1
|
Vishnyakova P, Elchaninov A, Fatkhudinov T, Kolesov D. Unravelling approaches to study macrophages: from classical to novel biophysical methodologies. PeerJ 2025; 13:e19039. [PMID: 39989743 PMCID: PMC11847493 DOI: 10.7717/peerj.19039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 01/31/2025] [Indexed: 02/25/2025] Open
Abstract
Macrophages play crucial roles in immune responses and tissue homeostasis. Despite the fact that macrophages were described more than a century ago, they continue to be the cells of intensive interest. Advanced understanding of phenotypic diversity in macrophages holds great promise for development of cell-based therapeutic strategies. The introduction of innovative approaches in cell biology greatly enhances our ability to investigate the unique characteristics of macrophages. The review considers both classical methods to study macrophages and high-tech approaches, including single-cell sequencing, single-cell mass spectrometry, droplet microfluidics, scanning probe microscopy and atomic force spectroscopy. This review will be valuable both to specialists beginning their study of macrophages and to experienced scientists seeking to deepen their understanding of methods at the intersection of biological and physical sciences.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, Moscow, Russia
| | - Dmitry Kolesov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V. I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
- Moscow Polytechnic University, Moscow, Russia
| |
Collapse
|
2
|
Wigham C, Fink TD, Sorci M, O'Reilly P, Park S, Kim J, Varude VR, Zha RH. Phosphate-Driven Interfacial Self-Assembly of Silk Fibroin for Continuous Noncovalent Growth of Nanothin Defect-Free Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58121-58134. [PMID: 39413432 DOI: 10.1021/acsami.4c07528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Silk fibroin is a fiber-forming protein derived from the thread of Bombyx mori silkworm cocoons. This biocompatible protein, under the kosmotropic influence of potassium phosphate, can undergo supramolecular self-assembly driven by a random coil to β-sheet secondary structure transition. By leveraging concurrent nonspecific adsorption and self-assembly of silk fibroin, we demonstrate an interfacial phenomenon that yields adherent, defect-free nanothin protein coatings that grow continuously in time, without observable saturation in mass deposition. This noncovalent growth of silk fibroin coatings is a departure from traditionally studied protein adsorption phenomena, which generally yield adsorbed layers that saturate in mass with time and often do not completely cover the surface. Here, we explore the fundamental mechanisms of coating growth by examining the effects of coating solution parameters that promote or inhibit silk fibroin self-assembly. Results show a strong dependence of coating kinetics and structure on solution pH, salt species, and salt concentration. Moreover, coating growth was observed to occur in two stages: an early stage driven by protein-surface interactions and a late stage driven by protein-protein interactions. To describe this phenomenon, we developed a kinetic adsorption model with Langmuir-like behavior at early times and a constant steady-state growth rate at later times. Structural analysis by FTIR and photoinduced force microscopy show that small β-sheet-rich structures serve as anchoring sites for absorbing protein nanoaggregates, which is critical for coating formation. Additionally, β-sheets are preferentially located at the interface between protein nanoaggregates in the coating, suggesting their role in forming stable, robust coatings.
Collapse
Affiliation(s)
- Caleb Wigham
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Tanner D Fink
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Mirco Sorci
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | - Sung Park
- Molecular Vista, San Jose, California 95119, United States
| | - Jeongae Kim
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Vrushali R Varude
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - R Helen Zha
- Department of Chemical and Biological Engineering, 110 Eighth Street, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
3
|
Su J, Song Y, Zhu Z, Huang X, Fan J, Qiao J, Mao F. Cell-cell communication: new insights and clinical implications. Signal Transduct Target Ther 2024; 9:196. [PMID: 39107318 PMCID: PMC11382761 DOI: 10.1038/s41392-024-01888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 06/02/2024] [Indexed: 09/11/2024] Open
Abstract
Multicellular organisms are composed of diverse cell types that must coordinate their behaviors through communication. Cell-cell communication (CCC) is essential for growth, development, differentiation, tissue and organ formation, maintenance, and physiological regulation. Cells communicate through direct contact or at a distance using ligand-receptor interactions. So cellular communication encompasses two essential processes: cell signal conduction for generation and intercellular transmission of signals, and cell signal transduction for reception and procession of signals. Deciphering intercellular communication networks is critical for understanding cell differentiation, development, and metabolism. First, we comprehensively review the historical milestones in CCC studies, followed by a detailed description of the mechanisms of signal molecule transmission and the importance of the main signaling pathways they mediate in maintaining biological functions. Then we systematically introduce a series of human diseases caused by abnormalities in cell communication and their progress in clinical applications. Finally, we summarize various methods for monitoring cell interactions, including cell imaging, proximity-based chemical labeling, mechanical force analysis, downstream analysis strategies, and single-cell technologies. These methods aim to illustrate how biological functions depend on these interactions and the complexity of their regulatory signaling pathways to regulate crucial physiological processes, including tissue homeostasis, cell development, and immune responses in diseases. In addition, this review enhances our understanding of the biological processes that occur after cell-cell binding, highlighting its application in discovering new therapeutic targets and biomarkers related to precision medicine. This collective understanding provides a foundation for developing new targeted drugs and personalized treatments.
Collapse
Affiliation(s)
- Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ying Song
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Zhipeng Zhu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Xinyue Huang
- Biomedical Research Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jie Qiao
- State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
4
|
Radman BA, Alhameed AMM, Shu G, Yin G, Wang M. Cellular elasticity in cancer: a review of altered biomechanical features. J Mater Chem B 2024; 12:5299-5324. [PMID: 38742281 DOI: 10.1039/d4tb00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A large number of studies have shown that changes in biomechanical characteristics are an important indicator of tumor transformation in normal cells. Elastic deformation is one of the more studied biomechanical features of tumor cells, which plays an important role in tumourigenesis and development. Altered cell elasticity often brings many indications. This manuscript reviews the effects of altered cellular elasticity on cell characteristics, including adhesion viscosity, migration, proliferation, and differentiation elasticity and stiffness. Also, the physical factors that may affect cell elasticity, such as temperature, cell height, cell-viscosity, and aging, are summarized. Then, the effects of cell-matrix, cytoskeleton, in vitro culture medium, and cell-substrate with different three-dimensional structures on cell elasticity during cell tumorigenesis are outlined. Importantly, we summarize the current signaling pathways that may affect cellular elasticity, as well as tests for cellular elastic deformation. Finally, we summarize current hybrid materials: polymer-polymer, protein-protein, and protein-polymer hybrids, also, nano-delivery strategies that target cellular resilience and cases that are at least in clinical phase 1 trials. Overall, the behavior of cancer cell elasticity is modulated by biological, chemical, and physical changes, which in turn have the potential to alter cellular elasticity, and this may be an encouraging prediction for the future discovery of cancer therapies.
Collapse
Affiliation(s)
- Bakeel A Radman
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
- Department of Biology, College of Science and Education, Albaydha University, Yemen
| | | | - Guang Shu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
5
|
Wu H, Zhang L, Zhao B, Yang W, Galluzzi M. Deep learning strategy for small dataset from atomic force microscopy mechano-imaging on macrophages phenotypes. Front Bioeng Biotechnol 2023; 11:1259979. [PMID: 37860624 PMCID: PMC10582561 DOI: 10.3389/fbioe.2023.1259979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/08/2023] [Indexed: 10/21/2023] Open
Abstract
The cytoskeleton is involved during movement, shaping, resilience, and functionality in immune system cells. Biomarkers such as elasticity and adhesion can be promising alternatives to detect the status of cells upon phenotype activation in correlation with functionality. For instance, professional immune cells such as macrophages undergo phenotype functional polarization, and their biomechanical behaviors can be used as indicators for early diagnostics. For this purpose, combining the biomechanical sensitivity of atomic force microscopy (AFM) with the automation and performance of a deep neural network (DNN) is a promising strategy to distinguish and classify different activation states. To resolve the issue of small datasets in AFM-typical experiments, nanomechanical maps were divided into pixels with additional localization data. On such an enlarged dataset, a DNN was trained by multimodal fusion, and the prediction was obtained by voting classification. Without using conventional biomarkers, our algorithm demonstrated high performance in predicting the phenotype of macrophages. Moreover, permutation feature importance was employed to interpret the results and unveil the importance of different biophysical properties and, in turn, correlated this with the local density of the cytoskeleton. While our results were demonstrated on the RAW264.7 model cell line, we expect that our methodology could be opportunely customized and applied to distinguish different cell systems and correlate feature importance with biophysical properties to unveil innovative markers for diagnostics.
Collapse
Affiliation(s)
- Hao Wu
- School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu, Anhui, China
| | - Lei Zhang
- School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu, Anhui, China
| | - Banglei Zhao
- School of Management Science and Engineering, Anhui University of Finance and Economics, Bengbu, Anhui, China
| | - Wenjie Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
| | - Massimiliano Galluzzi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Seifert J, Rheinlaender J, von Eysmondt H, Schäffer TE. Mechanics of migrating platelets investigated with scanning ion conductance microscopy. NANOSCALE 2022; 14:8192-8199. [PMID: 35621412 DOI: 10.1039/d2nr01187e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Platelets are small blood cells involved in hemostasis, wound healing, and immune response. After adhesion and spreading, platelets can migrate at sites of injury inducing an early immune response to inflammation or infection. Platelet migration requires fibrinogen-integrin binding and fibrinogen depletion from the substrate inducing a self-generated ligand gradient guiding the direction of migration. This type of cellular motion is referred to as haptotactic migration. The underlying mechanisms of haptotactic platelet migration have just recently been discovered, but the connection to platelet mechanics has remained unknown yet. Using scanning ion conductance microscopy (SICM), we investigated the three-dimensional morphology and mechanics of platelets during haptotactic migration for the first time. Migrating platelets showed a polarized, anisotropic shape oriented in the direction of migration. This polarization goes hand in hand with a characteristic subcellular stiffness distribution showing a region of increased stiffness at the leading edge. Moreover, the mechanical properties of the leading edge revealed a highly dynamic stiffening and softening process with rapid changes of the elastic modulus by a factor of up to 5× per minute. Inhibition of actin polymerization stopped the dynamic stiffening and softening process and halted the migration. By combining SICM with confocal fluorescence microscopy, we found that the increased stiffness and mechanical dynamics at the leading edge coincided with an increased volumetric F-actin density. Our data provide a connection between platelet mechanics and the cytoskeletal contribution to the migration process of platelets.
Collapse
Affiliation(s)
- Jan Seifert
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Johannes Rheinlaender
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Hendrik von Eysmondt
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| |
Collapse
|
7
|
Bergman E, Goldbart R, Traitel T, Amar‐Lewis E, Zorea J, Yegodayev K, Alon I, Rankovic S, Krieger Y, Rousso I, Elkabets M, Kost J. Cell stiffness predicts cancer cell sensitivity to ultrasound as a selective superficial cancer therapy. Bioeng Transl Med 2021; 6:e10226. [PMID: 34589601 PMCID: PMC8459597 DOI: 10.1002/btm2.10226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 01/26/2023] Open
Abstract
We hypothesize that the biomechanical properties of cells can predict their viability, with Young's modulus representing the former and cell sensitivity to ultrasound representing the latter. Using atomic force microscopy, we show that the Young's modulus stiffness measure is significantly lower for superficial cancer cells (squamous cell carcinomas and melanoma) compared with noncancerous keratinocyte cells. In vitro findings reveal a significant difference between cancerous and noncancerous cell viability at the four ultrasound energy levels evaluated, with different cell lines exhibiting different sensitivities to the same ultrasound intensity. Young's modulus correlates with cell viability (R 2 = 0.93), indicating that this single biomechanical property can predict cell sensitivity to ultrasound treatment. In mice, repeated ultrasound treatment inhibits tumor growth without damaging healthy skin tissue. Histopathological tumor analysis indicates ultrasound-induced focal necrosis at the treatment site. Our findings provide a strong rationale for developing ultrasound as a noninvasive selective treatment for superficial cancers.
Collapse
Affiliation(s)
- Eden Bergman
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Riki Goldbart
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Tamar Traitel
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Eliz Amar‐Lewis
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Ksenia Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Irit Alon
- Institute of PathologyBarzilai University Medical CenterAshkelonIsrael
- Department of Pathology, School of Health SciencesBen‐Gurion University of the NegevBeer‐ShebaIsrael
| | - Sanela Rankovic
- Department of Physiology and Cell BiologyBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Yuval Krieger
- Department of Plastic Surgery and Burn Unit, Faculty of Health SciencesSoroka University Medical Center, Ben‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Itay Rousso
- Department of Physiology and Cell BiologyBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health SciencesBen‐Gurion University of the NegevBeer‐ShevaIsrael
| | - Joseph Kost
- Department of Chemical EngineeringBen‐Gurion University of the NegevBeer‐ShevaIsrael
| |
Collapse
|
8
|
Zhou H, Xue Y, Dong L, Wang C. Biomaterial-based physical regulation of macrophage behaviour. J Mater Chem B 2021; 9:3608-3621. [PMID: 33908577 DOI: 10.1039/d1tb00107h] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages play a critical role in regulating immune reactions induced by implanted biomaterials. They are highly plastic and in response to diverse stimuli in the microenvironment can exhibit a spectrum of phenotypes and functions. In addition to biochemical signals, the physical properties of biomaterials are becoming increasingly appreciated for their significant impact on macrophage behaviour, and the underlying mechanisms deserve more in-depth investigations. This review first summarises the effects of key physical cues - including stiffness, topography, physical confinement and applied force - on macrophage behaviour. Then, it reviews the current knowledge of cellular sensing and transduction of physical cues into intracellular signals. Finally, it discusses the major challenges in understanding mechanical regulation that could provide insights for biomaterial design.
Collapse
Affiliation(s)
- Huiqun Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Yizebang Xue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China. and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School & School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
9
|
Runel G, Lopez-Ramirez N, Chlasta J, Masse I. Biomechanical Properties of Cancer Cells. Cells 2021; 10:cells10040887. [PMID: 33924659 PMCID: PMC8069788 DOI: 10.3390/cells10040887] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Since the crucial role of the microenvironment has been highlighted, many studies have been focused on the role of biomechanics in cancer cell growth and the invasion of the surrounding environment. Despite the search in recent years for molecular biomarkers to try to classify and stratify cancers, much effort needs to be made to take account of morphological and nanomechanical parameters that could provide supplementary information concerning tissue complexity adaptation during cancer development. The biomechanical properties of cancer cells and their surrounding extracellular matrix have actually been proposed as promising biomarkers for cancer diagnosis and prognosis. The present review first describes the main methods used to study the mechanical properties of cancer cells. Then, we address the nanomechanical description of cultured cancer cells and the crucial role of the cytoskeleton for biomechanics linked with cell morphology. Finally, we depict how studying interaction of tumor cells with their surrounding microenvironment is crucial to integrating biomechanical properties in our understanding of tumor growth and local invasion.
Collapse
Affiliation(s)
- Gaël Runel
- Centre de Recherche en Cancérologie de Lyon, CNRS-UMR5286, INSREM U1052, Université de Lyon, F-69008 Lyon, France; (G.R.); (N.L.-R.)
- BioMeca, F-69008 Lyon, France;
| | - Noémie Lopez-Ramirez
- Centre de Recherche en Cancérologie de Lyon, CNRS-UMR5286, INSREM U1052, Université de Lyon, F-69008 Lyon, France; (G.R.); (N.L.-R.)
| | | | - Ingrid Masse
- Centre de Recherche en Cancérologie de Lyon, CNRS-UMR5286, INSREM U1052, Université de Lyon, F-69008 Lyon, France; (G.R.); (N.L.-R.)
- Correspondence:
| |
Collapse
|
10
|
Fujinami S, Nakajima K. Cone-Paraboloid Transition of the Johnson-Kendall-Roberts-Type Hyperboloidal Contact. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11284-11291. [PMID: 32864974 DOI: 10.1021/acs.langmuir.0c01943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atomic force microscopy (AFM)-based nanoindentation technique has been widely used to investigate the mechanical properties of compliant specimens. When a sharp probe is indented into a soft and adhesive specimen, not only the rounded end of the probe but also the pyramidal base may be in contact. However, even in such a case, a contact model that assumes a paraboloidal tip geometry (the Hertz model or one of its expansions) is mainly employed to derive the mechanical properties; the error on the mechanical properties induced by the inaccurate tip geometry assumption has not been systematically clarified. Therefore, the focus of this work was put on quantifying this error with the assumption that the actual contact occurs between a hyperboloidal indenter and an elastic and adhesive sample surface. We demonstrated that the cone-paraboloid transition of the indentation curve is governed by a single parameter, A̅ = [4RE/3πw(1 - ν2)]1/3cotα, where E and ν are Young's modulus and Poisson's ratio of the specimen, respectively, R and α are the curvature radius and half-angle of the indenter, respectively, and w is the work of adhesion. Employing the general two-point method, we quantified the errors on elasticity and surface energy caused by the assumption of the paraboloidal and conical Johnson-Kendall-Roberts (JKR) models as functions of A̅ and the normalized load. AFM force measurements with cantilevers of different radii supported this A̅ dependency. These results showed unsuitable geometry assumption can give a large error, which is generally more serious than those caused by inappropriate choice of the adhesive interaction from the JKR and DMT (Derjaguin-Muller-Toporov). It can be said that the conical model gives a good approximation to a hyperboloidal contact when A̅<1 and so does the paraboloidal model when A̅>4. A̅ is expected to be an important index that validates the paraboloidal and conical approximation in a soft and adhesive contact.
Collapse
Affiliation(s)
- So Fujinami
- Office of Society-Academia Collaboration for Innovation, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ken Nakajima
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
- School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Desbiolles BXE, Hannebelle MTM, de Coulon E, Bertsch A, Rohr S, Fantner GE, Renaud P. Volcano-Shaped Scanning Probe Microscopy Probe for Combined Force-Electrogram Recordings from Excitable Cells. NANO LETTERS 2020; 20:4520-4529. [PMID: 32426984 PMCID: PMC7291358 DOI: 10.1021/acs.nanolett.0c01319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/19/2020] [Indexed: 05/30/2023]
Abstract
Atomic force microscopy based approaches have led to remarkable advances in the field of mechanobiology. However, linking the mechanical cues to biological responses requires complementary techniques capable of recording these physiological characteristics. In this study, we present an instrument for combined optical, force, and electrical measurements based on a novel type of scanning probe microscopy cantilever composed of a protruding volcano-shaped nanopatterned microelectrode (nanovolcano probe) at the tip of a suspended microcantilever. This probe enables simultaneous force and electrical recordings from single cells. Successful impedance measurements on mechanically stimulated neonatal rat cardiomyocytes in situ were achieved using these nanovolcano probes. Furthermore, proof of concept experiments demonstrated that extracellular field potentials (electrogram) together with contraction displacement curves could simultaneously be recorded. These features render the nanovolcano probe especially suited for mechanobiological studies aiming at linking mechanical stimuli to electrophysiological responses of single cells.
Collapse
Affiliation(s)
- B. X. E. Desbiolles
- Laboratory
of Microsystems LMIS4, Ecole Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - M. T. M Hannebelle
- Laboratory
of Bio- and Nano- Instrumentation, Ecole
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - E. de Coulon
- Laboratory
of Cellular Optics II, Department of Physiology, University of Bern, Bern 3012, Switzerland
| | - A. Bertsch
- Laboratory
of Microsystems LMIS4, Ecole Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - S. Rohr
- Laboratory
of Cellular Optics II, Department of Physiology, University of Bern, Bern 3012, Switzerland
| | - G. E. Fantner
- Laboratory
of Bio- and Nano- Instrumentation, Ecole
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - P. Renaud
- Laboratory
of Microsystems LMIS4, Ecole Polytechnique
Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
12
|
Phan TKT, Shahbazzadeh F, Kihara T. Alpha-mangostin reduces mechanical stiffness of various cells. Hum Cell 2020; 33:347-355. [PMID: 32078151 DOI: 10.1007/s13577-020-00330-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
Alpha-mangostin (α-mangostin) has been identified as a naturally occurring compound with potential anticancer properties. It can induce apoptosis and inhibit the growth and metastasis of cancer cells. Moreover, α-mangostin reduces the mechanical stiffness of lung cancer cells. The objective of this study was to determine the effect of α-mangostin on the mechanical stiffness of various cells, as well as cell viability. The following cell types were examined: human fibroblast TIG-1 cells, human cancerous HeLa cells, human embryonic kidney HEK293 cells, mouse macrophage RAW 264.7 cells, and human myeloblasts KG-1 cells. Cells were treated with α-mangostin, and then examined for cell viability, actin cytoskeletal structures, and surface mechanical stiffness using atomic force microscopy. α-Mangostin demonstrated cytotoxicity against TIG-1, HeLa, HEK293, and KG-1 cells, but not against RAW 264.7 cells. The cytotoxic effect of α-mangostin varies according to cell type. On the other hand, α-mangostin reduced the mechanical stiffness of all cell types, including RAW 264.7 cells. Upon treatment with α-mangostin, F-actin was slightly reduced but the actin cytoskeletal structures were little altered in these cells. Thus, reducing mechanical stiffness of animal cells is an inherent effect of α-mangostin. Our results show that α-mangostin is a naturally occurring compound with potential to change the actin cytoskeletal micro-structures and reduce the surface stiffness of various cells.
Collapse
Affiliation(s)
- Thi Kieu Trang Phan
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Fahimeh Shahbazzadeh
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Takanori Kihara
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka, 808-0135, Japan.
| |
Collapse
|
13
|
Production and Characterization of Recombinant Collagen-Binding Resilin Nanocomposite for Regenerative Medicine Applications. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00092-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Hemeda AA, Pal S, Mishra A, Torabi M, Ahmadlouydarab M, Li Z, Palko J, Ma Y. Effect of Wetting and Dewetting Dynamics on Atomic Force Microscopy Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13301-13310. [PMID: 31536702 DOI: 10.1021/acs.langmuir.9b02575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Water bridge dynamics between an atomic force microscopy (AFM) tip and a flat substrate is studied by using a multibody dissipative particle dynamics (MDPD) model. First, the numerical model is validated by comparing the present results of droplet contact angles and liquid bridges with those reported in the literature. Then, the ability of MDPD to capture the meniscus shape and behavior for different operating conditions and geometric parameters is examined for both static and dynamic cases. Hence, several parametric studies and analyses of the AFM tip configuration and its operating conditions are reported. It is found that a critical capillary number of about 0.001 is calculated based on 5% change on the force measurements between the static and dynamic results. It is also demonstrated that the hysteresis behavior in the capillary force exerted on the AFM tip can be successfully predicted by using the MDPD model when the tip approaches or retracts from the substrate. Moreover, there is an excellent agreement in the results of breakup distance for different water bridge volumes between the predictions of the MDPD model and the theory. Also, the hysteresis of capillary force exerted on an AFM tip composed of multibody design is studied. The prediction on the transition of the capillary force vs distance between the AFM tip and the substrate is in good agreement with the experimental results. Therefore, we demonstrate a validated MDPD model which can successfully capture liquid bridge dynamics. This model can be used as a powerful design tool for meniscus manipulation technology, such as dip-pen nanolithography, as well as for studying dynamic, e.g., tapping mode AFM tip, interactions with a liquid bridge.
Collapse
Affiliation(s)
- A A Hemeda
- School of Engineering , University of California, Merced , Merced , California 95343 , United States
- Aerospace Engineering Department , Cairo University , Giza 12613 , Egypt
| | - S Pal
- Department of Mechanical Engineering , McMaster University , Hamilton , ON L8S 4L7 , Canada
| | - A Mishra
- School of Engineering , University of California, Merced , Merced , California 95343 , United States
| | - M Torabi
- School of Engineering , University of California, Merced , Merced , California 95343 , United States
| | - M Ahmadlouydarab
- Faculty of Chemical and Petroleum Engineering , University of Tabriz , Tabriz , Iran
| | - Z Li
- Department of Mechanical Engineering , Clemson University , Clemson , South Carolina 29634 , United States
| | - J Palko
- School of Engineering , University of California, Merced , Merced , California 95343 , United States
| | - Y Ma
- School of Engineering , University of California, Merced , Merced , California 95343 , United States
| |
Collapse
|
15
|
Zhao Y, Mahajan G, Kothapalli CR, Sun XL. Sialylation status and mechanical properties of THP-1 macrophages upon LPS stimulation. Biochem Biophys Res Commun 2019; 518:573-578. [PMID: 31445704 DOI: 10.1016/j.bbrc.2019.08.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/15/2019] [Indexed: 11/20/2022]
Abstract
Cell surface receptors are the key contributors of macrophage function. Most macrophage cell surface receptors are glycoproteins with sialic acids at the terminal of their glycans. It is well recognized that lipopolysaccharide (LPS) induces cell surface sialylation changes that may in turn contribute to macrophage functions. In addition, cellular mechanics such as elasticity is also a major determinant of macrophage function, which in turn is modulated by LPS. In this report, we characterized the sialylation status of macrophages upon LPS stimulation and assessed the changes in its mechanical properties and function. Specifically, we confirmed that sialylation status is closely related to macrophage biomechanical characteristics (elastic modulus, tether force, tether radius, adhesion force, and membrane tension) and thus directly involved in macrophage function. Further, we modulated macrophage sialylation status by feeding the cell with exogenous free sialic acid (Neu5Ac, Neu5Gc) and sialidase inhibitors, and examined the resulting effects on cellular mechanics and function. A systematic recognition of sialylation status related to cellular mechanics of macrophages will contribute to defining their phenotypes and elucidate macrophage functional diversity.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry and Center of Gene Regulation of Health and Disease (GRHD), Cleveland State University, Cleveland, OH, OH 44115, United States
| | - Gautam Mahajan
- Department of Chemical & Biomedical Engineering, Cleveland State University, Cleveland, OH, OH 44115, United States
| | - Chandrasekhar R Kothapalli
- Department of Chemical & Biomedical Engineering, Cleveland State University, Cleveland, OH, OH 44115, United States.
| | - Xue-Long Sun
- Department of Chemistry and Center of Gene Regulation of Health and Disease (GRHD), Cleveland State University, Cleveland, OH, OH 44115, United States; Department of Chemical & Biomedical Engineering, Cleveland State University, Cleveland, OH, OH 44115, United States.
| |
Collapse
|
16
|
Collett S, Torresi J, Earnest-Silveira L, Christiansen D, Elbourne A, Ramsland PA. Probing and pressing surfaces of hepatitis C virus-like particles. J Colloid Interface Sci 2019; 545:259-268. [DOI: 10.1016/j.jcis.2019.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 02/09/2023]
|
17
|
Hong X, Rzeczycki PM, Keswani RK, Murashov MD, Fan Z, Deng CX, Rosania GR. Acoustic tweezing cytometry for mechanical phenotyping of macrophages and mechanopharmaceutical cytotripsy. Sci Rep 2019; 9:5702. [PMID: 30952950 PMCID: PMC6450871 DOI: 10.1038/s41598-019-42180-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/25/2019] [Indexed: 11/15/2022] Open
Abstract
Macrophages are immune cells responsible for tissue debridement and fighting infection. Clofazimine, an FDA-approved antibiotic, accumulates and precipitates as rod-shaped, crystal-like drug inclusions within macrophage lysosomes. Drug treatment as well as pathophysiological states could induce changes in macrophage mechanical property which in turn impact their phenotype and function. Here we report the use of acoustic tweezing cytometry as a new approach for in situ mechanical phenotyping of macrophages and for targeted macrophage cytotripsy. Acoustic tweezing cytometry applies ultrasound pulses to exert controlled forces to individual cells via integrin-bound microbubbles, enabling a creep test for measuring cellular mechanical property or inducing irreversible changes to the cells. Our results revealed that macrophages with crystal-like drug inclusions became significantly softer with higher cell compliance, and behaved more elastic with faster creep and recovery time constants. On the contrary, phagocytosis of solid polyethylene microbeads or treatment with soluble clofazimine rendered macrophages stiffer. Most notably, application of ultrasound pulses of longer duration and higher amplitude in ATC actuated the integrin-bound microbubbles to mobilize the crystal-like drug inclusions inside macrophages, turning the rod-shaped drug inclusions into intracellular microblender that effectively destructed the cells. This phenomenon of acoustic mechanopharmaceutical cytotripsy may be exploited for ultrasound activated, macrophage-directed drug release and delivery.
Collapse
Affiliation(s)
- Xiaowei Hong
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Phillip M Rzeczycki
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rahul K Keswani
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mikhail D Murashov
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhenzhen Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Cheri X Deng
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA. .,Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Gus R Rosania
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
18
|
Anghelina M, Butt O, Moldovan L, Petrache HI, Moldovan NI. Solvent isotope effect on leukocytes disintegration after large mechanical deformations. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/aafd0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
19
|
Ford AJ, Rajagopalan P. Measuring Cytoplasmic Stiffness of Fibroblasts as a Function of Location and Substrate Rigidity Using Atomic Force Microscopy. ACS Biomater Sci Eng 2018; 4:3974-3982. [DOI: 10.1021/acsbiomaterials.8b01019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
20
|
Septiadi D, Crippa F, Moore TL, Rothen-Rutishauser B, Petri-Fink A. Nanoparticle-Cell Interaction: A Cell Mechanics Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704463. [PMID: 29315860 DOI: 10.1002/adma.201704463] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/14/2017] [Indexed: 05/22/2023]
Abstract
Progress in the field of nanoparticles has enabled the rapid development of multiple products and technologies; however, some nanoparticles can pose both a threat to the environment and human health. To enable their safe implementation, a comprehensive knowledge of nanoparticles and their biological interactions is needed. In vitro and in vivo toxicity tests have been considered the gold standard to evaluate nanoparticle safety, but it is becoming necessary to understand the impact of nanosystems on cell mechanics. Here, the interaction between particles and cells, from the point of view of cell mechanics (i.e., bionanomechanics), is highlighted and put in perspective. Specifically, the ability of intracellular and extracellular nanoparticles to impair cell adhesion, cytoskeletal organization, stiffness, and migration are discussed. Furthermore, the development of cutting-edge, nanotechnology-driven tools based on the use of particles allowing the determination of cell mechanics is emphasized. These include traction force microscopy, colloidal probe atomic force microscopy, optical tweezers, magnetic manipulation, and particle tracking microrheology.
Collapse
Affiliation(s)
- Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Federica Crippa
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | - Thomas Lee Moore
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
| | | | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700, Fribourg, Switzerland
| |
Collapse
|
21
|
Adeniba OO, Corbin EA, Ewoldt RH, Bashir R. Optomechanical microrheology of single adherent cancer cells. APL Bioeng 2018; 2:016108. [PMID: 31069293 PMCID: PMC6481704 DOI: 10.1063/1.5010721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/18/2018] [Indexed: 01/04/2023] Open
Abstract
There is a close relationship between the mechanical properties of cells and their physiological function. Non-invasive measurements of the physical properties of cells, especially of adherent cells, are challenging to perform. Through a non-contact optical interferometric technique, we measure and combine the phase, amplitude, and frequency of vibrating silicon pedestal micromechanical resonant sensors to quantify the "loss tangent" of individual adherent human colon cancer cells (HT-29). The loss tangent, a dimensionless ratio of viscoelastic energy loss and energy storage - a measure of the viscoelasticity of soft materials, obtained through an optical path length model, was found to be 1.88 ± 0.08 for live cells and 4.32 ± 0.13 for fixed cells, revealing significant changes (p < 0.001) in mechanical properties associated with estimated nanoscale cell membrane fluctuations of 3.86 ± 0.2 nm for live cells and 2.87 ± 0.1 nm for fixed cells. By combining these values with the corresponding two-degree-of-freedom Kelvin-Voigt model, we obtain the elastic stiffness and viscous loss associated with each individual cell rather than estimations from a population. The technique is unique as it decouples the heterogeneity of individual cells in our population and further refines the viscoelastic solution space.
Collapse
Affiliation(s)
| | | | - Randy H Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
22
|
Needle-shaped ultrathin piezoelectric microsystem for guided tissue targeting via mechanical sensing. Nat Biomed Eng 2018; 2:165-172. [PMID: 31015715 DOI: 10.1038/s41551-018-0201-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/22/2018] [Indexed: 01/15/2023]
Abstract
Needles for percutaneous biopsies of tumour tissue can be guided by ultrasound or computed tomography. However, despite best imaging practices and operator experience, high rates of inadequate tissue sampling, especially for small lesions, are common. Here, we introduce a needle-shaped ultrathin piezoelectric microsystem that can be injected or mounted directly onto conventional biopsy needles and used to distinguish abnormal tissue during the capture of biopsy samples, through quantitative real-time measurements of variations in tissue modulus. Using well-characterized synthetic soft materials, explanted tissues and animal models, we establish experimentally and theoretically the fundamental operating principles of the microsystem, as well as key considerations in materials choices and device designs. Through systematic tests on human livers with cancerous lesions, we demonstrate that the piezoelectric microsystem provides quantitative agreement with magnetic resonance elastography, the clinical gold standard for the measurement of tissue modulus. The piezoelectric microsystem provides a foundation for the design of tools for the rapid, modulus-based characterization of tissues.
Collapse
|
23
|
Dittmann J, Dietzel A, Böl M. Mechanical characterisation of oocytes - The influence of sample geometry on parameter identification. J Mech Behav Biomed Mater 2018; 77:764-775. [DOI: 10.1016/j.jmbbm.2017.07.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/07/2017] [Accepted: 07/25/2017] [Indexed: 01/24/2023]
|
24
|
Rheinlaender J, Vogel S, Seifert J, Schächtele M, Borst O, Lang F, Gawaz M, Schäffer TE. Imaging the elastic modulus of human platelets during thrombininduced activation using scanning ion conductance microscopy. Thromb Haemost 2017; 113:305-11. [DOI: 10.1160/th14-05-0414] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 09/28/2014] [Indexed: 01/19/2023]
Abstract
SummaryPlatelet activation plays a critical role in haemostasis and thrombosis. It is well-known that platelets generate contractile forces during activation. However, their mechanical material properties have rarely been investigated. Here, we use scanning ion conductance microscopy (SICM) to visualise morphological and mechanical properties of live human platelets at high spatial resolution. We found that their mean elastic modulus decreases during thrombin-induced activation by about a factor of two. We observed a similar softening of platelets during cytochalasin D-induced cytoskeleton depolymerisation. However, thrombin-induced temporal and spatial modulations of the elastic modulus were substantially different from cytochalasin D-mediated changes. We thereby provide new insights into the mechanics of haemostasis and establish SICM as a novel imaging platform for the ex vivo investigation of the mechanical properties of live platelets.
Collapse
|
25
|
Braet F, Taatjes DJ, Wisse E. Probing the unseen structure and function of liver cells through atomic force microscopy. Semin Cell Dev Biol 2017; 73:13-30. [PMID: 28688930 DOI: 10.1016/j.semcdb.2017.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 01/02/2023]
Abstract
With the arrival of atomic force microscopy (AFM) about thirty years ago, this new imaging tool opened up a new area for the exploration of biological samples, ranging from the tissue and cellular level down to the supramolecular scale. Commercial instruments of this new imaging technique began to appear in the five years following its discovery in 1986 by Binnig, Quate & Gerber. From that point onwards the AFM has attracted many liver biologists, and the number of publications describing structure-function relationships on the diverse set of liver cells has grown steadily ever since. It is therefore timely to reflect on the achievements of AFM in disclosing the cellular architecture of hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, stellate cells and liver-associated natural killer cells. In this thematic paper, we present new data and provide an in-depth overview of the current AFM literature on liver cell biology. We furthermore include a future outlook on how this scanning probe imaging tool and its latest developments can contribute to clarify various structural and functional aspects of cells in liver health and disease.
Collapse
Affiliation(s)
- Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology)-The Bosch Institute, The University of Sydney, NSW 2006, Australia; Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia; Charles Perkins Centre (Cellular Imaging Facility), The University of Sydney, NSW 2006, Australia.
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA; Microscopy Imaging Center, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Eddie Wisse
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, University of Maastricht, The Netherlands; Department of Internal Medicine, University of Maastricht, 6200, MD, Maastricht, The Netherlands
| |
Collapse
|
26
|
Saneyasu T, Akhtar R, Sakai T. Molecular Cues Guiding Matrix Stiffness in Liver Fibrosis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2646212. [PMID: 27800489 PMCID: PMC5075297 DOI: 10.1155/2016/2646212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/28/2016] [Indexed: 12/14/2022]
Abstract
Tissue and matrix stiffness affect cell properties during morphogenesis, cell growth, differentiation, and migration and are altered in the tissue remodeling following injury and the pathological progression. However, detailed molecular mechanisms underlying alterations of stiffness in vivo are still poorly understood. Recent engineering technologies have developed powerful techniques to characterize the mechanical properties of cell and matrix at nanoscale levels. Extracellular matrix (ECM) influences mechanical tension and activation of pathogenic signaling during the development of chronic fibrotic diseases. In this short review, we will focus on the present knowledge of the mechanisms of how ECM stiffness is regulated during the development of liver fibrosis and the molecules involved in ECM stiffness as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Takaoki Saneyasu
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Riaz Akhtar
- Centre for Materials and Structures, School of Engineering, University of Liverpool, Liverpool L69 3GE, UK
| | - Takao Sakai
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| |
Collapse
|
27
|
LeftyA decreases Actin Polymerization and Stiffness in Human Endometrial Cancer Cells. Sci Rep 2016; 6:29370. [PMID: 27404958 PMCID: PMC4941646 DOI: 10.1038/srep29370] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 06/16/2016] [Indexed: 12/27/2022] Open
Abstract
LeftyA, a cytokine regulating stemness and embryonic differentiation, down-regulates cell proliferation and migration. Cell proliferation and motility require actin reorganization, which is under control of ras-related C3 botulinum toxin substrate 1 (Rac1) and p21 protein-activated kinase 1 (PAK1). The present study explored whether LeftyA modifies actin cytoskeleton, shape and stiffness of Ishikawa cells, a well differentiated endometrial carcinoma cell line. The effect of LeftyA on globular over filamentous actin ratio was determined utilizing Western blotting and flow cytometry. Rac1 and PAK1 transcript levels were measured by qRT-PCR as well as active Rac1 and PAK1 by immunoblotting. Cell stiffness (quantified by the elastic modulus), cell surface area and cell volume were studied by atomic force microscopy (AFM). As a result, 2 hours treatment with LeftyA (25 ng/ml) significantly decreased Rac1 and PAK1 transcript levels and activity, depolymerized actin, and decreased cell stiffness, surface area and volume. The effect of LeftyA on actin polymerization was mimicked by pharmacological inhibition of Rac1 and PAK1. In the presence of the Rac1 or PAK1 inhibitor LeftyA did not lead to significant further actin depolymerization. In conclusion, LeftyA leads to disruption of Rac1 and Pak1 activity with subsequent actin depolymerization, cell softening and cell shrinkage.
Collapse
|
28
|
Sapir-Lekhovitser Y, Rotenberg MY, Jopp J, Friedman G, Polyak B, Cohen S. Magnetically actuated tissue engineered scaffold: insights into mechanism of physical stimulation. NANOSCALE 2016; 8:3386-3399. [PMID: 26790538 PMCID: PMC4772769 DOI: 10.1039/c5nr05500h] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Providing the right stimulatory conditions resulting in efficient tissue promoting microenvironment in vitro and in vivo is one of the ultimate goals in tissue development for regenerative medicine. It has been shown that in addition to molecular signals (e.g. growth factors) physical cues are also required for generation of functional cell constructs. These cues are particularly relevant to engineering of biological tissues, within which mechanical stress activates mechano-sensitive receptors, initiating biochemical pathways which lead to the production of functionally mature tissue. Uniform magnetic fields coupled with magnetizable nanoparticles embedded within three dimensional (3D) scaffold structures remotely create transient physical forces that can be transferrable to cells present in close proximity to the nanoparticles. This study investigated the hypothesis that magnetically responsive alginate scaffold can undergo reversible shape deformation due to alignment of scaffold's walls in a uniform magnetic field. Using custom made Helmholtz coil setup adapted to an Atomic Force Microscope we monitored changes in matrix dimensions in situ as a function of applied magnetic field, concentration of magnetic particles within the scaffold wall structure and rigidity of the matrix. Our results show that magnetically responsive scaffolds exposed to an externally applied time-varying uniform magnetic field undergo a reversible shape deformation. This indicates on possibility of generating bending/stretching forces that may exert a mechanical effect on cells due to alternating pattern of scaffold wall alignment and relaxation. We suggest that the matrix structure deformation is produced by immobilized magnetic nanoparticles within the matrix walls resulting in a collective alignment of scaffold walls upon magnetization. The estimated mechanical force that can be imparted on cells grown on the scaffold wall at experimental conditions is in the order of 1 pN, which correlates well with reported threshold to induce mechanotransduction effects on cellular level. This work is our next step in understanding of how to accurately create proper stimulatory microenvironment for promotion of cellular organization to form mature tissue engineered constructs.
Collapse
Affiliation(s)
- Yulia Sapir-Lekhovitser
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Menahem Y. Rotenberg
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Juergen Jopp
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Gary Friedman
- Department of Surgery, Drexel University College of Medicine, Philadelphia PA 19102, USA
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Boris Polyak
- Department of Surgery, Drexel University College of Medicine, Philadelphia PA 19102, USA
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA 19102, USA
| | - Smadar Cohen
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Center for Regenerative Medicine and Stem Cell (RMSC) Research, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
29
|
Guillou L, Babataheri A, Puech PH, Barakat AI, Husson J. Dynamic monitoring of cell mechanical properties using profile microindentation. Sci Rep 2016; 6:21529. [PMID: 26857265 PMCID: PMC4746699 DOI: 10.1038/srep21529] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/25/2016] [Indexed: 11/09/2022] Open
Abstract
We have developed a simple and relatively inexpensive system to visualize adherent cells in profile while measuring their mechanical properties using microindentation. The setup allows simultaneous control of cell microenvironment by introducing a micropipette for the delivery of soluble factors or other cell types. We validate this technique against atomic force microscopy measurements and, as a proof of concept, measure the viscoelastic properties of vascular endothelial cells in terms of an apparent stiffness and a dimensionless parameter that describes stress relaxation. Furthermore, we use this technique to monitor the time evolution of these mechanical properties as the cells' actin is depolymerized using cytochalasin-D.
Collapse
Affiliation(s)
- L Guillou
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - A Babataheri
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - P-H Puech
- Aix Marseille University, LAI UM 61, Marseille, F-13288, France.,Inserm, UMR_S 1067, Marseille, F-13288, France.,CNRS, UMR 7333, Marseille, F-13288, France
| | - A I Barakat
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| | - J Husson
- Hydrodynamics Laboratory (LadHyX), Department of Mechanics, Ecole Polytechnique, 91128 Palaiseau, France
| |
Collapse
|
30
|
Simon M, Dokukin M, Kalaparthi V, Spedden E, Sokolov I, Staii C. Load Rate and Temperature Dependent Mechanical Properties of the Cortical Neuron and Its Pericellular Layer Measured by Atomic Force Microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1111-1119. [PMID: 26727545 DOI: 10.1021/acs.langmuir.5b04317] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
When studying the mechanical properties of cells by an indentation technique, it is important to take into account the nontrivial pericellular interface (or pericellular "brush") which includes a pericellular coating and corrugation of the pericellular membrane (microvilli and microridges). Here we use atomic force microscopy (AFM) to study the mechanics of cortical neurons taking into account the presence of the above pericellular brush surrounding cell soma. We perform a systematic study of the mechanical properties of both the brush layer and the underlying neuron soma and demonstrate that the brush layer is likely responsible for the low elastic modulus (<1 kPa) typically reported for cortical neurons. When the contribution of the pericellular brush is excluded, the average elastic modulus of the cortical neuron soma is found to be 3-4 times larger than previously reported values measured under similar physiological conditions. We also demonstrate that the underlying soma behaves as a nonviscous elastic material over the indentation rates studied (1-10 μm/s). As a result, it seems that the brush layer is responsible for the previously reported viscoelastic response measured for the neuronal cell body as a whole, within these indentation rates. Due to of the similarities between the macroscopic brain mechanics and the effective modulus of the pericellular brush, we speculate that the pericellular brush layer might play an important role in defining the macroscopic mechanical properties of the brain.
Collapse
Affiliation(s)
- Marc Simon
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Maxim Dokukin
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Vivekanand Kalaparthi
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Elise Spedden
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Igor Sokolov
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| | - Cristian Staii
- Department of Physics and Astronomy, ‡Center for Nanoscopic Physics, §Department of Mechanical Engineering, and ∥Department of Biomedical Engineering, Tufts University , Medford, Massachusetts 02155, United States
| |
Collapse
|
31
|
Li Q, Zhang T, Pan Y, Ciacchi LC, Xu B, Wei G. AFM-based force spectroscopy for bioimaging and biosensing. RSC Adv 2016. [DOI: 10.1039/c5ra22841g] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AFM-based force spectroscopy shows wide bio-related applications especially for bioimaging and biosensing.
Collapse
Affiliation(s)
- Qing Li
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Tong Zhang
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Yangang Pan
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| | - Bingqian Xu
- Single Molecule Study Laboratory
- College of Engineering and Nanoscale Science and Engineering Center
- University of Georgia
- Altens
- USA
| | - Gang Wei
- Hybrid Materials Interfaces Group
- Faculty of Production Engineering
- University of Bremen
- D-28359 Bremen
- Germany
| |
Collapse
|
32
|
Guz N, Dokukin M, Kalaparthi V, Sokolov I. If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys J 2015; 107:564-575. [PMID: 25099796 DOI: 10.1016/j.bpj.2014.06.033] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 06/03/2014] [Accepted: 06/16/2014] [Indexed: 10/25/2022] Open
Abstract
Here we investigated the question whether cells, being highly heterogeneous objects, could be described with the elastic modulus (effective Young's modulus) in a self-consistent way. We performed a comparative analysis of the elastic modulus derived from the indentation data obtained with atomic force microscopy (AFM) on human cervical epithelial cells (both normal and cancerous). Both sharp (cone) and dull (2500-nm radius sphere) AFM probes were used. The indentation data were processed through different elastic models. The cell was approximated as a homogeneous elastic medium that had either 1), smooth hemispherical boundary (Hertz/Sneddon models) or 2), the boundary covered with a layer of glycocalyx and membrane protrusions ("brush" models). Consistency of these approximations was investigated. Specifically, we tested the independence of the elastic modulus of the indentation depth, which is assumed in these models. We demonstrated that only one model showed consistency in treating cells as a homogeneous elastic medium, namely, the brush model, when processing the indentation data collected with the dull AFM probe. The elastic modulus demonstrated strong depth dependence in all models: Hertz/Sneddon models (no brush taken into account), and when the brush model was applied to the data collected with sharp conical probes. We conclude that it is possible to describe the elastic properties of the cell body by means of an effective elastic modulus, used in a self-consistent way, when using the brush model to analyze data collected with a dull AFM probe. The nature of these results is discussed.
Collapse
Affiliation(s)
- Nataliia Guz
- Department of Physics, Clarkson University, Potsdam, New York
| | - Maxim Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts
| | | | - Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts; Department of Biomedical Engineering, Tufts University, Medford, Massachusetts; Department of Physics, Tufts University, Medford, Massachusetts.
| |
Collapse
|
33
|
Odermatt PD, Shivanandan A, Deschout H, Jankele R, Nievergelt AP, Feletti L, Davidson MW, Radenovic A, Fantner GE. High-Resolution Correlative Microscopy: Bridging the Gap between Single Molecule Localization Microscopy and Atomic Force Microscopy. NANO LETTERS 2015; 15:4896-904. [PMID: 26121585 DOI: 10.1021/acs.nanolett.5b00572] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanoscale characterization of living samples has become essential for modern biology. Atomic force microscopy (AFM) creates topological images of fragile biological structures from biomolecules to living cells in aqueous environments. However, correlating nanoscale structure to biological function of specific proteins can be challenging. To this end we have built and characterized a correlated single molecule localization microscope (SMLM)/AFM that allows localizing specific, labeled proteins within high-resolution AFM images in a biologically relevant context. Using direct stochastic optical reconstruction microscopy (dSTORM)/AFM, we directly correlate and quantify the density of localizations with the 3D topography using both imaging modalities along (F-)actin cytoskeletal filaments. In addition, using photo activated light microscopy (PALM)/AFM, we provide correlative images of bacterial cells in aqueous conditions. Moreover, we report the first correlated AFM/PALM imaging of live mammalian cells. The complementary information provided by the two techniques opens a new dimension for structural and functional nanoscale biology.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael W Davidson
- §National High Magnetic Field Laboratory and Department of Biological Science, Florida State University, Tallahassee, Florida 32306 United States
| | | | | |
Collapse
|
34
|
A Review of Cell Adhesion Studies for Biomedical and Biological Applications. Int J Mol Sci 2015; 16:18149-84. [PMID: 26251901 PMCID: PMC4581240 DOI: 10.3390/ijms160818149] [Citation(s) in RCA: 553] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/21/2015] [Accepted: 06/24/2015] [Indexed: 01/13/2023] Open
Abstract
Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.
Collapse
|
35
|
Haghparast SMA, Kihara T, Miyake J. Distinct mechanical behavior of HEK293 cells in adherent and suspended states. PeerJ 2015; 3:e1131. [PMID: 26246972 PMCID: PMC4525692 DOI: 10.7717/peerj.1131] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/06/2015] [Indexed: 11/20/2022] Open
Abstract
The mechanical features of individual animal cells have been regarded as indicators of cell type and state. Previously, we investigated the surface mechanics of cancer and normal stromal cells in adherent and suspended states using atomic force microscopy. Cancer cells possessed specific mechanical and actin cytoskeleton features that were distinct from normal stromal cells in adherent and suspended states. In this paper, we report the unique mechanical and actin cytoskeletal features of human embryonic kidney HEK293 cells. Unlike normal stromal and cancer cells, the surface stiffness of adherent HEK293 cells was very low, but increased after cell detachment from the culture surface. Induced actin filament depolymerization revealed that the actin cytoskeleton was the underlying source of the stiffness in suspended HEK293 cells. The exclusive mechanical response of HEK293 cells to perturbation of the actin cytoskeleton resembled that of adherent cancer cells and suspended normal stromal cells. Thus, with respect to their special cell-surface mechanical features, HEK293 cells could be categorized into a new class distinct from normal stromal and cancer cells.
Collapse
Affiliation(s)
- Seyed Mohammad Ali Haghparast
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka , Japan
| | - Takanori Kihara
- Department of Life and Environment Engineering, Faculty of Environmental Engineering, The University of Kitakyushu , Kitakyushu, Fukuoka , Japan
| | - Jun Miyake
- Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University , Toyonaka, Osaka , Japan
| |
Collapse
|
36
|
Tavakolinejad A, Rabbani M, Janmaleki M. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation. Biochem Biophys Res Commun 2015; 464:473-9. [PMID: 26150354 DOI: 10.1016/j.bbrc.2015.06.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 01/28/2023]
Abstract
Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation was assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells.
Collapse
Affiliation(s)
- Alireza Tavakolinejad
- Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rabbani
- Department of Biomedical Engineering, University of Isfahan, Isfahan, Iran.
| | - Mohsen Janmaleki
- Medical Nanotechnology and Tissue Engineering Research Center, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Rigato A, Rico F, Eghiaian F, Piel M, Scheuring S. Atomic Force Microscopy Mechanical Mapping of Micropatterned Cells Shows Adhesion Geometry-Dependent Mechanical Response on Local and Global Scales. ACS NANO 2015; 9:5846-56. [PMID: 26013956 PMCID: PMC5382230 DOI: 10.1021/acsnano.5b00430] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In multicellular organisms, cell shape and organization are dictated by cell-cell or cell-extracellular matrix adhesion interactions. Adhesion complexes crosstalk with the cytoskeleton enabling cells to sense their mechanical environment. Unfortunately, most of cell biology studies, and cell mechanics studies in particular, are conducted on cultured cells adhering to a hard, homogeneous, and unconstrained substrate with nonspecific adhesion sites, thus far from physiological and reproducible conditions. Here, we grew cells on three different fibronectin patterns with identical overall dimensions but different geometries (▽, T, and Y), and investigated their topography and mechanics by atomic force microscopy (AFM). The obtained mechanical maps were reproducible for cells grown on patterns of the same geometry, revealing pattern-specific subcellular differences. We found that local Young's moduli variations are related to the cell adhesion geometry. Additionally, we detected local changes of cell mechanical properties induced by cytoskeletal drugs. We thus provide a method to quantitatively and systematically investigate cell mechanics and their variations, and present further evidence for a tight relation between cell adhesion and mechanics.
Collapse
Affiliation(s)
- Annafrancesca Rigato
- Bio-AFM-Lab, BIO-AFM-LAB Bio Atomic Force Microscopy Laboratory
Aix Marseille Université - UMR S_1006Institut National de la Santé et de la Recherche Médicale - U1006Parc scientifique et technologique de Luminy - 163, avenue de Luminy - Case 1006 - 13288 Marseille Cedex 09
| | - Felix Rico
- Bio-AFM-Lab, BIO-AFM-LAB Bio Atomic Force Microscopy Laboratory
Aix Marseille Université - UMR S_1006Institut National de la Santé et de la Recherche Médicale - U1006Parc scientifique et technologique de Luminy - 163, avenue de Luminy - Case 1006 - 13288 Marseille Cedex 09
| | - Frédéric Eghiaian
- Bio-AFM-Lab, BIO-AFM-LAB Bio Atomic Force Microscopy Laboratory
Aix Marseille Université - UMR S_1006Institut National de la Santé et de la Recherche Médicale - U1006Parc scientifique et technologique de Luminy - 163, avenue de Luminy - Case 1006 - 13288 Marseille Cedex 09
| | - Mathieu Piel
- CDC, Compartimentation et dynamique cellulaires
Université Pierre et Marie Curie - Paris 6 - INSTITUT CURIE - Centre National de la Recherche Scientifique - UMR14426 rue d'Ulm 75248 Paris Cedex 05
| | - Simon Scheuring
- Bio-AFM-Lab, BIO-AFM-LAB Bio Atomic Force Microscopy Laboratory
Aix Marseille Université - UMR S_1006Institut National de la Santé et de la Recherche Médicale - U1006Parc scientifique et technologique de Luminy - 163, avenue de Luminy - Case 1006 - 13288 Marseille Cedex 09
- * Correspondence should be addressed to Simon Scheuring
| |
Collapse
|
38
|
Liu Y, Wang Z, Wang X. AFM-Based Study of Fullerenol (C 60 (OH) 24 )-Induced Changes of Elasticity in Living SMCC-7721 Cells. J Mech Behav Biomed Mater 2015; 45:65-74. [DOI: 10.1016/j.jmbbm.2014.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 10/24/2022]
|
39
|
Macrophage adhesion on fibronectin evokes an increase in the elastic property of the cell membrane and cytoskeleton: an atomic force microscopy study. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:573-9. [PMID: 25326725 DOI: 10.1007/s00249-014-0988-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 08/31/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Interactions between cells and microenvironments are essential to cellular functions such as survival, exocytosis and differentiation. Cell adhesion to the extracellular matrix (ECM) evokes a variety of biophysical changes in cellular organization, including modification of the cytoskeleton and plasma membrane. In fact, the cytoskeleton and plasma membrane are structures that mediate adherent contacts with the ECM; therefore, they are closely correlated. Considering that the mechanical properties of the cell could be affected by cell adhesion-induced changes in the cytoskeleton, the purpose of this study was to investigate the influence of the ECM on the elastic properties of fixed macrophage cells using atomic force microscopy. The results showed that there was an increase (~50%) in the Young's modulus of macrophages adhered to an ECM-coated substrate as compared with an uncoated glass substrate. In addition, cytochalasin D-treated cells had a 1.8-fold reduction of the Young's modulus of the cells, indicating the contribution of the actin cytoskeleton to the elastic properties of the cell. Our findings show that cell adhesion influences the mechanical properties of the plasma membrane, providing new information toward understanding the influence of the ECM on elastic alterations of macrophage cell membranes.
Collapse
|
40
|
Tang F, Lei X, Xiong Y, Wang R, Mao J, Wang X. Alteration Young’s moduli by protein 4.1 phosphorylation play a potential role in the deformability development of vertebrate erythrocytes. J Biomech 2014; 47:3400-7. [DOI: 10.1016/j.jbiomech.2014.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 11/28/2022]
|
41
|
Glaubitz M, Medvedev N, Pussak D, Hartmann L, Schmidt S, Helm CA, Delcea M. A novel contact model for AFM indentation experiments on soft spherical cell-like particles. SOFT MATTER 2014; 10:6732-6741. [PMID: 25068646 DOI: 10.1039/c4sm00788c] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The use of the simple Hertz model for the analysis of Atomic Force Microscopy (AFM) force-distance curves measured on soft spherical cell-like particles leads to significant underestimations of the objects Young's modulus E. To correct this error, a mixed double contact model (based on the simple Hertz model and the Johnson-Kendall-Roberts (JKR) model) was derived. The model considers two independent particle deformation sites: (i) the upper part of the particle is deformed by the AFM indenter, (ii) the bottom part is deformed by the substrate, which is usually unnoticed. It becomes apparent that for soft particles even small forces between substrate and particle can influence the resulting force-distance curves. For instance we show, that a gravity-induced compression on the particle bottom side can have significant influence on the measurements. To highlight these observations, the deviation of the particle Young's modulus E between the simple Hertz model and our model is calculated. This error strongly depends on the ratio of the three involved radii: (i) the radius of the AFM indenter, (ii) the radius of the particle and (iii) the radius of the substrate as well as on the acting gravity force. Overall, the analysis suggests that for nanoscopic indenters the deviation is negligible, whereas the use of microscopic indenters results in significant errors that can be corrected via the presented model. This is important especially for very soft particles, since larger indenters can achieve higher signal to noise ratios. Furthermore, the applicability of the model was confirmed by indentation experiments on hydrogel microbeads. The mixed double contact model is applicable to a large range of indenter geometries and can be adapted for other contact models.
Collapse
Affiliation(s)
- Michael Glaubitz
- ZIK-HIKE - Zentrum für Innovationskompetenz "Humorale Immunreaktionen bei Kardiovaskulären Erkrankungen", Fleischmannstr. 42 - 44, D-17489 Greifswald, Germany.
| | | | | | | | | | | | | |
Collapse
|
42
|
Yoo L, Reed J, Shin A, Demer JL. Atomic force microscopy determination of Young׳s modulus of bovine extra-ocular tendon fiber bundles. J Biomech 2014; 47:1899-903. [PMID: 24767704 DOI: 10.1016/j.jbiomech.2014.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/30/2013] [Accepted: 02/06/2014] [Indexed: 12/29/2022]
Abstract
Extra-ocular tendons (EOTs) transmit the oculorotary force of the muscles to the eyeball to generate dynamic eye movements and align the eyes, yet the mechanical properties of the EOTs remain undefined. The EOTs are known to be composed of parallel bundles of small fibers whose mechanical properties must be determined in order to characterize the overall behavior of EOTs. The current study aimed to investigate the transverse Young׳s modulus of EOT fiber bundles using atomic force microscopy (AFM). Fresh bovine EOT fiber bundle specimens were maintained under temperature and humidity control, and indented 100nm by the inverted pyramid tip of an AFM (Veeco Digital Instruments, NY). Ten indentations were conducted for each of 3 different locations of 10 different specimens from each of 6 EOTs, comprising a total of 1800 indentations. Young׳s modulus for each EOT was determined using a Hertzian contact model. Young׳s moduli for fiber bundles from all six EOTs were determined. Mean Young׳s moduli for fiber bundles were similar for the six anatomical EOTs: lateral rectus 60.12±2.69 (±SD)MPa, inferior rectus 59.69±5.34MPa, medial rectus 56.92±1.91MPa, superior rectus 59.66±2.64MPa, inferior oblique 57.7±1.36MPa, and superior oblique 59.15±2.03. Variation in Young׳s moduli among the six EOTs was not significant (P>0.25). The Young׳s modulus of bovine EOT fibers is highly uniform among the six extraocular muscles, suggesting that each EOT is assembled from fiber bundles representing the same biomechanical elements. This uniformity will simplify overall modeling.
Collapse
Affiliation(s)
- Lawrence Yoo
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, CA 90095-7002, USA
| | - Jason Reed
- Department of Physics, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrew Shin
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, CA 90095-7002, USA; Department of Mechanical Engineering, University of California, Los Angeles, CA, USA
| | - Joseph L Demer
- Department of Ophthalmology, Jules Stein Eye Institute, University of California, Los Angeles, CA 90095-7002, USA; Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, CA, USA; Neuroscience Interdepartmental Program, University of California, Los Angeles, CA, USA; Department of Neurology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
43
|
Eslick EM, Beilby MJ, Moon AR. A study of the native cell wall structures of the marine algaVentricaria ventricosa(Siphonocladales, Chlorophyceae) using atomic force microscopy. Microscopy (Oxf) 2014; 63:131-40. [DOI: 10.1093/jmicro/dft083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
44
|
Physical characterization of the liquid adhesive from orb-weaving spiders. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 34:341-4. [DOI: 10.1016/j.msec.2013.09.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/27/2013] [Accepted: 09/21/2013] [Indexed: 11/17/2022]
|
45
|
Chiou YW, Lin HK, Tang MJ, Lin HH, Yeh ML. The influence of physical and physiological cues on atomic force microscopy-based cell stiffness assessment. PLoS One 2013; 8:e77384. [PMID: 24194882 PMCID: PMC3806741 DOI: 10.1371/journal.pone.0077384] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/04/2013] [Indexed: 01/16/2023] Open
Abstract
Atomic force microscopy provides a novel technique for differentiating the mechanical properties of various cell types. Cell elasticity is abundantly used to represent the structural strength of cells in different conditions. In this study, we are interested in whether physical or physiological cues affect cell elasticity in Atomic force microscopy (AFM)-based assessments. The physical cues include the geometry of the AFM tips, the indenting force and the operating temperature of the AFM. All of these cues show a significant influence on the cell elasticity assessment. Sharp AFM tips create a two-fold increase in the value of the effective Young's modulus (E(eff)) relative to that of the blunt tips. Higher indenting force at the same loading rate generates higher estimated cell elasticity. Increasing the operation temperature of the AFM leads to decreases in the cell stiffness because the structure of actin filaments becomes disorganized. The physiological cues include the presence of fetal bovine serum or extracellular matrix-coated surfaces, the culture passage number, and the culture density. Both fetal bovine serum and the extracellular matrix are critical for cells to maintain the integrity of actin filaments and consequently exhibit higher elasticity. Unlike primary cells, mouse kidney progenitor cells can be passaged and maintain their morphology and elasticity for a very long period without a senescence phenotype. Finally, cell elasticity increases with increasing culture density only in MDCK epithelial cells. In summary, for researchers who use AFM to assess cell elasticity, our results provide basic and significant information about the suitable selection of physical and physiological cues.
Collapse
Affiliation(s)
- Yu-Wei Chiou
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
46
|
Ouyang H, Nauman E, Shi R. Contribution of cytoskeletal elements to the axonal mechanical properties. J Biol Eng 2013; 7:21. [PMID: 24007256 PMCID: PMC3846871 DOI: 10.1186/1754-1611-7-21] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 08/29/2013] [Indexed: 11/17/2022] Open
Abstract
Background Microtubules, microfilaments, and neurofilaments are cytoskeletal elements that affect cell morphology, cellular processes, and mechanical structures in neural cells. The objective of the current study was to investigate the contribution of each type of cytoskeletal element to the mechanical properties of axons of dorsal root and sympathetic ganglia cells in chick embryos. Results Microtubules, microfilaments, and neurofilaments in axons were disrupted by nocodazole, cytochalasin D, and acrylamide, respectively, or a combination of the three. An atomic force microscope (AFM) was then used to compress the treated axons, and the resulting corresponding force-deformation information was analyzed to estimate the mechanical properties of axons that were partially or fully disrupted. Conclusion We have found that the mechanical stiffness was most reduced in microtubules-disrupted-axons, followed by neurofilaments-disrupted- and microfilaments-disrupted-axons. This suggests that microtubules contribute the most of the mechanical stiffness to axons.
Collapse
Affiliation(s)
- Hui Ouyang
- Department of Basic Medical Sciences, Purdue University, West Lafayette IN 47907, USA.
| | | | | |
Collapse
|
47
|
Atomic force microscopy of 3T3 and SW-13 cell lines: An investigation of cell elasticity changes due to fixation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3303-8. [DOI: 10.1016/j.msec.2013.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/18/2013] [Accepted: 04/05/2013] [Indexed: 11/21/2022]
|
48
|
Dokukin M, Guz N, Sokolov I. Quantitative study of the elastic modulus of loosely attached cells in AFM indentation experiments. Biophys J 2013; 104:2123-31. [PMID: 23708352 PMCID: PMC3660635 DOI: 10.1016/j.bpj.2013.04.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 03/31/2013] [Accepted: 04/04/2013] [Indexed: 02/07/2023] Open
Abstract
When measuring the elastic (Young's) modulus of cells using AFM, good attachment of cells to a substrate is paramount. However, many cells cannot be firmly attached to many substrates. A loosely attached cell is more compliant under indenting. It may result in artificially low elastic modulus when analyzed with the elasticity models assuming firm attachment. Here we suggest an AFM-based method/model that can be applied to extract the correct Young's modulus of cells loosely attached to a substrate. The method is verified by using primary breast epithelial cancer cells (MCF-7) at passage 4. At this passage, approximately one-half of cells develop enough adhesion with the substrate to be firmly attached to the substrate. These cells look well spread. The other one-half of cells do not develop sufficient adhesion, and are loosely attached to the substrate. These cells look spherical. When processing the AFM indentation data, a straightforward use of the Hertz model results in a substantial difference of the Young's modulus between these two types of cells. If we use the model presented here, we see no statistical difference between the values of the Young's modulus of both poorly attached (round) and firmly attached (close to flat) cells. In addition, the presented model allows obtaining parameters of the brush surrounding the cells. The cellular brush observed is also statistically identical for both types of cells. The method described here can be applied to study mechanics of many other types of cells loosely attached to substrates, e.g., blood cells, some stem cells, cancerous cells, etc.
Collapse
Affiliation(s)
- Maxim E. Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts
- Department of Physics, Clarkson University, Potsdam, New York
| | - Nataliia V. Guz
- Department of Physics, Clarkson University, Potsdam, New York
| | - Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
- Department of Physics, Clarkson University, Potsdam, New York
- Nanoengineering and Biotechnology Laboratories Center, Clarkson University, Potsdam, New York
| |
Collapse
|
49
|
Dufrêne YF, Pelling AE. Force nanoscopy of cell mechanics and cell adhesion. NANOSCALE 2013; 5:4094-4104. [PMID: 23535827 DOI: 10.1039/c3nr00340j] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cells are constantly exposed to mechanical stimuli in their environment and have several evolved mechanisms to sense and respond to these cues. It is becoming increasingly recognized that many cell types, from bacteria to mammalian cells, possess a diverse set of proteins to translate mechanical cues into biochemical signalling and to mediate cell surface interactions such as cell adhesion. Moreover, the mechanical properties of cells are involved in regulating cell function as well as serving as indicators of disease states. Importantly, the recent development of biophysical tools and nanoscale methods has facilitated a deeper understanding of the role that physical forces play in modulating cell mechanics and cell adhesion. Here, we discuss how atomic force microscopy (AFM) has recently been used to investigate cell mechanics and cell adhesion at the single-cell and single-molecule levels. This knowledge is critical to our understanding of the molecular mechanisms that govern mechanosensing, mechanotransduction, and mechanoresponse in living cells. While pushing living cells with the AFM tip provides a means to quantify their mechanical properties and examine their response to nanoscale forces, pulling single surface proteins with a functionalized tip allows one to understand their role in sensing and adhesion. The combination of these nanoscale techniques with modern molecular biology approaches, genetic engineering and optical microscopies provides a powerful platform for understanding the sophisticated functions of the cell surface machinery, and its role in the onset and progression of complex diseases.
Collapse
Affiliation(s)
- Yves F Dufrêne
- Université catholique de Louvain, Institute of Life Sciences, Croix du Sud, 1, bte L7.04.01., B-1348 Louvain-la-Neuve, Belgium.
| | | |
Collapse
|
50
|
Sokolov I, Dokukin ME, Guz NV. Method for quantitative measurements of the elastic modulus of biological cells in AFM indentation experiments. Methods 2013; 60:202-13. [PMID: 23639869 DOI: 10.1016/j.ymeth.2013.03.037] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 02/09/2023] Open
Abstract
Here we overview and further develop a quantitative method to measure mechanics of biological cells in indentation experiments, which is based on the use of atomic force microscopy (AFM). We demonstrate how the elastic modulus of the cell body should be measured when the cellular brush is taken into account. The brush is an essential inelastic part of the cell, which surrounds all eukaryotic (the brush is mostly microvilli and glycocalyx) and gram-negative prokaryotic cells (the brush is polysaccharides). The other main feature of the described method is the use of a relatively dull AFM probe to stay in the linear stress-strain regime. In particular, we show that the elastic modulus (aka the Young's modulus) of cells is independent of the indentation depth up to 10-20% deformation for the eukaryotic cells studied here. Besides the elastic modulus, the method presented allows obtaining the parameters of cellular brush, such as the effective length and grafting density of the brush. Although the method is demonstrated on eukaryotic cells, it is directly applicable for all types of cells, and even non-biological soft materials surrounded by either a brush or any field of long-range forces.
Collapse
Affiliation(s)
- Igor Sokolov
- Department of Mechanical Engineering, Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.
| | | | | |
Collapse
|