1
|
Alves Nobre T, de Sousa AA, Pereira IC, Carvalho Pedrosa-Santos ÁM, Lopes LDO, Debia N, El-Nashar HAS, El-Shazly M, Islam MT, Castro E Sousa JMD, Torres-Leal FL. Bromelain as a natural anti-inflammatory drug: a systematic review. Nat Prod Res 2025; 39:1258-1271. [PMID: 38676413 DOI: 10.1080/14786419.2024.2342553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/09/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
Inflammation is a complex and necessary mechanism of an organ's response to biological, chemical and/or physical stimuli. In recent years, investigations on natural compounds with therapeutic actions for the treatment of different diseases have increased. Among these compounds, bromelain is highlighted, as a cysteine protease isolated from the Ananas comosus (pineapple) stem. This review aimed to evaluate the anti-inflammatory activity of bromelain, as well as its pathways on inflammatory mediators, through a systematic review with in vitro studies on different cell lines. The search was performed in PubMed, Science Direct, Scopus, Cochrane Library and Web of Science databases. Bromelain reduced IL-1β, IL-6 and TNF-α secretion when immune cells were already stimulated in an overproduction condition by proinflammatory cytokines, generating a modulation in the inflammatory response through prostaglandins reduction and activation of a cascade reactions that trigger neutrophils and macrophages, in addition to accelerating the healing process.
Collapse
Affiliation(s)
- Taline Alves Nobre
- Toxicological Genetics Research Laboratory (LAPGENIC), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Athanara Alves de Sousa
- Toxicological Genetics Research Laboratory (LAPGENIC), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Irislene Costa Pereira
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Álina Mara Carvalho Pedrosa-Santos
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Luana de Oliveira Lopes
- Toxicological Genetics Research Laboratory (LAPGENIC), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Nicole Debia
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- BioLuster Research Center, Dhaka, Bangladesh
| | - João Marcelo de Castro E Sousa
- Toxicological Genetics Research Laboratory (LAPGENIC), Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Francisco Leonardo Torres-Leal
- Metabolic Diseases, Exercise and Nutrition Research Group (DOMEN), Department of Biophysics and Physiology, Center for Health Sciences, Federal University of Piauí, Teresina, Piauí, Brazil
| |
Collapse
|
2
|
Mecca M, Sichetti M, Giuseffi M, Giglio E, Sabato C, Sanseverino F, Marino G. Synergic Role of Dietary Bioactive Compounds in Breast Cancer Chemoprevention and Combination Therapies. Nutrients 2024; 16:1883. [PMID: 38931238 PMCID: PMC11206589 DOI: 10.3390/nu16121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer is the most common tumor in women. Chemotherapy is the gold standard for cancer treatment; however, severe side effects and tumor resistance are the major obstacles to chemotherapy success. Numerous dietary components and phytochemicals have been found to inhibit the molecular and signaling pathways associated with different stages of breast cancer development. In particular, this review is focused on the antitumor effects of PUFAs, dietary enzymes, and glucosinolates against breast cancer. The major databases were consulted to search in vitro and preclinical studies; only those with solid scientific evidence and reporting protective effects on breast cancer treatment were included. A consistent number of studies highlighted that dietary components and phytochemicals can have remarkable therapeutic effects as single agents or in combination with other anticancer agents, administered at different concentrations and via different routes of administration. These provide a natural strategy for chemoprevention, reduce the risk of breast cancer recurrence, impair cell proliferation and viability, and induce apoptosis. Some of these bioactive compounds of dietary origin, however, show poor solubility and low bioavailability; hence, encapsulation in nanoformulations are promising tools able to increase clinical efficiency.
Collapse
Affiliation(s)
- Marisabel Mecca
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Marzia Sichetti
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Martina Giuseffi
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Eugenia Giglio
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Claudia Sabato
- Laboratory of Preclinical and Translational Research, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy; (M.G.); (E.G.); (C.S.)
| | - Francesca Sanseverino
- Unit of Gynecologic Oncology, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy;
| | - Graziella Marino
- Unit of Breast Cancer, Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), 85028 Rionero in Vulture, Italy;
| |
Collapse
|
3
|
Gwozdzinski L, Bernasinska-Slomczewska J, Hikisz P, Wiktorowska-Owczarek A, Kowalczyk E, Pieniazek A. The Effect of Diosmin, Escin, and Bromelain on Human Endothelial Cells Derived from the Umbilical Vein and the Varicose Vein-A Preliminary Study. Biomedicines 2023; 11:1702. [PMID: 37371797 DOI: 10.3390/biomedicines11061702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, we investigated the properties of human varicose vein (VV) endothelial cells (HVVEC) in comparison to the human umbilical vein endothelial cells (HUVEC). The cells were treated with three bioactive compounds with proven beneficial effects in the therapy of patients with VV, diosmin, escin, and bromelain. Two concentrations of tested drugs were used (1, 10 mg/mL), which did not affect the viability of either cell type. Escin led to a slight generation of reactive oxygen species in HUVEC cells. We observed a slight release of superoxide in HVVEC cells upon treatment with diosmin and escin. Diosmin and bromelain showed a tendency to release nitric oxide in HUVEC. Using membrane fluorescent probes, we demonstrated a reduced fluidity of HVVEC, which may lead to their increased adhesion, and, consequently, a much more frequent occurrence of venous thrombosis. For the first time, we show the mechanism of action of drugs used in VV therapy on endothelial cells derived from a VV. Studies with HVVEC have shown that tested drugs may lead to a reduction in the adhesive properties of these cells, and thus to a lower risk of thrombosis.
Collapse
Affiliation(s)
- Lukasz Gwozdzinski
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Joanna Bernasinska-Slomczewska
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | | | - Edward Kowalczyk
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
4
|
Paksoy T, Ustaoğlu G, Şehirli AÖ, Ünsal RBK, Sayıner S, Orhan K, Aycı NB, Çetinel Ş, Aksoy U, Öğünç AV. Effect of bromelain on periodontal destruction and alveolar bone in rats with experimental periodontitis. Int Immunopharmacol 2023; 121:110446. [PMID: 37290321 DOI: 10.1016/j.intimp.2023.110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Several substances that have anti-inflammatory, antiproteinase, and anti-infective properties have been evaluated as modulators of the inflammatory response in periodontal disease. However, evidence for the anti-inflammatory and antioxidative activities of bromelain is limited. This study evaluated the impact of systemically administered bromelain on the progression of experimental periodontitis. METHODS Four equal groups of 32 Wistar albino rats were created as follows (n = 8): control, periodontitis + saline, periodontitis + 5 mg/kg/day bromelain, and periodontitis + 10 mg/kg/day bromelain. To quantify the resorption of bone and bone volume/tissue volume, bone surface / bone volume, and connectivity, lower jawbones were fixed and then scanned using microcomputed tomography (micro CT). Blood samples were taken to measure the macrophage colony-stimulating factor(M-CSF) concentrations, receptor activator of nuclear factor kappa-Β ligand (RANKL), osteoprotegerin (OPG), tumor necrosis factor-alpha (TNF-α), matrix metalloproteinase-8 (MMP-8), interleukin-6(IL-6), glutathione peroxidase (GPx), superoxide dismutase (SOD), and malondialdehyde (MDA). Histopathological assessments were made to examine the tissue. RESULTS Treatment with bromelain improved the healing of the periodontium by decreasing the number of leukocytes and ligament deterioration in the gingival connective tissue and by supporting reintegration with alveolar bone. Bromelain used in ligature-induced periodontitis reduced alveolar bone (AB) resorption as measured by microCT; reduced inflammatory parameters such as IL-6 and TNF-α; regulated oxidative-antioxidative processes by increasing GPx and SOD and reducing MDA levels; and regulated AB modeling by decreasing M-CSF, RANKL, and MMP-8 and increasing OPG levels. CONCLUSION Bromelain may be an option in periodontal therapy by regulating cytokine levels, improving the healing process, and reducing bone resorption and oxidative stress.
Collapse
Affiliation(s)
- Tuğçe Paksoy
- Department of Periodontology, Hamidiye Faculty of Dentistry, University of Health Sciences, Istanbul, Turkey.
| | - Gülbahar Ustaoğlu
- Department of Periodontology, Faculty of Gülhane Dentistry, University of Health Sciences, Ankara, Turkey
| | - Ahmet Özer Şehirli
- Department of Pharmacology, Faculty of Dentistry, Near East University, 99138 Nicosia, Northern Cyprus, Mersin 10, Turkey
| | - Revan Birke Koca Ünsal
- Department of Periodontology, Faculty of Dentistry, University of Kyrenia, 99320 Kyrenia, Northern Cyprus, Mersin 10, Turkey
| | - Serkan Sayıner
- Department of Biochemistry, Faculty of Veterinary Medicine, Near East University, 99138 Nicosia, Northern Cyprus, Mersin 10, Turkey
| | - Kaan Orhan
- Department of DentoMaxillofacial Radiology, Ankara University, Ankara, Turkey
| | - Nurdan Bülbül Aycı
- Department of Histology and Embryology, School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Şule Çetinel
- Department of Histology and Embryology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Umut Aksoy
- Department of Endodontics, Faculty of Dentistry, Near East University, 99138 Nicosia, Northern Cyprus, Mersin 10, Turkey
| | - Ayliz Velioğlu Öğünç
- Vocational School of Health-Related Professions, Marmara University, Istanbul, Turkey
| |
Collapse
|
5
|
Pezzani R, Jiménez-Garcia M, Capó X, Sönmez Gürer E, Sharopov F, Rachel TYL, Ntieche Woutouoba D, Rescigno A, Peddio S, Zucca P, Tsouh Fokou PV, Martorell M, Gulsunoglu-Konuskan Z, Ydyrys A, Bekzat T, Gulmira T, Hano C, Sharifi-Rad J, Calina D. Anticancer properties of bromelain: State-of-the-art and recent trends. Front Oncol 2023; 12:1068778. [PMID: 36698404 PMCID: PMC9869248 DOI: 10.3389/fonc.2022.1068778] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Bromelain is a key enzyme found in pineapple (Ananas comosus (L.) Merr.); a proteolytic substance with multiple beneficial effects for human health such as anti-inflammatory, immunomodulatory, antioxidant and anticarcinogenic, traditionally used in many countries for its potential therapeutic value. The aim of this updated and comprehensive review focuses on the potential anticancer benefits of bromelain, analyzing the cytotoxic, apoptotic, necrotic, autophagic, immunomodulating, and anti-inflammatory effects in cancer cells and animal models. Detailed information about Bromelain and its anticancer effects at the cellular, molecular and signaling levels were collected from online databases such as PubMed/MedLine, TRIP database, GeenMedical, Scopus, Web of Science and Google Scholar. The results of the analyzed studies showed that Bromelain possesses corroborated pharmacological activities, such as anticancer, anti-edema, anti-inflammatory, anti-microbial, anti-coagulant, anti-osteoarthritis, anti-trauma pain, anti-diarrhea, wound repair. Nonetheless, bromelain clinical studies are scarce and still more research is needed to validate the scientific value of this enzyme in human cancer diseases.
Collapse
Affiliation(s)
- Raffaele Pezzani
- Phytotherapy Lab, Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy,Associazione Italiana per la Ricerca Oncologica di Base (AIROB), Padova, Italy
| | - Manuel Jiménez-Garcia
- Laboratory of Neurophysiology, Biology Department, University of Balearic Islands (UIB), Palma de Mallorca, Spain
| | - Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, Palma de Mallorca, Spain
| | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products” of the National Academy of Sciences of Tajikistan, Dushanbe, Tajikistan
| | | | - David Ntieche Woutouoba
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde, Yaounde, Cameroon
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Stefania Peddio
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Zucca
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile,Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción, Chile
| | - Zehra Gulsunoglu-Konuskan
- Faculty of Health Science, Nutrition and Dietetics Department, Istanbul Aydin University, Istanbul, Turkey
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Almaty, Kazakhstan,The Elliott School of International Affairs, George Washington University, Washington, DC, United States
| | - Tynybekov Bekzat
- Department of Biodiversity and Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Tussupbekova Gulmira
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Chartres, France,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania,*Correspondence: Javad Sharifi-Rad, ; Christophe Hano, ; Daniela Calina, ; Paolo Zucca,
| |
Collapse
|
6
|
Extracellular Heat Shock Protein 27 Is Released by Plasma-Treated Ovarian Cancer Cells and Affects THP-1 Monocyte Activity. PLASMA 2022. [DOI: 10.3390/plasma5040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Heat shock protein 27 (Hsp27) is a cytoprotective molecule and is inducible via oxidative stress. Anti-cancer therapies, such as the recently investigated gas plasma, subject tumor cells to a plethora of reactive oxygen species (ROS). In ovarian tumor microenvironments (TME), immune cells such as monocytes and macrophages can be found in large numbers and are often associated with cancer progression. Therefore, we quantified extracellular Hsp27 of OVCAR-3 and SK-OV-3 cells after gas plasma exposure in vitro. We found Hsp27 to be significantly increased. Following this, we investigated the effects of Hsp27 on THP-1 monocytes. Live cell imaging of Hsp27-treated THP-1 cells showed decelerated cell numbers and a reduction in cell cluster sizes. In addition, reduced metabolic activity and proliferation were identified using flow cytometry. Mitochondrial ROS production decreased. Using multicolor flow cytometry, the expression profile of eight out of twelve investigated cell surface markers was significantly modulated in Hsp27-treated THP-1 cells. A significantly decreased release of IL18 accommodated this. Taken together, our results suggest an immunomodulatory effect of Hsp27 on THP-1 monocytes. These data call for further investigations on Hsp27’s impact on the interplay of ovarian cancer cells and monocytes/macrophages under oxidative stress conditions.
Collapse
|
7
|
Palmieri A, Cai T, Di Luise L, D'Alterio C, La Cava G, Cirigliano L, Di Giovanni A, Gallelli L, Capece M. Extracorporeal shock wave therapy in association with bromelain and escin for the management of patients affected by chronic prostatitis/chronic pelvic pain syndrome. Biomed Rep 2022; 18:7. [PMID: 36544851 PMCID: PMC9756277 DOI: 10.3892/br.2022.1589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/08/2022] [Indexed: 11/27/2022] Open
Abstract
Extracorporeal shock wave therapy (ESWT) has been purposed for the management of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) with encouraging results. Phytotherapeutic compounds have been used in everyday clinical practice for patients with CP/CPSS due to their anti-inflammatory properties. The present study aimed to investigate the effects of ESWT in association with the use of bromelain and escin extracts in patients with CP/CPSS. For this purpose, 95 patients with a clinical diagnosis of CP/CPSS were enrolled in the study. The patients were randomly allocated to either the ESWT plus bromelain and escin group (group A; n=48) or the ESWT only group (group B; n=47). A total of five weekly ESWT treatment sessions were administered alone or in combination with bromelain and escin. Each session consisted of 3,000 focused shock waves. Doses of 160 and 500 mg/day bromelain and escin were administered respectively for 5 weeks. The changes in urinary symptoms, pain and quality of life were considered the main outcome measures and were assessed at baseline, and at 4, 12 and 24 weeks of follow-up. Urinary symptoms, pain and quality of life were evaluated using the international prostatic symptoms score (IPSS), visual analog scale (VAS) and the National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI). After 4 weeks, the mean VAS score, mean IPSS and mean satisfaction rate score had significantly improved in patients receiving ESWT plus bromelain and escin. After 12 weeks, the mean IPSS and mean satisfaction rate score were stable in the ESWT plus bromelain and escin group, while the mean VAS score was significantly lower when compared with the baseline values in both groups. On the whole, the present study demonstrates that in patients affected by CP/CPPS, treatment with ESWT plus bromelain and escin leads to pain resolution, and both treatments improve the IPSS, VAS and NIH-CPSI results.
Collapse
Affiliation(s)
- Alessandro Palmieri
- Department of Neurosciences, Reproductive Sciences, Odontostomatology-Urology Unit, University of Naples ‘Federico II’, I-80100 Naples, Italy
| | - Tommaso Cai
- Department of Urology, Santa Chiara Regional Hospital, I-38123 Trento, Italy,Institute of Clinical Medicine, University of Oslo, 0010 Oslo, Norway,Correspondence to: Professor Tommaso Cai, Department of Urology, Santa Chiara Regional Hospital, Largo Medaglie d'Oro 9, I-38123 Trento, Italy
| | - Luigi Di Luise
- Department of Neurosciences, Reproductive Sciences, Odontostomatology-Urology Unit, University of Naples ‘Federico II’, I-80100 Naples, Italy
| | - Carlo D'Alterio
- Department of Neurosciences, Reproductive Sciences, Odontostomatology-Urology Unit, University of Naples ‘Federico II’, I-80100 Naples, Italy
| | | | - Lorenzo Cirigliano
- Department of Neurosciences, Reproductive Sciences, Odontostomatology-Urology Unit, University of Naples ‘Federico II’, I-80100 Naples, Italy
| | - Angelo Di Giovanni
- Department of Neurosciences, Reproductive Sciences, Odontostomatology-Urology Unit, University of Naples ‘Federico II’, I-80100 Naples, Italy
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Unit, Mater Domini Hospital, I-88100 Catanzaro, Italy,Department of Health Sciences, School of Medicine, University of Catanzaro, I-88100 Catanzaro, Italy,Research Center FAS@UMG, Department of Health Sciences, University of Catanzaro, I-88100 Catanzaro, Italy
| | - Marco Capece
- Department of Neurosciences, Reproductive Sciences, Odontostomatology-Urology Unit, University of Naples ‘Federico II’, I-80100 Naples, Italy
| |
Collapse
|
8
|
Bromelain Protects Critically Perfused Musculocutaneous Flap Tissue from Necrosis. Biomedicines 2022; 10:biomedicines10061449. [PMID: 35740469 PMCID: PMC9220030 DOI: 10.3390/biomedicines10061449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Bromelain has previously been shown to prevent ischemia-induced necrosis in different types of tissues. In the present study, we, therefore, evaluated for the first time, the tissue-protective effects of bromelain in musculocutaneous flaps in mice. Adult C57BL/6N mice were randomly assigned to a bromelain treatment group and a control group. The animals were treated daily with intraperitoneal injections of 20 mg/kg bromelain or saline (control), starting 1 h before the flap elevation throughout a 10-day observation period. The random-pattern musculocutaneous flaps were raised on the backs of the animals and mounted into a dorsal skinfold chamber. Angiogenesis, nutritive blood perfusion and flap necrosis were quantitatively analyzed by means of repeated intravital fluorescence microscopy over 10 days after surgery. After the last microscopy, the flaps were harvested for additional histological and immunohistochemical analyses. Bromelain reduced necrosis of the critically perfused flap tissue by ~25%. The bromelain-treated flaps also exhibited a significantly higher functional microvessel density and an elevated formation of newly developed microvessels in the transition zone between the vital and necrotic tissues when compared to the controls. Immunohistochemical analyses demonstrated a markedly lower invasion of the myeloperoxidase-positive neutrophilic granulocytes and a significantly reduced number of cleaved caspase 3-positive apoptotic cells in the transition zone of bromelain-treated musculocutaneous flaps. These findings indicate that bromelain prevents flap necrosis by maintaining nutritive tissue perfusion and by suppressing ischemia-induced inflammation and apoptosis. Hence, bromelain may represent a promising compound to prevent ischemia-induced flap necrosis in clinical practice.
Collapse
|
9
|
Hikisz P, Bernasinska-Slomczewska J. Beneficial Properties of Bromelain. Nutrients 2021; 13:4313. [PMID: 34959865 PMCID: PMC8709142 DOI: 10.3390/nu13124313] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/21/2022] Open
Abstract
Bromelain is a major sulfhydryl proteolytic enzyme found in pineapple plants, having multiple activities in many areas of medicine. Due to its low toxicity, high efficiency, high availability, and relative simplicity of acquisition, it is the object of inexhaustible interest of scientists. This review summarizes scientific reports concerning the possible application of bromelain in treating cardiovascular diseases, blood coagulation and fibrinolysis disorders, infectious diseases, inflammation-associated diseases, and many types of cancer. However, for the proper application of such multi-action activities of bromelain, further exploration of the mechanism of its action is needed. It is supposed that the anti-viral, anti-inflammatory, cardioprotective and anti-coagulatory activity of bromelain may become a complementary therapy for COVID-19 and post-COVID-19 patients. During the irrepressible spread of novel variants of the SARS-CoV-2 virus, such beneficial properties of this biomolecule might help prevent escalation and the progression of the COVID-19 disease.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland;
| | | |
Collapse
|
10
|
Chakraborty AJ, Mitra S, Tallei TE, Tareq AM, Nainu F, Cicia D, Dhama K, Emran TB, Simal-Gandara J, Capasso R. Bromelain a Potential Bioactive Compound: A Comprehensive Overview from a Pharmacological Perspective. Life (Basel) 2021; 11:317. [PMID: 33917319 PMCID: PMC8067380 DOI: 10.3390/life11040317] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022] Open
Abstract
Bromelain is an effective chemoresponsive proteolytic enzyme derived from pineapple stems. It contains several thiol endopeptidases and is extracted and purified via several methods. It is most commonly used as an anti-inflammatory agent, though scientists have also discovered its potential as an anticancer and antimicrobial agent. It has been reported as having positive effects on the respiratory, digestive, and circulatory systems, and potentially on the immune system. It is a natural remedy for easing arthritis symptoms, including joint pain and stiffness. This review details bromelain's varied uses in healthcare, its low toxicity, and its relationship to nanoparticles. The door of infinite possibilities will be opened up if further extensive research is carried out on this pineapple-derived enzyme.
Collapse
Affiliation(s)
- Arka Jyoti Chakraborty
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (A.J.C.); (S.M.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (A.J.C.); (S.M.)
| | - Trina E. Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado 95115, North Sulawesi, Indonesia;
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia;
| | - Donatella Cicia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy;
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, Uttar Pradesh, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
11
|
Akkol EK, Karpuz B, Sobarzo-Sánchez E, Khan H. A phytopharmacological overview of medicinal plants used for prophylactic and treatment of colitis. Food Chem Toxicol 2020; 144:111628. [PMID: 32738379 DOI: 10.1016/j.fct.2020.111628] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022]
Abstract
Inflammatory bowel diseases are chronic diseases that develop on the genetic background. They are characterized by an idiopathic, chronic course and periods of activation and remission. However, genetic and environmental factors are thought to play a role in its pathogenesis. Significant improvements in treatment strategies have been witnessed. Depending on the severity of the disease, mesalamine, immunosuppressants, anti-TNF, anti-integrin, Janus kinase inhibitors, and thiopurines can be used for treatment. However, these treatments have side effects such as headache, dizziness, nausea, loss of appetite, hair loss, gas, vomiting, rash, fever, and decreased white blood cell count. The search for treatment that may be a safer alternative, immunomodulatory, and immunosuppressive therapy has gained importance nowadays. Herbal medicine is preferred to treat a wide range of acute and chronic gastrointestinal diseases, including ulcerative colitis. Preclinical and clinical studies show that plants are promising in terms of their use in treating pathological conditions. The effectiveness of plants in treating ulcerative colitis has been determined. However, more studies are needed to explore the long-term effects of these herbal medicines. The present review presents information on medicinal plants and phytochemicals reported for use or potential of application in ulcerative colitis, a type of inflammatory bowel diseases.
Collapse
Affiliation(s)
- Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey.
| | - Büşra Karpuz
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, 8330507, Santiago, Chile; Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
12
|
Alves EHP, Carvalho ADS, Silva FRP, Carvalho França LF, Di Lenardo D, Vasconcelos ACCG, Nascimento HMS, Ribeiro Lopes VL, Oliveira JS, Vasconcelos DFP. Bromelain reduces the non‐alcoholic fatty liver disease and periodontal damages caused by ligature‐induced periodontitis. Oral Dis 2020; 26:1793-1802. [DOI: 10.1111/odi.13476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Even Herlany Pereira Alves
- Laboratory of Histological Analysis and Preparation (LAPHis) Federal University of Parnaiba Delta (UFDPar) Parnaiba PI Brazil
| | - André dos Santos Carvalho
- Laboratory of Histological Analysis and Preparation (LAPHis) Federal University of Parnaiba Delta (UFDPar) Parnaiba PI Brazil
| | | | - Luiz Felipe Carvalho França
- Laboratory of Histological Analysis and Preparation (LAPHis) Federal University of Parnaiba Delta (UFDPar) Parnaiba PI Brazil
| | - David Di Lenardo
- Laboratory of Histological Analysis and Preparation (LAPHis) Federal University of Parnaiba Delta (UFDPar) Parnaiba PI Brazil
| | | | - Hélio Mateus Silva Nascimento
- Laboratory of Histological Analysis and Preparation (LAPHis) Federal University of Parnaiba Delta (UFDPar) Parnaiba PI Brazil
| | - Víctor Lucas Ribeiro Lopes
- Laboratory of Histological Analysis and Preparation (LAPHis) Federal University of Parnaiba Delta (UFDPar) Parnaiba PI Brazil
| | - Jefferson Soares Oliveira
- Laboratory of Biochemistry and Biology of Microorganism and Plants (BIOMIC) Federal University of Parnaiba Delta (UFDPar) Parnaíba PI Brazil
| | | |
Collapse
|
13
|
Palmieri B, Vadalà M, Laurino C. Nutrition in wound healing: investigation of the molecular mechanisms, a narrative review. J Wound Care 2019; 28:683-693. [DOI: 10.12968/jowc.2019.28.10.683] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nutrition can be outlined in terms of epigenetic signals influencing each of the wound healing steps (haemostasis, inflammatory, proliferative and remodelling phase). Specific nutrients, such as amino acids, minerals, vitamins, natural compounds and herbal extracts, target DNA-regulating transcription factors, cytokines, extracellular matrix proteins and glycosaminoglycan, and are specifically involved in the wound healing process. This review focuses on experimental in vivo and clinical evidence of dietary supplements administration in pressure ulcers. A good nutritional status is, for example, fundamental to the haemostasis phase of skin wounds. In the inflammatory phase, vitamin A enhances cytokine release, bromelain and amino acids prevent prolonged inflammatory events, while vitamin C enhances neutrophil migration and lymphocyte activation. In the proliferative phase, vitamin C and Centella asiatica are required for collagen synthesis. Glucosamine enhances hyaluronic acid production, vitamin A promotes epithelial cell differentiation, zinc is required for DNA and protein synthesis and cell division, and Aloe vera supports granulation tissue generation. Finally, in the remodelling phase, amino acids and proteins play a key role in wound scar stabilisation.
Collapse
Affiliation(s)
- Beniamino Palmieri
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy. Second Opinion Medical Network
| | - Maria Vadalà
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy. Second Opinion Medical Network
| | - Carmen Laurino
- Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con Interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università degli Studi di Modena e Reggio Emilia, Modena, Italy. Second Opinion Medical Network
| |
Collapse
|
14
|
Iram S, Zahera M, Wahid I, Baker A, Raish M, Khan A, Ali N, Ahmad S, Khan MS. Cisplatin bioconjugated enzymatic GNPs amplify the effect of cisplatin with acquiescence. Sci Rep 2019; 9:13826. [PMID: 31554850 PMCID: PMC6761153 DOI: 10.1038/s41598-019-50215-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/29/2019] [Indexed: 12/11/2022] Open
Abstract
Enzymatic gold nanoparticles (B-GNPs) have been synthesized using a natural anticancer agent bromelain (a cysteine protease) and these nanoparticles were used to bioconjugate Cisplatin (highly effective against osteosarcoma and lung cancer). Cisplatin bioconjugated bromelain encapsulated gold nanoparticles (B-C-GNPs) were found profoundly potent against same cancers at much lower concentration with minimum side effects due to the synergistic effect of bromelain. The B-C-GNPs have been observed to inhibit the proliferation of osteosarcoma cell lines Saos-2 and MG-63 with IC50 estimation of 4.51 µg/ml and 3.21 µg/ml, respectively, and against small lung cancer cell line A-549 with IC50 2.5 µg/ml which is lower than IC50 of cisplatin against same cell lines. The B-GNPs/B-C-GNPs were characterized by TEM, UV-Visible spectroscopy, Zeta potential and DLS to confirm the production, purity, crystalline nature, stability of nanoemulsion, size and shape distribution. The change in 2D and 3D conformation of bromelain after encapsulation was studied by Circular Dichroism and Fluorometry, respectively. It was found that after encapsulation, a 19.4% loss in secondary structure was observed, but tertiary structure was not altered significantly and this loss improved the anticancer activity. The confirmation of bioconjugation of cisplatin with B-GNPs was done by UV-Visible spectroscopy, TEM, FTIR, 2D 1H NMR DOSY and ICP-MS. Further, it was found that almost ~4 cisplatin molecules bound with each B-GNPs nanoparticle.
Collapse
Affiliation(s)
- Sana Iram
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Manaal Zahera
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Iram Wahid
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Abu Baker
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohammad Raish
- Department Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Altaf Khan
- Department Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naushad Ali
- Quality Assurance Unit, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saheem Ahmad
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India.
| |
Collapse
|
15
|
Orlandi-Mattos PE, Aguiar RB, da Silva Vaz I, Moraes JZ, de Araujo Carlini EL, Juliano MA, Juliano L. Enkephalin related peptides are released from jejunum wall by orally ingested bromelain. Peptides 2019; 115:32-42. [PMID: 30836111 DOI: 10.1016/j.peptides.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/05/2019] [Accepted: 02/26/2019] [Indexed: 12/29/2022]
Abstract
Stem bromelain [EC 3.4.22.32] is a thiol-endopeptidase and orally recommended in traditional medicine due to its analgesic activity, but the mechanisms are not known. Proenkephalin is expressed in the nervous system, but also in the gastrointestinal tract, where it can be assessed by ingested stem bromelain. Here we demonstrated that stem bromelain hydrolyses synthetic proenkephalin fragments after basic amino acid residues flanking the enkephalin sequences. We also observed with in vivo studies that oral administration of bromelain reduced jejunum proenkephalin levels and increased the serum enkephalin in mice. Effective anti-nociceptive effects in mice were observed 3 h after oral administration of 3 mg/kg stem bromelain by the acetic acid-induced writhing test. However, with higher doses this effect is reduced due to hydrolysis of enkephalin that possibly occurs by the presence of ananain in commercial pineapple stem bromelain preparations, that is also a thiol-protease with broad specificity. The analgesic effects were also evaluated by hot-plate and formalin tests and the obtained results indicated that enkephalin generated in intestine acts in periphery where it also can have anti-inflammatory activity.
Collapse
Affiliation(s)
- Paulo Eduardo Orlandi-Mattos
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo. Rua Três de Maio, 100 - Vila Clementino. CEP, 04044-020, São Paulo, SP, Brazil
| | - Rodrigo Barbosa Aguiar
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo. Rua Três de Maio, 100 - Vila Clementino. CEP, 04044-020, São Paulo, SP, Brazil
| | - Itabajara da Silva Vaz
- Departamento de Patologia e Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul. Av. Bento Goncalves 9500 CP15005. CEP, 91501970, Porto Alegre, RS, Brazil
| | - Jane Zveiter Moraes
- CEBRID, Centro Brasileiro de Informações sobre Drogas Psicotrópicas, Departamento de Medicina Preventiva, Escola Paulista de Medicina, Universidade Federal de São Paulo. Rua Botucatu, 820 - Vila Clementino. CEP, 04024-002, São Paulo, SP, Brazil
| | - Elisaldo Luiz de Araujo Carlini
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo. Rua Três de Maio, 100 - Vila Clementino. CEP, 04044-020, São Paulo, SP, Brazil; Departamento de Patologia e Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul. Av. Bento Goncalves 9500 CP15005. CEP, 91501970, Porto Alegre, RS, Brazil; CEBRID, Centro Brasileiro de Informações sobre Drogas Psicotrópicas, Departamento de Medicina Preventiva, Escola Paulista de Medicina, Universidade Federal de São Paulo. Rua Botucatu, 820 - Vila Clementino. CEP, 04024-002, São Paulo, SP, Brazil
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo. Rua Três de Maio, 100 - Vila Clementino. CEP, 04044-020, São Paulo, SP, Brazil
| | - Luiz Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo. Rua Três de Maio, 100 - Vila Clementino. CEP, 04044-020, São Paulo, SP, Brazil; Departamento de Patologia e Clínica Veterinária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul. Av. Bento Goncalves 9500 CP15005. CEP, 91501970, Porto Alegre, RS, Brazil; CEBRID, Centro Brasileiro de Informações sobre Drogas Psicotrópicas, Departamento de Medicina Preventiva, Escola Paulista de Medicina, Universidade Federal de São Paulo. Rua Botucatu, 820 - Vila Clementino. CEP, 04024-002, São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Sharma M, Sharma R. Implications of designing a bromelain loaded enteric nanoformulation on its stability and anti-inflammatory potential upon oral administration. RSC Adv 2018; 8:2541-2551. [PMID: 35541457 PMCID: PMC9077456 DOI: 10.1039/c7ra13555f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/31/2022] Open
Abstract
The objective of the present investigation was to develop an enteric nano-formulation of bromelain to improve its stability and anti-inflammatory potential. Bromelain loaded nanoparticles (Br-NPs) were developed using a Eudragit L 100 polymer by a double emulsion solvent evaporation method to obtain gastro-resistant properties. Br-NPs were characterized for particle size (248.89 ± 22.76 nm), zeta potential (-27.34 ± 2.17 mV), entrapment efficiency (85.42 ± 5.34%), surface morphology (spherical) and in vitro release profile. Infrared spectroscopy confirmed the entrapment of bromelain while thermal and pXRD analysis concomitantly corroborated the reduced crystallinity of bromelain in nanoparticles. Formulations showed gastro-resistant behavior at gastric pH and sustained bromelain release up to 10 h in phosphate buffer at pH 6.8 and followed Higuchi square root release kinetics. The optimized lyophilized formulation ensured 2 year shelf-life at room temperature. In vivo studies revealed significantly improved performance of entrapped bromelain in inhibiting carrageenan induced paw edema by mitigating leucocyte migration and release of nitric oxide, TNFα and IL-1β in paw compared to bromelain solution. In conclusion, enteric Br-NPs could be a viable drug delivery system for effective oral bromelain delivery in inflammatory conditions.
Collapse
Affiliation(s)
- Manu Sharma
- Department of Pharmacy, Banasthali Vidyapith Banasthali Rajasthan India-304022 +91-9694881221
| | - Rishu Sharma
- Department of Pharmacy, Banasthali Vidyapith Banasthali Rajasthan India-304022 +91-9694881221
| |
Collapse
|
17
|
Iram S, Zahera M, Khan S, Khan I, Syed A, Ansary AA, Ameen F, Shair OHM, Khan MS. Gold nanoconjugates reinforce the potency of conjugated cisplatin and doxorubicin. Colloids Surf B Biointerfaces 2017; 160:254-264. [PMID: 28942160 DOI: 10.1016/j.colsurfb.2017.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 08/21/2017] [Accepted: 09/06/2017] [Indexed: 12/22/2022]
Abstract
Osteosarcoma or osteogenic sarcoma is the most common and prevalent cancerous tumor of bone and occurs especially in children and teens. Recent treatment strategy includes a combination of both chemotherapy and surgeries. Although, the use of single drug-based chemotherapy treatment remains unsatisfactory. Therefore, combinatorial therapy has emerged as a potential strategy for treatment with limited side- effects. Here, we evaluated the combinatorial anticancerous effect of cisplatin (CIS) and doxorubicin (DOX) bioconjugated bromelain encapsulated gold nanoparticles (B-AuNPs conjugated CIS and DOX) in the treatment of osteosarcoma. The synthesized B-AuNPs conjugated CIS and DOX were characterized by various characterization techniques like UV-vis spectroscopy, TEM, DLS and zeta potential to ensure the synthesis, size, shape, size distribution and stability. Drug loading efficiency bioconjugation of CIS and DOX was ensured by UV-vis spectroscopy. Bioconjugation of CIS and DOX was further confirmed using UV-vis spectroscopy, TEM, DLS, Zeta potential and FT-IR analysis. The combinatorial effect of CIS and DOX in B-AuNPs conjugated CIS and DOX showed highly improved potency against MG-63 and Saos-2 cells at a very low concentration where primary osteoblasts didn't show any cytotoxic effect. The apoptotic effect of B-AuNPs conjugated CIS and DOX on osteosarcoma and primary osteoblasts cells were analyzed by increased permeability of the cell membrane, condensed chromatin and deep blue fluorescent condensed nucleus. The results clearly showed that B-AuNPs conjugated CIS and DOX significantly improved the potency of both the chemotherapeutic drugs by delivering them specifically into the nucleus of cancer cells through caveolae-dependent endocytosis. Thus, the greater inhibitory effect of combinatorial drugs (B-AuNPs conjugated CIS and DOX) over single drug based chemotherapy would be of great advantage during osteosarcoma treatment.
Collapse
Affiliation(s)
- Sana Iram
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Manaal Zahera
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Salman Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Imran Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abu Ayoobul Ansary
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Omar H M Shair
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohd Sajid Khan
- Nanomedicine & Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, 226026, India.
| |
Collapse
|
18
|
Rahayu P, Agustina L, Tjandrawinata RR. Tacorin, an extract from Ananas comosus stem, stimulates wound healing by modulating the expression of tumor necrosis factor α, transforming growth factor β and matrix metalloproteinase 2. FEBS Open Bio 2017; 7:1017-1025. [PMID: 28680814 PMCID: PMC5494315 DOI: 10.1002/2211-5463.12241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/12/2017] [Accepted: 05/02/2017] [Indexed: 01/16/2023] Open
Abstract
Wound healing is a complex biological process that involves integration of hemostasis, inflammation, proliferation and tissue remodeling. An extract of pineapple (Ananas comosus) stem demonstrates several therapeutics properties, including acceleration of wound healing. Tacorin is a water crude extract derived from the stem of A. comosus with high protein content. The effect of tacorin on wound healing in vivo was examined using rats with an induced injury. Wound closure was faster with tacorin treatment than in the untreated group. An in vitro study was conducted on mammalian cells (3T3‐L1) to observe the effect of tacorin on cell proliferation. Tacorin was first heated to inactivate its proteolytic activity. It increased the viability of 3T3‐L1 cells in a dose‐dependent manner. Excessive inflammation was suppressed by tacorin as shown by decreased tumor necrosis factor α expression. Treatment with tacorin increased the expression of transforming growth factor β, a major player in tissue remodeling. Moreover, tacorin also reduced the expression of MMP‐2 to accelerate the recovery of the wound. Taken together, tacorin is able to accelerate the wound‐healing process by increasing cell proliferation, suppressing inflammation and accelerating tissue remodeling.
Collapse
Affiliation(s)
- Puji Rahayu
- Biopharmaceutical Technology Division Dexa Laboratories of Biomolecular Sciences PT Dexa Medica Cikarang Indonesia
| | - Lia Agustina
- Biopharmaceutical Technology Division Dexa Laboratories of Biomolecular Sciences PT Dexa Medica Cikarang Indonesia
| | - Raymond R Tjandrawinata
- Biopharmaceutical Technology Division Dexa Laboratories of Biomolecular Sciences PT Dexa Medica Cikarang Indonesia
| |
Collapse
|
19
|
GRABS VIOLA, KERSTEN ANNA, HALLER BERNHARD, BRAUN SIEGMUND, NIEMAN DAVIDC, HALLE MARTIN, SCHERR JOHANNES. Rutoside and Hydrolytic Enzymes Do Not Attenuate Marathon-Induced Inflammation. Med Sci Sports Exerc 2017; 49:387-395. [DOI: 10.1249/mss.0000000000001116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Rogers C, Gobbi A. The Optimization of Natural Healing. BIO-ORTHOPAEDICS 2017:3-24. [DOI: 10.1007/978-3-662-54181-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
21
|
Pauzi AZM, Yeap SK, Abu N, Lim KL, Omar AR, Aziz SA, Chow ALT, Subramani T, Tan SG, Alitheen NB. Combination of cisplatin and bromelain exerts synergistic cytotoxic effects against breast cancer cell line MDA-MB-231 in vitro. Chin Med 2016; 11:46. [PMID: 27891174 PMCID: PMC5111264 DOI: 10.1186/s13020-016-0118-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/04/2016] [Indexed: 11/10/2022] Open
Abstract
Background Bromelain, which is a cysteine endopeptidase commonly found in pineapple stems, has been investigated as a potential anti-cancer agent for the treatment of breast cancer. However, information pertaining to the effects of combining bromelain with existing chemotherapeutic drugs remains scarce. This study aimed to investigate the possible synergistic cytotoxic effects of using bromelain in combination with cisplatin on MDA-MB-231 human breast cancer cells. Method MDA-MB-231 cells were treated with different concentrations (0.24–9.5 µM) of bromelain or cisplatin alone, as well as four different combinations of these two agents to assess their individual and combination effects after 24 and 48 h. Cell viability was analyzed using an MTT assay. The induction of apoptosis was assessed using cell cycle analysis and an Annexin V-FITC assay. The role of the mitochondrial membrane potential in the apoptotic process was assessed using a JC-1 staining assay. Apoptotic protein levels were assessed by western blot analysis and proteome profiling using an antibody array kit. Results Single-agent treatment with cisplatin or bromelain led to dose- and time-dependent decreases in the viability of the MDA-MB-231 cells at 24 and 48 h. Furthermore, most of the combinations evaluated in this study displayed synergistic effects against MDA-MB-231 cells at 48 h, with combination 1 (bromelain 2 µM + cisplatin 1.5 µM) exhibiting the greatest synergistic effect (P = 0.000). The results of subsequent assays indicated that combination 1 treatment induced apoptosis via mitochondria-mediated pathway. Combination 1 also resulted in significant decreases in the levels of several apoptotic proteins such as Bcl-x and HSP70, compared with bromelain (P = 0.002 and 0.000, respectively) or cisplatin (P = 0.000 and 0.001, respectively) single treatment. Notably, MDA-MB-231 cells treated with combination 1 showed increased levels of the pro-apoptotic proteins Bax compared with those treated with bromelain (P = 0.000) or cisplatin single treatment (P = 0.043). Conclusion Bromelain in combination with cisplatin synergistically enhanced the induction of apoptosis in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Ahmad Zaim Mat Pauzi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Swee Keong Yeap
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Nadiah Abu
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Kian Lam Lim
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor Malaysia
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suraini Abdul Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor Malaysia
| | - Adam Leow Thean Chow
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Tamilselvan Subramani
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Soon Guan Tan
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
22
|
Is There a Role for Arnica and Bromelain in Prevention of Post-Procedure Ecchymosis or Edema? A Systematic Review of the Literature. Dermatol Surg 2016; 42:445-63. [DOI: 10.1097/dss.0000000000000701] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Dittz D, Figueiredo C, Lemos FO, Viana CTR, Andrade SP, Souza-Fagundes EM, Fujiwara RT, Salas CE, Lopes MTP. Antiangiogenesis, loss of cell adhesion and apoptosis are involved in the antitumoral activity of Proteases from V. cundinamarcensis (C. candamarcensis) in murine melanoma B16F1. Int J Mol Sci 2015; 16:7027-44. [PMID: 25826531 PMCID: PMC4425002 DOI: 10.3390/ijms16047027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 03/06/2015] [Accepted: 03/11/2015] [Indexed: 01/05/2023] Open
Abstract
The proteolytic enzymes from V. cundinamarcensis latex, (P1G10), display healing activity in animal models following various types of lesions. P1G10 or the purified isoforms act as mitogens on fibroblast and epithelial cells by stimulating angiogenesis and wound healing in gastric and cutaneous ulcers models. Based on evidence that plant proteinases act as antitumorals, we verified this effect on a murine melanoma model. The antitumoral effect analyzed mice survival and tumor development after subcutaneous administration of P1G10 into C57BL/6J mice bearing B16F1 low metastatic melanoma. Possible factors involved in the antitumoral action were assessed, i.e., cytotoxicity, cell adhesion and apoptosis in vitro, haemoglobin (Hb), vascular endothelial growth factor (VEGF), tumor growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α) content and N-acetyl-glucosaminidase (NAG) activity. We observed that P1G10 inhibited angiogenesis measured by the decline of Hb and VEGF within the tumor, and TGF-β displayed a non-significant increase and TNF-α showed a minor non-significant reduction. On the other hand, there was an increase in NAG activity. In treated B16F1 cells, apoptosis was induced along with decreased cell binding to extracellular matrix components (ECM) and anchorage, without impairing viability.
Collapse
Affiliation(s)
- Dalton Dittz
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| | - Cinthia Figueiredo
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| | - Fernanda O. Lemos
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| | - Celso T. R. Viana
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (C.T.R.V.); (S.P.A.); (E.M.S.-F.)
| | - Silvia P. Andrade
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (C.T.R.V.); (S.P.A.); (E.M.S.-F.)
| | - Elaine M. Souza-Fagundes
- Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (C.T.R.V.); (S.P.A.); (E.M.S.-F.)
| | - Ricardo T. Fujiwara
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mail:
| | - Carlos E. Salas
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +55-31-3409-2646
| | - Miriam T. P. Lopes
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av Antônio Carlos 6627, 31270-901 Belo Horizonte, Brazil; E-Mails: (D.D.); (C.F.); (F.O.L.); (M.T.P.L.)
| |
Collapse
|
24
|
Effects of canned pineapple consumption on nutritional status, immunomodulation, and physical health of selected school children. J Nutr Metab 2014; 2014:861659. [PMID: 25505983 PMCID: PMC4258310 DOI: 10.1155/2014/861659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/30/2014] [Indexed: 11/20/2022] Open
Abstract
This randomized, controlled trial examined the effects of canned pineapple consumption on immunomodulation, nutritional status, and physical health of ninety-eight (98) school children with mean age of 8.44 ± 0.20. The study participants were divided into three groups: Group A (33) includes subjects who were not given canned pineapple, Group B (33) includes those who were given 140 g, and Group C (32) includes those given 280 g of canned pineapple for nine weeks. Each major group was further divided into two groups: normal (N) and underweight (U) based on 2007 WHO Growth Reference Standards. Sociodemographic, anthropometric, physical examination, dietary intake, hemoglobin level, and immunological data were analyzed. Results showed a decrease in incidence of viral and bacterial infections for both Group B and Group C (normal and underweight) after canned pineapple consumption. Granulocyte production increased by 0.77–26.61% for normal weight subjects and 14.95–34.55% for underweight. CD16+56 count augmented by 20.44–22.13% for normal weight and 3.57–15.89% for underweight subjects. Thus, intake of both one can (140 g) and two cans (280 g) of canned pineapple may shorten the duration and incidence of infection and may increase the production of granulocytes and CD16+56, but intake of two cans (280 g) demonstrated higher granulocyte and CD16+56 production. This trial is registered with Philippine Health Research Registry:
PHRR140826-000225.
Collapse
|
25
|
Edakkanambeth Varayil J, Bauer BA, Hurt RT. Over-the-counter enzyme supplements: what a clinician needs to know. Mayo Clin Proc 2014; 89:1307-12. [PMID: 25103998 DOI: 10.1016/j.mayocp.2014.05.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 10/24/2022]
Abstract
Over-the-counter (OTC) enzyme use is increasing in frequency in the United States. The numerous health benefit claims by manufacturers are leading to a surge in enzyme use for various conditions and symptoms. Clinicians need to help patients navigate this complex realm and make informed decisions about the use of OTC enzymes. This review focuses on key concepts for health care providers to understand the current evidence, risks, and benefits of OTC enzymes.
Collapse
Affiliation(s)
| | - Brent A Bauer
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN
| | - Ryan T Hurt
- Division of General Internal Medicine, Mayo Clinic, Rochester, MN; Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN; Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN.
| |
Collapse
|
26
|
Peptidases from latex of Carica candamarcensis upregulate COX-2 and IL-1 mRNA transcripts against Salmonella enterica ser. Typhimurium-mediated inflammation. Mediators Inflamm 2014; 2014:819731. [PMID: 24757289 PMCID: PMC3976864 DOI: 10.1155/2014/819731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/09/2014] [Accepted: 01/24/2014] [Indexed: 11/18/2022] Open
Abstract
The immunomodulatory properties of a mixture of cysteine peptidases (P1G10) obtained from the fruit lattice of Carica candamarcensis were investigated. P1G10 was obtained from fresh latex samples by chromatography in a Sephadex column and initially administered to Swiss mice (n = 5; 1 or 10 mg/kg) via i.p. After 30 min, the mice were injected with carrageenan (0.5 mg/mouse) or heat-killed S. Typhimurium (10(7) CFU/mL; 100°C/30 min) into the peritoneal cavity. Afterwards, two animal groups were i.p. administered with P1G10 (n = 6; 1, 5, or 10 mg/Kg) or PBS 24 hours prior to challenge with live S. Typhimurium (10(7) CFU/mL). P1G10 stimulated the proliferation of circulating neutrophils and lymphocytes, 6 h after injection of carrageenan or heat-killed bacteria, respectively. Furthermore, survival after infection was dose-dependent and reached 60% of the animal group. On the other hand, control mice died 1-3 days after infection. The examination of mRNA transcripts in liver cells 24 h after infection confirmed fold variation increases of 5.8 and 4.8 times on average for IL-1 and COX-2, respectively, in P1G10 pretreated mice but not for TNF-α, IL-10, γ-IFN and iNOS, for which the results were comparable to untreated animals. These data are discussed in light of previous reports.
Collapse
|
27
|
Bromelain Inhibits Allergic Sensitization and Murine Asthma via Modulation of Dendritic Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:702196. [PMID: 24381635 PMCID: PMC3870104 DOI: 10.1155/2013/702196] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/12/2013] [Accepted: 08/19/2013] [Indexed: 11/17/2022]
Abstract
The incidence of atopic conditions has increased in industrialized countries. Persisting symptoms and concern for drug side-effects lead patients toward adjunctive treatments such as phytotherapy. Previously, we have shown that Bromelain (sBr), a mixture of cysteine proteases from pineapple, Ananas comosus, inhibits ovalbumin (OVA)-induced murine model of allergic airway disease (AAD). However, sBr's effect on development of AAD when treatment is administered throughout OVA-alum sensitization was unknown and is the aim of the present study. C57BL/6J mice were sensitized with OVA/alum and challenged with 7 days OVA aerosol. sBr 6 mg/kg/0.5 ml or PBS vehicle were administered throughout sensitization. Lung, bronchoalveolar lavage (BAL), spleen, and lymph nodes were processed for flow cytometry and OVA-specific IgE was determined via ELISA. sBr treatment throughout OVA-alum sensitization significantly reduced the development of AAD (BAL eosinophils and lymphocytes). OVA-specific IgE and OVA TET(+) cells were decreased. sBr reduced CD11c(+) dendritic cell subsets, and in vitro treatment of DCs significantly reduced CD44, a key receptor in both cell trafficking and activation. sBr was shown to reduce allergic sensitization and the generation of AAD upon antigen challenge. These results provide additional insight into sBr's anti-inflammatory and antiallergic properties and rationale for translation into the clinical arena.
Collapse
|
28
|
Banks JM, Herman CT, Bailey RC. Bromelain decreases neutrophil interactions with P-selectin, but not E-selectin, in vitro by proteolytic cleavage of P-selectin glycoprotein ligand-1. PLoS One 2013; 8:e78988. [PMID: 24244398 PMCID: PMC3823987 DOI: 10.1371/journal.pone.0078988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/25/2013] [Indexed: 11/18/2022] Open
Abstract
Stem bromelain, a cysteine protease isolated from pineapples, is a natural anti-inflammatory treatment, yet its mechanism of action remains unclear. Curious as to whether bromelain might affect selectin-mediated leukocyte rolling, we studied the ability of bromelain-treated human neutrophils to tether to substrates presenting immobilized P-selectin or E-selectin under shear stress. Bromelain treatment attenuated P-selectin-mediated tethering but had no effect on neutrophil recruitment on E-selectin substrates. Flow cytometric analysis of human neutrophils, using two antibodies against distinct epitopes within the P-selectin glycoprotein ligand-1 (PSGL-1) active site, revealed that bromelain cleaves PSGL-1 to remove one of two sites required for P-selectin binding, while leaving the region required for E-selectin binding intact. These findings suggest one molecular mechanism by which bromelain may exert its anti-inflammatory effects is via selective cleavage of PSGL-1 to reduce P-selectin-mediated neutrophil recruitment.
Collapse
Affiliation(s)
- Jessica M. Banks
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Christine T. Herman
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
The relative anthelmintic efficacy of plant-derived cysteine proteinases on intestinal nematodes. J Helminthol 2013; 89:165-74. [DOI: 10.1017/s0022149x13000692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractWe examined the in vitro and in vivo efficacy of plant cysteine proteinases (CPs) derived from pineapple (Ananas comosus) and kiwi fruit (Actinidia deliciosa), and compared their efficacy as anthelmintics to the known effects of CPs from the latex of papaya (Carica papaya) against the rodent intestinal nematode, Heligmosomoides bakeri. Both fruit bromelain and stem bromelain had significant in vitro detrimental effects on H. bakeri but in comparison, actinidain from kiwi fruit had very little effect. However, in vivo trials indicated far less efficacy of stem bromelain and fruit bromelain than that expected from the in vitro experiments (24.5% and 22.4% reduction in worm burdens, respectively) against H. bakeri. Scanning electron microscopy revealed signs of cuticular damage on worms incubated in fruit bromelain, stem bromelain and actinidain, but this was far less extensive than on those incubated in papaya latex supernatant. We conclude that, on the basis of presently available data, CPs derived from pineapples and kiwi fruits are not suitable for development as novel anthelmintics for intestinal nematode infections.
Collapse
|
30
|
Mohr T, Desser L. Plant proteolytic enzyme papain abrogates angiogenic activation of human umbilical vein endothelial cells (HUVEC) in vitro. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:231. [PMID: 24053149 PMCID: PMC3849051 DOI: 10.1186/1472-6882-13-231] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/17/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) is a key regulator of physiologic and pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. It is known that cysteine proteases from plants, like bromelain and papain are capable to suppress inflammatory activation. Recent studies have demonstrated that they may interfere with angiogenesis related pathways as well. The aim of this study was to investigate the anti-angiogenic effects of papain on human umbilical vein endothelial cells (HUVEC) in vitro. METHODS Cell viability after prolonged treatment with papain was investigated by life cell staining and lactate dehydrogenase release assay. Angiogenic activation was assessed by ELISA against phosphorylated proteins AKT, MEK1/2, ERK1/2, SAPK/JNK and p38-MAPK. Growth inhibition was determined by means of an MTT-assay and cell migration by means of a scratch assay. Capability to form a capillary network was investigated using a tube formation assay. RESULTS Papain did not induce proteolysis or cell detachment of HUVEC in a concentration range between 0 and 25 μg/mL. Four hours treatment with 10 μg/mL papain resulted in a reduced susceptibility of endothelial cells to activation by VEGF as determined by phosphorylation levels of Akt, MEK1/2, SAPK/JNK. Papain exerted a distinct inhibitory effect on cell growth, cell migration and tube formation with inhibition of tube formation detectable at concentrations as low as 1 μg/mL. Bromelain and ficin displayed similar effects with regard to cell growth and tube formation. CONCLUSION Papain showed a strong anti-angiogenic effect in VEGF activated HUVEC. This effect may be due to interference with AKT, MEK1/2 and SAPK/JNK phosphorylation. Two other plant derived cysteine proteases displayed similar inhibition of HUVEC cell growth and tube formation. These findings indicate that plant proteolytic enzymes may have potential as preventive and therapeutic agents against angiogenesis related human diseases.
Collapse
|
31
|
Secor ER, Carson WF, Singh A, Pensa M, Guernsey LA, Schramm CM, Thrall RS. Oral Bromelain Attenuates Inflammation in an Ovalbumin-induced Murine Model of Asthma. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 5:61-9. [PMID: 18317550 PMCID: PMC2249734 DOI: 10.1093/ecam/nel110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 12/04/2006] [Indexed: 12/16/2022]
Abstract
Bromelain, a widely used pineapple extract with cysteine protease activity, has been shown to have immunomodulatory effects in a variety of immune system models. The purpose of the present study was to determine the effects of orally administered bromelain in an ovalbumin (OVA)-induced murine model of acute allergic airway disease (AAD). To establish AAD, female C57BL/6J mice were sensitized with intraperitoneal (i.p.) OVA/alum and then challenged with OVA aerosols for 3 days. Mice were gavaged with either (phosphate buffered saline)PBS or 200 mg/kg bromelain in PBS, twice daily for four consecutive days, beginning 1 day prior to OVA aerosol challenge. Airway reactivity and methacholine sensitivity, bronchoalveolar lavage (BAL) cellular differential, Th2 cytokines IL-5 and IL-13, and lung histology were compared between treatment groups. Oral bromelain-treatment of AAD mice demonstrated therapeutic efficacy as evidenced by decreased methacholine sensitivity (P ≤ 0.01), reduction in BAL eosinophils (P ≤ 0.02) and IL-13 concentrations (P ≤ 0.04) as compared with PBS controls. In addition, oral bromelain significantly reduced BAL CD19+ B cells (P ≤ 0.0001) and CD8+ T cells (P ≤ 0.0001) in AAD mice when compared with controls. These results suggest that oral treatment with bromelain had a beneficial therapeutic effect in this murine model of asthma and bromelain may also be effective in human conditions.
Collapse
Affiliation(s)
- Eric R Secor
- Department of Immunology and Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Pillai K, Akhter J, Chua TC, Morris DL. Anticancer property of bromelain with therapeutic potential in malignant peritoneal mesothelioma. Cancer Invest 2013; 31:241-50. [PMID: 23570457 DOI: 10.3109/07357907.2013.784777] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bromelain is a mixture of proteolytic enzymes that is capable of hydrolyzing glycosidic linkages in glycoprotein. Glycoprotein's are ubiquitously distributed throughout the body and serve a variety of physiologic functions. Faulty glycosylation of proteins may lead to cancer. Antitumor properties of bromelain have been demonstrated in both, in vitro and in vivo studies, along with scanty anecdotal human studies. Various mechanistic pathways have been proposed to explain the anticancer properties of bromelain. However, proteolysis by bromelain has been suggested as a main pathway by some researchers. MUC1 is a glycoprotein that provides tumor cells with invasive, metastatic, and chemo-resistant properties. To date, there is no study that examines the effect of bromelain on MUC1. However, the viability of MUC1 expressing pancreatic and breast cancer cells are adversely affected by bromelain. Further, the efficacy of cisplatin and 5-FU are enhanced by adjuvant treatment with bromelain, indicating that the barrier function of MUC1 may be affected. Other studies have also indicated that there is a greater accumulation of 5-FU in the cell compartment on treatment with 5-FU and bromelain. Malignant peritoneal mesothelioma (MPM) expresses MUC1 and initial studies have shown that the viability of MPM cells is adversely affected by exposure to bromelain. Further, bromelain in combination with either 5-FU or cisplatin, the efficacy of the chemotherapeutic drug is enhanced. Hence, current evidence indicates that bromelain may have the potential of being developed into an effective anticancer agent for MPM.
Collapse
Affiliation(s)
- Krishna Pillai
- Department of Surgery, University of New South Wales, St. George Hospital, Kogarah, NSW, Australia
| | | | | | | |
Collapse
|
33
|
Soares PA, Vaz AF, Correia MT, Pessoa A, Carneiro-da-Cunha MG. Purification of bromelain from pineapple wastes by ethanol precipitation. Sep Purif Technol 2012. [DOI: 10.1016/j.seppur.2012.06.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Akhtar N, Haqqi TM. Current nutraceuticals in the management of osteoarthritis: a review. Ther Adv Musculoskelet Dis 2012; 4:181-207. [PMID: 22850529 DOI: 10.1177/1759720x11436238] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative joint disease that has a major impact on joint function and quality of life. Nutraceuticals and dietary supplements derived from herbs have long been used in traditional medicine and there is considerable evidence that nutraceuticals may play an important role in inflammation and joint destruction in OA. We review the biological effects of some medicinal fruits and herbs - pomegranate, green tea, cat's claw, devil's claw, ginger, Indian olibaum, turmeric and ananas - in an attempt to understand the pivotal molecular targets involved in inflammation and the joint destruction process and to summarize their toxicities and efficacy for OA management. So far there is insufficient reliable evidence on the effectiveness of ginger, turmeric and ananas. Pomegranate and green tea only have preclinical evidence of efficacy due to the lack of clinical data. In vivo and clinical studies are required to understand their targets and efficacy in OA. Limited in vitro and in vivo evidence is available for cat's claw and Indian olibaum. More extensive studies are required before long-term controlled trials of whole cat's claw and Indian olibaum extracts, or isolated active compounds, are carried out in patients with OA to determine their long-term efficacy and safety. Devil's claw has not been rigorously tested to determine its antiarthritic potential in in vitro and in vivo models. There is strong clinical evidence of the effectiveness of devil's claw in pain reduction. However, high-quality clinical trials are needed to determine its effectiveness. No serious side effects have been reported for any fruits and herbs. Overall, these studies identify and support the use of nutraceuticals to provide symptomatic relief to patients with OA and to be used as adjunct therapy for OA management. More high-quality trials are needed to provide definitive answers to questions related to their efficacy and safety for OA prevention and/or treatment.
Collapse
Affiliation(s)
- Nahid Akhtar
- Department of Medicine/Rheumatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
35
|
Abstract
Ulcerative colitis (UC) is a refractory, chronic, and nonspecific disease occurred usually in the rectum and the entire colon. The etiopathology is probably related to dysregulation of the mucosal immune response toward the resident bacterial flora together with genetic and environmental factors. Several types of medications are used to control the inflammation or reduce symptoms. Herbal medicine includes a wide range of practices and therapies outside the realms of conventional Western medicine. However, there are limited controlled evidences indicating the efficacy of traditional Chinese medicines, such as aloe vera gel, wheat grass juice, Boswellia serrata, and bovine colostrum enemas in the treatment of UC. Although herbal medicines are not devoid of risk, they could still be safer than synthetic drugs. The potential benefits of herbal medicine could lie in their high acceptance by patients, efficacy, relative safety, and relatively low cost. Patients worldwide seem to have adopted herbal medicine in a major way, and the efficacy of herbal medicine has been tested in hundreds of clinical trials in the management of UC. The evidences on herbal medicine are incomplete, complex, and confusing, and certainly associated with both risks and benefits. There is a need for further controlled clinical trials of the potential efficacy of herbal medicine approaches in the treatment of UC, together with enhanced legislation to maximize their quality and safety.
Collapse
Affiliation(s)
- Fei Ke
- Department of Surgery, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Praveen Kumar Yadav
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Liu Zhan Ju
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai, China,Address for correspondence: Dr. Liu Zhan Ju, Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, No. 301 Yanchang Road, Shanghai-200 072, China. E-mail:
| |
Collapse
|
36
|
González-Rábade N, Badillo-Corona JA, Aranda-Barradas JS, Oliver-Salvador MDC. Production of plant proteases in vivo and in vitro--a review. Biotechnol Adv 2011; 29:983-96. [PMID: 21889977 DOI: 10.1016/j.biotechadv.2011.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/10/2011] [Accepted: 08/19/2011] [Indexed: 12/30/2022]
Abstract
In the latest two decades, the interest received by plant proteases has increased significantly. Plant enzymes such as proteases are widely used in medicine and the food industry. Some proteases, like papain, bromelain and ficin are used in various processes such as brewing, meat softening, milk-clotting, cancer treatment, digestion and viral disorders. These enzymes can be obtained from their natural source or through in vitro cultures, in order to ensure a continuous source of plant enzymes. The focus of this review will be the production of plant proteases both in vivo and in vitro, with particular emphasis on the different types of commercially important plant proteases that have been isolated and characterized from naturally grown plants. In vitro approaches for the production of these proteases is also explored, focusing on the techniques that do not involve genetic transformation of the plants and the attempts that have been made in order to enhance the yield of the desired proteases.
Collapse
|
37
|
Borrelli F, Capasso R, Severino B, Fiorino F, Aviello G, De Rosa G, Mazzella M, Romano B, Capasso F, Fasolino I, Izzo AA. Inhibitory effects of bromelain, a cysteine protease derived from pineapple stem (Ananas comosus), on intestinal motility in mice. Neurogastroenterol Motil 2011; 23:745-e331. [PMID: 21689210 DOI: 10.1111/j.1365-2982.2011.01735.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Bromelain (BR) is a cysteine protease with inhibitory effects on intestinal secretion and inflammation. However, its effects on intestinal motility are largely unexplored. Thus, we investigated the effect of this plant-derived compound on intestinal contractility and transit in mice. METHODS Contractility in vitro was evaluated by stimulating the mouse isolated ileum, in an organ bath, with acetylcholine, barium chloride, or electrical field stimulation. Motility in vivo was measured by evaluating the distribution of an orally administered fluorescent marker along the small intestine. Transit was also evaluated in pathophysiologic states induced by the pro-inflammatory compound croton oil or by the diabetogenic agent streptozotocin. KEY RESULTS Bromelain inhibited the contractions induced by different spasmogenic compounds in the mouse ileum with similar potency. The antispasmodic effect was reduced or counteracted by the proteolytic enzyme inhibitor, gabexate (15 × 10(-6) mol L(-1) ), protease-activated receptor-2 (PAR-2) antagonist, N(1) -3-methylbutyryl-N(4) -6-aminohexanoyl-piperazine (10(-4) mol L(-1) ), phospholipase C (PLC) inhibitor, neomycin (3 × 10(-3) mol L(-1) ), and phosphodiesterase 4 (PDE4) inhibitor, rolipram (10(-6) mol L(-1) ). In vivo, BR preferentially inhibited motility in pathophysiologic states in a PAR-2-antagonist-sensitive manner. CONCLUSIONS & INFERENCES Our data suggest that BR inhibits intestinal motility - preferentially in pathophysiologic conditions - with a mechanism possibly involving membrane PAR-2 and PLC and PDE4 as intracellular signals. Bromelain could be a lead compound for the development of new drugs, able to normalize the intestinal motility in inflammation and diabetes.
Collapse
Affiliation(s)
- F Borrelli
- Department of Experimental Pharmacology, University of Naples Federico II, Via D. Montesano 49, Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hale LP, Chichlowski M, Trinh CT, Greer PK. Dietary supplementation with fresh pineapple juice decreases inflammation and colonic neoplasia in IL-10-deficient mice with colitis. Inflamm Bowel Dis 2010; 16:2012-21. [PMID: 20848493 PMCID: PMC2991605 DOI: 10.1002/ibd.21320] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Bromelain, a mixture of proteolytic enzymes typically derived from pineapple stem, decreases production of proinflammatory cytokines and leukocyte homing to sites of inflammation. We previously showed that short-term oral treatment with bromelain purified from pineapple stem decreased the severity of colonic inflammation in C57BL/6 Il10(-/-) mice with chronic colitis. Since fresh pineapple fruit contains similar bromelain enzymes but at different proportions, this study aimed to determine whether long-term dietary supplementation with pineapple (supplied as juice) could decrease colon inflammation and neoplasia in Il10(-/-) mice with chronic colitis as compared with bromelain derived from stem. METHODS Colitis was triggered in Il10(-/-) mice by exposure to the non-steroidal anti-inflammatory drug piroxicam. Mice with colitis were supplemented with fresh vs. boiled pineapple juice or bromelain purified from stem for up to 6 months. RESULTS Experimental mice readily consumed fresh pineapple juice at a level that generated mean stool proteolytic activities equivalent to 14 mg bromelain purified from stem, while control mice received boiled juice with inactive enzymes. Survival was increased in the group supplemented with fresh rather than boiled juice (P = 0.01). Mice that received fresh juice also had decreased histologic colon inflammation scores and a lower incidence of inflammation-associated colonic neoplasia (35% versus 66%; P < 0.02), with fewer neoplastic lesions/colon (P = 0.05). Flow cytometric analysis of murine splenocytes exposed to fresh pineapple juice in vitro demonstrated proteolytic removal of cell surface molecules that can affect leukocyte trafficking and activation. CONCLUSIONS These results demonstrate that long-term dietary supplementation with fresh or unpasteurized frozen pineapple juice with proteolytically active bromelain enzymes is safe and decreases inflammation severity and the incidence and multiplicity of inflammation-associated colonic neoplasia in this commonly used murine model of inflammatory bowel disease.
Collapse
Affiliation(s)
- Laura P Hale
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
39
|
Chobotova K, Vernallis AB, Majid FAA. Bromelain's activity and potential as an anti-cancer agent: Current evidence and perspectives. Cancer Lett 2009; 290:148-56. [PMID: 19700238 DOI: 10.1016/j.canlet.2009.08.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 01/11/2023]
Abstract
The medicinal qualities of pineapple are recognized in many traditions in South America, China and Southeast Asia. These qualities are attributed to bromelain, a 95%-mixture of proteases. Medicinal qualities of bromelain include anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Existing evidence derived from clinical observations as well as from mouse- and cell-based models suggests that bromelain acts systemically, affecting multiple cellular and molecular targets. In recent years, studies have shown that bromelain has the capacity to modulate key pathways that support malignancy. It is now possible to suggest that the anti-cancer activity of bromelain consists in the direct impact on cancer cells and their micro-environment, as well as in the modulation of immune, inflammatory and haemostatic systems. This review will summarize existing data relevant to bromelain's anti-cancer activity and will suggest mechanisms which account for bromelain's effect, in the light of research involving non-cancer models. The review will also identify specific new research questions that will need to be addressed in order for a full assessment of bromelain-based anti-cancer therapy.
Collapse
|
40
|
Huang JR, Wu CC, Hou RCW, Jeng KC. Bromelain Inhibits Lipopolysaccharide-Induced Cytokine Production in Human THP-1 Monocytes via the Removal of CD14. Immunol Invest 2009; 37:263-77. [DOI: 10.1080/08820130802083622] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Salas CE, Gomes MTR, Hernandez M, Lopes MTP. Plant cysteine proteinases: evaluation of the pharmacological activity. PHYTOCHEMISTRY 2008; 69:2263-9. [PMID: 18614189 DOI: 10.1016/j.phytochem.2008.05.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 05/26/2023]
Abstract
Cysteine proteinases are involved in virtually every aspect of plant physiology and development. They play a role in development, senescence, programmed cell death, storage and mobilization of germinal proteins, and in response to various types of environmental stress. In this review, we focus on a group of plant defensive enzymes occurring in germinal tissue of Caricaceae. These enzymes elicit a protective response in the unripe fruit after physical stress. We propose that these enzymes follow a strategy similar to mammalian serine proteinases involved in blood clotting and wound healing. We show evidence for the pharmacological role of plant cysteine proteinases in mammalian wound healing, immunomodulation, digestive conditions, and neoplastic alterations.
Collapse
Affiliation(s)
- Carlos E Salas
- Departamentos de Bioquímica e Imunologia, Farmacologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte 31270-901, Brazil.
| | | | | | | |
Collapse
|
42
|
Fitzhugh DJ, Shan S, Dewhirst MW, Hale LP. Bromelain treatment decreases neutrophil migration to sites of inflammation. Clin Immunol 2008; 128:66-74. [PMID: 18482869 DOI: 10.1016/j.clim.2008.02.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 02/18/2008] [Accepted: 02/26/2008] [Indexed: 11/19/2022]
Abstract
Bromelain, a mixture of proteases derived from pineapple stem, has been reported to have therapeutic benefits in a variety of inflammatory diseases, including murine inflammatory bowel disease. The purpose of this work was to understand potential mechanisms for this anti-inflammatory activity. Exposure to bromelain in vitro has been shown to remove a number of cell surface molecules that are vital to leukocyte trafficking, including CD128a/CXCR1 and CD128b/CXCR2 that serve as receptors for the neutrophil chemoattractant IL-8 and its murine homologues. We hypothesized that specific proteolytic removal of CD128 molecules by bromelain would inhibit neutrophil migration to IL-8 and thus decrease acute responses to inflammatory stimuli. Using an in vitro chemotaxis assay, we demonstrated a 40% reduction in migration of bromelain- vs. sham-treated human neutrophils in response to rhIL-8. Migration to the bacterial peptide analog fMLP was unaffected, indicating that bromelain does not induce a global defect in leukocyte migration. In vivo bromelain treatment generated a 50-85% reduction in neutrophil migration in 3 different murine models of leukocyte migration into the inflamed peritoneal cavity. Intravital microscopy demonstrated that although in vivo bromelain treatment transiently decreased leukocyte rolling, its primary long-term effect was abrogation of firm adhesion of leukocytes to blood vessels at the site of inflammation. These changes in adhesion were correlated with rapid re-expression of the bromelain-sensitive CD62L/L-selectin molecules that mediate rolling following in vivo bromelain treatment and minimal re-expression of CD128 over the time period studied. Taken together, these studies demonstrate that bromelain can effectively decrease neutrophil migration to sites of acute inflammation and support the specific removal of the CD128 chemokine receptor as a potential mechanism of action.
Collapse
Affiliation(s)
- David J Fitzhugh
- Department of Pathology, DUMC 3712, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
43
|
Bromelain treatment decreases secretion of pro-inflammatory cytokines and chemokines by colon biopsies in vitro. Clin Immunol 2007; 126:345-52. [PMID: 18160345 DOI: 10.1016/j.clim.2007.11.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 10/19/2007] [Accepted: 11/02/2007] [Indexed: 11/20/2022]
Abstract
Oral bromelain has been anecdotally reported to decrease inflammation in ulcerative colitis (UC). Proteolytically active bromelain is known to decrease expression of mRNAs encoding pro-inflammatory cytokines by human leukocytes in vitro. To assess the effect of bromelain on mucosal secretion of cytokines in inflammatory bowel disease (IBD), endoscopic colon biopsies from patients with UC, Crohn's disease (CD), and non-IBD controls were treated in vitro with bromelain or media, then cultured. Secretion of pro-inflammatory cytokines and chemokines was measured. Significant increases in granulocyte colony-stimulating factor (G-CSF), interferon (IFN)-gamma, interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF) were detected in the media from actively inflamed areas in UC and CD as compared with non-inflamed IBD tissue and non-IBD controls. In vitro bromelain treatment decreased secretion of G-CSF, granulocyte-macrophage colony-stimulating factor (GM-CSF), IFN-gamma, CCL4/macrophage inhibitory protein (MIP)-1beta, and TNF by inflamed tissue in IBD. Bromelain may be a novel therapy for IBD.
Collapse
|
44
|
Guimarães-Ferreira CA, Rodrigues EG, Mortara RA, Cabral H, Serrano FA, Ribeiro-dos-Santos R, Travassos LR. Antitumor effects in vitro and in vivo and mechanisms of protection against melanoma B16F10-Nex2 cells by fastuosain, a cysteine proteinase from Bromelia fastuosa. Neoplasia 2007; 9:723-33. [PMID: 17898868 PMCID: PMC1993857 DOI: 10.1593/neo.07427] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/10/2007] [Accepted: 07/14/2007] [Indexed: 11/18/2022] Open
Abstract
In the present work, the antitumor effect of fastuosain, a cysteine proteinase from Bromelia fastuosa, was investigated. In the intravenous model of lung colonization in C57Bl/6 mice, fastuosain and bromelain injected intraperitoneally were protective, and very few nodules of B16F10-Nex2 melanoma cells were detected. Tumor cells treated with fastuosain showed reduced expression of CD44 and decreased invasion through Matrigel, lost their cytoplasmic extensions and substrate adherence, and became round and detached, forming strongly bound cell clusters in suspension. Peritoneal cells recruited and activated by fastuosain treatment (mainly monocytic cells and lymphocytes) migrated to the lung, where pulmonary melanoma metastases grew. Adoptive transference of peritoneal cells recruited by fastuosain had no protective effect against lung metastases in recipient mice. Treatment of green fluorescent protein-chimeric animals with fastuosain did not change the number of cells that migrated to the lung, compared to PBS-injected control mice, but the number of positive major histocompatibility complex class II cells increased with fastuosain treatment. Murine antibodies against fastuosain, bromelain, and cathepsins B and L cross-reacted in ELISA and recognized surface and cytoplasmic components expressed on B16F10-Nex2 cells. Anti-fastuosain antibodies were cytotoxic/lytic to B16F10-Nex2 cells. Antitumor effects of fastuosain involve mainly the direct effect of the enzyme and elicitation of protective antibodies.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibody Formation
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Phytogenic/immunology
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Bromelains/immunology
- Bromelains/pharmacology
- Bromelains/therapeutic use
- Cell Line, Tumor/drug effects
- Chemotaxis, Leukocyte/drug effects
- Cysteine Endopeptidases/immunology
- Cysteine Endopeptidases/pharmacology
- Cysteine Endopeptidases/therapeutic use
- Drug Screening Assays, Antitumor
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/secondary
- Lymphocytes, Tumor-Infiltrating/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/transplantation
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/secondary
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Papain/immunology
- Papain/pharmacology
- Papain/therapeutic use
- Radiation Chimera
Collapse
Affiliation(s)
- Carla A Guimarães-Ferreira
- Experimental Oncology Unit, Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Denadai AML, Santoro MM, Lopes MTP, Chenna A, de Sousa FB, Avelar GM, Gomes MRT, Guzman F, Salas CE, Sinisterra RD. A supramolecular complex between proteinases and beta-cyclodextrin that preserves enzymatic activity: physicochemical characterization. BioDrugs 2007; 20:283-91. [PMID: 17025375 DOI: 10.2165/00063030-200620050-00004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Cyclodextrins are suitable drug delivery systems because of their ability to subtly modify the physical, chemical, and biological properties of guest molecules through labile interactions by formation of inclusion and/or association complexes. Plant cysteine proteinases from Caricaceae and Bromeliaceae are the subject of therapeutic interest, because of their anti-inflammatory, antitumoral, immunogenic, and wound-healing properties. METHODS In this study, we analyzed the association between beta-cyclodextrin (betaCD) and fraction P1G10 containing the bioactive proteinases from Carica candamarcensis, and described the physicochemical nature of the solid-state self-assembled complexes by Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), and nuclear magnetic resonance (NMR), as well as in solution by circular dichroism (CD), isothermal titration calorimetry (ITC), and amidase activity. RESULTS AND DISCUSSION The physicochemical analyses suggest the formation of a complex between P1G10 and betaCD. Higher secondary interactions, namely hydrophobic interactions, hydrogen bonding and van der Waals forces were observed at higher P1G10 : betaCD mass ratios. These results provide evidence of the occurrence of strong solid-state supramolecular non-covalent interactions between P1G10 and betaCD. Microcalorimetric analysis demonstrates that complexation results in a favorable enthalpic contribution, as has already been described during formation of similar betaCD inclusion compounds. The amidase activity of the complex shows that the enzyme activity is not readily available at 24 hours after dissolution of the complex in aqueous buffer; the proteinase becomes biologically active by the second day and remains stable until day 16, when a gradual decrease occurs, with basal activity attained by day 29. CONCLUSION The reported results underscore the potential for betaCDs as candidates for complexing cysteine proteinases, resulting in supramolecular arrays with sustained proteolytic activity.
Collapse
Affiliation(s)
- Angelo M L Denadai
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais (UFMG), Antonio Carlos 6627, Belo Horizonte 31270-901, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bahde R, Palmes D, Minin E, Stratmann U, Diller R, Haier J, Spiegel HU. Bromelain ameliorates hepatic microcirculation after warm ischemia. J Surg Res 2007; 139:88-96. [PMID: 17292418 DOI: 10.1016/j.jss.2006.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 09/20/2006] [Accepted: 10/03/2006] [Indexed: 12/16/2022]
Abstract
BACKGROUND Because of its immunomodulatory action, the protease bromelain represents a novel strategy for the treatment of hepatic ischemia/reperfusion (I/R) injury. A dose-response study was performed to investigate the effect of bromelain on liver function, microcirculation, and leukocyte-endothelium interactions in hepatic I/R injury. MATERIALS AND METHODS One hundred forty rats were randomized to 8 short-term or 12 long-term groups (n=7 each). A 30 min normothermic hepatic ischemia was induced by Pringle maneuver with a portocaval shunt. Animals were treated 60 min prior to ischemia with either no therapy, 0.1, 1.0, or 10 mg/kg b.w. bromelain i.v. In the short-term experiments, microcirculation was investigated 30 min after sham operation or ischemia using intravital microscopy. In the long-term experiments AST, ALT, and bradykinin levels were determined for 14 d after central venous catheter (CVC) placement only, sham operation, or ischemia. Additionally, apoptosis rate, Kupffer cell activation, endothelial cell damage, and eNOS expression were analyzed. RESULTS In sham-operated animals, treatment with 10 mg/kg b.w. bromelain led to a disturbed microcirculation with increased leukocyte adherence, apoptosis rate, Kupffer cell activation, and endothelial cell damage. Six h after CVC placement and administration of 10 mg/kg b.w. bromelain, AST and ALT levels were significantly increased. After I/R, rats treated with 0.1 mg/kg b.w. bromelain showed an improved microcirculation, reduction in leukocyte adhesion, apoptosis rates, Kupffer cell activation and endothelial cell damage, increased eNOS expression, and significantly lower AST levels compared with untreated animals. CONCLUSION Bromelain represents a novel approach to the treatment of hepatic I/R injury with a limited therapeutic window.
Collapse
Affiliation(s)
- Ralf Bahde
- Surgical Research, Department of General Surgery, Muenster University Hospital Muenster, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Bromelain may be of interest to plastic surgeons because of its apparent ability to reduce pain, edema, inflammation, and platelet aggregation, as well as its ability to potentiate antibiotics, which may be beneficial in postoperative healing. Bromelain's reported efficacy in burn débridement and ischemia/reperfusion may also have positive applications in plastic surgery. Although bromelain is widely used and generally considered to be a safe substance, more randomized, controlled clinical trials are necessary to further elucidate its clinical potential.
Collapse
Affiliation(s)
- Roger A Orsini
- Easton, Md. From Shore Aesthetic and Reconstruction Associates
| |
Collapse
|
49
|
Stepek G, Buttle DJ, Duce IR, Behnke JM. Human gastrointestinal nematode infections: are new control methods required? Int J Exp Pathol 2006; 87:325-41. [PMID: 16965561 PMCID: PMC2517378 DOI: 10.1111/j.1365-2613.2006.00495.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Gastrointestinal (GI) nematode infections affect 50% of the human population worldwide, and cause great morbidity as well as hundreds of thousands of deaths. Despite modern medical practices, the proportion of the population infected with GI nematodes is not falling. This is due to a number of factors, the most important being the lack of good healthcare, sanitation and health education in many developing countries. A relatively new problem is the development of resistance to the small number of drugs available to treat GI nematode infections. Here we review the most important parasitic GI nematodes and the methods available to control them. In addition, we discuss the current status of new anthelmintic treatments, particularly the plant cysteine proteinases from various sources of latex-bearing plants and fruits.
Collapse
Affiliation(s)
- Gillian Stepek
- School of Biology, University of Nottingham, Nottingham, UK
| | | | | | | |
Collapse
|
50
|
Oral immunogenicity of the plant proteinase bromelain. Int Immunopharmacol 2006; 6:2038-46. [PMID: 17161360 DOI: 10.1016/j.intimp.2006.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 08/03/2006] [Accepted: 08/04/2006] [Indexed: 11/26/2022]
Abstract
Bromelain is a natural mixture of proteolytic enzymes derived from pineapple stem that has been shown to have anti-inflammatory activity when administered orally. Although most proteins given orally without adjuvant (e.g., food) result in tolerance, we previously reported that long-term oral exposure to bromelain stimulated the development of high serum anti-bromelain antibody titers. The purpose of these studies was to further investigate the mechanisms responsible for the immunogenicity of oral bromelain. Results showed that repeated exposure was required for development of anti-bromelain antibodies, with strong antibody responses in all mice that received at least 12 doses of bromelain either orally or intragastrically over 3-6 weeks. Proteolytic activity was required for strong oral immunogenicity in the absence of conventional adjuvant, with strong serum antibody responses generated against proteolytically active bromelain and trypsin, but not against ovalbumin, lysozyme, or inactivated bromelain. Significantly higher anti-bromelain antibody titers were seen in IL-10-deficient versus wild-type mice, suggesting that simultaneous treatments that decrease IL-10 activity may further enhance systemic antibody responses following oral exposure. The antibodies generated did not affect the proteolytic activity of bromelain. The data demonstrate that proteolytically active antigens such as bromelain can stimulate both systemic and mucosal immune responses following repeated oral exposure. Further studies of the mechanisms involved in generation of immune responses following oral exposure to proteolytically active antigens can lead to a better understanding of mechanisms of oral tolerance and to the development of novel adjuvants for oral vaccines.
Collapse
|