1
|
Neural Regeneration in Regenerative Endodontic Treatment: An Overview and Current Trends. Int J Mol Sci 2022; 23:ijms232415492. [PMID: 36555133 PMCID: PMC9779866 DOI: 10.3390/ijms232415492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases are the most common dental diseases. The traditional treatment is root canal therapy, which achieves satisfactory therapeutic outcomes-especially for mature permanent teeth. Apexification, pulpotomy, and pulp revascularization are common techniques used for immature permanent teeth to accelerate the development of the root. However, there are obstacles to achieving functional pulp regeneration. Recently, two methods have been proposed based on tissue engineering: stem cell transplantation, and cell homing. One of the goals of functional pulp regeneration is to achieve innervation. Nerves play a vital role in dentin formation, nutrition, sensation, and defense in the pulp. Successful neural regeneration faces tough challenges in both animal studies and clinical trials. Investigation of the regeneration and repair of the nerves in the pulp has become a serious undertaking. In this review, we summarize the current understanding of the key stem cells, signaling molecules, and biomaterials that could promote neural regeneration as part of pulp regeneration. We also discuss the challenges in preclinical or clinical neural regeneration applications to guide deep research in the future.
Collapse
|
2
|
Fujitani M, Otani Y, Miyajima H. Do Neurotrophins Connect Neurological Disorders and Heart Diseases? Biomolecules 2021; 11:1730. [PMID: 34827728 PMCID: PMC8615910 DOI: 10.3390/biom11111730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
Neurotrophins (NTs) are one of the most characterized neurotrophic factor family members and consist of four members in mammals. Growing evidence suggests that there is a complex inter- and bi-directional relationship between central nervous system (CNS) disorders and cardiac dysfunction, so-called "brain-heart axis". Recent studies suggest that CNS disorders, including neurodegenerative diseases, stroke, and depression, affect cardiovascular function via various mechanisms, such as hypothalamic-pituitary-adrenal axis augmentation. Although this brain-heart axis has been well studied in humans and mice, the involvement of NT signaling in the axis has not been fully investigated. In the first half of this review, we emphasize the importance of NTs not only in the nervous system, but also in the cardiovascular system from the embryonic stage to the adult state. In the second half, we discuss the involvement of NTs in the pathogenesis of cardiovascular diseases, and then examine whether an alteration in NTs could serve as the mediator between neurological disorders and heart dysfunction. The further investigation we propose herein could contribute to finding direct evidence for the involvement of NTs in the axis and new treatment for cardiovascular diseases.
Collapse
Affiliation(s)
- Masashi Fujitani
- Department of Anatomy and Neuroscience, Faculty of Medicine, Shimane University, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan; (Y.O.); (H.M.)
| | | | | |
Collapse
|
3
|
Kermani P, Hempstead B. BDNF Actions in the Cardiovascular System: Roles in Development, Adulthood and Response to Injury. Front Physiol 2019; 10:455. [PMID: 31105581 PMCID: PMC6498408 DOI: 10.3389/fphys.2019.00455] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
The actions of BDNF (Brain-derived Neurotrophic Factor) in regulating neuronal development and modulating synaptic activity have been extensively studied and well established. Equally important roles for this growth factor have been uncovered in the cardiovascular system, through the examination of gene targeted animals to define critical actions in development, and to the unexpected roles of BDNF in modulating the response of the heart and vasculature to injury. Here we review the compartmentally distinct realm of cardiac myocytes, vascular smooth muscle cells, endothelial cells, and hematopoietic cells, focusing upon the actions of BDNF to modulate contractility, migration, neoangiogenesis, apoptosis and survival. These studies indicate that BDNF is an important growth factor which directs the response of the cardiovascular system to acute and chronic injury.
Collapse
Affiliation(s)
- Pouneh Kermani
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Barbara Hempstead
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States.,Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
4
|
Dokanehiifard S, Soltani BM. TrkC-miR2 regulates TGFβ signaling pathway through targeting of SMAD3 transcript. J Cell Biochem 2019; 120:2634-2641. [PMID: 30304551 DOI: 10.1002/jcb.27572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 08/06/2018] [Indexed: 01/24/2023]
Abstract
TrkC, neurotrophin receptor, functions inside and outside of the nervous system and has a crucial effect on the regulation of cardiovascular formation. Recently, we introduced TrkC-miR2 as a novel microRNA located in TrkC gene, which is a regulator of the Wnt signaling pathway. Here, we presented a lot of evidence showing that TrkC-miR2 also regulates the transforming growth factor-beta (TGFβ) signaling pathway. Bioinformatics studies predicted SMAD3 as one of the bona fide TrkC-miR2 target genes. Quantitative reverse transcription PCR (RT-qPCR), Western blot analysis, and dual luciferase assay analysis confirmed that SMAD3 is targeted by TrkC-miR2. On the other hand, overexpression of TrkC-miR2 in cardiosphere-derived cells (CDCs) rendered downregulation of TGFβR1, TGFβR2, and SMAD7 detected by RT-qPCR. Consistently, an inverse correlation of expression between TrkC-miR2 and SMAD3 genes was detected during the course of CDC differentiation, and also during the course of human embryonic stem cells differentiation to cardiomyocytes. Overall, we conclude that TrkC-miR2 downregulates the expression of SMAD3 and potentially regulates the TGFβ signaling pathway. Knowing its approved effect on Wnt signaling, TrkC-miR2 here is introduced as a common regulator of both the Wnt and TGFβ signaling pathways. Therefore, it may be a potential key element in controlling both of these signaling pathways in cell processes like colorectal cancer and cardiogenesis.
Collapse
Affiliation(s)
- Sadat Dokanehiifard
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Nittoli V, Sepe RM, Coppola U, D'Agostino Y, De Felice E, Palladino A, Vassalli QA, Locascio A, Ristoratore F, Spagnuolo A, D'Aniello S, Sordino P. A comprehensive analysis of neurotrophins and neurotrophin tyrosine kinase receptors expression during development of zebrafish. J Comp Neurol 2018; 526:1057-1072. [DOI: 10.1002/cne.24391] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/30/2017] [Accepted: 12/18/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Valeria Nittoli
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Rosa M. Sepe
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Ugo Coppola
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Ylenia D'Agostino
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Elena De Felice
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Antonio Palladino
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Quirino A. Vassalli
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Annamaria Locascio
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Filomena Ristoratore
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms; Stazione Zoologica Anton Dohrn, Villa Comunale; Naples 80121 Italy
| |
Collapse
|
6
|
Auer TO, Xiao T, Bercier V, Gebhardt C, Duroure K, Concordet JP, Wyart C, Suster M, Kawakami K, Wittbrodt J, Baier H, Del Bene F. Deletion of a kinesin I motor unmasks a mechanism of homeostatic branching control by neurotrophin-3. eLife 2015; 4. [PMID: 26076409 PMCID: PMC4467164 DOI: 10.7554/elife.05061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/18/2015] [Indexed: 12/14/2022] Open
Abstract
Development and function of highly polarized cells such as neurons depend on microtubule-associated intracellular transport, but little is known about contributions of specific molecular motors to the establishment of synaptic connections. In this study, we investigated the function of the Kinesin I heavy chain Kif5aa during retinotectal circuit formation in zebrafish. Targeted disruption of Kif5aa does not affect retinal ganglion cell differentiation, and retinal axons reach their topographically correct targets in the tectum, albeit with a delay. In vivo dynamic imaging showed that anterograde transport of mitochondria is impaired, as is synaptic transmission. Strikingly, disruption of presynaptic activity elicits upregulation of Neurotrophin-3 (Ntf3) in postsynaptic tectal cells. This in turn promotes exuberant branching of retinal axons by signaling through the TrkC receptor (Ntrk3). Thus, our study has uncovered an activity-dependent, retrograde signaling pathway that homeostatically controls axonal branching.
Collapse
Affiliation(s)
| | - Tong Xiao
- Department of Physiology, University of California San Francisco, San Francisco, United States
| | | | | | | | - Jean-Paul Concordet
- Muséum National d'Histoire naturelle, Inserm U 1154, CNRS, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U 1127, CNRS, UMR 7225, Sorbonne Universités, UPMC University Paris 6, Paris, France
| | - Maximiliano Suster
- Neural Circuits and Behaviour Group, Uni Research AS High Technology Centre, Bergen, Norway
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, Shizuoka, Japan
| | - Joachim Wittbrodt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Herwig Baier
- Department of Physiology, University of California San Francisco, San Francisco, United States
| | | |
Collapse
|
7
|
Werner P, Paluru P, Simpson AM, Latney B, Iyer R, Brodeur GM, Goldmuntz E. Mutations in NTRK3 suggest a novel signaling pathway in human congenital heart disease. Hum Mutat 2014; 35:1459-68. [PMID: 25196463 DOI: 10.1002/humu.22688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 08/19/2014] [Indexed: 12/24/2022]
Abstract
Congenital heart defects (CHDs) are the most common major birth defects and the leading cause of death from congenital malformations. The etiology remains largely unknown, though genetic variants clearly contribute. In a previous study, we identified a large copy-number variant (CNV) that deleted 46 genes in a patient with a malalignment type ventricular septal defect (VSD). The CNV included the gene NTRK3 encoding neurotrophic tyrosine kinase receptor C (TrkC), which is essential for normal cardiogenesis in animal models. To evaluate the role of NTRK3 in human CHDs, we studied 467 patients with related heart defects for NTRK3 mutations. We identified four missense mutations in four patients with VSDs that were not found in ethnically matched controls and were predicted to be functionally deleterious. Functional analysis using neuroblastoma cell lines expressing mutant TrkC demonstrated that one of the mutations (c.278C>T, p.T93M) significantly reduced autophosphorylation of TrkC in response to ligand binding, subsequently decreasing phosphorylation of downstream target proteins. In addition, compared with wild type, three of the four cell lines expressing mutant TrkC showed altered cell growth in low-serum conditions without supplemental neurotrophin 3. These findings suggest a novel pathophysiological mechanism involving NTRK3 in the development of VSDs.
Collapse
Affiliation(s)
- Petra Werner
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | | | | | | | | | | |
Collapse
|
8
|
Freeman JL, Weber GJ, Peterson SM, Nie LH. Embryonic ionizing radiation exposure results in expression alterations of genes associated with cardiovascular and neurological development, function, and disease and modified cardiovascular function in zebrafish. Front Genet 2014; 5:268. [PMID: 25147559 PMCID: PMC4124797 DOI: 10.3389/fgene.2014.00268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 07/21/2014] [Indexed: 01/16/2023] Open
Abstract
The relationship between ionizing radiation (IR) and carcinogenesis is long established, but recently the association between IR and other diseases is starting to be recognized. Currently, there is limited information on the genetic mechanisms governing the role of IR in non-cancer related adverse health effects and in regards to an early developmental exposure. In this study, zebrafish embryos were exposed to a range of IR doses (0, 1, 2, 5, 10 Gy) at 26 h post fertilization (hpf). No significant increase in mortality or hatching rate was observed, but a significant decrease in total larval length, head length, and eye diameter was observed in the 10 Gy dose. Transcriptomic analysis was conducted at 120 hpf to compare gene expression profiles between the control and highest IR dose at which no significant differences were observed in morphological measurements (5 Gy). 253 genes with well-established function or orthology to human genes were significantly altered. Gene ontology and molecular network analysis revealed enrichment of genes associated with cardiovascular and neurological development, function, and disease. Expression of a subset of genetic targets with an emphasis on those associated with the cardiovascular system was assessed using Quantitative PCR (qPCR) to confirm altered expression at 5 Gy and then to investigate alterations at lower doses (1 and 2 Gy). Strong correlation between microarray and qPCR expression values was observed, but zebrafish exposed to 1 or 2 Gy resulted in a significant expression alteration in only one of these genes (LIN7B). Moreover, heart rate was analyzed through 120 hpf following IR dosing at 26 hpf. A significant decrease in heart rate was observed at 10 Gy, while a significant increase in heart rate was observed at 1, 2, and 5 Gy. Overall these findings indicate IR exposure at doses below those that induce gross morphological changes alters heart rate and expression of genes associated with cardiovascular and neurological functions.
Collapse
Affiliation(s)
| | - Gregory J Weber
- School of Health Sciences, Purdue University West Lafayette, IN, USA
| | - Samuel M Peterson
- School of Health Sciences, Purdue University West Lafayette, IN, USA
| | - Linda H Nie
- School of Health Sciences, Purdue University West Lafayette, IN, USA
| |
Collapse
|
9
|
Morgan KY, Black LD. Investigation into the effects of varying frequency of mechanical stimulation in a cycle-by-cycle manner on engineered cardiac construct function. J Tissue Eng Regen Med 2014; 11:342-353. [PMID: 24916022 DOI: 10.1002/term.1915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 01/17/2014] [Accepted: 04/22/2014] [Indexed: 11/07/2022]
Abstract
Mechanical stimulation has been used extensively to improve the function of cardiac engineered tissue, as it mimics the physical environment in which the tissue is situated during normal development. However, previous mechanical stimulation has been carried out under a constant frequency that more closely resembles a diseased heart. The goal of this study was to create a bioreactor system that would allow us to control the mechanical stimulation of engineered cardiac tissue on a cycle-by-cycle basis. This unique system allows us to determine the effects on cardiac construct function of introducing variability to the mechanical stretch. To test our bioreactor system, constructs created from neonatal rat cardiomyocytes entrapped in fibrin hydrogels were stimulated under various regimes for 2 weeks and then assessed for functional outcomes. No differences were observed in the final cell number in each condition, indicating that variability in frequency did not have a negative effect on viability. The forces were higher for all mechanical stimulation groups compared to static controls, although no differences were observed between the mechanically stimulated conditions, indicating that variable frequency on a cycle-by-cycle basis has limited effects on the resulting force. Although differences in the observed twitch force were not observed, differences in the protein expression indicate that variable-frequency mechanical stimulation had an effect on cell-cell coupling and growth pathway activation in the constructs. Thus, this bioreactor system provides a valuable tool for further development and optimization of engineered myocardial tissue as a repair or replacement strategy for patients undergoing heart failure. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kathy Ye Morgan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Lauren Deems Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.,Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
10
|
Blech-Hermoni Y, Ladd AN. RNA binding proteins in the regulation of heart development. Int J Biochem Cell Biol 2013; 45:2467-78. [PMID: 23973289 DOI: 10.1016/j.biocel.2013.08.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/09/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
In vivo, RNA molecules are constantly accompanied by RNA binding proteins (RBPs), which are intimately involved in every step of RNA biology, including transcription, editing, splicing, transport and localization, stability, and translation. RBPs therefore have opportunities to shape gene expression at multiple levels. This capacity is particularly important during development, when dynamic chemical and physical changes give rise to complex organs and tissues. This review discusses RBPs in the context of heart development. Since the targets and functions of most RBPs--in the heart and at large--are not fully understood, this review focuses on the expression and roles of RBPs that have been implicated in specific stages of heart development or developmental pathology. RBPs are involved in nearly every stage of cardiogenesis, including the formation, morphogenesis, and maturation of the heart. A fuller understanding of the roles and substrates of these proteins could ultimately provide attractive targets for the design of therapies for congenital heart defects, cardiovascular disease, or cardiac tissue repair.
Collapse
Affiliation(s)
- Yotam Blech-Hermoni
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Program in Cell Biology, Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
11
|
Aridgides D, Salvador R, PereiraPerrin M. Trypanosoma cruzi highjacks TrkC to enter cardiomyocytes and cardiac fibroblasts while exploiting TrkA for cardioprotection against oxidative stress. Cell Microbiol 2013; 15:1357-66. [PMID: 23414299 DOI: 10.1111/cmi.12119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/26/2013] [Accepted: 01/31/2013] [Indexed: 12/13/2022]
Abstract
Chronic Chagas cardiomyopathy (CCC), caused by the obligate intracellular protozoan parasite Trypanosoma cruzi, is a major cause of morbidity and mortality in Latin America. CCC begins when T. cruzi enters cardiac cells for intracellular multiplication and differentiation, a process that starts with recognition of host-cell entry receptors. However, the nature of these surface molecules and corresponding parasite counter-receptor(s) is poorly understood. Here we show that antibodies against neurotrophin (NT) receptor TrkC, but not against family members TrkA and TrkB, prevent T. cruzi from invading primary cultures of cardiomyocytes and cardiac fibroblasts. Invasion is also selectively blocked by the TrkC ligand NT-3, and by antagonists of Trk autophosphorylation and downstream signalling. Therefore, these results indicate that T. cruzi gets inside cardiomyocytes and cardiac fibroblasts by activating TrkC preferentially over TrkA. Accordingly, short hairpin RNA interference of TrkC (shTrkC), but not TrkA, selectively prevents T. cruzi from entering cardiac cells. Additionally, T. cruzi parasite-derived neurotrophic factor (PDNF)/trans-sialidase, a TrkC-binding protein, but not family member gp85, blocks entry dose-dependently, underscoring the specificity of PDNF as TrkC counter-receptor in cardiac cell invasion. In contrast to invasion, competitive and shRNA inhibition studies demonstrate that T. cruzi-PDNF recognition of TrkA, but not TrkC on primary cardiomyocytes and the cardiomyocyte cell line H9c2 protects the cells against oxidative stress. Thus, this study shows that T. cruzi via PDNF favours neurotrophin receptor TrkC for cardiac cell entry and TrkA for cardiomyocyte protection against oxidative stress, and suggests a new therapeutic opportunity in PDNF and/or fragments thereof for CCC therapy as entry inhibitors and/or cardioprotection agonists.
Collapse
Affiliation(s)
- Daniel Aridgides
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | |
Collapse
|
12
|
Stavchansky VV, Tvorogova TV, Botsina AY, Skvortsova VI, Limborska SA, Myasoedov NF, Dergunova LV. Effect of semax and its C-terminal peptide PGP on expression of neurotrophins and their receptors in rat brain during incomplete global ischemia. Mol Biol 2011. [DOI: 10.1134/s0026893311050128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Barski JJ, Helbig C, Meyer M. Partial rescue of NT-3 null mutant phenotype by a PDGF-β regulated transgene. Neurosci Lett 2011; 501:179-84. [PMID: 21787840 DOI: 10.1016/j.neulet.2011.06.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 06/06/2011] [Accepted: 06/10/2011] [Indexed: 11/25/2022]
Abstract
The phenotype of neurotrophin-3 (NT-3) null mutant mice is characterized by sensory ataxia and early postnatal death. Previous analysis revealed a severe depletion of peripheral sensory, sympathetic and parasympathetic neurons. Most of the deficits are established early during embryonic development. Whereas absence of proprioceptive afferents can explain the sensory ataxia, the reasons for early postnatal death are unclear. To circumvent the limitations imposed by early mortality of null mutants we generated mouse line expressing NT-3 transgenes driven by the platelet-derived growth factor β-chain (PDGF-β) promoter, which is known to be active in neurons and mesenchyme derivatives. Mice carrying one or two PDGF-NT3 transgenes on a background null for wildtype NT-3 were generated by crossing with an NT-3 null strain. Although still ataxic, mice from this cross could survive for periods longer than a year. Histological analysis revealed a limited rescue of muscle spindles and parvalbumin immunoreactive sensory neurons.
Collapse
Affiliation(s)
- Jarosław J Barski
- Center for Experimental Medicine, Medical University of Silesia, ul. Medyków 4, 40-752 Katowice, Poland.
| | | | | |
Collapse
|
14
|
Abstract
Regulation of organ growth is critical during embryogenesis. At the cellular level, mechanisms controlling the size of individual embryonic organs include cell proliferation, differentiation, migration, and attrition through cell death. All these mechanisms play a role in cardiac morphogenesis, but experimental studies have shown that the major determinant of cardiac size during prenatal development is myocyte proliferation. As this proliferative capacity becomes severely restricted after birth, the number of cell divisions that occur during embryogenesis limits the growth potential of the postnatal heart. We summarize here current knowledge concerning regional control of myocyte proliferation as related to cardiac morphogenesis and dysmorphogenesis. There are significant spatial and temporal differences in rates of cell division, peaking during the preseptation period and then gradually decreasing toward birth. Analysis of regional rates of proliferation helps to explain the mechanics of ventricular septation, chamber morphogenesis, and the development of the cardiac conduction system. Proliferation rates are influenced by hemodynamic loading, and transduced by autocrine and paracrine signaling by means of growth factors. Understanding the biological response of the developing heart to such factors and physical forces will further our progress in engineering artificial myocardial tissues for heart repair and designing optimal treatment strategies for congenital heart disease.
Collapse
Affiliation(s)
- David Sedmera
- Charles University in Prague, First Faculty of Medicine, Institute of Anatomy, Prague, Czech Republic.
| | | |
Collapse
|
15
|
Cristofaro B, Stone OA, Caporali A, Dawbarn D, Ieronimakis N, Reyes M, Madeddu P, Bates DO, Emanueli C. Neurotrophin-3 is a novel angiogenic factor capable of therapeutic neovascularization in a mouse model of limb ischemia. Arterioscler Thromb Vasc Biol 2010; 30:1143-50. [PMID: 20360537 PMCID: PMC2881585 DOI: 10.1161/atvbaha.109.205468] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate the novel hypothesis that neurotrophin-3 (NT-3), an established neurotrophic factor that participates in embryonic heart development, promotes blood vessel growth. METHODS AND RESULTS We evaluated the proangiogenic capacity of recombinant NT-3 in vitro and of NT-3 gene transfer in vivo (rat mesenteric angiogenesis assay and mouse normoperfused adductor muscle). Then, we studied whether either transgenic or endogenous NT-3 mediates postischemic neovascularization in a mouse model of limb ischemia. In vitro, NT-3 stimulated endothelial cell survival, proliferation, migration, and network formation on the basement membrane matrix Matrigel. In the mesenteric assay, NT-3 increased the number and size of functional vessels, including vessels covered with mural cells. Consistently, NT-3 overexpression increased muscular capillary and arteriolar densities in either the absence or the presence of ischemia and improved postischemic blood flow recovery in mouse hind limbs. NT-3-induced microvascular responses were accompanied by tropomyosin receptor kinase C (an NT-3 high-affinity receptor) phosphorylation and involved the phosphatidylinositol 3-kinase-Akt kinase-endothelial nitric oxide synthase pathway. Finally, endogenous NT-3 was shown to be essential in native postischemic neovascularization, as demonstrated by using a soluble tropomyosin receptor kinase C receptor domain that neutralizes NT-3. CONCLUSIONS Our results provide the first insight into the proangiogenic capacity of NT-3 and propose NT-3 as a novel potential agent for the treatment of ischemic disease.
Collapse
Affiliation(s)
- Brunella Cristofaro
- Experimental Cardiovascular Medicine Division, University of Bristol, Bristol, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Siu MKY, Wong OGW, Cheung ANY. TrkB as a therapeutic target for ovarian cancer. Expert Opin Ther Targets 2009; 13:1169-78. [PMID: 19694498 DOI: 10.1517/14728220903196787] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND In many countries, ovarian cancer is the most lethal gynecological malignancy. Its poor prognosis is mainly due to the late stage of disease with metastasis at presentation. The significant failure rate of chemotherapy in patients with advanced stage disease is also a main concern. As such, developing novel therapeutic targets is essential to improve long-term survival. Overexpression of Tropomyosin-related kinase B (TrkB), a tyrosine kinase receptor, has been documented in ovarian cancer and is found to be correlated with poor prognosis. OBJECTIVE/METHODS We discuss the functional roles and the related downstream signaling pathways of TrkB and its ligand brain-derived neurotrophic factor (BDNF) in ovarian cancer. The possible crosstalk between TrkB/BDNF and other putative molecular targets in ovarian cancer is also discussed. RESULTS/CONCLUSIONS All these latest findings shed light on the application of TrkB as a therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Michelle K Y Siu
- The University of Hong Kong, Queen Mary Hospital, Department of Pathology, Hong Kong, China
| | | | | |
Collapse
|
17
|
Thiele CJ, Li Z, McKee AE. On Trk--the TrkB signal transduction pathway is an increasingly important target in cancer biology. Clin Cancer Res 2009; 15:5962-7. [PMID: 19755385 DOI: 10.1158/1078-0432.ccr-08-0651] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the beginning, Trk was an oncogene. Yet Neurotrophin-Trk signaling came to preeminence in the field of neurobiology. Now it is appreciated that Trks regulate important processes in nonneuronal cells and, in addition to their impact on tumors of neural origin, may contribute to the pathogenesis of carcinomas, myelomas, and prostate and lymphoid tumors. Although mutations and rearrangements of Trk are seen only sporadically in human cancers, such as medullary thyroid carcinoma, a number of recent studies indicate that expression of TrkB contributes to tumor pathology. In neuroblastoma, TrkA expression marks good prognosis which TrkB and Brain-derived neurotrophic factor (BDNF) expression marks poor prognosis. Activation of the BDNF/TrkB signal transduction pathway also stimulates tumor cell survival and angiogenesis and contributes to resistance to cytotoxic drugs and anoikis, enabling cells to acquire many of the characteristic features required for tumorigenesis. Small molecule inhibitors, such as Cephalon's CEP-701, are in phase 1 and 2 clinical trials, and a series of AstraZeneca Trk inhibitors are poised to enter the clinic. As monotherapy, inhibitors may be effective only in tumors with activating Trk mutations. Important clinical follow-up will be the assessment of Trk inhibitors in combination with standard chemo- or radiotherapy or other signal transduction pathway inhibitors.
Collapse
Affiliation(s)
- Carol J Thiele
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, CRC, NCI, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
18
|
Contreras-Ramos A, Sánchez-Gómez C, Fierro-Pastrana R, González-Márquez H, Acosta-Vazquez F, Arellano-Galindo J. Normal development of the muscular region of the interventricular septum. II. The importance of myocardial proliferation. Anat Histol Embryol 2009; 38:219-28. [PMID: 19469768 DOI: 10.1111/j.1439-0264.2008.00926.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a first paper, we concluded that the muscular region of the interventricular septum is developed by the trabecular branches and showed evidence that the developing interventricular septum elongates in a direction opposite to that of atria. Nevertheless, to date the literature is lacking precise information on the importance of myocardial proliferation not only in this process but also in the morphogenesis of the ventricular cavities. The aim of this study was to determine the spatial and temporal distribution of high-intensity foci of cycling myocytes in the ventricular region of the heart of chicken embryos during cardiac septation. Histological studies, detection of the proliferating cell nuclear antigen by light and confocal microscopy and flow cytometric analysis were carried out. The results corroborate that the developing interventricular septum grows in a direction opposite to that of atria. A remoulding mechanism that results in fenestrated trabecular sheets and trabecular branching is discussed. Our findings allowed us to summarize the normal morphogenesis of the muscular region of the interventricular septum in a way that is different from that suggested by other researchers.
Collapse
Affiliation(s)
- A Contreras-Ramos
- Deptos. Biología del Desarrollo y Teratogénesis Experimental, Patología Clínica y Experimental, Hematología, Sección Biología Molecular, Hospital Infantil de México Federico Gómez, Mexico
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Neurotrophins were christened in consideration of their actions on the nervous system and, for a long time, they were the exclusive interest of neuroscientists. However, more recently, this family of proteins has been shown to possess essential cardiovascular functions. During cardiovascular development, neurotrophins and their receptors are essential factors in the formation of the heart and critical regulator of vascular development. Postnatally, neurotrophins control the survival of endothelial cells, vascular smooth muscle cells, and cardiomyocytes and regulate angiogenesis and vasculogenesis, by autocrine and paracrine mechanisms. Recent studies suggest the capacity of neurotrophins, via their tropomyosin-kinase receptors, to promote therapeutic neovascularization in animal models of hindlimb ischemia. Conversely, the neurotrophin low-affinity p75(NTR) receptor induces apoptosis of endothelial cells and vascular smooth muscle cells and impairs angiogenesis. Finally, nerve growth factor looks particularly promising in treating microvascular complications of diabetes or reducing cardiomyocyte apoptosis in the infarcted heart. These seminal discoveries have fuelled basic and translational research and thus opened a new field of investigation in cardiovascular medicine and therapeutics. Here, we review recent progress on the molecular signaling and roles played by neurotrophins in cardiovascular development, function, and pathology, and we discuss therapeutic potential of strategies based on neurotrophin manipulation.
Collapse
Affiliation(s)
- Andrea Caporali
- Division of Experimental Cardiovascular Medicine, University of Bristol, Bristol, UK
| | | |
Collapse
|
20
|
Lu B, Alroy J, Luquetti AO, PereiraPerrin M. Human autoantibodies specific for neurotrophin receptors TrkA, TrkB, and TrkC protect against lethal Trypanosoma cruzi infection in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:1406-14. [PMID: 18832578 DOI: 10.2353/ajpath.2008.080514] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Patients with Chagas' disease remain asymptomatic for many years, presumably by keeping the etiological agent Trypanosoma cruzi in check through protective immunity against. Recently, we found that T. cruzi uses TrkA, a receptor tyrosine kinase responsive to neurotrophin nerve growth factor in vertebrate nervous systems, to invade cells. We also found that TrkA, TrkB, and TrkC, but not T. cruzi, are targets of specific autoantibodies present in the sera of patients with chronic Chagas' disease. Here we show that TrkA-, TrkB-, and TrkC-specific autoantibodies isolated from the sera of four individuals with chronic indeterminate (asymptomatic) Chagas' disease potently blocked invasion of Trk-bearing neuronal PC12 cells, neuroglial astrocytes, enteroglial cells, and Schwann cells and Trk-expressing non-neural smooth muscle and dendritic cells. However, these autoantibodies did not inhibit T. cruzi invasion of mutant PC12 cells lacking TrkA or of normal cells lacking Trk receptors, suggesting that autoantibodies interfered with parasite/Trk cross talk to access the intracellular milieu. Passive immunization of susceptible and resistant mouse strains with very small doses of these autoantibodies reduced parasitemia and transferred resistance to an otherwise lethal trypanosome infection. Hence, this exquisitely sensitive and unique regulatory immunity against the host (instead of parasite) could benefit infected individuals by blocking cellular invasion of the obligatory intracellular pathogen, resulting in attenuation of tissue infection and clinical manifestations. Such action is contrary to the horror autotoxicus frequently associated with microbe-related autoimmune responses.
Collapse
Affiliation(s)
- Bo Lu
- Parasitology Research Center, Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
21
|
Kawaguchi-Manabe H, Ieda M, Kimura K, Manabe T, Miyatake S, Kanazawa H, Kawakami T, Ogawa S, Suematsu M, Fukuda K. A novel cardiac hypertrophic factor, neurotrophin-3, is paradoxically downregulated in cardiac hypertrophy. Life Sci 2007; 81:385-92. [PMID: 17628607 DOI: 10.1016/j.lfs.2007.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 05/16/2007] [Accepted: 05/29/2007] [Indexed: 01/08/2023]
Abstract
The neurotrophin family plays pivotal roles in the development of the nervous system. Recently, the role of the neurotrophin in non-neural tissue has been extensively investigated. Among them, neurotrophin-3 and its receptor TrkC are critical for embryonic heart development, though little is known about neurotrophin-3/TrkC function in adult heart. Moreover, the expressions of other neurotrophin and Trk families in the cardiovascular system have not been fully determined. In adult and neonatal rats, only TrkC mRNA was expressed more abundantly in heart than aorta among the neurotrophin receptors, while all neurotrophins were equally expressed in the cardiovascular system. Immunohistochemistry confirmed the protein expressions of neurotrophin-3/TrkC in rat ventricles. In primary-cultured rat cardiomyocytes, neurotrophin-3 strongly activated p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2, and Jun N-terminal kinase pathways in Western blot analysis. In Northern blot analysis, neurotrophin-3 strongly increased mRNA expressions of cardiac hypertrophic markers (skeletal alpha-actin and atrial natriuretic peptide) in cardiomocytes. [(3)H]-phenylalanine uptake into cardiomyocytes, myofilament reorganization, and cardiomyocyte size were also augmented with neurotrophin-3 stimulation, indicating that neurotrophin-3 is a novel cardiac hypertrophic factor. Unexpectedly, neurotrophin-3 was downregulated in cardiac hypertrophy induced by pressure overload (in vivo), and in cardiomyocyte hypertrophy evoked by endothelin-1 stimulation (in vitro). Interestingly, the cell size and BNP mRNA expression level (markers of hypertrophy) were greater in cardiomyocytes treated with both neurotrophin-3 and endothelin-1 than in those stimulated with endothelin-1 alone. These findings demonstrate that neurotrophin-3 is a unique hypertrophic factor, which is paradoxically downregulated in cardiac hypertrophy and might counteract hypertrophic change.
Collapse
Affiliation(s)
- Haruko Kawaguchi-Manabe
- Department of Regenerative Medicine and Advanced Cardiac Therapeutics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kermani P, Hempstead B. Brain-derived neurotrophic factor: a newly described mediator of angiogenesis. Trends Cardiovasc Med 2007; 17:140-3. [PMID: 17482097 PMCID: PMC2268985 DOI: 10.1016/j.tcm.2007.03.002] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 03/22/2007] [Indexed: 12/14/2022]
Abstract
Recent studies indicate that, in addition to its neuropoietic actions, brain derived neurotrophic factor (BDNF) promotes endothelial cell survival and induces neoangiogenesis in ischemic tissues. Unlike many vascular growth factors that act on many vascular beds, BDNF activity is relatively restricted to central arteries, vessels of cardiac and skeletal muscle, and skin. Studies of newly described biologic mediators that act on large-vessel and microvascular beds in these organs will help us to better understand organ-specific vascular development, as well as to develop novel therapeutic strategies to improve the condition of patients with cardiac and peripheral vascular disease. In this review, we summarize dual proangiogenic actions of BDNF, which, through local activation of TrkB receptor, expressed on a subpopulation of endothelial cells and, in addition, by recruitment of bone marrow-derived cells, contribute to neoangiogenesis.
Collapse
Affiliation(s)
- Pouneh Kermani
- Department of Medicine, Weill Medical College of Cornell University, 1300 York Avenue, NY, NY 10021, USA
| | | |
Collapse
|
23
|
Abstract
Neurotrophins are a family of closely related proteins that were identified initially as survival factors for sensory and sympathetic neurons, and have since been shown to control many aspects of survival, development and function of neurons in both the peripheral and the central nervous systems. Each of the four mammalian neurotrophins has been shown to activate one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB and TrkC). In addition, each neurotrophin activates p75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor superfamily. Through Trk receptors, neurotrophins activate Ras, phosphatidyl inositol-3 (PI3)-kinase, phospholipase C-gamma1 and signalling pathways controlled through these proteins, such as the MAP kinases. Activation of p75NTR results in activation of the nuclear factor-kappaB (NF-kappaB) and Jun kinase as well as other signalling pathways. Limiting quantities of neurotrophins during development control the number of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. The neurotrophins also regulate cell fate decisions, axon growth, dendrite growth and pruning and the expression of proteins, such as ion channels, transmitter biosynthetic enzymes and neuropeptide transmitters that are essential for normal neuronal function. Continued presence of the neurotrophins is required in the adult nervous system, where they control synaptic function and plasticity, and sustain neuronal survival, morphology and differentiation. They also have additional, subtler roles outside the nervous system. In recent years, three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.
Collapse
Affiliation(s)
- Louis F Reichardt
- Neuroscience Program, Department of Physiology and Howard Hughes Medical Institute, University of California-San Francisco, 1550 Fourth Street, Rock Hall 284a, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Köhler T, Pröls F, Brand-Saberi B. PCNA in situ hybridization: a novel and reliable tool for detection of dynamic changes in proliferative activity. Histochem Cell Biol 2004; 123:315-27. [PMID: 15616846 DOI: 10.1007/s00418-004-0730-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2004] [Indexed: 12/21/2022]
Abstract
In order to investigate developmental processes, several methods have been established that allow the visualization of local proliferation zones and to follow their dynamics during morphogenesis. In this study we present a detailed description of transitory and continuous proliferation zones in the developing chick embryo. By tracing the S-phase marker proliferating cell nuclear antigen (PCNA) at the mRNA level we were able to identify the initiation and termination of proliferation programs. This approach provides additional information in comparison to the well-known BrdU incorporation or the PCNA immunostaining, which exclusively labels cells that contain PCNA protein. By means of PCNA in situ hybridization we analyzed the normal expression pattern in the 2- to 5-day-old chick embryo. We furthermore monitored the effects on PCNA expression after various manipulations such as removal of the apical ectodermal ridge (AER), the zone of polarizing activity (ZPA), and the surface ectoderm. In addition, we applied morphogens, such as fibroblast growth factors (FGFs), bone morphogenetic proteins (BMPs), and retinoic acid (RA), and subsequently analyzed changes in the pattern of PCNA expression. While ablation of ZPA, AER, or ectoderm are known to reduce cell proliferation and were paralleled by loss of PCNA expression, neither BMP-2 nor BMP-4 affected PCNA expression. Upregulation of PCNA expression could be achieved by application of RA or FGFs, factors known to induce cell proliferation during limb bud outgrowth. The PCNA in situ hybridization data presented here clearly show that this method offers a novel, very sensitive tool for tracing cell proliferation and for visualizing the dynamic patterns arising due to the initiation and termination of the proliferation program.
Collapse
Affiliation(s)
- Thomas Köhler
- Institute of Anatomy and Cell Biology II, University of Freiburg, Albertstrasse 17, 79104 Freiburg, Germany
| | | | | |
Collapse
|
25
|
Abstract
Whereas the heart itself is of mesodermal origin, components of the cardiac outflow tract are formed by the neural crest, an ectodermal derivative that gives rise to the peripheral nervous system, endocrine cells, melanocytes of the skin and internal organs, and connective tissue, bone, and cartilage of the face and ventral neck, among other tissues. Cardiac neural crest cells participate in the septation of the cardiac outflow tract into aorta and pulmonary artery. The migratory cardiac neural crest consists of stem cells, fate-restricted cells, and cells that are committed to the smooth muscle cell lineage. During their migration within the posterior branchial arches, the developmental potentials of pluripotent neural crest cells become restricted. Conversely, neural crest stem cells persist at many locations, including in the cardiac outflow tract. Many aspects of neural crest cell differentiation are driven by growth factor action. Neurotrophin-3 (NT-3) and its preferred receptor, TrkC, play important roles not only in nervous system development and function, but also in cardiac development as deletion of these genes causes outflow tract malformations. In vitro clonal analysis has shown a premature commitment of cardiac neural crest stem cells in TrkC null mice and a perturbed morphology of the endothelial tube. Norepinephrine transporter (NET) function promotes the differentiation of neural crest stem cells into noradrenergic neurons. Surprisingly, many diverse nonneuronal embryonic tissues, in particular in the cardiovascular system, express NET also. It will be of interest to determine whether norepinephrine transport plays a role also in cardiovascular development.
Collapse
Affiliation(s)
- Maya Sieber-Blum
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
26
|
Pennisi DJ, Ballard VLT, Mikawa T. Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart. Dev Dyn 2004; 228:161-72. [PMID: 14517988 DOI: 10.1002/dvdy.10360] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Proper heart development requires patterning across the myocardial wall. Early myocardial patterning is characterized by a transmural subdivision of the myocardium into an outer, highly mitotic, compact zone and an inner, trabecular zone with lower mitotic activity. We have shown previously that fibroblast growth factor receptor (FGFR) -mediated signaling is central to myocyte proliferation in the developing heart. Consistent with this, FGFR-1 and FGF2 are more highly expressed in myocytes of the compact zone. However, the mechanism that regulates the transmural pattern of myocyte proliferation and expression of these mitogenic factors is unknown. The present study examined whether this transmural patterning occurs in a myocardium-autonomous manner or by signals from the epicardium. Microsurgical inhibition of epicardium formation in the embryonic chick gives rise to a decrease in myocyte proliferation, accounting for a thinner compact myocardium. We show that the transmural pattern of myocyte mitotic activity is maintained in these hearts. Consistent with this, the expression patterns of FGF1, FGF2, and FGFR-1 across the myocardium persist in the absence of the epicardium. However, FGF2 and FGFR-1 mRNA levels are reduced in proportion to the depletion of epicardium. The results suggest that epicardium-derived signals are essential for maintenance of the correct amount of myocyte proliferation in the compact myocardium, by means of levels of mitogen expression in the myocardium. However, initiation and maintenance of transmural patterning of the myocardium occurs largely independently of the epicardium.
Collapse
Affiliation(s)
- David J Pennisi
- Department of Cell and Developmental Biology, Cornell University Medical College, New York, New York 10021, USA
| | | | | |
Collapse
|
27
|
Youn YH, Feng J, Tessarollo L, Ito K, Sieber-Blum M. Neural crest stem cell and cardiac endothelium defects in the TrkC null mouse. Mol Cell Neurosci 2004; 24:160-70. [PMID: 14550777 DOI: 10.1016/s1044-7431(03)00125-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
TrkC null mice have multiple cardiac malformations. Since neural crest cells participate in cardiac outflow tract septation, the aim of this study was to determine at the cellular level the putative neural crest defect. We have identified three types of progenitor cells: stem cells that undergo self-renewal and can generate many cell types, cells that are restricted in their developmental potentials, and cells that are committed to the smooth muscle cell lineage. In TrkC null mice, there is a greater than 50% decrease in stem cell numbers and an equivalent increase in fate-restricted cells. The outflow tract wall is thickened and the endothelial tube is disorganized. We conclude that deletion of the TrkC gene causes precocious fate restrictions of the neural crest stem cell and a defect of the outflow tract endothelium, both of which may contribute to the outflow tract malformations that occur in TrkC null mice.
Collapse
MESH Headings
- Animals
- Biomarkers
- Body Patterning/genetics
- Cell Differentiation/genetics
- Cell Lineage/genetics
- Cell Movement/genetics
- Endothelium, Vascular/abnormalities
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Female
- Genes, Reporter/genetics
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/metabolism
- Heart Defects, Congenital/physiopathology
- Male
- Mice
- Mice, Knockout
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Neural Crest/abnormalities
- Neural Crest/cytology
- Neural Crest/metabolism
- Neurotrophin 3/metabolism
- Phenotype
- Receptor, trkC/deficiency
- Receptor, trkC/genetics
- Stem Cells/cytology
- Stem Cells/metabolism
- beta-Galactosidase
Collapse
Affiliation(s)
- Y H Youn
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | |
Collapse
|
28
|
Bernd P, Miles K, Rozenberg I, Borghjid S, Kirby ML. Neurotrophin-3 and TrkC are expressed in the outflow tract of the developing chicken heart. Dev Dyn 2004; 230:767-72. [PMID: 15254910 DOI: 10.1002/dvdy.20084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Transcripts encoding trkC and full-length (catalytic) TrkC receptors were detected in the outflow tract of the chicken heart during early development (stage 17; embryonic day [E] 2.5) before the start of septation. Expression of trkC mRNA persisted through early septation (stage 25, E4.5-E5) but was no longer evident by the end of septation (stage 34, E8). Neurotrophin-3 (NT-3) mRNA was also shown to be present in the outflow tract throughout cardiac development. Quail-chick chimeras were used to confirm that cardiac neural crest cells were not present in the outflow tract at stage 17 (E2.5). Our results show that NT-3 interacts with cells in the outflow tract that are not of neural crest origin. This finding indicates that, in addition to effects on neural crest cells, NT-3 may be important for cardiac development due to its interaction with cells in the outflow tract such as those arising from the secondary heart field.
Collapse
Affiliation(s)
- Paulette Bernd
- Department of Anatomy, State University of New York, Downstate Medical Center, Brooklyn, 11203, USA.
| | | | | | | | | |
Collapse
|
29
|
Du JJ, Dou KF, Peng SY, Qian BZ, Xiao HS, Liu F, Wang WZ, Guan WX, Gao ZQ, Liu YB, Han ZG. Expression of NGF family and their receptors in gastric carcinoma: a cDNA microarray study. World J Gastroenterol 2003; 9:1431-1434. [PMID: 12854135 PMCID: PMC4615477 DOI: 10.3748/wjg.v9.i7.1431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2003] [Revised: 03/04/2003] [Accepted: 03/28/2003] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the expression of NGF family and their receptors in gastric carcinoma and normal gastric mucosa, and to elucidate their effects on gastric carcinoma. METHODS RNA of gastric cancer tissues and normal gastric tissues was respectively isolated and mRNA was purified. Probes of both mRNA reverse transcription product cDNAs labeled with alpha-(33)P dATP were respectively hybridized with Atlas Array membrane where NGF and their family genes were spotted on. Hybridized signal images were scanned on phosphor screen with ImageQuant 5.1 software after hybridization. Normalized values on spots were analyzed with ArrayVersion 5.0 software. Differential expression of NGF family and their receptors mRNA was confirmed between hybridized Atlas Array membranes of gastric cancer tissues and normal gastric mucosa, then their effects on gastric carcinoma were investigated. RESULTS Hybridization signal images on Atlas Array membrane appeared in a lower level of nonspecific hybridization. Both of NGF family and their receptors Trk family mRNA were expressed in gastric cancer and normal gastric mucosa. But adversely up-regulated expression in other tissues and organs. NGF, BDGF, NT-3, NT-4/5, NT-6 and TrkA, B and C were down-regulated simultaneously in gastric carcinoma in comparison with normal gastric mucosa. Degrees of down-regulation in NGF family were greater than those in their receptors Trk family. Down-regulation of NT-3 and BDGF was the most significant, and TrkC down-regulation level was the lowest in receptors Trk family. CONCLUSION Down-regulated expression of NGF family and their receptors Trk family mRNA in gastric cancer is confirmed. NGF family and their receptors Trk family probably play a unique role in gastric cancer cell apoptosis by a novel Ras or Raf signal transduction pathway. Their synchronous effects are closely associated with occurrence and development of gastric carcinoma induced by reduction of signal transduction of programmed cell death.
Collapse
Affiliation(s)
- Jian-Jun Du
- Department of General Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shanxi Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Development of the heart is a complex process involving primary and secondary heart fields that are set aside to generate myocardial and endocardial cell lineages. The molecular inductions that occur in the primary heart field appear to be recapitulated in induction and myocardial differentiation of the secondary heart field, which adds the conotruncal segments to the primary heart tube. While much is now known about the initial steps and factors involved in induction of myocardial differentiation, little is known about induction of endocardial development. Many of the genes expressed by nascent myocardial cells, which then become committed to a specific heart segment, have been identified and studied. In addition to the heart fields, several other "extracardiac" cell populations contribute to the fully functional mature heart. Less is known about the genetic programs of extracardiac cells as they enter the heart and take part in cardiogenesis. The molecular/genetic basis of many congenital cardiac defects has been elucidated in recent years as a result of new insights into the molecular control of developmental events.
Collapse
Affiliation(s)
- Margaret L Kirby
- Department of Pediatrics, Division of Neonatology, Duke University Medical Center, Box 3179, Durham, NC 27710, USA.
| |
Collapse
|
31
|
Ballard VLT, Mikawa T. Constitutive expression of preproendothelin in the cardiac neural crest selectively promotes expansion of the adventitia of the great vessels in vivo. Dev Biol 2002; 251:167-77. [PMID: 12413906 DOI: 10.1006/dbio.2002.0818] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac neural crest cells are essential for normal development of the great vessels and the heart, giving rise to a range of cell types, including both neuronal and non-neuronal adventitial cells and smooth muscle. Endothelin (ET) signaling plays an important role in the development of cardiac neural crest cell lineages, yet the underlying mechanisms that act to control their migration, differentiation, and proliferation remain largely unclear. We examined the expression patterns of the receptor, ET(A), and the ET-specific converting enzyme, ECE-1, in the pharyngeal arches and great vessels of the developing chick embryo. In situ hybridization analysis revealed that, while ET(A) is expressed in the pharyngeal arch mesenchyme, populated by cardiac neural crest cells, ECE-1 expression is localized to the outermost ectodermal cells of the arches and then to the innermost endothelial cells of the great vessels. This dynamic pattern of expression suggests that only a subpopulation of neural crest cells in these regions is responsive to ET signaling at particular developmental time points. To test this, retroviral gene delivery was used to constitutively express preproET-1, a precursor of mature ET-1 ligand, in the cardiac neural crest. This resulted in a selective expansion of the outermost, adventitial cell population in the great vessels. In contrast, neither differentiation nor proliferation of neural crest-derived smooth muscle cells was significantly affected. These results suggest that constitutive expression of exogenous preproET-1 in the cardiac neural crest results in expansion restricted to an adventitial cell population of the developing great vessels.
Collapse
Affiliation(s)
- Victoria L T Ballard
- Department of Cell Biology, Cornell University Medical College, New York, New York 10021, USA
| | | |
Collapse
|
32
|
Cronk KM, Wilkinson GA, Grimes R, Wheeler EF, Jhaveri S, Fundin BT, Silos-Santiago I, Tessarollo L, Reichardt LF, Rice FL. Diverse dependencies of developing Merkel innervation on the trkA and both full-length and truncated isoforms of trkC. Development 2002; 129:3739-50. [PMID: 12117822 PMCID: PMC2710109 DOI: 10.1242/dev.129.15.3739] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study demonstrates that innervation dependent on two different neurotrophin tyrosine kinase (trk) receptors can form the same types of sensory endings (Merkel endings) in the same target (Merkel cells of vibrissa follicles). Some endings transiently express trkA during their initial development, whereas others express trkC throughout their development. Consequently, elimination of kinase domains of either trkA or trkC each result in a partial loss of Merkel endings, whereas absence of kinase domains of both receptors results in a total loss. At the onset of Merkel ending development, at least one kinase-lacking trkC isoform is transiently expressed on all the follicle cells, while neurotrophin 3 is transiently expressed only in the cells at the middle third of the follicle where the Merkel endings and cells develop. This transient non-neuronal expression of truncated trkC is essential for development of any Merkel endings, whereas some Merkel endings and cells still begin to develop in the absence of neurotrophin 3. Therefore, truncated trkC plays a more important role in the development of this innervation than kinase forms of trkA or trkC or of NT3, the only known ligand for trkC receptors.
Collapse
MESH Headings
- Animals
- Embryo, Mammalian/anatomy & histology
- Embryo, Mammalian/physiology
- Female
- Genes, Reporter
- In Situ Hybridization
- Male
- Merkel Cells/cytology
- Merkel Cells/physiology
- Mice
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Models, Biological
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Pregnancy
- Protein Isoforms
- Rats
- Rats, Sprague-Dawley
- Receptor, Nerve Growth Factor
- Receptor, trkA/genetics
- Receptor, trkA/metabolism
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Receptors, Nerve Growth Factor/metabolism
- Recombinant Fusion Proteins
- Vibrissae/cytology
- Vibrissae/growth & development
Collapse
Affiliation(s)
- Katharine M. Cronk
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
| | - George A. Wilkinson
- Neuroscience Unit, Howard Hughes Medical Center, University of California, San Francisco, CA 94143-0724, USA
| | - Rachel Grimes
- Division of Life Sciences, University of Texas, San Antonio, TX 78249, USA
| | - Esther F. Wheeler
- Division of Life Sciences, University of Texas, San Antonio, TX 78249, USA
| | - Sonal Jhaveri
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bengt T. Fundin
- Astra Zeneca R&D Södertälje, Department of Molecular Sciences, SE-141 57 Huddinge, Sweden
| | | | - Lino Tessarollo
- Neural Development Group, NCI-FCRDC, Frederick, MD 21702, USA
| | | | - Frank L. Rice
- Center for Neuropharmacology and Neuroscience, Albany Medical College, Albany, NY 12208, USA
- Author for correspondence (e-mail: )
| |
Collapse
|
33
|
Kanzawa N, Poma CP, Takebayashi-Suzuki K, Diaz KG, Layliev J, Mikawa T. Competency of embryonic cardiomyocytes to undergo Purkinje fiber differentiation is regulated by endothelin receptor expression. Development 2002; 129:3185-94. [PMID: 12070093 DOI: 10.1242/dev.129.13.3185] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Purkinje fibers of the cardiac conduction system differentiate from heart muscle cells during embryogenesis. In the avian heart, Purkinje fiber differentiation takes place along the endocardium and coronary arteries. To date, only the vascular cytokine endothelin (ET) has been demonstrated to induce embryonic cardiomyocytes to differentiate into Purkinje fibers. This ET-induced Purkinje fiber differentiation is mediated by binding of ET to its transmembrane receptors that are expressed by myocytes. Expression of ET converting enzyme 1, which produces a biologically active ET ligand, begins in cardiac endothelia, both arterial and endocardial, at initiation of conduction cell differentiation and continues throughout heart development. Yet, the ability of cardiomyocytes to convert their phenotype in response to ET declines as embryos mature. Therefore, the loss of responsiveness to the inductive signal appears not to be associated with the level of ET ligand in the heart. This study examines the role of ET receptors in this age-dependent loss of inductive responsiveness and the expression profiles of three different types of ET receptors, ETA, ETB and ETB2, in the embryonic chick heart. Whole-mount in situ hybridization analyses revealed that ETA was ubiquitously expressed in both ventricular and atrial myocardium during heart development, while ETB was predominantly expressed in the atrium and the left ventricle. ETB2 expression was detected in valve leaflets but not in the myocardium. RNase protection assays showed that ventricular expression of ETA and ETB increased until Purkinje fiber differentiation began. Importantly, the levels of both receptor isotypes decreased after this time. Retrovirus-mediated overexpression of ETA in ventricular myocytes in which endogenous ET receptors had been downregulated, enhanced their responsiveness to ET, allowing them to differentiate into conduction cells. These results suggest that the developmentally regulated expression of ET receptors plays a crucial role in determining the competency of ventricular myocytes to respond to inductive ET signaling in the chick embryo.
Collapse
Affiliation(s)
- Nobuyuki Kanzawa
- Department of Cell Biology, Cornell University Medical College, 1300 York Avenue, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
34
|
Sedmera D, Hu N, Weiss KM, Keller BB, Denslow S, Thompson RP. Cellular changes in experimental left heart hypoplasia. THE ANATOMICAL RECORD 2002; 267:137-45. [PMID: 11997882 DOI: 10.1002/ar.10098] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypoplastic left heart syndrome (HLHS) is a rare but deadly congenital malformation, which can be created experimentally in the chick embryo by left atrial ligation (LAL). The goal of this study was to examine the cellular changes leading to the profound remodeling of ventricular myocardial architecture that occurs in this model. Hypoplasia of left heart structures was produced after 3H-thymidine prelabeling by partial LAL at stage 24, thereby reducing its volume, and redistributing blood preferentially to the developing right ventricle (RV). Controls included both sham-operated and intact stage-matched embryos. Survivors were studied 4 days after the ligation, when the heart organogenesis was essentially complete. Paraffin sections of the hearts were subjected to autoradiography and immunohistochemistry to detect changes in history of cell proliferation and expression of myosin, and growth factors implicated in cardiomyocyte proliferation. Sampling for apoptosis detection using TUNEL assay was done at stages 29 and 34. LAL resulted in decreased levels of proliferation in the left ventricular compact layer and trabeculae. The right ventricular compact layer also showed a slight decrease, but the trabeculae showed no differences. Anti-myosin staining was significantly reduced in all compartments. The expression levels of growth factors were altered as well. Apoptosis was increased in the right atrioventricular mesenchyme, with no changes in the working myocardium. These data suggest that changes in cardiomyocyte proliferation play a significant role in the pathogenesis of HLHS.
Collapse
Affiliation(s)
- David Sedmera
- Department of Cell Biology and Anatomy, Medical University of South Carolina, 173 Ashley Avenue, BSB 601, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Although rapid progress is being made in many areas of molecular cardiology, issues pertaining to the origins of heart-forming cells, the mechanisms responsible for cardiogenic induction, and the pathways that regulate cardiomyocyte proliferation during embryonic and adult life remain unanswered. In the present study, we review approaches and studies that have shed some light on cardiomyocyte cell cycle regulation. For reference, an initial description of cardiomyogenic induction and morphogenesis is provided, which is followed by a summary of published cell cycle analyses during these stages of cardiac ontology. A review of studies examining cardiomyocyte cell cycle analysis and de novo cardiomyogenic induction in the adult heart is then presented. Finally, studies in which cardiomyocyte cell cycle activity was experimentally manipulated in vitro and in vivo are reviewed. It is hoped that this compilation will serve to stimulate thought and experimentation in this intriguing area of cardiomyocyte cell biology.
Collapse
Affiliation(s)
- Kishore B S Pasumarthi
- Wells Center for Pediatric Research and Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | |
Collapse
|
36
|
von Schack D, Casademunt E, Schweigreiter R, Meyer M, Bibel M, Dechant G. Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system. Nat Neurosci 2001; 4:977-8. [PMID: 11559852 DOI: 10.1038/nn730] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2001] [Accepted: 08/29/2001] [Indexed: 11/08/2022]
Affiliation(s)
- D von Schack
- Department of Neurobiochemistry, Max Planck Institute of Neurobiology, Am Klopferspitz 18a, D-82152 Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Normal septation of the cardiac outflow tract requires migration of neural crest cells from the posterior rhombencephalon to the branchial arches and developing conotruncal endocardial cushions. Proper migration of these cells is mediated by a variety of molecular cues. Adhesion molecules, such as integrins, are involved in the interaction of neural crest cells with the extracellular matrix, while cadherins allow neural crest cells to interact with each other during their migration. Pax3 appears to be important for proliferation of neural crest precursors, and connexin-43-mediated gap junction communication influences the rate of migration. Endothelin and its receptors are required for normal postmigratory differentiation. Platelet-derived growth factor and retinoic acid have roles in neural crest migration and differentiation as well. Finally, the similarity between the cardiovascular malformations seen in the DiGeorge and 22q11 deletion syndromes and animal models of neural crest deficiency has led to the examination of the role of genes located near or within the DiGeorge critical region in neural crest migration.
Collapse
Affiliation(s)
- K L Maschhoff
- Joseph Stoke's Research Institute, Children's Hospital of Philadelphia, PA 19104-4318, USA.
| | | |
Collapse
|
38
|
Liu ZP, Nakagawa O, Nakagawa M, Yanagisawa H, Passier R, Richardson JA, Srivastava D, Olson EN. CHAMP, a novel cardiac-specific helicase regulated by MEF2C. Dev Biol 2001; 234:497-509. [PMID: 11397016 DOI: 10.1006/dbio.2001.0277] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
MEF2C is a MADS-box transcription factor required for cardiac myogenesis and morphogenesis. In MEF2C mutant mouse embryos, heart development arrests at the looping stage (embryonic day 9.0), the future right ventricular chamber fails to form, and cardiomyocyte differentiation is disrupted. To identify genes regulated by MEF2C in the developing heart, we performed differential array analysis coupled with subtractive cloning using RNA from heart tubes of wild-type and MEF2C-null embryos. Here, we describe a novel MEF2C-dependent gene that encodes a cardiac-restricted protein, called CHAMP (cardiac helicase activated by MEF2 protein), that contains seven conserved motifs characteristic of helicases involved in RNA processing, DNA replication, and transcription. During mouse embryogenesis, CHAMP expression commences in the linear heart tube at embryonic day 8.0, shortly after initiation of MEF2C expression in the cardiogenic region. Thereafter, CHAMP is expressed specifically in embryonic and postnatal cardiomyocytes. At the trabeculation stage of heart development, CHAMP expression is highest in the trabecular region in which cardiomyocytes have exited the cell cycle and is lowest in the proliferative compact zone. These findings suggest that CHAMP acts downstream of MEF2C in a cardiac-specific regulatory pathway for RNA processing and/or transcriptional control.
Collapse
Affiliation(s)
- Z P Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75390-9148, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Neurotrophins regulate development, maintenance, and function of vertebrate nervous systems. Neurotrophins activate two different classes of receptors, the Trk family of receptor tyrosine kinases and p75NTR, a member of the TNF receptor superfamily. Through these, neurotrophins activate many signaling pathways, including those mediated by ras and members of the cdc-42/ras/rho G protein families, and the MAP kinase, PI-3 kinase, and Jun kinase cascades. During development, limiting amounts of neurotrophins function as survival factors to ensure a match between the number of surviving neurons and the requirement for appropriate target innervation. They also regulate cell fate decisions, axon growth, dendrite pruning, the patterning of innervation and the expression of proteins crucial for normal neuronal function, such as neurotransmitters and ion channels. These proteins also regulate many aspects of neural function. In the mature nervous system, they control synaptic function and synaptic plasticity, while continuing to modulate neuronal survival.
Collapse
Affiliation(s)
- Eric J Huang
- Department of Pathology, University of California, San Francisco, California 94143; e-mail:
| | - Louis F Reichardt
- Department of Physiology, University of California, San Francisco, California 94143, and Howard Hughes Medical Institute, San Francisco, California 94143; e-mail:
| |
Collapse
|