1
|
Law STS, Yu Y, Nong W, So WL, Li Y, Swale T, Ferrier DEK, Qiu J, Qian P, Hui JHL. The genome of the deep-sea anemone Actinernus sp. contains a mega-array of ANTP-class homeobox genes. Proc Biol Sci 2023; 290:20231563. [PMID: 37876192 PMCID: PMC10598428 DOI: 10.1098/rspb.2023.1563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Members of the phylum Cnidaria include sea anemones, corals and jellyfish, and have successfully colonized both marine and freshwater habitats throughout the world. The understanding of how cnidarians adapt to extreme environments such as the dark, high-pressure deep-sea habitat has been hindered by the lack of genomic information. Here, we report the first chromosome-level deep-sea cnidarian genome, of the anemone Actinernus sp., which was 1.39 Gbp in length and contained 44 970 gene models including 14 806 tRNA genes and 30 164 protein-coding genes. Analyses of homeobox genes revealed the longest chromosome hosts a mega-array of Hox cluster, HoxL, NK cluster and NKL homeobox genes; until now, such an array has only been hypothesized to have existed in ancient ancestral genomes. In addition to this striking arrangement of homeobox genes, analyses of microRNAs revealed cnidarian-specific complements that are distinctive for nested clades of these animals, presumably reflecting the progressive evolution of the gene regulatory networks in which they are embedded. Also, compared with other sea anemones, circadian rhythm genes were lost in Actinernus sp., which likely reflects adaptation to living in the dark. This high-quality genome of a deep-sea cnidarian thus reveals some of the likely molecular adaptations of this ecologically important group of metazoans to the extreme deep-sea environment. It also deepens our understanding of the evolution of genome content and organization of animals in general and cnidarians in particular, specifically from the viewpoint of key developmental control genes like the homeobox-encoding genes, where we find an array of genes that until now has only been hypothesized to have existed in the ancient ancestor that pre-dated both the cnidarians and bilaterians.
Collapse
Affiliation(s)
- Sean Tsz Sum Law
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yifei Yu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Wai Lok So
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Thomas Swale
- Dovetail Genomics, LLC, Scotts Valley, CA 95066, USA
| | - David E. K. Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St. Andrews, St. Andrews, UK
| | - Jianwen Qiu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, People's Republic of China
- Department of Biology, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Peiyuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
2
|
Steinworth BM, Martindale MQ, Ryan JF. Gene Loss may have Shaped the Cnidarian and Bilaterian Hox and ParaHox Complement. Genome Biol Evol 2022; 15:6889381. [PMID: 36508343 PMCID: PMC9825252 DOI: 10.1093/gbe/evac172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Hox and ParaHox transcription factors are important for specifying cell fates along the primary body axes during the development of most animals. Within Cnidaria, much of the research on Hox/ParaHox genes has focused on Anthozoa (anemones and corals) and Hydrozoa (hydroids) and has concentrated on the evolution and function of cnidarian Hox genes in relation to their bilaterian counterparts. Here we analyze together the full complement of Hox and ParaHox genes from species representing all four medusozoan classes (Staurozoa, Cubozoa, Hydrozoa, and Scyphozoa) and both anthozoan classes (Octocorallia and Hexacorallia). Our results show that Hox genes involved in patterning the directive axes of anthozoan polyps are absent in the stem leading to Medusozoa. For the first time, we show spatial and temporal expression patterns of Hox and ParaHox genes in the upside-down jellyfish Cassiopea xamachana (Scyphozoa), which are consistent with diversification of medusozoan Hox genes both from anthozoans and within medusozoa. Despite unprecedented taxon sampling, our phylogenetic analyses, like previous studies, are characterized by a lack of clear homology between most cnidarian and bilaterian Hox and Hox-related genes. Unlike previous studies, we propose the hypothesis that the cnidarian-bilaterian ancestor possessed a remarkably large Hox complement and that extensive loss of Hox genes was experienced by both cnidarian and bilaterian lineages.
Collapse
Affiliation(s)
- Bailey M Steinworth
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, Florida 32080,Department of Biology, University of Florida, Gainesville, Florida 32611
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, Florida 32080,Department of Biology, University of Florida, Gainesville, Florida 32611
| | | |
Collapse
|
3
|
Gąsiorowski L, Hejnol A. Hox gene expression during development of the phoronid Phoronopsis harmeri. EvoDevo 2020; 11:2. [PMID: 32064072 PMCID: PMC7011278 DOI: 10.1186/s13227-020-0148-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Phoronida is a small group of marine worm-like suspension feeders, which together with brachiopods and bryozoans form the clade Lophophorata. Although their development is well studied on the morphological level, data regarding gene expression during this process are scarce and restricted to the analysis of relatively few transcription factors. Here, we present a description of the expression patterns of Hox genes during the embryonic and larval development of the phoronid Phoronopsis harmeri. Results We identified sequences of eight Hox genes in the transcriptome of Ph. harmeri and determined their expression pattern during embryonic and larval development using whole mount in situ hybridization. We found that none of the Hox genes is expressed during embryonic development. Instead their expression is initiated in the later developmental stages, when the larval body is already formed. In the investigated initial larval stages the Hox genes are expressed in the non-collinear manner in the posterior body of the larvae: in the telotroch and the structures that represent rudiments of the adult worm. Additionally, we found that certain head-specific transcription factors are expressed in the oral hood, apical organ, preoral coelom, digestive system and developing larval tentacles, anterior to the Hox-expressing territories. Conclusions The lack of Hox gene expression during early development of Ph. harmeri indicates that the larval body develops without positional information from the Hox patterning system. Such phenomenon might be a consequence of the evolutionary intercalation of the larval form into an ancestral life cycle of phoronids. The observed Hox gene expression can also be a consequence of the actinotrocha representing a “head larva”, which is composed of the most anterior body region that is devoid of Hox gene expression. Such interpretation is further supported by the expression of head-specific transcription factors. This implies that the Hox patterning system is used for the positional information of the trunk rudiments and is, therefore, delayed to the later larval stages. We propose that a new body form was intercalated to the phoronid life cycle by precocious development of the anterior structures or by delayed development of the trunk rudiment in the ancestral phoronid larva.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- 1Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway.,2Department of Biological Sciences, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| | - Andreas Hejnol
- 1Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway.,2Department of Biological Sciences, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway
| |
Collapse
|
4
|
Gąsiorowski L, Hejnol A. Hox gene expression in postmetamorphic juveniles of the brachiopod Terebratalia transversa. EvoDevo 2019; 10:1. [PMID: 30637095 PMCID: PMC6325747 DOI: 10.1186/s13227-018-0114-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/22/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Hox genes encode a family of homeodomain containing transcription factors that are clustered together on chromosomes of many Bilateria. Some bilaterian lineages express these genes during embryogenesis in spatial and/or temporal order according to their arrangement in the cluster, a phenomenon referred to as collinearity. Expression of Hox genes is well studied during embryonic and larval development of numerous species; however, relatively few studies focus on the comparison of pre- and postmetamorphic expression of Hox genes in animals with biphasic life cycle. Recently, the expression of Hox genes was described for embryos and larvae of Terebratalia transversa, a rhynchonelliformean brachiopod, which possesses distinct metamorphosis from planktonic larvae to sessile juveniles. During premetamorphic development, T. transversa does not exhibit spatial collinearity and several of its Hox genes are recruited for the morphogenesis of novel structures. In our study, we determined the expression of Hox genes in postmetamorphic juveniles of T. transversa in order to examine metamorphosis-related changes of expression patterns and to test whether Hox genes are expressed in the spatially collinear way in the postmetamorphic juveniles. RESULTS Hox genes are expressed in a spatially non-collinear manner in juveniles, generally showing similar patterns as ones observed in competent larvae: genes labial and post1 are expressed in chaetae-related structures, sex combs reduced in the shell-forming epithelium, whereas lox5 and lox4 in dorso-posterior epidermis. After metamorphosis, expression of genes proboscipedia, hox3, deformed and antennapedia becomes restricted to, respectively, shell musculature, prospective hinge rudiments and pedicle musculature and epidermis. CONCLUSIONS All developmental stages of T. transversa, including postmetamorphic juveniles, exhibit a spatial non-collinear Hox genes expression with only minor changes observed between pre- and postmetamorphic stages. Our results are concordant with morphological observation that metamorphosis in rhynchonelliformean brachiopods, despite being rapid, is rather gradual. The most drastic changes in Hox gene expression patterns observed during metamorphosis could be explained by the inversion of the mantle lobe, which relocates some of the more posterior larval structures into the anterior edge of the juveniles. Co-option of Hox genes for the morphogenesis of novel structures is even more pronounced in postmetamorphic brachiopods when compared to larvae.
Collapse
Affiliation(s)
- Ludwik Gąsiorowski
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Abstract
Bilaterality – the possession of two orthogonal body axes – is the name-giving trait of all bilaterian animals. These body axes are established during early embryogenesis and serve as a three-dimensional coordinate system that provides crucial spatial cues for developing cells, tissues, organs and appendages. The emergence of bilaterality was a major evolutionary transition, as it allowed animals to evolve more complex body plans. Therefore, how bilaterality evolved and whether it evolved once or several times independently is a fundamental issue in evolutionary developmental biology. Recent findings from non-bilaterian animals, in particular from Cnidaria, the sister group to Bilateria, have shed new light into the evolutionary origin of bilaterality. Here, we compare the molecular control of body axes in radially and bilaterally symmetric cnidarians and bilaterians, identify the minimal set of traits common for Bilateria, and evaluate whether bilaterality arose once or more than once during evolution.
Collapse
Affiliation(s)
- Grigory Genikhovich
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
6
|
Layden MJ, Rentzsch F, Röttinger E. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:408-28. [PMID: 26894563 PMCID: PMC5067631 DOI: 10.1002/wdev.222] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 11/28/2015] [Indexed: 02/01/2023]
Abstract
Reverse genetics and next‐generation sequencing unlocked a new era in biology. It is now possible to identify an animal(s) with the unique biology most relevant to a particular question and rapidly generate tools to functionally dissect that biology. This review highlights the rise of one such novel model system, the starlet sea anemone Nematostella vectensis. Nematostella is a cnidarian (corals, jellyfish, hydras, sea anemones, etc.) animal that was originally targeted by EvoDevo researchers looking to identify a cnidarian animal to which the development of bilaterians (insects, worms, echinoderms, vertebrates, mollusks, etc.) could be compared. Studies in Nematostella have accomplished this goal and informed our understanding of the evolution of key bilaterian features. However, Nematostella is now going beyond its intended utility with potential as a model to better understand other areas such as regenerative biology, EcoDevo, or stress response. This review intends to highlight key EvoDevo insights from Nematostella that guide our understanding about the evolution of axial patterning mechanisms, mesoderm, and nervous systems in bilaterians, as well as to discuss briefly the potential of Nematostella as a model to better understand the relationship between development and regeneration. Lastly, the sum of research to date in Nematostella has generated a variety of tools that aided the rise of Nematostella to a viable model system. We provide a catalogue of current resources and techniques available to facilitate investigators interested in incorporating Nematostella into their research. WIREs Dev Biol 2016, 5:408–428. doi: 10.1002/wdev.222 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), CNRS UMR 7284, INSERM U1081, Université de Nice-Sophia-Antipolis, Nice, France
| |
Collapse
|
7
|
Wollesen T, Rodríguez Monje SV, McDougall C, Degnan BM, Wanninger A. The ParaHox gene Gsx patterns the apical organ and central nervous system but not the foregut in scaphopod and cephalopod mollusks. EvoDevo 2015; 6:41. [PMID: 26715985 PMCID: PMC4693441 DOI: 10.1186/s13227-015-0037-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 12/17/2015] [Indexed: 11/21/2022] Open
Abstract
Background It has been hypothesized that the ParaHox gene Gsx patterned the foregut of the last common bilaterian ancestor. This notion was corroborated by Gsx expression in three out of four lophotrochozoan species, several ecdysozoans, and some deuterostomes. Remarkably, Gsx is also expressed in the bilaterian anterior-most central nervous system (CNS) and the gastropod and annelid apical organ. To infer whether these findings are consistent with other mollusks or even lophotrochozoans, we investigated Gsx expression in developmental stages of representatives of two other molluscan classes, the scaphopod Antalis entalis and the cephalopod Idiosepius notoides. Results Gsx is not expressed in the developing digestive tract of Antalis entalis and Idiosepius notoides. Instead, it is expressed in cells of the apical organ in the scaphopod trochophore and in two cells adjacent to this organ. Late-stage trochophores express Aen-Gsx in cells of the developing cerebral and pedal ganglia and in cells close to the pavilion, mantle, and foot. In postmetamorphic specimens, Aen-Gsx is expressed in the cerebral and pedal ganglia, the foot, and the nascent captacula. In early squid embryos, Ino-Gsx is expressed in the cerebral, palliovisceral, and optic ganglia. In late-stage embryos, Ino-Gsx is additionally expressed close to the eyes and in the supraesophageal and posterior subesophageal masses and optic lobes. Developmental stages close to hatching express Ino-Gsx only close to the eyes. Conclusions Our results suggest that Gsx expression in the foregut might not be a plesiomorphic trait of the Lophotrochozoa as insinuated previously. Since neither ecdysozoans nor deuterostomes express Gsx in their gut, a role in gut formation in the last common bilaterian ancestor appears unlikely. Gsx is consistently expressed in the bilaterian anterior-most CNS and the apical organ of lophotrochozoan larvae, suggesting a recruitment of Gsx into the formation of this organ in the Lophotrochozoa. The cephalopod posterior subesophageal mass and optic ganglia and the scaphopod pedal ganglia also express Gsx. In summary, Gsx expression only appears to be conserved in the anterior-most brain region during evolution. Accordingly, Gsx appears to have been recruited into the formation of other expression domains, e.g., the apical organ or the foregut, in some lophotrochozoans.
Collapse
Affiliation(s)
- Tim Wollesen
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | | | - Carmel McDougall
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Bernard M Degnan
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Andreas Wanninger
- Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
8
|
Reddy PC, Unni MK, Gungi A, Agarwal P, Galande S. Evolution of Hox-like genes in Cnidaria: Study of Hydra Hox repertoire reveals tailor-made Hox-code for Cnidarians. Mech Dev 2015; 138 Pt 2:87-96. [DOI: 10.1016/j.mod.2015.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 11/26/2022]
|
9
|
Merabet S, Galliot B. The TALE face of Hox proteins in animal evolution. Front Genet 2015; 6:267. [PMID: 26347770 PMCID: PMC4539518 DOI: 10.3389/fgene.2015.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/31/2015] [Indexed: 01/22/2023] Open
Abstract
Hox genes are major regulators of embryonic development. One of their most conserved functions is to coordinate the formation of specific body structures along the anterior-posterior (AP) axis in Bilateria. This architectural role was at the basis of several morphological innovations across bilaterian evolution. In this review, we traced the origin of the Hox patterning system by considering the partnership with PBC and Meis proteins. PBC and Meis belong to the TALE-class of homeodomain-containing transcription factors and act as generic cofactors of Hox proteins for AP axis patterning in Bilateria. Recent data indicate that Hox proteins acquired the ability to interact with their TALE partners in the last common ancestor of Bilateria and Cnidaria. These interactions relied initially on a short peptide motif called hexapeptide (HX), which is present in Hox and non-Hox protein families. Remarkably, Hox proteins can also recruit the TALE cofactors by using specific PBC Interaction Motifs (SPIMs). We describe how a functional Hox/TALE patterning system emerged in eumetazoans through the acquisition of SPIMs. We anticipate that interaction flexibility could be found in other patterning systems, being at the heart of the astonishing morphological diversity observed in the animal kingdom.
Collapse
Affiliation(s)
- Samir Merabet
- Centre National de Recherche Scientifique, Institut de Génomique Fonctionnelle de Lyon Lyon, France ; Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon Lyon, France
| | - Brigitte Galliot
- Department of Genetics and Evolution, Faculty of Science, Institute of Genetics and Genomics in Geneva, University of Geneva Geneva, Switzerland
| |
Collapse
|
10
|
Sanders SM, Cartwright P. Interspecific Differential Expression Analysis of RNA-Seq Data Yields Insight into Life Cycle Variation in Hydractiniid Hydrozoans. Genome Biol Evol 2015; 7:2417-31. [PMID: 26251524 PMCID: PMC4558869 DOI: 10.1093/gbe/evv153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2015] [Indexed: 12/25/2022] Open
Abstract
Hydrozoans are known for their complex life cycles, which can alternate between an asexually reproducing polyp stage and a sexually reproducing medusa stage. Most hydrozoan species, however, lack a free-living medusa stage and instead display a developmentally truncated form, called a medusoid or sporosac, which generally remains attached to the polyp. Although evolutionary transitions in medusa truncation and loss have been investigated phylogenetically, little is known about the genes involved in the development and loss of this life cycle stage. Here, we present a new workflow for evaluating differential expression (DE) between two species using short read Illumina RNA-seq data. Through interspecific DE analyses between two hydractiniid hydrozoans, Hydractinia symbiolongicarpus and Podocoryna carnea, we identified genes potentially involved in the developmental, functional, and morphological differences between the fully developed medusa of P. carnea and reduced sporosac of H. symbiolongicarpus. A total of 10,909 putative orthologs of H. symbiolongicarpus and P. carnea were identified from de novo assemblies of short read Illumina data. DE analysis revealed 938 of these are differentially expressed between P. carnea developing and adult medusa, when compared with H. symbiolongicarpus sporosacs, the majority of which have not been previously characterized in cnidarians. In addition, several genes with no corresponding ortholog in H. symbiolongicarpus were expressed in developing medusa of P. carnea. Results presented here show interspecific DE analyses of RNA-seq data to be a sensitive and reliable method for identifying genes and gene pathways potentially involved in morphological and life cycle differences between species.
Collapse
Affiliation(s)
- Steven M Sanders
- Department of Ecology and Evolutionary Biology, University of Kansas
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas
| |
Collapse
|
11
|
The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol 2013; 11:e1001488. [PMID: 23483856 PMCID: PMC3586664 DOI: 10.1371/journal.pbio.1001488] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 01/09/2013] [Indexed: 12/14/2022] Open
Abstract
The origin of the bilaterian head is a fundamental question for the evolution of animal body plans. The head of bilaterians develops at the anterior end of their primary body axis and is the site where the brain is located. Cnidarians, the sister group to bilaterians, lack brain-like structures and it is not clear whether the oral, the aboral, or none of the ends of the cnidarian primary body axis corresponds to the anterior domain of bilaterians. In order to understand the evolutionary origin of head development, we analysed the function of conserved genetic regulators of bilaterian anterior development in the sea anemone Nematostella vectensis. We show that orthologs of the bilaterian anterior developmental genes six3/6, foxQ2, and irx have dynamic expression patterns in the aboral region of Nematostella. Functional analyses reveal that NvSix3/6 acts upstream of NvFoxQ2a as a key regulator of the development of a broad aboral territory in Nematostella. NvSix3/6 initiates an autoregulatory feedback loop involving positive and negative regulators of FGF signalling, which subsequently results in the downregulation of NvSix3/6 and NvFoxQ2a in a small domain at the aboral pole, from which the apical organ develops. We show that signalling by NvFGFa1 is specifically required for the development of the apical organ, whereas NvSix3/6 has an earlier and broader function in the specification of the aboral territory. Our functional and gene expression data suggest that the head-forming region of bilaterians is derived from the aboral domain of the cnidarian-bilaterian ancestor.
Collapse
|
12
|
DuBuc TQ, Ryan JF, Shinzato C, Satoh N, Martindale MQ. Coral comparative genomics reveal expanded Hox cluster in the cnidarian-bilaterian ancestor. Integr Comp Biol 2012; 52:835-41. [PMID: 22767488 PMCID: PMC4817585 DOI: 10.1093/icb/ics098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The key developmental role of the Hox cluster of genes was established prior to the last common ancestor of protostomes and deuterostomes and the subsequent evolution of this cluster has played a major role in the morphological diversity exhibited in extant bilaterians. Despite 20 years of research into cnidarian Hox genes, the nature of the cnidarian-bilaterian ancestral Hox cluster remains unclear. In an attempt to further elucidate this critical phylogenetic node, we have characterized the Hox cluster of the recently sequenced Acropora digitifera genome. The A. digitifera genome contains two anterior Hox genes (PG1 and PG2) linked to an Eve homeobox gene and an Anthox1A gene, which is thought to be either a posterior or posterior/central Hox gene. These data show that the Hox cluster of the cnidarian-bilaterian ancestor was more extensive than previously thought. The results are congruent with the existence of an ancient set of constraints on the Hox cluster and reinforce the importance of incorporating a wide range of animal species to reconstruct critical ancestral nodes.
Collapse
Affiliation(s)
- Timothy Q. DuBuc
- *Kewalo Marine Laboratory, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA; Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Joseph F. Ryan
- *Kewalo Marine Laboratory, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA; Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Chuya Shinzato
- *Kewalo Marine Laboratory, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA; Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Nori Satoh
- *Kewalo Marine Laboratory, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA; Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| | - Mark Q. Martindale
- *Kewalo Marine Laboratory, University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA; Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway; Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan
| |
Collapse
|
13
|
Graziussi DF, Suga H, Schmid V, Gehring WJ. The "eyes absent" (eya) gene in the eye-bearing hydrozoan jellyfish Cladonema radiatum: conservation of the retinal determination network. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:257-67. [PMID: 22821862 DOI: 10.1002/jez.b.22442] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Eyes absent (Eya) is a member of the Retinal Determination Gene Network (RDGN), a set of genes responsible for eye specification in Drosophila. Eya is a dual function protein, working as a transcription factor in the nucleus and as a tyrosine phosphatase in the cytoplasm. It had been shown that Pax and Six family genes, main components of the RDGN, are present in the hydrozoan Cladonema radiatum and that they are expressed in the eye. However, nothing had been known about the Eya family in hydrozoan jellyfish. Here we report the presence of an Eya homologue (CrEya) in Cladonema. Real-time PCR analysis and in situ hybridization showed that CrEya is expressed in the eye. Furthermore, the comprehensive survey of eukaryote genomes revealed that the acquisition of the N-terminal transactivation domain, including the EYA Domain 2 and its adjacent sequence shared by all eumetazoans, happened early in evolution, before the separation of Cnidaria and Bilateria. Our results uncover the evolution of the two domains and show a conservation of the expression pattern of the Eya gene between Cnidaria and Bilateria, which, together with previous data, supports the hypothesis of the monophyletic origin of metazoans eyes. We additionally show that CrEya is also expressed in the oocytes, where two other members of the RDGN, CrPaxB, and Six4/5-Cr, are known to be expressed. These data suggest that several members of the RDGN have begun to be localized also into the different context of egg development early in the course of metazoan evolution.
Collapse
|
14
|
Duffy DJ. Instructive reconstruction: a new role for apoptosis in pattern formation. Instructive apoptotic patterning establishes de novo tissue generation via the apoptosis linked production of morphogenic signals. Bioessays 2012; 34:561-4. [PMID: 22488101 DOI: 10.1002/bies.201200018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Apoptosis is not only involved in patterning by removal of tissue (destructive apoptotic patterning), but it can also function in signalling the site of de novo tissue generation via morphogenic signals (instructive apoptotic patterning).
Collapse
Affiliation(s)
- David J Duffy
- Systems Biology Ireland, Conway Institute, University College Dublin, Belfield, Dublin, Ireland.
| |
Collapse
|
15
|
Piraino S, Zega G, Di Benedetto C, Leone A, Dell'Anna A, Pennati R, Candia Carnevali D, Schmid V, Reichert H. Complex neural architecture in the diploblastic larva of Clava multicornis (Hydrozoa, Cnidaria). J Comp Neurol 2011; 519:1931-51. [DOI: 10.1002/cne.22614] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Moreno E, De Mulder K, Salvenmoser W, Ladurner P, Martínez P. Inferring the ancestral function of the posterior Hox gene within the bilateria: controlling the maintenance of reproductive structures, the musculature and the nervous system in the acoel flatworm Isodiametra pulchra. Evol Dev 2010; 12:258-66. [PMID: 20565536 DOI: 10.1111/j.1525-142x.2010.00411.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Molecular phylogenies place the acoel flatworms as the sister-group to the remaining Bilateria, a position that should prove very valuable when trying to understand the evolutionary origins of the bilaterian body plan. A major feature characterizing Bilateria is the presence of two, orthogonal, body axis. In this article we aim at tackling the problem of how the bilaterian anterior-posterior (AP) axis is organized, and how this axis have been established over evolutionary time. To this purpose we have studied the role of some key regulatory genes involved in the control of the AP axis, the Hox family of transcription factors. All acoels studied to date contain a minimal complement of three Hox genes that are all expressed in nested domains along this major axis, providing the oldest evidence for a "Hox vectorial system" working in Bilateria. However, this proposition is not based in the analysis of Hox functions. Here we document the specific roles of one posterior Hox gene, IpHoxPost, in the postembryonic development of the acoel Isodiametra pulchra. The analysis has been done using RNA interference technologies, for the first time in acoels, and we demonstrate that the functions of this gene are restricted to the posterior region of the animal, within the muscular and neural tissues. We conclude, therefore, that the posterior Hox genes were used to specify and maintain defined anatomical regions within the AP axis of animals since the beginning of bilaterian evolution.
Collapse
Affiliation(s)
- Eduardo Moreno
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | |
Collapse
|
17
|
Windsor PJ, Leys SP. Wnt signaling and induction in the sponge aquiferous system: evidence for an ancient origin of the organizer. Evol Dev 2010; 12:484-93. [DOI: 10.1111/j.1525-142x.2010.00434.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Abstract
How animals establish and pattern the primary body axis is one of the most fundamental problems in biology. Data from diverse deuterostomes (frog, fish, mouse, and amphioxus) and from planarians (protostomes) suggest that Wnt signaling through beta-catenin controls posterior identity during body plan formation in most bilaterally symmetric animals. Wnt signaling also influences primary axis polarity of pre-bilaterian animals, indicating that an axial patterning role for Wnt signaling predates the evolution of bilaterally symmetric animals. The use of posterior Wnt signaling and anterior Wnt inhibition might be a unifying principle of body plan development in most animals.
Collapse
Affiliation(s)
- Christian P Petersen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
19
|
Schierwater B, Kamm K. The Early Evolution of Hox Genes: A Battle of Belief? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:81-90. [DOI: 10.1007/978-1-4419-6673-5_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
20
|
Origins of neurogenesis, a cnidarian view. Dev Biol 2009; 332:2-24. [PMID: 19465018 DOI: 10.1016/j.ydbio.2009.05.563] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 05/14/2009] [Accepted: 05/16/2009] [Indexed: 11/22/2022]
Abstract
New perspectives on the origin of neurogenesis emerged with the identification of genes encoding post-synaptic proteins as well as many "neurogenic" regulators as the NK, Six, Pax, bHLH proteins in the Demosponge genome, a species that might differentiate sensory cells but no neurons. However, poriferans seem to miss some key regulators of the neurogenic circuitry as the Hox/paraHox and Otx-like gene families. Moreover as a general feature, many gene families encoding evolutionarily-conserved signaling proteins and transcription factors were submitted to a wave of gene duplication in the last common eumetazoan ancestor, after Porifera divergence. In contrast gene duplications in the last common bilaterian ancestor, Urbilateria, are limited, except for the bHLH Atonal-class. Hence Cnidaria share with Bilateria a large number of genetic tools. The expression and functional analyses currently available suggest a neurogenic function for numerous orthologs in developing or adult cnidarians where neurogenesis takes place continuously. As an example, in the Hydra polyp, the Clytia medusa and the Acropora coral, the Gsx/cnox2/Anthox-2 ParaHox gene likely supports neurogenesis. Also neurons and nematocytes (mechanosensory cells) share in hydrozoans a common stem cell and several regulatory genes indicating that they can be considered as sister cells. Performed in anthozoan and medusozoan species, these studies should tell us more about the way(s) evolution hazards achieved the transition from epithelial to neuronal cell fate, and about the robustness of the genetic circuitry that allowed neuromuscular transmission to arise and be maintained across evolution.
Collapse
|
21
|
Quiquand M, Yanze N, Schmich J, Schmid V, Galliot B, Piraino S. More constraint on ParaHox than Hox gene families in early metazoan evolution. Dev Biol 2009; 328:173-87. [DOI: 10.1016/j.ydbio.2009.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 01/14/2009] [Accepted: 01/14/2009] [Indexed: 12/28/2022]
|
22
|
Manuel M. Early evolution of symmetry and polarity in metazoan body plans. C R Biol 2009; 332:184-209. [DOI: 10.1016/j.crvi.2008.07.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 07/21/2008] [Indexed: 10/21/2022]
|
23
|
Burton PM, Finnerty JR. Conserved and novel gene expression between regeneration and asexual fission in Nematostella vectensis. Dev Genes Evol 2009; 219:79-87. [PMID: 19184098 DOI: 10.1007/s00427-009-0271-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 01/02/2009] [Indexed: 11/28/2022]
Abstract
Due to work in model systems (e.g., flies and mice), the molecular mechanisms of embryogenesis are known in exquisite detail. However, these organisms are incapable of asexual reproduction and possess limited regenerative abilities. Thus, the mechanisms of alternate developmental trajectories and their relation to embryonic mechanisms remain understudied. Because these developmental trajectories are present in a diverse group of animal phyla spanning the metazoan phylogeny, including cnidarians, annelids, and echinoderms, they are likely to have played a major role in animal evolution. The starlet sea anemone Nematostella vectensis, an emerging model system, undergoes larval development, asexual fission, and complete bi-directional regeneration in the field and laboratory. In order to investigate to what extent embryonic patterning mechanisms are utilized during alternate developmental trajectories, we examined expression of developmental regulatory genes during regeneration and fission. When compared to previously reported embryonic expression patterns, we found that all genes displayed some level of expression consistent with embryogenesis. However, five of seven genes investigated also displayed striking differences in gene expression between one or more developmental trajectory. These results demonstrate that alternate developmental trajectories utilize distinct molecular mechanisms upstream of major developmental regulatory genes such as fox, otx, and Hox-like.
Collapse
Affiliation(s)
- Patrick M Burton
- Biology Department, Wabash College, Crawfordsville, IN 47933, USA.
| | | |
Collapse
|
24
|
Chiori R, Jager M, Denker E, Wincker P, Da Silva C, Le Guyader H, Manuel M, Quéinnec E. Are Hox genes ancestrally involved in axial patterning? Evidence from the hydrozoan Clytia hemisphaerica (Cnidaria). PLoS One 2009; 4:e4231. [PMID: 19156208 PMCID: PMC2626245 DOI: 10.1371/journal.pone.0004231] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/05/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The early evolution and diversification of Hox-related genes in eumetazoans has been the subject of conflicting hypotheses concerning the evolutionary conservation of their role in axial patterning and the pre-bilaterian origin of the Hox and ParaHox clusters. The diversification of Hox/ParaHox genes clearly predates the origin of bilaterians. However, the existence of a "Hox code" predating the cnidarian-bilaterian ancestor and supporting the deep homology of axes is more controversial. This assumption was mainly based on the interpretation of Hox expression data from the sea anemone, but growing evidence from other cnidarian taxa puts into question this hypothesis. METHODOLOGY/PRINCIPAL FINDINGS Hox, ParaHox and Hox-related genes have been investigated here by phylogenetic analysis and in situ hybridisation in Clytia hemisphaerica, an hydrozoan species with medusa and polyp stages alternating in the life cycle. Our phylogenetic analyses do not support an origin of ParaHox and Hox genes by duplication of an ancestral ProtoHox cluster, and reveal a diversification of the cnidarian HOX9-14 genes into three groups called A, B, C. Among the 7 examined genes, only those belonging to the HOX9-14 and the CDX groups exhibit a restricted expression along the oral-aboral axis during development and in the planula larva, while the others are expressed in very specialised areas at the medusa stage. CONCLUSIONS/SIGNIFICANCE Cross species comparison reveals a strong variability of gene expression along the oral-aboral axis and during the life cycle among cnidarian lineages. The most parsimonious interpretation is that the Hox code, collinearity and conservative role along the antero-posterior axis are bilaterian innovations.
Collapse
Affiliation(s)
- Roxane Chiori
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Muriel Jager
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Elsa Denker
- Sars International Centre for Marine Molecular Biology, Bergen, Norway
| | | | | | - Hervé Le Guyader
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Michaël Manuel
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| | - Eric Quéinnec
- UPMC Univ Paris 06, UMR 7138 CNRS UPMC MNHN IRD, Case 05, Paris, France
| |
Collapse
|
25
|
Yuan D, Nakanishi N, Jacobs DK, Hartenstein V. Embryonic development and metamorphosis of the scyphozoan Aurelia. Dev Genes Evol 2008; 218:525-39. [PMID: 18850238 DOI: 10.1007/s00427-008-0254-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 09/14/2008] [Indexed: 10/21/2022]
Abstract
We investigated the development of Aurelia (Cnidaria, Scyphozoa) during embryogenesis and metamorphosis into a polyp, using antibody markers combined with confocal and transmission electron microscopy. Early embryos form actively proliferating coeloblastulae. Invagination is observed during gastrulation. In the planula, (1) the ectoderm is pseudostratified with densely packed nuclei arranged in a superficial and a deep stratum, (2) the aboral pole consists of elongated ectodermal cells with basally located nuclei forming an apical organ, which is previously only known from anthozoan planulae, (3) endodermal cells are large and highly vacuolated, and (4) FMRFamide-immunoreactive nerve cells are found exclusively in the ectoderm of the aboral region. During metamorphosis into a polyp, cells in the planula endoderm, but not in the ectoderm, become strongly caspase 3 immunoreactive, suggesting that the planula endoderm, in part or in its entirety, undergoes apoptosis during metamorphosis. The polyp endoderm seems to be derived from the planula ectoderm in Aurelia, implicating the occurrence of "secondary" gastrulation during early metamorphosis.
Collapse
Affiliation(s)
- David Yuan
- Department of Ecology and Evolutionary Biology, UCLA, Los Angeles, CA 90095-1606, USA
| | | | | | | |
Collapse
|
26
|
Rebscher N, Volk C, Teo R, Plickert G. The germ plasm component vasa allows tracing of the interstitial stem cells in the cnidarianHydractinia echinata. Dev Dyn 2008; 237:1736-45. [DOI: 10.1002/dvdy.21562] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
27
|
Momose T, Houliston E. Two oppositely localised frizzled RNAs as axis determinants in a cnidarian embryo. PLoS Biol 2007; 5:e70. [PMID: 17355179 PMCID: PMC1820609 DOI: 10.1371/journal.pbio.0050070] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 01/08/2007] [Indexed: 01/22/2023] Open
Abstract
In phylogenetically diverse animals, including the basally diverging cnidarians, “determinants” localised within the egg are responsible for directing development of the embryonic body plan. Many such determinants are known to regulate the Wnt signalling pathway, leading to regionalised stabilisation of the transcriptional coregulator β-catenin; however, the only strong molecular candidate for a Wnt-activating determinant identified to date is the ligand Wnt11 in Xenopus. We have identified embryonic “oral–aboral” axis determinants in the cnidarian Clytia hemisphaerica in the form of RNAs encoding two Frizzled family Wnt receptors, localised at opposite poles of the egg. Morpholino-mediated inhibition of translation showed that CheFz1, localised at the animal pole, activates the canonical Wnt pathway, promotes oral fates including gastrulation, and may also mediate global polarity in the ectoderm. CheFz3, whose RNA is localised at the egg vegetal cortex, was found to oppose CheFz1 function and to define an aboral territory. Active downregulation mechanisms maintained the reciprocal localisation domains of the two RNAs during early development. Importantly, ectopic expression of either CheFz1 or CheFz3 was able to redirect axis development. These findings identify Frizzled RNAs as axis determinants in Clytia, and have implications for the evolution of embryonic patterning mechanisms, notably that diverse Wnt pathway regulators have been adopted to initiate asymmetric Wnt pathway activation. How do different animal body parts form in the correct arrangement during development? Often, the explanation is provided by “determinant” molecules, prepositioned in the egg cell before it is fertilised. These determinant molecules initiate spatially localized programmes of gene expression, causing the various body parts to form in the appropriate place. Many determinants work by activating the Wnt signalling pathway; however, few concrete examples of determinant molecules have yet been discovered. We have found a new example of such a molecule by studying embryos of a jellyfish called Clytia. This molecule, found on one side of the egg, belongs to the “Frizzled” group of membrane proteins that activate Wnt signalling. Unexpectedly, we also found a second type of Frizzled molecule on the other side of the egg, which has a counterbalancing role in the embryo. Comparison of our findings in Clytia with those in other animals suggests that the molecular mechanisms responsible for body patterning via asymmetric Wnt pathway activation have not been tightly constrained during evolution. The axis of a cnidarian is specified by the location of two maternal Frizzled mRNAs, revising the view that cnidarian axes are specified by the first cleavage initiation site.
Collapse
Affiliation(s)
- Tsuyoshi Momose
- Université Pierre et Marie Curie (Paris VI), Centre National de la Recherche Scientifique Unité 7009 “Biologie du Développement,” Observatoire Océanologique, Villefranche-sur-Mer, France
| | - Evelyn Houliston
- Université Pierre et Marie Curie (Paris VI), Centre National de la Recherche Scientifique Unité 7009 “Biologie du Développement,” Observatoire Océanologique, Villefranche-sur-Mer, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Lee PN, Kumburegama S, Marlow HQ, Martindale MQ, Wikramanayake AH. Asymmetric developmental potential along the animal–vegetal axis in the anthozoan cnidarian, Nematostella vectensis, is mediated by Dishevelled. Dev Biol 2007; 310:169-86. [PMID: 17716645 DOI: 10.1016/j.ydbio.2007.05.040] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 05/21/2007] [Accepted: 05/29/2007] [Indexed: 11/16/2022]
Abstract
The relationship between egg polarity and the adult body plan is well understood in many bilaterians. However, the evolutionary origins of embryonic polarity are not known. Insight into the evolution of polarity will come from understanding the ontogeny of polarity in non-bilaterian forms, such as cnidarians. We examined how the axial properties of the starlet sea anemone, Nematostella vectensis (Anthozoa, Cnidaria), are established during embryogenesis. Egg-cutting experiments and sperm localization show that Nematostella eggs are only fertilized at the animal pole. Vital marking experiments demonstrate that the egg animal pole corresponds to the sites of first cleavage and gastrulation, and the oral pole of the adult. Embryo separation experiments demonstrate an asymmetric segregation of developmental potential along the animal-vegetal axis prior to the 8-cell stage. We demonstrate that Dishevelled (Dsh) plays an important role in mediating this asymmetric segregation of developmental fate. Although NvDsh mRNA is ubiquitously expressed during embryogenesis, the protein is associated with the female pronucleus at the animal pole in the unfertilized egg, becomes associated with the unipolar first cleavage furrow, and remains enriched in animal pole blastomeres. Our results suggest that at least one mechanism for Dsh enrichment at the animal pole is through its degradation at the vegetal pole. Functional studies reveal that NvDsh is required for specifying embryonic polarity and endoderm by stabilizing beta-catenin in the canonical Wnt signaling pathway. The localization of Dsh to the animal pole in Nematostella and two other anthozoan cnidarians (scleractinian corals) provides a possible explanation for how the site of gastrulation has changed in bilaterian evolution while other axial components of development have remained the same and demonstrates that modifications of the Wnt signaling pathway have been used to pattern a wide variety of metazoan embryos.
Collapse
Affiliation(s)
- Patricia N Lee
- Kewalo Marine Lab, Pacific Biosciences Research Center/University of Hawaii, 41 Ahui Street, Honolulu, HI 96813, USA
| | | | | | | | | |
Collapse
|
29
|
Jakob W, Schierwater B. Changing hydrozoan bauplans by silencing Hox-like genes. PLoS One 2007; 2:e694. [PMID: 17668071 PMCID: PMC1931613 DOI: 10.1371/journal.pone.0000694] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 06/28/2007] [Indexed: 12/03/2022] Open
Abstract
Regulatory genes of the Antp class have been a major factor for the invention and radiation of animal bauplans. One of the most diverse animal phyla are the Cnidaria, which are close to the root of metazoan life and which often appear in two distinct generations and a remarkable variety of body forms. Hox-like genes have been known to be involved in axial patterning in the Cnidaria and have been suspected to play roles in the genetic control of many of the observed bauplan changes. Unfortunately RNAi mediated gene silencing studies have not been satisfactory for marine invertebrate organisms thus far. No direct evidence supporting Hox-like gene induced bauplan changes in cnidarians have been documented as of yet. Herein, we report a protocol for RNAi transfection of marine invertebrates and demonstrate that knock downs of Hox-like genes in Cnidaria create substantial bauplan alterations, including the formation of multiple oral poles (“heads”) by Cnox-2 and Cnox-3 inhibition, deformation of the main body axis by Cnox-5 inhibition and duplication of tentacles by Cnox-1 inhibition. All phenotypes observed in the course of the RNAi studies were identical to those obtained by morpholino antisense oligo experiments and are reminiscent of macroevolutionary bauplan changes. The reported protocol will allow routine RNAi studies in marine invertebrates to be established.
Collapse
Affiliation(s)
- Wolfgang Jakob
- Division of Ecology and Evolution, Stiftung Tieraerztliche Hochschule Hannover, Hannover, Germany.
| | | |
Collapse
|
30
|
Miljkovic-Licina M, Chera S, Ghila L, Galliot B. Head regeneration in wild-type hydra requires de novo neurogenesis. Development 2007; 134:1191-201. [PMID: 17301084 DOI: 10.1242/dev.02804] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Because head regeneration occurs in nerve-free hydra mutants, neurogenesis was regarded as dispensable for this process. Here, in wild-type hydra, we tested the function of the ParaHox gsx homolog gene, cnox-2,which is a specific marker for bipotent neuronal progenitors, expressed in cycling interstitial cells that give rise to apical neurons and gastric nematoblasts (i.e. sensory mechanoreceptor precursors). cnox-2 RNAi silencing leads to a dramatic downregulation of hyZic, prdl-a, gscand cnASH, whereas hyCOUP-TF is upregulated. cnox-2indeed acts as an upstream regulator of the neuronal and nematocyte differentiation pathways, as cnox-2(-) hydra display a drastic reduction in apical neurons and gastric nematoblasts, a disorganized apical nervous system and a decreased body size. During head regeneration, the locally restricted de novo neurogenesis that precedes head formation is cnox-2 dependent: cnox-2 expression is induced in neuronal precursors and differentiating neurons that appear in the regenerating tip; cnox-2 RNAi silencing reduces this de novo neurogenesis and delays head formation. Similarly, the disappearance of cnox-2+cells in sf-1 mutants also correlates with head regeneration blockade. Hence in wild-type hydra, head regeneration requires the cnox-2 neurogenic function. When neurogenesis is missing, an alternative, slower and less efficient, head developmental program is possibly activated.
Collapse
Affiliation(s)
- Marijana Miljkovic-Licina
- Department of Zoology and Animal Biology, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
31
|
Abstract
Hox cluster has key roles in regulating the patterning of the antero-posterior axis in a metazoan embryo. It consists of the anterior, central and posterior genes; the central genes have been identified only in bilaterians, but not in cnidarians, and are responsible for archiving morphological complexity in bilaterian development. However, their evolutionary history has not been revealed, that is, there has been a "missing link". Here we show the evolutionary history of Hox clusters of 18 bilaterians and 2 cnidarians by using a new method, "motif-based reconstruction", examining the gain/loss processes of evolutionarily conserved sequences, "motifs", outside the homeodomain. We successfully identified the missing link in the evolution of Hox clusters between the cnidarian-bilaterian ancestor and the bilaterians as the ancestor of the central genes, which we call the proto-central gene. Exploring the correspondent gene with the proto-central gene, we found that one of the acoela Hox genes has the same motif repertory as that of the proto-central gene. This interesting finding suggests that the acoela Hox cluster corresponds with the missing link in the evolution of the Hox cluster between the cnidarian-bilaterian ancestor and the bilaterians. Our findings suggested that motif gains/diversifications led to the explosive diversity of the bilaterian body plan.
Collapse
Affiliation(s)
- Soichi Ogishima
- Department of Bioinformatics, Graduate School of Tokyo Medical and Dental University Yushima 1-5-45, Tokyo 113-8510, Japan
| | | |
Collapse
|
32
|
Cartwright P, Schierwater B, Buss LW. Expression of a Gsx parahox gene, Cnox-2, in colony ontogeny in Hydractinia (Cnidaria: Hydrozoa). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2006; 306:460-9. [PMID: 16615106 DOI: 10.1002/jez.b.21106] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The ontogeny of colonial animals is markedly distinct from that of solitary animals, yet no regulatory genes have thus far been implicated in colonial development. In cnidarians, colony ontogeny is characterized by the production of a nexus of vascular stolons, from which the feeding and reproductive structures, called polyps, are budded. Here we describe and characterize the Gsx parahox gene, Cnox-2, in the colonial cnidarian Hydractinia symbiolongicarpus of the class Hydrozoa. Cnox-2 is expressed in prominent components of the colony-wide patterning system; in the epithelia of distal stolon tips and polyp bud rudiments. Both are regions of active morphogenetic activity, characterized by cytologically and behaviorally distinct epithelia. Experimental induction and elimination of stolonal tips result in up- and down-regulation, respectively, of Cnox-2 expression. In the developing polyp, Cnox-2 expression remains uniformly high throughout the period of axial differentiation. The differential oral-aboral Cnox-2 expression in the epithelia of the mature polyp, previously described for this and another hydrozoan, arises after oral structures have completed development. Differential Cnox-2 expression is, thus, associated with key aspects of patterning of both the colony and the polyp, a finding that is particularly striking given that polyp and colony form are dissociable in the evolution of Hydrozoa.
Collapse
Affiliation(s)
- Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | |
Collapse
|
33
|
Plickert G, Jacoby V, Frank U, Müller WA, Mokady O. Wnt signaling in hydroid development: Formation of the primary body axis in embryogenesis and its subsequent patterning. Dev Biol 2006; 298:368-78. [PMID: 16890928 DOI: 10.1016/j.ydbio.2006.06.043] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 05/24/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
We have studied the role the canonical Wnt pathway plays in hydroid pattern formation during embryonic development and metamorphosis. Transcripts of Wnt and Tcf were asymmetrically deposited in the oocyte and subsequent developmental stages, marking the sites of first cleavage, posterior larval pole and the upcoming head of the metamorphosed polyp. To address the function of these genes, we activated downstream events of the Wnt pathway by pharmacologically blocking GSK-3beta. These treatments rendered the polar expression of Tcf ubiquitous and induced development of ectopic axes that contained head structures. These results allow concluding that Wnt signaling controls axis formation and regional tissue fates along it, determining one single axis terminus from which later the mouth and hypostome develop. Our data also indicate Wnt functions in axis formation and axial patterning as in higher metazoans, and thus point to an ancestral role of Wnt signaling in these processes in animal evolution.
Collapse
|
34
|
Rentzsch F, Anton R, Saina M, Hammerschmidt M, Holstein TW, Technau U. Asymmetric expression of the BMP antagonists chordin and gremlin in the sea anemone Nematostella vectensis: implications for the evolution of axial patterning. Dev Biol 2006; 296:375-87. [PMID: 16828077 DOI: 10.1016/j.ydbio.2006.06.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 05/26/2006] [Accepted: 06/01/2006] [Indexed: 10/24/2022]
Abstract
The evolutionary origin of the anterior-posterior and the dorsoventral body axes of Bilateria is a long-standing question. It is unclear how the main body axis of Cnidaria, the sister group to the Bilateria, is related to the two body axes of Bilateria. The conserved antagonism between two secreted factors, BMP2/4 (Dpp in Drosophila) and its antagonist Chordin (Short gastrulation in Drosophila) is a crucial component in the establishment of the dorsoventral body axis of Bilateria and could therefore provide important insight into the evolutionary origin of bilaterian axes. Here, we cloned and characterized two BMP ligands, dpp and GDF5-like as well as two secreted antagonists, chordin and gremlin, from the basal cnidarian Nematostella vectensis. Injection experiments in zebrafish show that the ventralizing activity of NvDpp mRNA is counteracted by NvGremlin and NvChordin, suggesting that Gremlin and Chordin proteins can function as endogenous antagonists of NvDpp. Expression analysis during embryonic and larval development of Nematostella reveals asymmetric expression of all four genes along both the oral-aboral body axis and along an axis perpendicular to this one, the directive axis. Unexpectedly, NvDpp and NvChordin show complex and overlapping expression on the same side of the embryo, whereas NvGDF5-like and NvGremlin are both expressed on the opposite side. Yet, the two pairs of ligands and antagonists only partially overlap, suggesting complex gradients of BMP activity along the directive axis but also along the oral-aboral axis. We conclude that a molecular interaction between BMP-like molecules and their secreted antagonists was already employed in the common ancestor of Cnidaria and Bilateria to create axial asymmetries, but that there is no simple relationship between the oral-aboral body axis of Nematostella and one particular body axis of Bilateria.
Collapse
Affiliation(s)
- Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgt. 55, N-5008 Bergen, Norway
| | | | | | | | | | | |
Collapse
|
35
|
Momose T, Schmid V. Animal pole determinants define oral–aboral axis polarity and endodermal cell-fate in hydrozoan jellyfish Podocoryne carnea. Dev Biol 2006; 292:371-80. [PMID: 16487957 DOI: 10.1016/j.ydbio.2006.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 01/11/2006] [Accepted: 01/12/2006] [Indexed: 11/29/2022]
Abstract
Cnidarians, in contrast with bilaterians, are generally considered to exhibit radial symmetry around a single body axis (oral-aboral) throughout their life-cycles. We have investigated how the oral-aboral axis is established in the hydrozoan jellyfish Podocoryne carnea. Vital labeling experiments showed that the oral end of the blastula derives from the animal pole region of the egg as has been demonstrated for other cnidarian species. Gastrulation is restricted to the oral pole such that the oral 20% of blastula cells give rise to endoderm. Unexpectedly, bisection experiments at the 8-cell stage showed that animal regions are able to develop into normally polarized larvae, but that vegetal (aboral) blastomeres completely fail to develop endoderm or to elongate. These vegetal-derived larvae also failed to polarize, as indicated by a lack of oral-specific RFamide-positive nerve cells and a disorganized tyrosinated tubulin-positive nerve net. A different result was obtained following bisection of the late blastula stage: aboral halves still lacked the capacity to develop endoderm but retained features of axial polarity including elongation of the larva and directional swimming. These results demonstrate for the first time in a cnidarian the presence of localized determinants responsible for axis determination and endoderm formation at the animal pole of the egg. They also show that axial polarity and endoderm formation are controlled by separable pathways after the blastula stage.
Collapse
Affiliation(s)
- Tsuyoshi Momose
- Institute of Zoology, University of Basel, Biocenter/Pharmacenter, Klingelbergstrasse 50/70, 4056 Basel, Switzerland.
| | | |
Collapse
|
36
|
Kamm K, Schierwater B, Jakob W, Dellaporta SL, Miller DJ. Axial patterning and diversification in the cnidaria predate the Hox system. Curr Biol 2006; 16:920-6. [PMID: 16563766 DOI: 10.1016/j.cub.2006.03.036] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/14/2006] [Accepted: 03/14/2006] [Indexed: 11/18/2022]
Abstract
Across the animal kingdom, Hox genes are organized in clusters whose genomic organization reflects their central roles in patterning along the anterior/posterior (A/P) axis . While a cluster of Hox genes was present in the bilaterian common ancestor, the origins of this system remain unclear (cf. ). With new data for two representatives of the closest extant phylum to the Bilateria, the sea anemone Nematostella and the hydromedusa Eleutheria, we argue here that the Cnidaria predate the evolution of the Hox system. Although Hox-like genes are present in a range of cnidarians, many of these are paralogs and in neither Nematostella nor Eleutheria is an equivalent of the Hox cluster present. With the exception of independently duplicated genes, the cnidarian genes are unlinked and in several cases are flanked by non-Hox genes. Furthermore, the cnidarian genes are expressed in patterns that are inconsistent with the Hox paradigm. We conclude that the Cnidaria/Bilateria split occurred before a definitive Hox system developed. The spectacular variety in morphological and developmental characteristics shown by extant cnidarians demonstrates that there is no obligate link between the Hox system and morphological diversity in the animal kingdom and that a canonical Hox system is not mandatory for axial patterning.
Collapse
Affiliation(s)
- Kai Kamm
- ITZ, Ecology and Evolution, Tierärztliche Hochschule Hannover, D-30559 Hannover, Germany
| | | | | | | | | |
Collapse
|
37
|
Seipel K, Eberhardt M, Müller P, Pescia E, Yanze N, Schmid V. Homologs of vascular endothelial growth factor and receptor, VEGF and VEGFR, in the jellyfish Podocoryne carnea. Dev Dyn 2005; 231:303-12. [PMID: 15366007 DOI: 10.1002/dvdy.20139] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth factors (VEGF) are the major inducers of vasculogenesis and angiogenesis in vertebrates. Their effects are mediated by receptor tyrosine kinases of the VEGF receptor (VEGFR) family located on endothelial cells and include stimulation of cell survival, proliferation, migration, and tube formation as well as regulation of vascular permeability. Here, we report the presence of VEGF and VEGFR homologous genes in a basal invertebrate of the phylum Cnidaria. The marine jellyfish Podocoryne carnea features a gastrovascular system consisting of the feeding organ, or manubrium, the radial and ring canals, and the tentacle bulbs. Expression analysis indicates that both genes are involved in tentacle and gastrovascular canal formation, indicating an early recruitment of the VEGF signalling pathway for morphogenetic processes leading to tube formation in metazoans. The evolutionary origin of the VEGF signalling pathway resides in the common ancestor of the Cnidaria and Bilateria.
Collapse
|
38
|
|
39
|
Seipel K, Schmid V. Evolution of striated muscle: Jellyfish and the origin of triploblasty. Dev Biol 2005; 282:14-26. [PMID: 15936326 DOI: 10.1016/j.ydbio.2005.03.032] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 03/09/2005] [Accepted: 03/27/2005] [Indexed: 12/20/2022]
Abstract
The larval and polyp stages of extant Cnidaria are bi-layered with an absence of mesoderm and its differentiation products. This anatomy originally prompted the diploblast classification of the cnidarian phylum. The medusa stage, or jellyfish, however, has a more complex anatomy characterized by a swimming bell with a well-developed striated muscle layer. Based on developmental histology of the hydrozoan medusa this muscle derives from the entocodon, a mesoderm-like third cell layer established at the onset of medusa formation. According to recent molecular studies cnidarian homologs to bilaterian mesoderm and myogenic regulators are expressed in the larval and polyp stages as well as in the entocodon and derived striated muscle. Moreover striated and smooth muscle cells may have evolved directly and independently from non-muscle cells as indicated by phylogenetic analysis of myosin heavy chain genes (MHC class II). To accommodate all evidences we propose that striated muscle-based locomotion coevolved with the nervous and digestive systems in a basic metazoan Bauplan from which the ancestors of the Ctenophora (comb jellyfish), Cnidaria (jellyfish and polyps), as well as the Bilateria are derived. We argue for a motile tri-layered cnidarian ancestor and a monophyletic descent of striated muscle in Cnidaria and Bilateria. As a consequence, diploblasty evolved secondarily in cnidarian larvae and polyps.
Collapse
Affiliation(s)
- Katja Seipel
- Institute of Zoology, Biocenter/Pharmacenter, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | |
Collapse
|
40
|
Darling JA, Reitzel AR, Burton PM, Mazza ME, Ryan JF, Sullivan JC, Finnerty JR. Rising starlet: the starlet sea anemone, Nematostella vectensis. Bioessays 2005; 27:211-21. [PMID: 15666346 DOI: 10.1002/bies.20181] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In recent years, a handful of model systems from the basal metazoan phylum Cnidaria have emerged to challenge long-held views on the evolution of animal complexity. The most-recent, and in many ways most-promising addition to this group is the starlet sea anemone, Nematostella vectensis. The remarkable amenability of this species to laboratory manipulation has already made it a productive system for exploring cnidarian development, and a proliferation of molecular and genomic tools, including the currently ongoing Nematostella genome project, further enhances the promise of this species. In addition, the facility with which Nematostella populations can be investigated within their natural ecological context suggests that this model may be profitably expanded to address important questions in molecular and evolutionary ecology. In this review, we explore the traits that make Nematostella exceptionally attractive as a model organism, summarize recent research demonstrating the utility of Nematostella in several different contexts, and highlight a number of developments likely to further increase that utility in the near future.
Collapse
|
41
|
|
42
|
Seipel K, Yanze N, Müller P, Streitwolf R, Schmid V. Basic leucine zipper transcription factors C/EBP and MafL in the hydrozoan jellyfish Podocoryne carnea. Dev Dyn 2004; 230:392-402. [PMID: 15188425 DOI: 10.1002/dvdy.20061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Members of the CCAAT/enhancer binding protein (C/EBP) and the Maf protein subfamilies have been characterized in a variety of bilaterian organisms. This is the first report of C/EBP and MafL genes in a basal organism, the hydrozoan jellyfish Podocoryne carnea. Transcripts of both genes are present in all life cycle stages: egg, embryo, larva, polyp, and medusa. During early development, both factors appear to regulate metamorphosis of the larva to the primary polyp. Both genes are also expressed in the striated muscle of the developing and adult medusa. During in vitro transdifferentiation of striated muscle cells to smooth muscle and nerve cells, C/EBP is continuously expressed, whereas MafL expression is turned off during transdifferentiation and reactivated when nerve cells differentiate. Thus, both factors may be involved in muscle and nerve cell differentiation. In the mature medusa both genes are also implicated in gametogenesis. Developmental and evolutionary aspects of the gene structures and expression patterns are discussed.
Collapse
Affiliation(s)
- Katja Seipel
- Institute of Zoology, University of Basel, Biocenter/Pharmacenter, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
43
|
Torras R, Yanze N, Schmid V, González-Crespo S. nanos expression at the embryonic posterior pole and the medusa phase in the hydrozoan Podocoryne carnea. Evol Dev 2004; 6:362-71. [PMID: 15330869 DOI: 10.1111/j.1525-142x.2004.04044.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Summary The distinction between soma and germline is an important process in the development of animals with sexual reproduction. It is regulated by a number of germline-specific genes, most of which appear conserved in evolution and therefore can be used to study the formation of the germline in diverged animal groups. Here we report the isolation of two orthologs of one such gene, nanos (nos), in the cnidarian Podocoryne carnea, a species with representative zoological features among the hydrozoans. By studying nos gene expression throughout the Podocoryne biphasic life cycle, we find that the germline differentiates exclusively during medusa development, whereas the polyp does not contribute to the process. An early widespread nos expression in developing medusae progressively refines into a mainly germline-specific pattern at terminal stages of medusa formation. Thus, the distinction between germline and soma is a late event in hydrozoan development. Also, we show that the formation of the medusa is a de novo process that relies on active local cell proliferation and differentiation of novel cell and tissue types not present in the polyp, including nos-expressing cells. Finally, we find nos expression at the posterior pole of Podocoryne developing embryos, not related to germline formation. This second aspect of nos expression is also found in Drosophila, where nos functions as a posterior determinant essential for the formation of the fly abdomen. This raises the possibility that nos embryonic expression could play a role in establishing axial polarity in cnidarians.
Collapse
Affiliation(s)
- Raquel Torras
- Institut de Biologia Molecular de Barcelona, CSIC, Jordi Girona 18-26, 08034-Barcelona, Spain
| | | | | | | |
Collapse
|
44
|
Wallberg A, Thollesson M, Farris JS, Jondelius U. The phylogenetic position of the comb jellies (Ctenophora) and the importance of taxonomic sampling. Cladistics 2004; 20:558-578. [DOI: 10.1111/j.1096-0031.2004.00041.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Abstract
The Hox gene cluster has captivated the imagination of evolutionary and developmental biologists worldwide. In this review, the origin of the Hox and ParaHox gene clusters by duplication of a ProtoHox gene cluster, and the changes in their gene numbers in major Metazoan Transitions are reviewed critically. Re-evaluation of existing data and recent findings in Cnidarians, Acoels, and critical stages of vertebrate evolution suggest alternative scenarios for the origin, structure, and changes in Hox gene numbers in relevant events of Metazoan evolution. I discuss opposing views and propose that (i) the ProtoHox cluster had only two genes, and not four as commonly believed: a corollary is that the origin of Bilaterians was coincident with the invention of new Hox and ParaHox gene classes, which may have facilitated such a transition; (ii) the ProtoHox cluster duplication was a cis duplication event, rather than a trans duplication event, as previously suggested, and (iii) the ancestral vertebrate cluster possessed 14 Hox genes, and not the 13 generally assumed. These hypotheses could be verified or refuted in the near future, but they may help critical discussion of the evolution of the Hox/ParaHox family in the metazoan kingdom.
Collapse
Affiliation(s)
- J Garcia-Fernàndez
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 645, E-08028, Barcelona, Spain.
| |
Collapse
|
46
|
Stierwald M, Yanze N, Bamert RP, Kammermeier L, Schmid V. The Sine oculis/Six class family of homeobox genes in jellyfish with and without eyes: development and eye regeneration. Dev Biol 2004; 274:70-81. [PMID: 15355789 DOI: 10.1016/j.ydbio.2004.06.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 06/14/2004] [Accepted: 06/14/2004] [Indexed: 11/21/2022]
Abstract
The development of visual organs is regulated in Bilateria by a network of genes where members of the Six and Pax gene families play a central role. To investigate the molecular aspects of eye evolution, we analyzed the structure and expression patterns of cognate members of the Six family genes in jellyfish (Cnidaria, Hydrozoa), representatives of a basal, non-bilaterian phylum where complex lens eyes with spherical lens, an epidermal cornea, and a retina appear for the first time in evolution. In the jellyfish Cladonema radiatum, a species with well-developed lens eyes in the tentacle bulbs, Six1/2-Cr and Six3/6-Cr, are expressed in the eye cup. Six4/5-Cr is mainly expressed in the manubrium, the feeding, and sex organ. All three Six genes are expressed in different subsets of epidermal nerve cells, possibly of the RFamide type which are part of a net connecting the different eyes with each other and the effector organs. Furthermore, expression is found in other tissues, notably in the striated muscle. During eye regeneration, expression of Six1/2-Cr and Six3/6-Cr is upregulated, but not of Six4/5-Cr. In Podocoryne carnea, a jellyfish without eyes, Six1/2-Pc and Six3/6-Pc are also expressed in the tentacle bulbs, Six1/2-Pc additionally in the manubrium and striated muscle, and Six3/6-Pc in the mechanosensory nematocytes of the tentacle. The conserved gene structure and expression patterns of all Cladonema Six genes suggest broad conservation of upstream regulatory mechanisms in eye development.
Collapse
Affiliation(s)
- Michael Stierwald
- Institute of Zoology, University of Basel, Biocenter/Pharmacenter, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
47
|
Abstract
Cnidarians have long been considered simple animals in spite of the variety of their complex life cycles and developmental patterns. Several cases of developmental conversion are known, leading to the formation of resting stages or to offspring proliferation. Besides their high regenerative and asexual-reproduction potential, a number of cnidarians can undergo ontogeny reversal, or reverse development: one or more stages in the life cycle can reactivate genetic programs specific to earlier stages, leading to back-transformation and morph rejuvenation. The switch is achieved by a variable combination of cellular processes, such as transdifferentiation, programmed cell death, and proliferation of interstitial cells. The potential for ontogeny reversal has limited ecological meaning and is probably just an extreme example of a more general strategy for withstanding unfavourable periods and allowing temporal persistence of species in the environment.
Collapse
|
48
|
Abstract
The origin of the bilaterian metazoans from radial ancestors is one of the biggest puzzles in animal evolution. A way to solve it is to identify the nature and main features of the last common ancestor of the bilaterians (LCB). Recent progress in molecular phylogeny has shown that many platyhelminth flatworms, regarded for a long time as basal bilaterians, now belong to the lophotrochozoan protostomates. In contrast, the LCB is now considered a complex organism bearing several features of modern bilaterians. Here we discuss an alternative view, in which acoelomorph (Acoela + Nemertodermatida) flatworms, which do not belong to the Platyhelminthes, represent the earliest extant bilaterian clade. Sequences from ribosomal and other nuclear genes, Hox cluster genes, and reinterpretation of some morphological features strongly support the basal position of acoelomorphs arguing against a complex LCB. This reconstruction backs the old planuloid-acoeloid hypothesis and may help our understanding of the evolution of body axes, Hox genes and the Cambrian explosion.
Collapse
Affiliation(s)
- Jaume Baguñà
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain.
| | | |
Collapse
|
49
|
Ball EE, Hayward DC, Saint R, Miller DJ. A simple plan — cnidarians and the origins of developmental mechanisms. Nat Rev Genet 2004; 5:567-77. [PMID: 15266339 DOI: 10.1038/nrg1402] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Eldon E Ball
- Centre for the Molecular Genetics of Development and Research School of Biological Sciences, Australian National University, P.O. Box 475, Canberra, ACT 2601, Australia.
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Peter Holland
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| |
Collapse
|