1
|
Liu H, Li Y, Wang Y, Zhang L, Liang X, Gao C, Yang Y. Red blood cells-derived components as biomimetic functional materials: Matching versatile delivery strategies based on structure and function. Bioact Mater 2025; 47:481-501. [PMID: 40034412 PMCID: PMC11872572 DOI: 10.1016/j.bioactmat.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
Red blood cells (RBCs), often referred to as "intelligent delivery systems", can serve as biological or hybrid drug carriers due to their inherent advantages and characteristics. This innovative approach has the potential to enhance biocompatibility, pharmacokinetics, and provide targeting properties for drugs. By leveraging the unique structure and contents of RBCs, drug-loading pathways can be meticulously designed to align with these distinctive features. This review article primarily discusses the drug delivery strategies and their applications that are informed by the structural and functional properties of the main components of RBCs, including living RBCs, membranes, hollow RBCs, and hemoglobin. Overall, this review article would assist efforts to make better decisions on optimization and rational utilization of RBCs derivatives-based drug delivery strategies for the future direction in clinical translation.
Collapse
Affiliation(s)
- Hangbing Liu
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Yi Li
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| | - Yuli Wang
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| | - Liying Zhang
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 110016, Shenyang, People's Republic of China
| | - Xiaoqing Liang
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| | - Chunsheng Gao
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| | - Yang Yang
- Beijing Institute of Pharmacology and Toxicology, 100850, Beijing, People's Republic of China
| |
Collapse
|
2
|
Pan X, Köberle M, Ghashghaeinia M. Vitamin C-Dependent Uptake of Non-Heme Iron by Enterocytes, Its Impact on Erythropoiesis and Redox Capacity of Human Erythrocytes. Antioxidants (Basel) 2024; 13:968. [PMID: 39199214 PMCID: PMC11352176 DOI: 10.3390/antiox13080968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
In the small intestine, nutrients from ingested food are absorbed and broken down by enterocytes, which constitute over 95% of the intestinal epithelium. Enterocytes demonstrate diet- and segment-dependent metabolic flexibility, enabling them to take up large amounts of glutamine and glucose to meet their energy needs and transfer these nutrients into the bloodstream. During glycolysis, ATP, lactate, and H+ ions are produced within the enterocytes. Based on extensive but incomplete glutamine oxidation large amounts of alanine or lactate are produced. Lactate, in turn, promotes hypoxia-inducible factor-1α (Hif-1α) activation and Hif-1α-dependent transcription of various proton channels and exchangers, which extrude cytoplasmic H+-ions into the intestinal lumen. In parallel, the vitamin C-dependent and duodenal cytochrome b-mediated conversion of ferric iron into ferrous iron progresses. Finally, the generated electrochemical gradient is utilized by the divalent metal transporter 1 for H+-coupled uptake of non-heme Fe2+-ions. Iron efflux from enterocytes, subsequent binding to the plasma protein transferrin, and systemic distribution supply a wide range of cells with iron, including erythroid precursors essential for erythropoiesis. In this review, we discuss the impact of vitamin C on the redox capacity of human erythrocytes and connect enterocyte function with iron metabolism, highlighting its effects on erythropoiesis.
Collapse
Affiliation(s)
- Xia Pan
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine and Health, Technical University of Munich, Biedersteinerstr. 29, 80802 München, Germany
| | - Mehrdad Ghashghaeinia
- Physiological Institute, Department of Vegetative and Clinical Physiology, Eberhard Karls University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
3
|
Guo R, Ma G, Zhai X, Shi H, Wang J. Single-cell transcriptomic landscape of peripheral blood cells provides insights into adaptation of red-eared sliders (Trachemys scripta elegans). Integr Zool 2024; 19:468-479. [PMID: 37226359 DOI: 10.1111/1749-4877.12725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Red-eared sliders (Trachemys scripta elegans), as one of the 100 most threatening aliens, have stronger immunity than the native species in response to environmental stress. Blood cells are an important component of immunity in the body. However, the blood cell researches of turtle are still in the traditional blood cell classification and morphological structure observation. Furthermore, turtle granulocytes cannot be accurately identified using traditional methods. Single-cell RNA sequencing techniques have been successfully implemented to study cells based on the mRNA expression patterns of each cell. The present study profiled the transcriptomes of peripheral blood cells in red-eared sliders to construct a single-cell transcriptional landscape of the different cell types and explored environmental adaptation mechanism from the perspective of hematology. All 14 transcriptionally distinct clusters (platelets, erythrocytes1, erythrocytes2, CSF1R monocytes, POF1B monocytes, neutrophils, GATA2high basophils, GATA2low basophils, CD4 T cells, CD7 T cells, B cells, ACKR4 cells, serotriflin cells, and ficolin cells) were identified in the peripheral blood cells of the red-eared sliders. In particular, a subtype of erythrocytes (erythrocytes1) that expressed immune signals was identified. Peripheral blood cells were grouped into three lineages: platelet, erythroid/lymphoid, and myeloid cell lineages. Furthermore, based on differentiation trajectory and up-regulated gene expression, ACKR4 cells were newly identified as lymphocytes, and serotriflin and ficolin cells as granulocytes. The single-cell transcriptional atlas of the peripheral blood cells in red-eared sliders provided in the present study will offer a comprehensive transcriptome reference for the exploration of physiological and pathological hematology in this species.
Collapse
Affiliation(s)
- Rui Guo
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Guangwei Ma
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xiaofei Zhai
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| |
Collapse
|
4
|
Taylor RP, Lindorfer MA. Measurement of Trogocytosis: Quantitative Analyses Validated with Rigorous Controls. Curr Protoc 2023; 3:e897. [PMID: 37830752 DOI: 10.1002/cpz1.897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Trogocytosis is a process in which receptors on acceptor cells remove and internalize cognate ligands from donor cells. Trogocytosis has a profound and negative impact on mAb-based cancer immunotherapy, as seen in the treatment of chronic lymphocytic leukemia (CLL) with CD20 mAbs, such as rituximab (RTX) and ofatumumab (OFA). Our clinical observations of RTX/OFA-mediated loss of the CD20 target from circulating CLL cells have been replicated in our in vitro studies. Here we describe flow cytometry and fluorescence microscopy experiments, which demonstrate that acceptor cells, such as monocytes/macrophages that express FcγR, remove and internalize both antigen and donor cell-bound cognate IgG mAbs for several different mAb-donor cell pairs. Fluorescent mAbs and portions of the plasma cell membrane are transferred from donor cells to acceptor cells, which include the THP-1 monocytic cell line as well as freshly isolated monocytes. We describe rigorous controls to validate the reactions and eliminate dissociation or internalization as alternative mechanisms. Trogocytosis is likely to contribute to neutropenia, thrombocytopenia, and liver damage associated with use of antibody-drug conjugates. The methods we have described should allow for examination of strategies focused on blocking trogocytosis and its adverse effects. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Trogocytosis of mAb-opsonized donor cells mediated by adherent THP-1 cells Alternate Protocol: Application of fluorescence microscopy to examine THP-1 cell-mediated trogocytosis Support Protocol 1: Alexa labeling of mAbs and determination of F/P ratios Support Protocol 2: Standard washing procedure Support Protocol 3: Labeling and opsonization of cells Basic Protocol 2: Trogocytosis mediated by human monocytes as acceptor cells Support Protocol 4: Isolation of human monocytes Basic Protocol 3: Trogocytosis mediated by THP-1 cells in solution Support Protocol 5: Retinoic acid treatment of THP-1 cells Support Protocol 6: Culturing of SCC-25, BT-474, MOLT-4 and THP-1 cell lines.
Collapse
Affiliation(s)
- Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
5
|
Adenovirus Type 6: Subtle Structural Distinctions from Adenovirus Type 5 Result in Essential Differences in Properties and Perspectives for Gene Therapy. Pharmaceutics 2021; 13:pharmaceutics13101641. [PMID: 34683934 PMCID: PMC8540711 DOI: 10.3390/pharmaceutics13101641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/22/2023] Open
Abstract
Adenovirus vectors are the most frequently used agents for gene therapy, including oncolytic therapy and vaccine development. It’s hard to overestimate the value of adenoviruses during the COVID-19 pandemic as to date four out of four approved viral vector-based SARS-CoV-2 vaccines are developed on adenovirus platform. The vast majority of adenoviral vectors are based on the most studied human adenovirus type 5 (HAdV-C5), however, its immunogenicity often hampers the clinical translation of HAdV-C5 vectors. The search of less seroprevalent adenovirus types led to another species C adenovirus, Adenovirus type 6 (HAdV-C6). HAdV-C6 possesses high oncolytic efficacy against multiple cancer types and remarkable ability to induce the immune response towards carrying antigens. Being genetically very close to HAdV-C5, HAdV-C6 differs from HAdV-C5 in structure of the most abundant capsid protein, hexon. This leads to the ability of HAdV-C6 to evade the uptake by Kupffer cells as well as to distinct opsonization by immunoglobulins and other blood proteins, influencing the overall biodistribution of HAdV-C6 after systemic administration. This review describes the structural features of HAdV-C6, its interaction with liver cells and blood factors, summarizes the previous experiences using HAdV-C6, and provides the rationale behind the use of HAdV-C6 for vaccine and anticancer drugs developments.
Collapse
|
6
|
Li LL, Yang YQ, Qiu M, Wang L, Yuan HL, Zou RC. The clinical significance of neutrophil-lymphocyte ratio in patients treated with hemodialysis complicated with lung infection. Medicine (Baltimore) 2021; 100:e26591. [PMID: 34398014 PMCID: PMC8294898 DOI: 10.1097/md.0000000000026591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 05/23/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT The goal of this work was to investigate the potential significance of neutrophil-lymphocyte ratio (NLR) in patients treated with maintenance hemodialysis (MHD).Herein, we retrospectively reviewed the electronic medical records of 100 patients with end-stage renal failure who were treated with MHD. All patients enrolled in this study met the inclusion criteria and were followed. The differences in each indicator between the two groups were compared using the Wilcoxon rank-sum test. On the other hand, Spearman correlation and logistic regression analysis were used to explore the correlation and risk factors for pulmonary infection between NLR and other indicators. Finally, we determined the optimal cut-off values for NLR, hypersensitive c-reactive protein (hs-CRP), and procalcitonin (PCT) diagnosis of pulmonary infection using the receiver operating characteristic curve.We found that NLR was positively correlated with age, PCT, hs-CRP, and hospital stay, but negatively correlated with hemoglobin, red blood cell, and Albumin. The expression levels of PCT, hs-CRP, and NLR in the infected group decreased significantly than those before treatment. Multiple regression analysis revealed that NLR is an important independent risk factor for MHD patients with pulmonary infection. Additionally, receiver operating characteristic curve analysis showed that the sensitivity, specificity, and area under the curve were 87.76%, 100%, and 0.920 when using NLR combined with hs-CRP to predict pulmonary infection in MHD patients, whereas that of NLR combined with PCT were 87.76%, 96.08%, and 0.944, respectively.Findings from this study suggested that NLR is an independent risk factor for MHD patients with pulmonary infection, which can effectively predict pulmonary infection. Moreover, sensitivity and specificity were greatly enhanced when using NLR combined with PCT/hs-CRP to predict pulmonary infection in MHD patients.
Collapse
Affiliation(s)
- Ling-Lin Li
- Department of Nephrology, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R China
| | - Yu-Qiong Yang
- Department of Nephrology, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Min Qiu
- Department of Nephrology, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Li Wang
- Department of Nephrology, The Third People's Hospital of Yunnan Province, Kunming, Yunnan, P.R. China
| | - Hong-Ling Yuan
- Department of Nephrology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R China
| | - Ren-Chao Zou
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, P.R China
| |
Collapse
|
7
|
Ghashghaeinia M, Dreischer P, Wieder T, Köberle M. Coronavirus disease 2019 (COVID-19), human erythrocytes and the PKC-alpha/-beta inhibitor chelerythrine -possible therapeutic implication. Cell Cycle 2020; 19:3399-3405. [PMID: 33305655 PMCID: PMC7781621 DOI: 10.1080/15384101.2020.1859197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19. Until now, diverse drugs have been used for the treatment of COVID-19. These drugs are associated with severe side effects, e.g. induction of erythrocyte death, named eryptosis. This massively affects the oxygen (O2) supply of the organism. Therefore, three elementary aspects should be considered simultaneously: (1) a potential drug should directly attack the virus, (2) eliminate virus-infected host cells and (3) preserve erythrocyte survival and functionality. It is known that PKC-α inhibition enhances the vitality of human erythrocytes, while it dose-dependently activates the apoptosis machinery in nucleated cells. Thus, the use of chelerythrine as a specific PKC-alpha and -beta (PKC-α/-β) inhibitor should be a promising approach to treat people infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Mehrdad Ghashghaeinia
- Psoriasis-Center, Department of Dermatology, University Medical Center Schleswig-Holstein , Kiel, Germany.,Physiologisches Institut, Abteilung für Vegetative und Klinische Physiologie, Eberhard Karls University of Tübingen , Tübingen, Germany
| | - Peter Dreischer
- Physiologisches Institut, Abteilung für Vegetative und Klinische Physiologie, Eberhard Karls University of Tübingen , Tübingen, Germany
| | - Thomas Wieder
- Physiologisches Institut, Abteilung für Vegetative und Klinische Physiologie, Eberhard Karls University of Tübingen , Tübingen, Germany
| | - Martin Köberle
- Department of Dermatology and Allergology, School of Medicine, Technical University of Munich , München, Germany
| |
Collapse
|
8
|
Association between nuclear factor of kappa B (NFκB) deficiency and induction of eryptosis in mouse erythrocytes. Apoptosis 2020; 26:4-6. [PMID: 33200280 PMCID: PMC7902581 DOI: 10.1007/s10495-020-01644-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 11/09/2022]
|
9
|
Jackson HM, Foley KE, O'Rourke R, Stearns TM, Fathalla D, Morgan BP, Howell GR. A novel mouse model expressing human forms for complement receptors CR1 and CR2. BMC Genet 2020; 21:101. [PMID: 32907542 PMCID: PMC7487969 DOI: 10.1186/s12863-020-00893-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The complement cascade is increasingly implicated in development of a variety of diseases with strong immune contributions such as Alzheimer's disease and Systemic Lupus Erythematosus. Mouse models have been used to determine function of central components of the complement cascade such as C1q and C3. However, species differences in their gene structures mean that mice do not adequately replicate human complement regulators, including CR1 and CR2. Genetic variation in CR1 and CR2 have been implicated in modifying disease states but the mechanisms are not known. RESULTS To decipher the roles of human CR1 and CR2 in health and disease, we engineered C57BL/6J (B6) mice to replace endogenous murine Cr2 with human complement receptors, CR1 and CR2 (B6.CR2CR1). CR1 has an array of allotypes in human populations and using traditional recombination methods (Flp-frt and Cre-loxP) two of the most common alleles (referred to here as CR1long and CR1short) can be replicated within this mouse model, along with a CR1 knockout allele (CR1KO). Transcriptional profiling of spleens and brains identified genes and pathways differentially expressed between mice homozygous for either CR1long, CR1short or CR1KO. Gene set enrichment analysis predicts hematopoietic cell number and cell infiltration are modulated by CR1long, but not CR1short or CR1KO. CONCLUSION The B6.CR2CR1 mouse model provides a novel tool for determining the relationship between human-relevant CR1 alleles and disease.
Collapse
Affiliation(s)
- Harriet M Jackson
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
- Dementia Research Institute Cardiff and Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Kate E Foley
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Rita O'Rourke
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | | | - Dina Fathalla
- Dementia Research Institute Cardiff and Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - B Paul Morgan
- Dementia Research Institute Cardiff and Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Gareth R Howell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA.
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
10
|
Notaro R, Sica M. C3-mediated extravascular hemolysis in PNH on eculizumab: Mechanism and clinical implications. Semin Hematol 2018; 55:130-135. [PMID: 30032749 DOI: 10.1053/j.seminhematol.2018.05.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022]
Abstract
The introduction of eculizumab, a human monoclonal antibody against the C5 component of complement, has changed radically the management of paroxysmal nocturnal hemoglobinuria (PNH). The blockade of the terminal complement pathway by eculizumab abrogates intravascular hemolysis, reduces the transfusion requirement and the risk of thrombosis in most of hemolytic PNH patients. However, in almost all PNH patients on eculizumab arises a fraction of PNH red cells that bind fragments of C3 and become a potential target of phagocytosis by macrophages. Eventually, this phagocytosis results in a variable degree of extravascular hemolysis that may reduce clinical benefits of eculizumab and, in fact, about one-fourth of patients remain transfusion-dependent. The treatment of the few PNH patients in which this de novo extravascular hemolysis become clinically relevant is still unsatisfactory. Nevertheless, the investigations of the mechanisms responsible of the extravascular hemolysis on eculizumab have resulted in the development of novel strategies for complement blockade that could overcome this condition.
Collapse
Affiliation(s)
- Rosario Notaro
- Laboratory of Cancer Genetics and Gene Transfer, Core Research Laboratory - Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy.
| | - Michela Sica
- Laboratory of Cancer Genetics and Gene Transfer, Core Research Laboratory - Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
| |
Collapse
|
11
|
Consequences of dysregulated complement regulators on red blood cells. Blood Rev 2018; 32:280-288. [PMID: 29397262 DOI: 10.1016/j.blre.2018.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/07/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
The complement system represents the first line of defense that is involved in the clearance of pathogens, dying cells and immune complexes via opsonization, induction of an inflammatory response and the formation of a lytic pore. Red blood cells (RBCs) are very important for the delivery of oxygen to tissues and are continuously in contact with complement proteins in the blood plasma. To prevent complement activation on RBCs, various complement regulatory proteins can be found in plasma and on the cell membrane. RBCs are special cells without a nucleus and having a slightly different make-up of complement regulators than nucleated cells, as membrane cofactor protein (MCP) is not expressed and complement receptor 1 (CR1) is highly expressed. Decreased expression and/or function of complement regulatory proteins may result in unwanted complement activation and accelerated removal of RBCs. This review describes complement regulation on RBCs and the consequences when this regulation is out of balance.
Collapse
|
12
|
RBC Adherence of Immune Complexes Containing Botulinum Toxin Improves Neutralization and Macrophage Uptake. Toxins (Basel) 2017; 9:toxins9050173. [PMID: 28534855 PMCID: PMC5450721 DOI: 10.3390/toxins9050173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 12/24/2022] Open
Abstract
In the paralytic disease botulism, the botulinum neurotoxin (BoNT) passes through the bloodstream to reach and inactivate neuromuscular junctions. Monoclonal antibodies (mAbs) may be useful BoNT countermeasures, as mAb combinations can rapidly clear BoNT from the blood circulation. We have previously shown that the BoNT-neutralizing potency of mAbs can be improved through red blood cell (RBC) immunoadherence. For example, a fusion protein (FP) that adheres biotinylated mAbs to the RBC surface enabled a pair of mAbs to neutralize 5000 LD50 BoNT/A in the mouse protection assay. Here, we added two mAbs to that combination, creating a 4-mAb:FP complex that neutralized 40,000 LD50 BoNT/A in vivo, and analyzed functional correlates of neutralization. The FP enhanced potency of BoNT/A immune complexes, providing the greatest magnitude of benefit to the 4-mAb combination. RBC binding of a BoNT/A complexed with 4-mAb:FP exhibited a bi-phasic clearance process in vivo. Most of the complexes were cleared within five minutes; the rest were cleared gradually over many hours. Peritoneal macrophages showed better uptake of the 4-mAb complex than the 3-mAb complex, and this was not affected by the presence of the FP. However, the addition of RBCs to the 4-mAb:FP BoNT/A doubled macrophage uptake of the complexes. Lastly, the 4-mAb:FP BoNT/A complex synergistically induced M2 macrophage polarization, as indicated by IL-10 expression, whether or not RBCs were present. RBC-targeted immunoadherence through the FP is a potent enhancer of mAb-mediated BoNT/A neutralization in vivo, and can have positive effects on BoNT/A sequestration, immune complex uptake, and macrophage activation.
Collapse
|
13
|
Red blood cells: Supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv Drug Deliv Rev 2016; 106:88-103. [PMID: 26941164 DOI: 10.1016/j.addr.2016.02.007] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/19/2022]
Abstract
Red blood cells (RBCs) constitute a unique drug delivery system as a biologic or hybrid carrier capable of greatly enhancing pharmacokinetics, altering pharmacodynamics (for example, by changing margination within the intravascular space), and modulating immune responses to appended cargoes. Strategies for RBC drug delivery systems include internal and surface loading, and the latter can be performed both ex vivo and in vivo. A relatively new avenue for RBC drug delivery is their application as a carrier for nanoparticles. Efforts are also being made to incorporate features of RBCs in nanocarriers to mimic their most useful aspects, such as long circulation and stealth features. RBCs have also recently been explored as carriers for the delivery of antigens for modulation of immune response. Therefore, RBC-based drug delivery systems represent supercarriers for a diverse array of biomedical interventions, and this is reflected by several industrial and academic efforts that are poised to enter the clinical realm.
Collapse
|
14
|
Villa CH, Pan DC, Zaitsev S, Cines DB, Siegel DL, Muzykantov VR. Delivery of drugs bound to erythrocytes: new avenues for an old intravascular carrier. Ther Deliv 2015; 6:795-826. [PMID: 26228773 PMCID: PMC4712023 DOI: 10.4155/tde.15.34] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For several decades, researchers have used erythrocytes for drug delivery of a wide variety of therapeutics in order to improve their pharmacokinetics, biodistribution, controlled release and pharmacodynamics. Approaches include encapsulation of drugs within erythrocytes, as well as coupling of drugs onto the red cell surface. This review focuses on the latter approach, and examines the delivery of red blood cell (RBC)-surface-bound anti-inflammatory, anti-thrombotic and anti-microbial agents, as well as RBC carriage of nanoparticles. Herein, we discuss the progress that has been made in surface loading approaches, and address in depth the issues relevant to surface loading of RBC, including intrinsic features of erythrocyte membranes, immune considerations, potential surface targets and techniques for the production of affinity ligands.
Collapse
Affiliation(s)
- Carlos H Villa
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel C Pan
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sergei Zaitsev
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Douglas B Cines
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald L Siegel
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vladimir R Muzykantov
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Török K, Dezső B, Bencsik A, Uzonyi B, Erdei A. Complement receptor type 1 (CR1/CD35) expressed on activated human CD4+ T cells contributes to generation of regulatory T cells. Immunol Lett 2015; 164:117-24. [PMID: 25742728 DOI: 10.1016/j.imlet.2015.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 11/25/2022]
Abstract
The role of complement in the regulation of T cell immunity has been highlighted recently by several groups. We were prompted to reinvestigate the role of complement receptor type 1 (CR1, CD35) [corrected] in human T cells based on our earlier data showing that activated human T cells produce C3 (Torok et al. (2012) [48]) and also by results demonstrating that engagement of Membrane Cofactor Protein (MCP, CD46) induces a switch of anti-CD35-activated [corrected] helper T cells into regulatory T cells (Kemper et al. (2003) [17]). We demonstrate here that co-ligation of CD46 and CD35, [corrected] the two C3b-binding structures present on activated CD4+ human T cells significantly enhances CD25 expression, elevates granzyme B production and synergistically augments cell proliferation. The role of CR1 in the development of the Treg phenotype was further confirmed by demonstrating that its engagement enhances IL-10 production and reduces IFNγ release by the activated CD4+ T cells in the presence of excess IL-2. The functional in vivo relevance of our findings was highlighted by the immunohistochemical staining of tonsils, revealing the presence of CD4/CD35 [corrected] double positive lymphocytes mainly in the inter-follicular regions where direct contact between CD4+ T cells and B lymphocytes occurs. Regarding the in vivo relevance of the complement-dependent generation of regulatory T cells in secondary lymphoid organs we propose a scenario shown in the figure. The depicted process involves the sequential binding of locally produced C3 fragments to CD46 and CD35 [corrected] expressed on activated T cells, which - in the presence of excess IL-2 - leads to the development of Treg cells.
Collapse
Affiliation(s)
- Katalin Török
- MTA-ELTE Immunology Research Group, Budapest, Hungary
| | - Balázs Dezső
- Department of Pathology, Medical Center, University of Debrecen, Hungary
| | | | | | - Anna Erdei
- MTA-ELTE Immunology Research Group, Budapest, Hungary; Department of Immunology, Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
16
|
Rondelli T, Risitano AM, Peffault de Latour R, Sica M, Peruzzi B, Ricci P, Barcellini W, Iori AP, Boschetti C, Valle V, Frémeaux-Bacchi V, De Angioletti M, Socie G, Luzzatto L, Notaro R. Polymorphism of the complement receptor 1 gene correlates with the hematologic response to eculizumab in patients with paroxysmal nocturnal hemoglobinuria. Haematologica 2013; 99:262-6. [PMID: 24038027 DOI: 10.3324/haematol.2013.090001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Complement blockade by eculizumab is clinically effective in hemolytic paroxysmal nocturnal hemoglobinuria. However, the response is variable and some patients remain dependent on red blood cell transfusions. In 72 patients with hemolytic paroxysmal nocturnal hemoglobinuria on eculizumab we tested the hypothesis that response may depend on genetic polymorphisms of complement-related genes. We found no correlation between the complement component C3 genotypes and the need for blood transfusions. On the other hand, we found a significant correlation with the HindIII polymorphism of a complement regulatory gene, the complement receptor 1 (CR1) gene. At this locus two co-dominant alleles are known, of which H (common) is associated with high expression, whereas L (rare) is associated with low expression of CR1 on red blood cells. Patients who still needed blood transfusion on eculizumab accounted for 18% of the H/H homozygotes, 33% of the H/L heterozygotes and 68% of the L/L homozygotes (P=0.016). Thus, patients with paroxysmal nocturnal hemoglobinuria who have the L/L genotype are seven times more likely to be sub-optimal responders to eculizumab. Both in vitro and in vivo we found that the CR1 HindIII genotype correlates with the abundance of paroxysmal nocturnal hemoglobinuria red cells that have bound C3, and with the kinetics of C3 binding. These results are consistent with the notion that by affecting C3 binding the CR1 genotype influences the response to eculizumab treatment, and this emerges as a novel example of pharmacogenetics.
Collapse
|
17
|
Pokrass MJ, Liu MF, Lindorfer MA, Taylor RP. Activation of complement by monoclonal antibodies that target cell-associated β₂-microglobulin: implications for cancer immunotherapy. Mol Immunol 2013; 56:549-60. [PMID: 23911412 DOI: 10.1016/j.molimm.2013.05.242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/31/2013] [Indexed: 01/14/2023]
Abstract
β₂-Microglobulin (β2M), the light chain of the class I major histocompatibilty complex (MHC-I), is a promising tumor target for monoclonal antibodies (mAbs) in cancer immunotherapy. Several reports indicate that chelation of cell-associated β2M by specific mouse mAbs promotes tumor cell destruction by inducing apoptosis or other cytotoxic signaling pathways. Human mAbs employed in cancer therapy are usually IgG1, which mediates cell-killing by effector mechanisms including complement dependent cytotoxicity (CDC). The analogous mouse IgG2a and IgG2b isotypes are similarly effective in activating complement. Therefore, we examined the complement-activating properties of anti-β2M mouse mAbs 1B749 (IgG2a) and HB28 (IgG2b) when either mAb was bound to tumor cell lines or normal cells; we compared these β2M-specific mAbs with mouse mAb W6/32 (IgG2a), specific for human leukocyte antigens in the MHC-I heavy chain. All three mAbs bind to most human cell lines and normal cells in approximately equal amounts, consistent with a 1:1 stoichiometry for the HLA heavy chain in association with β2M. The three mAbs promote rapid C3b deposition and substantial CDC of human cell lines, and mAbs 1B749 and W6/32 have robust cytotoxic activity on reaction with normal mononuclear cells and platelets. Curiously, mAb HB28 induces modest C3b deposition and little CDC of normal cells, and its weaker complement-fixing activity was confirmed by ELISA. Based on these findings, we suggest that human IgG mAbs that target β2M for cancer immunotherapy be selected or engineered so as not to activate complement, thus eliminating the potential adverse effects of complement-mediated lysis of normal cells.
Collapse
Affiliation(s)
- Michael J Pokrass
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | | | | |
Collapse
|
18
|
Liu D, Niu ZX. The structure, genetic polymorphisms, expression and biological functions of complement receptor type 1 (CR1/CD35). Immunopharmacol Immunotoxicol 2010; 31:524-35. [PMID: 19874218 DOI: 10.3109/08923970902845768] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The complement system is comprised of soluble and cell surface associated proteins that recognize exogenous, altered, or potentially harmful endogenous ligands. In recent years, the complement system--particularly component C3 and its receptors--have been demonstrated to be a key link between innate and adaptive immunity. Complement receptor type 1 (CR1), the receptor for C3b/C4b complement peptides, has emerged as a molecule of immense interest in gaining insight to the susceptibility, pathophysiology, diagnosis, prognosis and therapy of such diseases. In this review, we wish to briefly bring forth the structure, genetic polymorphisms, expression and biological functions of CR1.
Collapse
Affiliation(s)
- Dong Liu
- College of Animal Science & Veterinary Medicine, Shandong Agriculture University, Tai'an, People's Republic of China
| | | |
Collapse
|
19
|
Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert Opin Drug Deliv 2010; 7:403-27. [PMID: 20192900 DOI: 10.1517/17425241003610633] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Vascular delivery of several classes of therapeutic agents may benefit from carriage by red blood cells (RBC), for example, drugs that require delivery into phagocytic cells and those that must act within the vascular lumen. The fact that several protocols of infusion of RBC-encapsulated drugs are now being explored in patients illustrates a high biomedical importance for the field. AREAS COVERED BY THIS REVIEW: Two strategies for RBC drug delivery are discussed: encapsulation into isolated RBC ex vivo followed by infusion in compatible recipients and coupling therapeutics to the surface of RBC. Studies of pharmacokinetics and effects in animal models and in human studies of diverse therapeutic enzymes, antibiotics and other drugs encapsulated in RBC are described and critically analyzed. Coupling to RBC surface of compounds regulating immune response and complement, affinity ligands, polyethylene glycol alleviating immune response to donor RBC and fibrinolytic plasminogen activators are described. Also described is a new, translation-prone approach for RBC drug delivery by injection of therapeutics conjugated with fragments of antibodies providing safe anchoring of cargoes to circulating RBC, without need for ex vivo modification and infusion of RBC. WHAT THE READER WILL GAIN Readers will gain historical perspective, current status, challenges and perspectives of medical applications of RBC for drug delivery. TAKE HOME MESSAGE RBC represent naturally designed carriers for intravascular drug delivery, characterized by unique longevity in the bloodstream, biocompatibility and safe physiological mechanisms for metabolism. New approaches for encapsulating drugs into RBC and coupling to RBC surface provide promising avenues for safe and widely useful improvement of drug delivery in the vascular system.
Collapse
Affiliation(s)
- Vladimir R Muzykantov
- University of Pennsylvania Medical Center, Department of Pharmacology and Program in Targeted Therapeutics of Institute of Translational Medicine and Therapeutics, IFEM, One John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104-6068, USA.
| |
Collapse
|
20
|
Buraczynska M, Ksiazek P, Wacinski P, Zukowski P, Dragan M, Bednarek-Skublewska A. Complement receptor 1 gene polymorphism and cardiovascular disease in dialyzed end-stage renal disease patients. Hum Immunol 2010; 71:878-82. [PMID: 20538029 DOI: 10.1016/j.humimm.2010.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 05/27/2010] [Accepted: 06/01/2010] [Indexed: 11/30/2022]
Abstract
Inflammation plays an important role in cardiovascular disease (CVD). The complement system is a critical component of innate and acquired immunity. We investigated whether the polymorphisms in the complement receptor 1 (CR1) gene are associated with CVD in end-stage renal disease (ESRD) patients. The study groups of 1200 patients with ESRD, 360 patients with type 2 diabetes and 924 healthy individuals were genotyped. The GG genotype of the C5507G polymorphism was significantly more frequent in ESRD patients with CVD than in patients without CVD and controls (odds ratio [OR] = 3.44, 95% confidence interval [CI] = 2.23-5.3, and OR = 5.46, 95% CI = 3.72-8.0, respectively). The GG genotype was observed in 62% of patients with a history of myocardial infarction. The frequency of the G allele was also higher in patients with CVD (OR = 2.24, 95% CI = 1.93-2.61 vs controls, and OR = 1.97, 95% CI = 1.63-2.36 vs patients without CVD). In the multivariate logistic regression analysis the carrier status of G allele of C5507G polymorphism was an independent risk factor of CVD in ESRD patients (p < 0.001). In conclusion, our results suggest strong association between the CR1 gene polymorphism and CVD in ESRD patients.
Collapse
Affiliation(s)
- Monika Buraczynska
- Laboratory for DNA Analysis and Molecular Diagnostics, Department of Nephrology, Medical University of Lublin, Lublin, Poland.
| | | | | | | | | | | |
Collapse
|
21
|
Beum PV, Mack DA, Pawluczkowycz AW, Lindorfer MA, Taylor RP. Binding of rituximab, trastuzumab, cetuximab, or mAb T101 to cancer cells promotes trogocytosis mediated by THP-1 cells and monocytes. THE JOURNAL OF IMMUNOLOGY 2008; 181:8120-32. [PMID: 19018005 DOI: 10.4049/jimmunol.181.11.8120] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
More than 20 years ago clinical investigations in the immunotherapy of cancer revealed that infusion of certain immunotherapeutic mAbs directed to tumor cells induced loss of targeted epitopes. This phenomenon, called antigenic modulation, can compromise mAb-based therapies. Recently we reported that rituximab (RTX) treatment of chronic lymphocytic leukemia patients induced substantial loss of targeted CD20 on B cells found in the circulation after RTX infusion; this "shaving" of RTX-CD20 complexes from B cells is also promoted in vitro by THP-1 monocytes and by PBMC in a reaction mediated by Fcgamma receptors. The mechanism responsible for shaving appears to be trogocytosis, a process in which receptors on effector cells remove and internalize cognate ligands and cell membrane fragments from target cells. We now report that three therapeutic mAbs approved by the U.S. Food and Drug Administration for the treatment of cancer, RTX, cetuximab, and trastuzumab, as well as mAb T101, which has been shown to induce antigenic modulation in the clinic, promote trogocytosis in vitro upon binding to their respective target cells. Trogocytosis of the mAb-opsonized cells is mediated by THP-1 monocytes and by primary monocytes isolated from PBMC. In view of these results, it is likely that these mAbs and possibly other anticancer mAbs now used in the clinic may promote trogocytic removal of the therapeutic mAbs and their cognate Ags from tumor cells in vivo. Our findings may have important implications with respect to the use of mAbs in cancer immunotherapy.
Collapse
Affiliation(s)
- Paul V Beum
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
22
|
Khera R, Das N. Complement Receptor 1: disease associations and therapeutic implications. Mol Immunol 2008; 46:761-72. [PMID: 19004497 PMCID: PMC7125513 DOI: 10.1016/j.molimm.2008.09.026] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 09/15/2008] [Accepted: 09/15/2008] [Indexed: 11/17/2022]
Abstract
Exaggerated complement activation is a key event in the pathogenesis of a range of autoimmune and inflammatory diseases. Complement Receptor 1 (CR1) has emerged as a molecule of immense interest in gaining insight to the susceptibility, pathophysiology, diagnosis, prognosis and therapy of such diseases. This review brings forth a composite view of the current understanding on the structure, functions, genetics, disease associations and therapeutic implications of CR1.
Collapse
Affiliation(s)
- Rohan Khera
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi 110029, India
| | | |
Collapse
|
23
|
Beum PV, Lindorfer MA, Taylor RP. Within peripheral blood mononuclear cells, antibody-dependent cellular cytotoxicity of rituximab-opsonized Daudi cells is promoted by NK cells and inhibited by monocytes due to shaving. THE JOURNAL OF IMMUNOLOGY 2008; 181:2916-24. [PMID: 18684983 DOI: 10.4049/jimmunol.181.4.2916] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Treatment of chronic lymphocytic leukemia patients with anti-CD20 mAb rituximab (RTX) leads to substantial CD20 loss on circulating malignant B cells soon after completion of the RTX infusion. This CD20 loss, which we term shaving, can compromise the therapeutic efficacy of RTX, and in vitro models reveal that shaving is mediated by effector cells which express Fc gammaRI. THP-1 monocytes and PBMC promote shaving, but PBMC also kill antibody-opsonized cells by antibody-dependent cellular cytotoxicity (ADCC), a reaction generally considered to be due to NK cells. We hypothesized that within PBMC, monocytes and NK cells would have substantially different and competing activities with respect ADCC or shaving, thereby either enhancing or inhibiting the therapeutic action of RTX. We measured ADCC and RTX removal from RTX-opsonized Daudi cells promoted by PBMC, or mediated by NK cells and monocytes. NK cells take up RTX and CD20 from RTX-opsonized B cells, and mediate ADCC. PBMC depleted of NK cells show little ADCC activity, whereas PBMC depleted of monocytes have greater ADCC than the PBMC. Pre-treatment of RTX-opsonized B cells with THP-1 cells or monocytes suppresses NK cell-mediated ADCC, and blockade of Fc gammaRI on monocytes or THP-1 cells abrogates their ability to suppress ADCC. Our results indicate NK cells are the principal cells in PBMC that kill RTX-opsonized B cells, and that monocytes can suppress ADCC by promoting shaving. These results suggest that RTX-based immunotherapy of cancer may be enhanced based on paradigms which include infusion of compatible NK cells and inhibition of monocyte shaving activity.
Collapse
Affiliation(s)
- Paul V Beum
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
24
|
Hepburn AL, Mason JC, Wang S, Shepherd CJ, Florey O, Haskard DO, Davies KA. Both Fcgamma and complement receptors mediate transfer of immune complexes from erythrocytes to human macrophages under physiological flow conditions in vitro. Clin Exp Immunol 2006; 146:133-45. [PMID: 16968408 PMCID: PMC1809732 DOI: 10.1111/j.1365-2249.2006.03174.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abnormal clearance by the mononuclear phagocytic system of immune complexes (IC) is important in the pathogenesis of systemic lupus erythematosus (SLE). We have developed an in vitro model to investigate the cellular mechanisms involved in the transfer of soluble IC from erythrocytes to human macrophages under physiological flow conditions. In this assay, erythrocytes bearing fluorescently labelled IC are perfused over monolayers of human monocytes or monocyte-derived macrophages in a parallel-plate flow chamber, and transfer quantified using confocal microscopy and flow cytometry. Using aggregated human IgG as a model IC, we have been able to demonstrate transfer of IC from erythrocytes to macrophages. Blocking studies with specific neutralizing antibodies have shown that both complement and Fcgamma receptors are required for IC transfer. Blockade of CR4 (alpha(x)beta(2) integrin), FcgammaRIIa or FcgammaRIII reduced transfer, while anti-CR3 (alpha(m)beta(2) integrin) had no effect. Blockade of CR3, FcgammaRIIa or FcgammaRIII also reduced the number of adhesive interactions between fluorescently labelled IC-bearing erythrocytes and macrophage monolayers. Taken together with the transfer data, this suggests differing roles for these receptors in the human IC transfer reaction that includes an adhesive function which facilitates IC processing by mononuclear phagocytes. Finally, a functional effect of the FcgammaRIIa R131/H131 polymorphism, important in susceptibility to SLE, has also been demonstrated using this model. Uptake of IgG(2) but not IgG(1)-containing soluble IC was reduced by macrophages from individuals homozygous for the R131 allelic variant of the receptor.
Collapse
Affiliation(s)
- A L Hepburn
- Rheumatology Section, The Eric Bywaters Centre, Imperial College London, Hammersmith Hospital, London, UK.
| | | | | | | | | | | | | |
Collapse
|
25
|
Beum PV, Kennedy AD, Williams ME, Lindorfer MA, Taylor RP. The Shaving Reaction: Rituximab/CD20 Complexes Are Removed from Mantle Cell Lymphoma and Chronic Lymphocytic Leukemia Cells by THP-1 Monocytes. THE JOURNAL OF IMMUNOLOGY 2006; 176:2600-9. [PMID: 16456022 DOI: 10.4049/jimmunol.176.4.2600] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clinical investigations have revealed that infusion of immunotherapeutic mAbs directed to normal or tumor cells can lead to loss of targeted epitopes, a phenomenon called antigenic modulation. Recently, we reported that rituximab treatment of chronic lymphocytic leukemia patients induced substantial loss of CD20 on B cells found in the circulation after rituximab infusion, when rituximab plasma concentrations were high. Such antigenic modulation can severely compromise therapeutic efficacy, and we postulated that B cells had been stripped (shaved) of the rituximab/CD20 complex by monocytes or macrophages in a reaction mediated by FcgammaR. We developed an in vitro model to replicate this in vivo shaving process, based on reacting rituximab-opsonized CD20(+) cells with acceptor THP-1 monocytes. After 45 min at 37 degrees C, rituximab and CD20 are removed from opsonized cells, and both are demonstrable on acceptor THP-1 cells. The reaction occurs equally well in the presence and absence of normal human serum, and monocytes isolated from peripheral blood also promote shaving of CD20 from rituximab-opsonized cells. Tests with inhibitors and use of F(ab')(2) of rituximab indicate transfer of rituximab/CD20 complexes to THP-1 cells is mediated by FcgammaR. Antigenic modulation described in previous reports may have been mediated by such shaving, and our findings may have profound implications for the use of mAbs in the immunotherapy of cancer.
Collapse
MESH Headings
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal, Murine-Derived
- Antigens, CD20/immunology
- Cell Line
- Cell Survival
- Humans
- Immunotherapy/adverse effects
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Lymphoma, Mantle-Cell/immunology
- Lymphoma, Mantle-Cell/pathology
- Monocytes/immunology
- Rituximab
Collapse
Affiliation(s)
- Paul V Beum
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
26
|
Stahl D, Sibrowski W. Warm autoimmune hemolytic anemia is an IgM–IgG immune complex disease. J Autoimmun 2005; 25:272-82. [PMID: 16242913 DOI: 10.1016/j.jaut.2005.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/11/2005] [Accepted: 08/01/2005] [Indexed: 10/25/2022]
Abstract
Warm autoimmune hemolytic anemia (WAIHA) is characterized by polyclonal IgG autoantibodies binding to red blood cells (RBC). The characterization of the autoantigen in WAIHA has not yet led to definitive results, and the etiology of RBC autoantibodies remains unclear. An altered control of self-reactive IgG by autologous IgM has been proposed as the underlying mechanism of disease in WAIHA, suggesting that IgM-IgG immune complexes contribute to the pathophysiology of the disease. In the present study, we purified and characterized IgM from plasma of WAIHA patients and from healthy controls using FPLC-based protocols and optical biosensor technology, and investigated IgG present within the IgM fractions. We provide evidence that IgM-IgG immune complexes in plasma and associated with the RBC membrane are the characteristic feature of WAIHA, independent of the etiology of the disease. IgM-IgG immune complexes of WAIHA patients differ from IgM-IgG immune complexes of healthy individuals with regard to quantity and to structural composition. The data suggest that self-immunoglobulin is the original autoantigen underlying WAIHA. The molecular characterization of IgM-IgG immune complexes may define new targets for therapeutic intervention in WAIHA.
Collapse
Affiliation(s)
- D Stahl
- Institute for Transfusion Medicine, University of Münster, Domagkstrasse 11, D-48149 Münster, Germany.
| | | |
Collapse
|
27
|
Wang FS, Chu FL, Jin L, Li YG, Zhang Z, Xu D, Shi M, Wu H, Moulds JM. Acquired but reversible loss of erythrocyte complement receptor 1 (CR1, CD35) and its longitudinal alteration in patients with severe acute respiratory syndrome. Clin Exp Immunol 2005; 139:112-9. [PMID: 15606620 PMCID: PMC1809271 DOI: 10.1111/j.1365-2249.2005.02681.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This longitudinal study investigates the change of erythrocyte complement receptor (E-CR1) expression in patients with severe acute respiratory syndrome (SARS). Circulating E-CR1 expression was semiquantified by flow cytometric analyses in 54 SARS patients and in 212 healthy individuals as a control. Since E-CR1 expression is influenced by the genetic polymorphisms in the CR1 gene, a major genetic polymorphism located within intron 27 of the CR1 gene was simultaneously analysed by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). The results showed that the expression level of E-CR1 (referred to as net fluorescence intensity values, NFI) was statistically correlated with the relevant genetic genotypes among the Chinese population including the healthy individuals (NFI: 5·14 ± 0·82, 3·57 ± 0·66 and 2·67 ± 0·32 for HH, HL and LL genotypes, respectively) and SARS patients (NFI: 3·52 ± 0·91 and 2·63 ± 0·70 for HH and HL genotypes, respectively). Interestingly, the expression density of E-CR1 was found to fall significantly during the initiation and progressive phases (weeks 1 and 2 after the disease onset) and gradually returned close to normal through their whole convalescent phase (beginning from weeks 2 or 3 to weeks 7 or 8) in SARS patients irrespective CR1 genotype. In conclusion, our findings, at least, suggest that E-CR1 is likely involved in immune pathogenesis of SARS disease.
Collapse
Affiliation(s)
- F S Wang
- Research Centre of Biological Therapy, Beijing Institute of Infectious Diseases, Beijing 302 Hospital, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Craig ML, Waitumbi JN, Taylor RP. Processing of C3b-Opsonized Immune Complexes Bound to Non-Complement Receptor 1 (CR1) Sites on Red Cells: Phagocytosis, Transfer, and Associations with CR1. THE JOURNAL OF IMMUNOLOGY 2005; 174:3059-66. [PMID: 15728520 DOI: 10.4049/jimmunol.174.5.3059] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Severe anemia is a lethal complication of Plasmodium falciparum malaria, particularly in children. Recent studies in children with severe P. falciparum anemia have demonstrated elevated levels of E-bound Abs, reduced E-associated complement receptor 1 (CR1) and decay-accelerating factor (DAF), and pronounced splenic enlargement, suggesting a mechanism for E loss involving Abs, complement, and phagocytosis. Motivated by these reports, we have developed an in vitro model in which human E with Abs and complement bound to CR1, DAF, or glycophorin A are incubated with model human macrophages (the THP-1 cell line). Previous work has demonstrated that immune complex (IC) substrates bound to E CR1, either by an Ab or via C3b, are transferred to macrophages with loss of CR1. In this study, we report that IC bound to DAF or glycophorin A by an Ab linkage are also transferred to macrophages. DAF is lost from the E during the transfer of DAF-bound IC, but the transfer of CR1-bound IC does not lead to a significant loss of DAF. Using glycophorin A-bound IC, we observe competition between transfer of IC and phagocytosis of the E: a fraction (</=15%) of the E was phagocytosed, while the remaining E were stripped of IC. We also examined the organization of CR1 and DAF in the presence of E-bound Ab/complement. We find that CR1, but not DAF, colocalizes with IgM mAb-C3b and IC-C3b substrates attached to glycophorin A. We observe that the binding of the IgM mAb-C3b to glycophorin A induces a novel unclustering of CR1.
Collapse
Affiliation(s)
- Maria L Craig
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
29
|
Lindorfer MA, Jinivizian HB, Foley PL, Kennedy AD, Solga MD, Taylor RP. B cell complement receptor 2 transfer reaction. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3671-8. [PMID: 12646632 DOI: 10.4049/jimmunol.170.7.3671] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The B cell C receptor specific for C3dg (CR2) shares a number of features with the primate E C receptor (CR1). Previously, we have demonstrated, both in vitro and in animal models, that immune complexes (IC) bound to primate E CR1, either via C opsonization or by means of bispecific mAb complexes, can be transferred to acceptor macrophages in a process that also removes CR1 from the E. We have now extended this paradigm, the transfer reaction, to include B cell CR2. We used both flow cytometry and fluorescence microscopy to demonstrate that IC bound to Raji cell CR2, either via C opsonization or through the use of an anti-CR2 mAb, are transferred to acceptor THP-1 cells. This reaction, which appears to require Fc recognition of IgG bound to Raji cell CR2, also leads to transfer of CR2. Additional support for the B cell transfer reaction is provided in a prototype study in a monkey model in which IC bound to B cell CR2 are localized to the spleen. These findings may have important implications with respect to defining the role of C in IC handling during the normal immune response.
Collapse
Affiliation(s)
- Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0733, USA
| | | | | | | | | | | |
Collapse
|