis, the CrM group exhibited significantly lower indirect muscle damage markers (i.e., creatine kinase, lactate dehydrogenase, and/or myoglobin) at 48–90 h post-exercise for the acute training response (SMD − 1.09; p = 0.03). However, indirect muscle damage markers were significantly greater in the CrM group at 24 h post-exercise (SMD 0.95; p = 0.04) for the chronic training response. Although not significant, a large difference in indirect muscle damage markers was also found at 48 h post-exercise (SMD 1.24) for the chronic training response. The CrM group also showed lower inflammation for the acute training response at 24–36 h post-exercise and 48–90 h post-exercise with a large effect size (SMD − 1.38 ≤ d ≤ − 1.79). Similarly, the oxidative stress markers were lower for the acute training response in the CrM group at 24–36 h post-exercise and 90 h post-exercise, with a large effect size (SMD − 1.37 and − 1.36, respectively). For delayed-onset muscle soreness (DOMS), the measures were lower for the CrM group at 24 h post-exercise with a moderate effect size (SMD − 0.66) as an acute training response. However, the inter-group differences for inflammation, oxidative stress, and DOMS were not statistically significant (p > 0.05). Conclusion Overall, our meta-analysis demonstrated a paradoxical effect of CrM supplementation post-exercise, where CrM appears to minimise exercise-induced muscle damage as an acute training response, although this trend is reversed as a chronic training response. Thus, CrM may be effective in reducing the level of exercise-induced muscle damage following a single bout of strenuous exercises, although training-induced stress could be exacerbated following long-term supplementation of CrM. Although long-term usage of CrM is known to enhance training adaptations, whether the increased level of exercise-induced muscle damage as a chronic training response may provide potential mechanisms to enhance chronic training adaptations with CrM supplementation remains to be confirmed. Supplementary Information The online version contains supplementary material available at 10.1007/s40279-022-01640-z.
Collapse
Affiliation(s)
- Kenji Doma
- James Cook Drive, Rehabilitation Sciences Building, College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, QLD, QLD481, Australia.
| | | | - Daniel Boullosa
- James Cook Drive, Rehabilitation Sciences Building, College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, QLD, QLD481, Australia.,Federal University of Mato Grosso, Mato Grosso, Brazil
| | - Jonathan Connor
- James Cook Drive, Rehabilitation Sciences Building, College of Healthcare Sciences, Sports and Exercise Science, James Cook University, Douglas, QLD, QLD481, Australia
| |
Collapse
|
43
|
Mallet D, Dufourd T, Decourt M, Carcenac C, Bossù P, Verlin L, Fernagut PO, Benoit-Marand M, Spalletta G, Barbier EL, Carnicella S, Sgambato V, Fauvelle F, Boulet S. A metabolic biomarker predicts Parkinson's disease at the early stages in patients and animal models. J Clin Invest 2022; 132:e146400. [PMID: 34914634 PMCID: PMC8843749 DOI: 10.1172/jci146400] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/15/2021] [Indexed: 11/30/2022] Open
Abstract
BackgroundCare management of Parkinson's disease (PD) patients currently remains symptomatic, mainly because diagnosis relying on the expression of the cardinal motor symptoms is made too late. Earlier detection of PD therefore represents a key step for developing therapies able to delay or slow down its progression.MethodsWe investigated metabolic markers in 3 different animal models of PD, mimicking different phases of the disease assessed by behavioral and histological evaluation, and in 3 cohorts of de novo PD patients and matched controls (n = 129). Serum and brain tissue samples were analyzed by nuclear magnetic resonance spectroscopy and data submitted to advanced multivariate statistics.ResultsOur translational strategy reveals common metabolic dysregulations in serum of the different animal models and PD patients. Some of them were mirrored in the tissue samples, possibly reflecting pathophysiological mechanisms associated with PD development. Interestingly, some metabolic dysregulations appeared before motor symptom emergence and could represent early biomarkers of PD. Finally, we built a composite biomarker with a combination of 6 metabolites. This biomarker discriminated animals mimicking PD from controls, even from the first, nonmotor signs and, very interestingly, also discriminated PD patients from healthy subjects.ConclusionFrom our translational study, which included 3 animal models and 3 de novo PD patient cohorts, we propose a promising biomarker exhibiting a high accuracy for de novo PD diagnosis that may possibly predict early PD development, before motor symptoms appear.FundingFrench National Research Agency (ANR), DOPALCOMP, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Association France Parkinson.
Collapse
Affiliation(s)
- David Mallet
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Thibault Dufourd
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Mélina Decourt
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Carole Carcenac
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Paola Bossù
- Dipartimento di Neurologia Clinica e Comportamentale, Laboratorio di Neuropsicobiologia Sperimentale, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Laure Verlin
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Pierre-Olivier Fernagut
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marianne Benoit-Marand
- Université de Poitiers, INSERM U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | | | - Emmanuel L. Barbier
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Sebastien Carnicella
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Véronique Sgambato
- Université de Lyon, CNRS UMR5229, Institut des Sciences Cognitives Marc Jeannerod, Bron, France
| | - Florence Fauvelle
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
- University Grenoble Alpes, INSERM, US17, CNRS, UMS 3552, CHU Grenoble Alpes, IRMaGe, Grenoble, France
| | - Sabrina Boulet
- University Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
44
|
Gonçalves MG, Medeiros MA, de Lemos LIC, de Fátima Campos Pedrosa L, de Andrade Santos PP, Abreu BJ, Lima JPMS. Effects of Creatine Supplementation on Histopathological and Biochemical Parameters in the Kidney and Pancreas of Streptozotocin-Induced Diabetic Rats. Nutrients 2022; 14:nu14030431. [PMID: 35276790 PMCID: PMC8840440 DOI: 10.3390/nu14030431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus (DM) is a worldwide health concern, and projections state that cases will reach 578 million by 2030. Adjuvant therapies that can help the standard treatment and mitigate DM effects are necessary, especially those using nutritional supplements to improve glycemic control. Previous studies suggest creatine supplementation as a possible adjuvant therapy for DM, but they lack the evaluation of potential morphological parameters alterations and tissue injury caused by this compound. The present study aimed to elucidate clinical, histomorphometric, and histopathological consequences and the cellular oxidative alterations of creatine supplementation in streptozotocin (STZ)-induced type 1 DM rats. We could estimate whether the findings are due to DM or the supplementation from a factorial experimental design. Although creatine supplementation attenuated some biochemical parameters, the morphological analyses of pancreatic and renal tissues made clear that the supplementation did not improve the STZ-induced DM1 injuries. Moreover, creatine-supplemented non-diabetic animals were diagnosed with pancreatitis and showed renal tubular necrosis. Therefore, even in the absence of clinical symptoms and unaltered biochemical parameters, creatine supplementation as adjuvant therapy for DM should be carefully evaluated.
Collapse
Affiliation(s)
- Meline Gomes Gonçalves
- Biochemistry and Molecular Biology Graduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Matheus Anselmo Medeiros
- Bioinformatics Graduate Program, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal 59078-400, RN, Brazil;
| | | | - Lucia de Fátima Campos Pedrosa
- Graduate Program in Nutrition, Federal University of Rio Grande do Norte, Natal 59.078-970, RN, Brazil; (L.I.C.d.L.); (L.d.F.C.P.)
| | - Pedro Paulo de Andrade Santos
- Structural and Functional Biology Graduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
- Biosciences Center, Morphology Department, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - Bento João Abreu
- Biosciences Center, Morphology Department, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
| | - João Paulo Matos Santos Lima
- Biochemistry and Molecular Biology Graduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil;
- Bioinformatics Graduate Program, Digital Metropolis Institute, Federal University of Rio Grande do Norte, Natal 59078-400, RN, Brazil;
- Correspondence:
| |
Collapse
|
45
|
Blood pressure and urine metabolite changes in spontaneously hypertensive rats treated with leaf extract of Ficus deltoidea var angustifolia. J Pharm Biomed Anal 2022; 210:114579. [PMID: 35016031 DOI: 10.1016/j.jpba.2021.114579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 11/21/2022]
Abstract
Ficus deltoidea var angustifolia (FD-A) reduces blood pressure in spontaneously hypertensive rats (SHR) but the mechanism remains unknown. Changes in urine metabolites following FD-A treatment in SHR were, therefore, examined to identify the mechanism of its antihypertensive action. Male SHR were given either FD-A (1000 mg kg-1 day-1) or losartan (10 mg kg-1 day-1) or 0.5 mL of ethanolic-water (control) daily for 4 weeks. Systolic blood pressure (SBP) was measured every week and urine spectra data acquisition, on urine collected after four weeks of treatment, were compared using multivariate data analysis. SBP in FD-A and losartan treated rats was significantly lower than that in the controls after four weeks of treatment. Urine spectra analysis revealed 24 potential biomarkers with variable importance projections (VIP) above 0.5. These included creatine, hippurate, benzoate, trimethylamine N-oxide, taurine, dimethylamine, homocysteine, allantoin, methylamine, n-phenylacetylglycine, guanidinoacetate, creatinine, lactate, glucarate, kynurenine, ethanolamine, betaine, 3-hydroxybutyrate, glycine, lysine, glutamine, 2-hydroxyphenylacetate, 3-indoxylsulfate and sarcosine. From the profile of these metabolites, it seems that FD-A affects urinary levels of metabolites like taurine, hypotaurine, glycine, serine, threonine, alanine, aspartate and glutamine. Alterations in these and the pathways involved in their metabolism might underlie the molecular mechanism of its antihypertensive action.
Collapse
|
46
|
Godlewska BR, Williams S, Emir UE, Chen C, Sharpley AL, Goncalves AJ, Andersson MI, Clarke W, Angus B, Cowen PJ. Neurochemical abnormalities in chronic fatigue syndrome: a pilot magnetic resonance spectroscopy study at 7 Tesla. Psychopharmacology (Berl) 2022; 239:163-171. [PMID: 34609538 PMCID: PMC8770374 DOI: 10.1007/s00213-021-05986-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/13/2021] [Indexed: 12/05/2022]
Abstract
RATIONALE Chronic fatigue syndrome (CFS) is a common and burdensome illness with a poorly understood pathophysiology, though many of the characteristic symptoms are likely to be of brain origin. The use of high-field proton magnetic resonance spectroscopy (MRS) enables the detection of a range of brain neurochemicals relevant to aetiological processes that have been linked to CFS, for example, oxidative stress and mitochondrial dysfunction. METHODS We studied 22 CFS patients and 13 healthy controls who underwent MRS scanning at 7 T with a voxel placed in the anterior cingulate cortex. Neurometabolite concentrations were calculated using the unsuppressed water signal as a reference. RESULTS Compared to controls, CFS patients had lowered levels of glutathione, total creatine and myo-inositol in anterior cingulate cortex. However, when using N-acetylaspartate as a reference metabolite, only myo-inositol levels continued to be significantly lower in CFS participants. CONCLUSIONS The changes in glutathione and creatine are consistent with the presence of oxidative and energetic stress in CFS patients and are potentially remediable by nutritional intervention. A reduction in myo-inositol would be consistent with glial dysfunction. However, the relationship of the neurochemical abnormalities to the causation of CFS remains to be established, and the current findings require prospective replication in a larger sample.
Collapse
Affiliation(s)
- Beata R. Godlewska
- grid.4991.50000 0004 1936 8948Psychopharmacology Research Unit, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Stephen Williams
- grid.5379.80000000121662407Division of Informatics, Imaging and Data Science, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Uzay E. Emir
- grid.4991.50000 0004 1936 8948Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK ,grid.169077.e0000 0004 1937 2197School of Health Sciences, Purdue University, West Lafayette, IN USA
| | - Chi Chen
- grid.4991.50000 0004 1936 8948Psychopharmacology Research Unit, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ann L. Sharpley
- grid.4991.50000 0004 1936 8948Psychopharmacology Research Unit, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ana Jorge Goncalves
- grid.5379.80000000121662407Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Monique I. Andersson
- grid.4991.50000 0004 1936 8948Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - William Clarke
- grid.4991.50000 0004 1936 8948Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Brian Angus
- grid.4991.50000 0004 1936 8948Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip J. Cowen
- grid.4991.50000 0004 1936 8948Psychopharmacology Research Unit, Department of Psychiatry, University of Oxford, Oxford, UK ,grid.416938.10000 0004 0641 5119Neurosciences Building, Warneford Hospital, Oxford, OX3 7JX UK
| |
Collapse
|
47
|
Lu M, Du Z, Yuan S, Ma Q, Han Z, Tu P, Jiang Y. Comparison of the preventive effects of Murraya exotica and Murraya paniculata on alcohol-induced gastric lesions by pharmacodynamics and metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114567. [PMID: 34450164 DOI: 10.1016/j.jep.2021.114567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Multi-source phenomenon is very common for traditional Chinese medicine (TCM). Both Murraya exotica L. (ME) and Murraya paniculata (L.) Jack (MP) are used as the source plants of Murrayae Folium et Cacumen (MFC), a traditional Chinese medicine recorded in Chinese Pharmacopoeia for promoting qi and relieving pain, mainly for the treatment of stomach pain, rheumatism and arthralgia. However, up to now, there has been no comparative study of these two plants on their efficacies and mechanisms, thus, further research is needed to evaluate their similarity and difference in order to judge the reasonability for their common usage. AIM OF THE STUDY This study aims to compare the effects and potential mechanisms of ME and MP, the two source plants of MFC on gastric lesions in rats by pharmacodynamics and metabolomics. MATERIALS AND METHODS A rat model of gastric lesions induced by 70% aqueous ethanol and 150 mmol/L HCl was established and adopted to evaluate the gastric protective effects of ME and MP by analysis of the lesion index, histopathological changes (observed by H&E staining and TUNEL staining) and cytokine levels (IL-1β, IL-6, TNF-α, MTL, and GAS). The potential mechanisms were investigated by LC-MS metabolomic analysis of the rat plasma. RESULTS ME and MP showed the similar effects on improving the lesions of rat stomachs and reducing the cytokine levels related to inflammation and digestion of rats. The metabolomics results showed that the metabolism of rats with gastric lesions was abnormal mainly in lipid metabolism, energy metabolism, and amino acid metabolism. ME and MP demonstrated a similar metabolic modulation for gastric lesions by acting on the similar pathways and metabolites. Also, PLA2 pathway was proved as an important pathway for ME and MP modulation of glycerophospholipid metabolism in gastric lesions. CONCLUSIONS Our results proved that it is feasible and reasonable to use both of ME and MP as the source plants of MFC, at least for the treatment of gastric lesions, due to their similar pharmacodynamics and metabolic modulation ability. Moreover, the combination of pharmacodynamics and metabolomics is an efficient means for multi-source TCM study.
Collapse
Affiliation(s)
- Mengqiu Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiyong Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Shuo Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qing Ma
- China Resources Sanjiu Medical & Pharmaceutical Co. Ltd., Shenzhen, 518110, China
| | - Zhenzhou Han
- China Resources Sanjiu Medical & Pharmaceutical Co. Ltd., Shenzhen, 518110, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
48
|
Tran NT, Kelly SB, Snow RJ, Walker DW, Ellery SJ, Galinsky R. Assessing Creatine Supplementation for Neuroprotection against Perinatal Hypoxic-Ischaemic Encephalopathy: A Systematic Review of Perinatal and Adult Pre-Clinical Studies. Cells 2021; 10:2902. [PMID: 34831126 PMCID: PMC8616304 DOI: 10.3390/cells10112902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/09/2022] Open
Abstract
There is an important unmet need to develop interventions that improve outcomes of hypoxic-ischaemic encephalopathy (HIE). Creatine has emerged as a promising neuroprotective agent. Our objective was to systematically evaluate the preclinical animal studies that used creatine for perinatal neuroprotection, and to identify knowledge gaps that need to be addressed before creatine can be considered for pragmatic clinical trials for HIE. METHODS We reviewed preclinical studies up to 20 September 2021 using PubMed, EMBASE and OVID MEDLINE databases. The SYRCLE risk of bias assessment tool was utilized. RESULTS Seventeen studies were identified. Dietary creatine was the most common administration route. Cerebral creatine loading was age-dependent with near term/term-equivalent studies reporting higher increases in creatine/phosphocreatine compared to adolescent-adult equivalent studies. Most studies did not control for sex, study long-term histological and functional outcomes, or test creatine post-HI. None of the perinatal studies that suggested benefit directly controlled core body temperature (a known confounder) and many did not clearly state controlling for potential study bias. CONCLUSION Creatine is a promising neuroprotective intervention for HIE. However, this systematic review reveals key knowledge gaps and improvements to preclinical studies that must be addressed before creatine can be trailed for neuroprotection of the human fetus/neonate.
Collapse
Affiliation(s)
- Nhi Thao Tran
- School of Health & Biomedical Sciences, STEM College, RMIT University, Melbourne 3083, Australia; (N.T.T.); (D.W.W.)
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (S.B.K.); (S.J.E.)
| | - Sharmony B. Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (S.B.K.); (S.J.E.)
- Department of Obstetrics & Gynecology, Monash University, Melbourne 3168, Australia
| | - Rod J. Snow
- Institute for Physical Activity & Nutrition, Deakin University, Melbourne 3125, Australia;
| | - David W. Walker
- School of Health & Biomedical Sciences, STEM College, RMIT University, Melbourne 3083, Australia; (N.T.T.); (D.W.W.)
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (S.B.K.); (S.J.E.)
| | - Stacey J. Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (S.B.K.); (S.J.E.)
- Department of Obstetrics & Gynecology, Monash University, Melbourne 3168, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne 3168, Australia; (S.B.K.); (S.J.E.)
- Department of Obstetrics & Gynecology, Monash University, Melbourne 3168, Australia
| |
Collapse
|
49
|
Machuca A, Garcia-Calvo E, Anunciação DS, Luque-Garcia JL. Integration of Transcriptomics and Metabolomics to Reveal the Molecular Mechanisms Underlying Rhodium Nanoparticles-Based Photodynamic Cancer Therapy. Pharmaceutics 2021; 13:pharmaceutics13101629. [PMID: 34683922 PMCID: PMC8539937 DOI: 10.3390/pharmaceutics13101629] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
Rhodium nanoparticles have recently been described as promising photosensitizers due to their low toxicity in the absence of near-infrared irradiation, but their high cytotoxicity when irradiated. Irradiation is usually carried out with a laser source, which allows the treatment to be localized in a specific area, thus avoiding undesirable side effects on healthy tissues. In this study, a multi-omics approach based on the combination of microarray-based transcriptomics and mass spectrometry-based untargeted and targeted metabolomics has provided a global picture of the molecular mechanisms underlying the anti-tumoral effect of rhodium nanoparticle-based photodynamic therapy. The results have shown the ability of these nanoparticles to promote apoptosis by suppressing or promoting anti- and pro-apoptotic factors, respectively, and by affecting the energy machinery of tumor cells, mainly blocking the β-oxidation, which is reflected in the accumulation of free fatty acids and in the decrease in ATP, ADP and NAD+ levels.
Collapse
Affiliation(s)
- Andres Machuca
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.); (E.G.-C.)
| | - Estefania Garcia-Calvo
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.); (E.G.-C.)
| | - Daniela S. Anunciação
- Institute of Chemistry and Biotechnology, Federal University of Alagoas, Campus A. C. Simões, 57072-900 Maceió, Brazil;
| | - Jose L. Luque-Garcia
- Department Analytical Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (A.M.); (E.G.-C.)
- Correspondence: ; Tel.: +34-913-944-212
| |
Collapse
|
50
|
Ghirardini E, Calugi F, Sagona G, Di Vetta F, Palma M, Battini R, Cioni G, Pizzorusso T, Baroncelli L. The Role of Preclinical Models in Creatine Transporter Deficiency: Neurobiological Mechanisms, Biomarkers and Therapeutic Development. Genes (Basel) 2021; 12:genes12081123. [PMID: 34440297 PMCID: PMC8392480 DOI: 10.3390/genes12081123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Creatine (Cr) Transporter Deficiency (CTD) is an X-linked metabolic disorder, mostly caused by missense mutations in the SLC6A8 gene and presenting with intellectual disability, autistic behavior, and epilepsy. There is no effective treatment for CTD and patients need lifelong assistance. Thus, the research of novel intervention strategies is a major scientific challenge. Animal models are an excellent tool to dissect the disease pathogenetic mechanisms and drive the preclinical development of therapeutics. This review illustrates the current knowledge about Cr metabolism and CTD clinical aspects, with a focus on mainstay diagnostic and therapeutic options. Then, we discuss the rodent models of CTD characterized in the last decade, comparing the phenotypes expressed within clinically relevant domains and the timeline of symptom development. This analysis highlights that animals with the ubiquitous deletion/mutation of SLC6A8 genes well recapitulate the early onset and the complex pathological phenotype of the human condition. Thus, they should represent the preferred model for preclinical efficacy studies. On the other hand, brain- and cell-specific conditional mutants are ideal for understanding the basis of CTD at a cellular and molecular level. Finally, we explain how CTD models might provide novel insight about the pathogenesis of other disorders, including cancer.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Brain Diseases, Metabolic, Inborn/metabolism
- Brain Diseases, Metabolic, Inborn/pathology
- Brain Diseases, Metabolic, Inborn/therapy
- Central Nervous System/pathology
- Creatine/deficiency
- Creatine/metabolism
- Disease Models, Animal
- Humans
- Mental Retardation, X-Linked/metabolism
- Mental Retardation, X-Linked/pathology
- Mental Retardation, X-Linked/therapy
- Mice
- Plasma Membrane Neurotransmitter Transport Proteins/deficiency
- Plasma Membrane Neurotransmitter Transport Proteins/metabolism
- Rats
Collapse
Affiliation(s)
- Elsa Ghirardini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
| | - Francesco Calugi
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Giulia Sagona
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Federica Di Vetta
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Biology, University of Pisa, I-56126 Pisa, Italy
| | - Martina Palma
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Roberta Battini
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126 Pisa, Italy
| | - Giovanni Cioni
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Department of Clinical and Experimental Medicine, University of Pisa, I-56126 Pisa, Italy
| | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, I-50135 Florence, Italy
| | - Laura Baroncelli
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, I-56128 Pisa, Italy; (E.G.); (G.S.); (R.B.); (G.C.)
- Institute of Neuroscience, National Research Council (CNR), I-56124 Pisa, Italy; (F.C.); (F.D.V.); (M.P.); (T.P.)
- Correspondence:
| |
Collapse
|