1
|
Aliza D, Zuki FM, Hassan CRC, Suhendrayatna S, Javanmard A. Potential use of Escherichia coli and Aeromonas hydrophila as bioremediation agents for CuSO 4 and ZnCl 2 water pollution: insights from AAS and histopathological analysis of Oreochromis mossambicus. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:338. [PMID: 40016595 DOI: 10.1007/s10661-025-13755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
This study investigates the potential of Escherichia coli and Aeromonas hydrophila as bioremediation agents for removing copper (Cu) and zinc (Zn) from contaminated water. Although Cu and Zn are necessary in trace levels, excessive amounts can be harmful and can linger in aquatic environments, endangering the food chain. Bioremediation using microorganisms offers an alternative method for mitigating heavy metal pollution. In this study, 126 tilapia fish (Oreochromis mossambicus) were exposed to CuSO4 and ZnCl2 for 15 days, followed by treatment with E. coli and A. hydrophila. Atomic absorption spectrometry (AAS) revealed that both bacterial treatments reduced copper and zinc accumulation in fish organs, though they did not fully heal external lesions. Histopathological analysis showed significant reductions in melanomacrophage centers (MMC), cell necrosis, cell dissociation, and vacuolization in fish liver tissue after bacterial treatment, particularly at concentrations of 2.5 mg.L-1 and 5 mg.L-1 for CuSO4 and 7.5 mg.L-1 for ZnCl2. These findings suggest that E. coli and A. hydrophila have the potential to be developed as effective bioremediation agents for CuSO4 and ZnCl2 pollution in aquatic environments.
Collapse
Affiliation(s)
- Dwinna Aliza
- Health, Safety and Environment, Department of Chemical Engineering, Universiti Malaya, Engineering Faculty, Kuala Lumpur, Malaysia
- Pathology Laboratory, Veterinary Medicine Faculty, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Fathiah Mohamed Zuki
- Department of Chemical Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.
- Health, Safety and Environment, Department of Chemical Engineering, Universiti Malaya, Engineering Faculty, Kuala Lumpur, Malaysia.
| | | | - Suhendrayatna Suhendrayatna
- Pathology Laboratory, Veterinary Medicine Faculty, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Chemical Engineering, Engineering Faculty, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Arash Javanmard
- Department of Chemical Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Zheng J, Li C, Li S, Zheng X. Decabromodiphenyl ethane (DBDPE) inhibited the growth and feeding by disrupting the gut and digestive gland homeostasis in octopus Amphioctopus fangsiao (Mollusca: Cephalopoda). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177364. [PMID: 39491558 DOI: 10.1016/j.scitotenv.2024.177364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/14/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
A novel brominated flame retardant decabromodiphenyl ethane (DBDPE) poses a potential threat to animals, but its effects on cephalopods remain unknown. In this study, Amphioctopus fangsiao, a common octopus in China, was exposed to DBDPE (0, 1, 50, 100, 300 μg/L) for 28 days. Chemical analysis revealed that the digestive gland bore a greater burden of DBDPE compared with other tissues. In addition, accumulated DBDPE could curb the growth and feeding performance of A. fangsiao. The potential effects on the "gut-digestive gland axis" were also elucidated. Specifically, DBDPE in the gut shifted the microorganisms toward a Bacteroidetes-dominated composition, and impaired the intestinal epithelial barrier, thereby triggering oxidative stress and inflammation. Excessive DBDPE also threatens the digestive gland function, including histological damage, immune reaction, oxidative stress, glucolipid metabolism dysfunction, and neurotoxicity. Metabolome plasticity enabled A. fangsiao to develop a DBDPE stress-adaptive metabolic profile via alteration of glucolipid metabolism, immunity, oxidative stress, and signaling molecules. Taken together, we identified a new detoxification mechanism linking the microbiota-gut-digestive gland axis with the growth and food intake of A. fangsiao, which is the first time it has been demonstrated in mollusks. These findings provided important clues for a further mechanism study and risk assessment of DBDPE.
Collapse
Affiliation(s)
- Jian Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China
| | - Congjun Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, China
| | - Shuwen Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China
| | - Xiaodong Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Institute of Evolution & Marine Biodiversity (IEMB), Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Eid Z, Mahmoud UM, Sayed AEDH. Deleterious effects of polypropylene released from paper cups on blood profile and liver tissue of Clarias gariepinus: bioremediation using Spirulina. Front Physiol 2024; 15:1380652. [PMID: 38846421 PMCID: PMC11155391 DOI: 10.3389/fphys.2024.1380652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Despite numerous studies on microplastics, the biological impacts of polypropylene microplastics (PP-MPs) and its toxicity on freshwater fish have yet to be fully revealed. The purpose of this research was to look at the potentially harmful effects of PP-MPs in freshwater African catfish Clarias gariepinus and bioremediation using Spirulina. After acclimatization to laboratory conditions, 108 fish (125 ± 3 gm and 27 ± 2 cm) were assigned into triplicate six experimental groups (12 fish/group), a control group, Spirulina group (SP), PP-MP-treated groups (0.14 and 0.28 mg/l PP-MPs), and PP-MP + Spirulina-treated groups (0.14 mg/l PP-MPs + 200 mg/L SP and 0.28 mg/l PP-MPs +200 mg/L SP) for 15-day exposure and 45-day recovery after that. The hematological parameters exhibiting significance (RBCs, Hct, Hb, and MCV) or non-significance (MCH and MCHC) either decreased with the increase in PP-MP doses from 0.0 in the control to 0.28 mg/L red blood cells (RBCs), hematocrit (Hct), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), hemoglobin (Hb) and platelets or increased with such an increase in doses (mean corpuscular volume (MCV)). The liver enzyme activity, aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alanine aminotransferase (ALT) exhibited non-significant (p ≥ 0.05) or significant (p < 0.05) increases in (0.14 and 0.28 mg/L) PP-MP-exposed groups, respectively, except ALP. Furthermore, there was a significant (p < 0.05) or non-significant (p ≥ 0.05) increase in 0.14 and 0.28 mg/l PP-MP +200 mg/L-exposure groups, respectively, compared to the control group and the same exposure group without Spirulina. In comparison to the control group, PP-MPs (0.14 and 0.28 mg/L) induced a significant (p < 0.05) increase in the percentage of poikilocytosis and nuclear abnormalities of RBCs. The liver tissue from fish exposed to PP-MPs exhibited varying degrees of pathological changes. These results indicated that these pathological changes increased with PP-MP concentration, suggesting that the effect of PP-MPs was dose-dependent. After 45 days of recovery under normal conditions, it was obvious that there was a significant improvement in the percentage of poikilocytosis and nuclear abnormalities of RBCs, as well as a non-significant improvement in hemato-biochemical parameters and liver tissue.
Collapse
Affiliation(s)
- Zainab Eid
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Usama M. Mahmoud
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Alaa El-Din H. Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
McKay ME, Baseler L, Beblow J, Cleveland M, Marlatt VL. Comparative subchronic toxicity of copper and a tertiary copper mixture to early life stage rainbow trout (Oncorhynchus mykiss): impacts on growth, development, and histopathology. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1-21. [PMID: 38112924 DOI: 10.1007/s10646-023-02721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
This research aimed to characterize and compare the subchronic impacts of Cu to a Cu, Cd, and Zn mixture in early life stages of rainbow trout (Oncorhynchus mykiss) by examining uptake, survival, growth, development, and histopathology parameters. To accomplish this, rainbow trout were exposed for 31 days from eyed embryos to the swim-up fry life stage to waterborne Cu (31, 47, 70, and 104 μg/L) individually or as mixture containing Cd (4.1, 6.2, 9.3, and 14 μg/L) and Zn (385, 578, 867, and 1300 μg/L). Exposures elicited pronounced effects on survival when Cu was administered as a mixture (LC25 = 32.9 μg/L Cu) versus individually (LC25 = 46.3 μg/L Cu). Mixtures of Cu, Cd, and Zn also elicited more pronounced sublethal toxicity relative to equivalent Cu treatments with respect to reduced yolk sac resorption and increased incidence and/or severity of gill, liver, and kidney lesions. Our findings of reduced body weight (EC10, Cu = 55.0 μg/L Cu; EC10, Cu+Cd+Zn = 58.9 μg/L Cu), yolk sac resorption (LOECCu = 70 μg/L Cu; LOECCu+Cd+Zn = 70 μg/L Cu), coelomic fat (LOECCu = 47 μg/L Cu; LOECCu+Cd+Zn = 70 μg/L Cu), and increased hepatocellular cytoplasmic vacuolation (LOECCu = 70 μg/L Cu; LOECCu+Cd+Zn = 47 μg/L Cu) collectively indicate a complicated metabolic interference by metals in exposed fish. These lethal and sublethal effects observed in the laboratory could translate to reduced survival and fitness of wild salmonid populations inhabiting waterbodies receiving wastewater or runoff containing multiple metals at elevated concentrations.
Collapse
Affiliation(s)
- Michael E McKay
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | | | - Jordan Beblow
- Gitanyow Fisheries Authority, Kitwanga, BC, V0J 2A0, Canada
| | - Mark Cleveland
- Gitanyow Fisheries Authority, Kitwanga, BC, V0J 2A0, Canada
| | - Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
5
|
Li L, Deng L, Li J, Li T, Chen P, Luo W, Du Z. Gill structure and respiratory ability of Euchiloglanis kishinouyei (Osteichthyes: Siluriformes: Sisoridae). JOURNAL OF FISH BIOLOGY 2023; 103:1382-1391. [PMID: 37650846 DOI: 10.1111/jfb.15548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Glyptosternoid fishes are distributed in the torrent environment of alpine canyons, where they often leave the water to climb rocky cliffs. As one of the most primitive species of glyptosternoid fishes, Euchiloglanis kishinouyei was examined in the current study to analyse its gill microstructure and respiratory ability. We first found that the oxygen consumption rate was relatively high and negatively correlated with body mass and that the average oxygen consumption at night was higher than during the day. The asphyxiation point of E. kishinouyei (5.05 ± 0.22 g) was c. 1.93 mg/L. Subsequently, the surface morphology, gross gill tissue structure, and ultra-microstructure of gill lamellae were investigated using optical microscopy and SEM. The gills showed an overall trend of regression, with five pairs of gill arches in each gill cavity. The adjacent gill filaments had large gaps, and the gill lamellae were thick. The gill filaments were closely arranged on the gill arches, their folded respiratory surface was highly vascularized with no tiny crest, and there were obvious tiny crests, grooves, pits, and pores on the nonrespiratory surface. The gill lamellae were closely embedded on both sides of gill filaments, which were composed of flat epithelial cells, basement membrane, pillar cells, and mucous cells. The gill total respiratory area correlated positively with body mass and length, whereas the gill relative respiratory area correlated negatively with body mass. We comprehensively analysed the gill microstructure and respiratory capacity of E. kishinouyei to provide fundamental data for the adaptive evolution of the gill structures of bimodally respiring fishes and offer insights into further study on the accessory air-breathing function of skin.
Collapse
Affiliation(s)
- Luojia Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Longjun Deng
- Yalong River Hydropower Development Co. Ltd, Chengdu, China
| | - Jie Li
- Sichuan Runjie Hongda Aquatic Science and Technology Co. Ltd, Chengdu, China
| | - Tiancai Li
- Yalong River Hydropower Development Co. Ltd, Chengdu, China
| | - Pengyu Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Souza IDC, Morozesk M, Azevedo VC, Griboff J, Elliott M, Matsumoto ST, Monferrán MV, Wunderlin DA, Fernandes MN. Integrating chemical and biological data by chemometrics to evaluate detoxification responses of a neotropical bivalve to metal and metalloid contamination. CHEMOSPHERE 2023; 340:139730. [PMID: 37574089 DOI: 10.1016/j.chemosphere.2023.139730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Mangroves represent a challenge in monitoring studies due to their physical and chemical conditions under constant marine and anthropogenic influences. This study investigated metals/metalloids whole-body bioaccumulation (soft tissues) and the risk associated with their uptake, biochemical and morphological detoxification processes in gills and metals/metalloids immobilisation in shells of the neotropical sentinel oyster Crassostrea rhizophorae from two Brazilian estuarine sites. Biochemical and morphological responses indicated three main mechanisms: (1) catalase, superoxide dismutase and glutathione played important roles as the first defence against reactive oxygen species; (2) antioxidant capacity against peroxyl radicals, glutathione S-transferase, metallothionein prevent protein damage and (3) metals/metalloids sequestration into oyster shells as a mechanism of oyster detoxification. However, the estimated daily intake, target hazard quotient, and hazard index showed that the human consumption of oysters would not represent a human health risk. Among 14 analysed metals/metalloids, chemometrics indicate that Mn, As, Pb, Zn and Fe overload the antioxidant system leading to morphological alterations in gills. Overall, results indicated cellular vacuolization and increases in mucous cell density as defence mechanisms to prevent metals/metalloids accumulation and the reduction in gill cilia; these have long-term implications in respiration and feeding and, consequently, for growth and development. The integration of data from different sites and environmental conditions using chemometrics highlights the main biological patterns of detoxification from a neotropical estuarine bivalve, indicating the way in which species can cope with metals/metalloids contamination and its ecological consequences.
Collapse
Affiliation(s)
- Iara da C Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905, São Carlos, São Paulo, Brazil; Departamento de Ciências Biológicas, Universidade Federal Do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brazil.
| | - Mariana Morozesk
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| | - Vinicius C Azevedo
- Department of Biological Sciences, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6, Canada.
| | - Julieta Griboff
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, and CONICET, CIBICI, Ciudad Universitaria, Medina Allende Esq. Haya de La Torre S/n, 5000, Córdoba, Argentina.
| | - Michael Elliott
- School of Environmental Sciences, University of Hull, Hull, HU6 7RX, UK; International Estuarine & Coastal Specialists (IECS) Ltd. Leven, HU17 5LQ, UK.
| | - Silvia T Matsumoto
- Departamento de Ciências Biológicas, Universidade Federal Do Espírito Santo (DBV/UFES), Ave. Fernando Ferrari, 514, 29075-910, Vitória, Espírito Santo, Brazil.
| | - Magdalena V Monferrán
- Departamento Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, and CONICET, CIBICI, Ciudad Universitaria, Medina Allende Esq. Haya de La Torre S/n, 5000, Córdoba, Argentina; ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000, Córdoba, Argentina.
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET and Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cdad. Universitaria, 5000, Córdoba, Argentina.
| | - Marisa N Fernandes
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (DCF/UFSCar), Ave. Washington Luiz, Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|
7
|
Martínez-Durazo Á, Rivera-Domínguez M, García-Gasca SA, Betancourt-Lozano M, Cruz-Acevedo E, Jara-Marini ME. Assessing metal(loid)s concentrations and biomarkers in tilapia (Oreochromis niloticus) and largemouth bass (Micropterus salmoides) of three ecosystems of the Yaqui River Basin, Mexico. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:166-187. [PMID: 36689067 DOI: 10.1007/s10646-023-02620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Aquatic ecosystems have been suffering deleterious effects due to the development of different economic activities. Metal(loid)s are one of the most persistent chemicals in environmental reservoirs, and may produce adverse effects on different organisms. Since fishes have been largely used in studies of metal(loid)s exposure, tilapia and largemouth bass were collected in three ecosystems from the Yaqui River Basin to measure the concentrations of metal(loid)s (chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), zinc (Zn) arsenic (As), mercury (Hg), and selenium (Se)) and some biomarkers (somatic indices, metallothionein expression and histopathological analysis) in tissues of both species. Metal(loid) concentrations varied seasonally among ecosystems in tissues of both species. The elements varied seasonally and spatially in tissues of both species, with a general distribution of liver > gills > gonads. Also, biomarkers showed variations indicative that the fish species were exposed to different environmental stressor conditions. The highest values of some biomarkers were in largemouth bass, possibly due to differences in their biological characteristics, mainly feeding habits. The multivariate analysis showed positive associations between metal(loid)s and biomarkers, which are usually associated to the use of these elements in metabolic and/or regulatory physiological processes. Both fish species presented histological damage at different levels, from SI types (changes that are reversible for organ structure) to SII types (changes that are more severe but may be repairable). Taken together, the results from this study suggest that the Yaqui River Basin is moderately impacted by metals and metalloids.
Collapse
Affiliation(s)
- Ángel Martínez-Durazo
- Posgrado en Ciencias, Centro de Investigación en Alimentación y Desarrollo, Unidad Hermosillo, Carretera Gustavo Astiazarán Rosas 46, Colonia La Victoria, Hermosillo, 83304, Sonora, Mexico
| | - Marisela Rivera-Domínguez
- Centro de Investigación en Alimentación y Desarrollo, Unidad Hermosillo, Carretera Gustavo Astiazarán Rosas 46, Colonia La Victoria, Hermosillo, 83304, Sonora, Mexico
| | - Silvia Alejandra García-Gasca
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán, Sábalo Cerritos s/n, Mazatlán, 82112, Sinaloa, Mexico
| | - Miguel Betancourt-Lozano
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán, Sábalo Cerritos s/n, Mazatlán, 82112, Sinaloa, Mexico
| | - Edgar Cruz-Acevedo
- Laboratorio de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Centro de Investigación Para el Desarrollo Integral y Sostenible, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru
- Departamento de Ecología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Martin Enrique Jara-Marini
- Centro de Investigación en Alimentación y Desarrollo, Unidad Hermosillo, Carretera Gustavo Astiazarán Rosas 46, Colonia La Victoria, Hermosillo, 83304, Sonora, Mexico.
| |
Collapse
|
8
|
Blonç M, Lima J, Balasch JC, Tort L, Gravato C, Teles M. Elucidating the Effects of the Lipids Regulators Fibrates and Statins on the Health Status of Finfish Species: A Review. Animals (Basel) 2023; 13:ani13050792. [PMID: 36899648 PMCID: PMC10000190 DOI: 10.3390/ani13050792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
The most documented fibrates are gemfibrozil, clofibrate and bezafibrate, while for statins, the majority of the published literature focuses on atorvastatin and simvastatin. The present work reviews previously published research concerning the effects of these hypocholesterolaemic pharmaceuticals on fish, with a particular focus on commercially important species, commonly produced by the European aquaculture industry, specifically in recirculated aquaculture systems (RAS). Overall, results suggest that both acute and chronic exposures to lipid-lowering compounds may have adverse effects on fish, disrupting their capacity to excrete exogenous substances, as well as both lipid metabolism and homeostasis, causing severe ontogenetic and endocrinological abnormalities, leading to hampered reproductive success (e.g., gametogenesis, fecundity), and skeletal or muscular malformations, having serious repercussions on fish health and welfare. Nonetheless, the available literature focusing on the effects of statins or fibrates on commonly farmed fish is still limited, and further research is required to understand the implications of this matter on aquaculture production, global food security and, ultimately, human health.
Collapse
Affiliation(s)
- Manuel Blonç
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Jennifer Lima
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Department of Physiology, Institute of Bioscience, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Joan Carles Balasch
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Carlos Gravato
- Faculty of Sciences of the University of Lisbon—FCUL, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
9
|
Özçelik S, Canli M. Combined effects of metals (Cr6+, Hg2+, Ni2+, Zn2+) and calcium on the serum biochemistry and food quality of the Nile fish (Oreochromis niloticus). J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Mason MW, Parrott BB. Acute Copper Toxicity Displays a Nonmonotonic Relationship with Age Across the Medaka (Oryzias latipes) Life Span. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2999-3006. [PMID: 36102844 PMCID: PMC9828168 DOI: 10.1002/etc.5481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/26/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
The ability of an organism to cope with environmental stressors varies across the life span because of developmental stage-specific responses and age-related functional declines. In the present study, we examined the effect of age on acute copper toxicity in Japanese medaka (Oryzias latipes). We first determined the median lethal concentration (LC50) at 96 h for embryos, 7-day-old fry, and 6-month-old medaka. Embryos were exposed to 0, 15, 30, 60, 125, 250, and 500 ppb CuSO4 through hatching. Fry were exposed to 0, 20, 50, 75, 100, 150, 250, and 500 ppb CuSO4 for 96 h. Adult fish were exposed to 0, 100, 150, 200, 250, and 300 ppb CuSO4 for 96 h. The 96-h LC50 was 804 ppb for embryos, 262 ppb for embryonically exposed larvae, 60.3 ppb for 7-day-old fry, and 226 ppb for adults. We then challenged cohorts of fish aged 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, and 16 months with a 225-ppb CuSO4 exposure to determine the acute toxicity across the life span. The fish exhibited a bimodal tolerance to copper, with tolerance peaking in 2- and 3-month-old fish and again at 10 and 11 months of age. Our data demonstrate that copper sensitivity is dynamic throughout the medaka life span and may be influenced by trade-offs with reproduction. Environ Toxicol Chem 2022;41:2999-3006. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Marilyn W. Mason
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
| | - Benjamin B. Parrott
- Savannah River Ecology LaboratoryUniversity of GeorgiaAikenSouth CarolinaUSA
- Eugene P. Odum School of EcologyUniversity of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
11
|
Lakra KC, Mistri A, Banerjee TK, Lal B. Analyses of the health status, risk assessment and recovery response of the nutritionally important catfish Clarias batrachus reared in coal mine effluent-fed pond water: a biochemical, haematological and histopathological investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47462-47487. [PMID: 35182337 DOI: 10.1007/s11356-022-18971-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The present field study evaluates the health status of the catfish Clarias batrachus reared in coal mine effluent (CME)-fed pond water at Rajrappa mining complex using biochemical, haematological and histopathological parameters. Simultaneously, risk assessment along with recovery response of the CME intoxicated fish following their treatment with CME-free freshwater was also studied. The CME-fed pond water fish revealed significant decrease in biomolecules concentrations and considerable increase in activities of several enzymes along with metallothionein level as compared to control. The impaired regulation of metabolic function was also revealed by blood parameters showing significant decrease in haemoglobin content (8.78 ± 0.344 g/100 mL) and red blood cells count (1.77 ± 0.12 × 106 mm3) while substantial elevation in white blood cells (187.13 ± 9.78 × 103 mm3). The histopathological study also confirmed the changes including hypertrophy of club cells of skin, swelling of secondary lamella of gills, extensive fibrosis in liver and glomerular shrinkage with increased Bowman's space in kidney. Potential health risk assessments based on estimated daily intake and target hazard quotient indicated health risks associated with the consumption of such fishes. The CME-contaminated fish when transferred to CME-free freshwater exhibited decreased metal content accompanied by eventual recovery response as evident by retrieval in biochemical and haematological parameters. Withdrawal study also revealed restoration in the activity of different marker enzymes in fish tissues including blood as well as recovery in their cellular architecture. The results of the present study validate the depuration process as an effective practice for detoxification of fish contaminated with effluent.
Collapse
Affiliation(s)
- Kalpana Chhaya Lakra
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Arup Mistri
- Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Tarun Kumar Banerjee
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Bechan Lal
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
12
|
Gashkina NA, Moiseenko TI, Shuman LA, Koroleva IM. Biological responses of whitefish (Coregonus lavaretus L.) to reduced toxic impact: Metal accumulation, haematological, immunological, and histopathological alterations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113659. [PMID: 35605328 DOI: 10.1016/j.ecoenv.2022.113659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Bioaccumulation of the main pollutants in the organs of whitefish, as well as their haematological parameters, were examined dynamically over a 40-year period in historically contaminated Lake Imandra. A quantitative histological analysis was performed to assess the physiological state of whitefish and histopathologies of organs, as well as their physiological and biochemical functions in the current period of toxic load decline. Biological reactions of whitefish from the historically contaminated area have been greatly modified in contrast to those of whitefish from the never contaminated area of the lake, and this shift persisted even after approximately 20 years of toxic load decline. First, high antioxidant status supports the body's systems, smoothing over the negative consequences of metal toxicity, phagocytosis and inflammatory reactions. Moreover, the defence mechanism of whitefish from the historically contaminated area actively uses the oxidative systems of nonspecific immunity. Second, the adaptive strategy is aimed at improving gas exchange without compensatory proliferation of gill structure, which increases their functional surface and reduces the distance to the bloodstream, as well as increasing haemoglobin in maturing erythrocytes. Third, the higher efficiency of endo- and phagocytosis was confirmed by detecting increased monocytes and macrophages in the peripheral blood and decreased melano-macrophage centres in the fish kidney. Elevated accumulation of Fe, Cu, and Se may serve a sign of liver pathology, while elevated accumulation of Zn and Co already indicates kidney pathology, which is confirmed by histopathological alterations.
Collapse
Affiliation(s)
- Natalia A Gashkina
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin St., Moscow 119991, Russia.
| | - Tatyana I Moiseenko
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin St., Moscow 119991, Russia.
| | - Leonid A Shuman
- Tyumen State University, Lenina Street 25, 625003 Tumen, Russia.
| | - Irina M Koroleva
- Institute of the Industrial Ecology Problems of North, Kola Science Center, Russian Academy of Sciences, Fersmana St. 14a, 184200 Apatity, Russia.
| |
Collapse
|
13
|
Mason MW, Bertucci EM, Leri FM, Parrott BB. Transient Copper Exposure During Embryogenesis and Temperature Affect Developmental Rate, Survival, and Fin Regeneration in Japanese Medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:748-757. [PMID: 34918380 DOI: 10.1002/etc.5276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Combined environmental stressors that an organism experiences can have both immediate and lasting consequences. In the present study, we exposed Japanese medaka (Oryzias latipes) embryos to sublethal copper sulfate (CuSO4 ; 0, 10, and 100 ppb) in combination with different rearing temperatures (27, 30, and 33 °C) to assess acute and latent effects on development, growth, and regenerative capacity. Embryos exposed to CuSO4 and/or higher temperatures hatched significantly earlier. At 4 months post-exposure, fish exposed to low levels of CuSO4 during development had higher survival, whereas fish exposed to both 100 ppb CuSO4 and 33 °C temperatures had significantly lower survival. In addition, a sex-specific effect of embryonic CuSO4 exposure was observed as female mass decreased with increasing Cu dose. We also assessed caudal fin regenerative capabilities in both embryo-exposed fish at 4 months of age and adult medaka that were exposed to 0, 10, and 100 ppb CuSO4 at room temperature during a 14-day trial. Whereas fin regeneration was unaffected by adult exposure to Cu, fish transiently exposed during embryogenesis displayed an initial increase in fin growth rate and an increased incidence of abnormal fin morphology following regrowth. Collectively, these data suggest that developmental Cu exposure has the potential to exert long-lasting impacts to organismal growth, survival, and function. Environ Toxicol Chem 2022;41:748-757. © 2021 SETAC.
Collapse
Affiliation(s)
- Marilyn W Mason
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
| | - Emily M Bertucci
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | - Faith M Leri
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Benjamin B Parrott
- Savannah River Ecology Laboratory, University of Georgia, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
Lozano IE, Piazza YG, Babay P, Sager E, de la Torre FR, Lo Nostro FL. Ivermectin: A multilevel approach to evaluate effects in Prochilodus lineatus (Valenciennes, 1836) (Characiformes, Prochilodontidae), an inland fishery species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149515. [PMID: 34392219 DOI: 10.1016/j.scitotenv.2021.149515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
Ivermectin (IVM) is one of the most widely used antiparasitics worldwide. It is a potent and effective drug for treatment and prevention of internal and external parasitic infections of livestock and humans. IVM is excreted unchanged in manure of treated animals. Thus, residues of IVM may reach aquatic systems, affecting non-target organisms such as fish. Although the presence of IVM in aquatic environments has been reported, a multilevel approach (from cellular to behavioral responses) is necessary to determine the health of exposed organisms and the environmental risks associated. The aim of the present study was to investigate the response of the Neotropical fish Prochilodus lineatus, one of the main target species of South American freshwater fisheries, exposed to environmental concentrations of IVM: low (0.5 μg L-1) and high (1.5 μg L-1). Behavioral responses were assessed in juvenile fish and included water column use, routine swimming, total distance travelled, total activity time and Maximum swimming speed achieved during the escape response. Biochemical/oxidative stress responses assessed included brain acetylcholinesterase (AChE), catalase (CAT) and glutathione S-transferase (GST) activities; total antioxidant competence against peroxyl radicals (ACAP) and lipid oxidative damage (TBARs). Hematological biomarker responses included blood glucose levels, hematocrit, hemoglobin concentration, mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and mean corpuscular volume. Condition factor and hepatosomatic index were also calculated. The lowest IVM concentration caused a significant decrease in GST activity and maximum swimming speed during the escape response. Multivariate analysis with biochemical/stress and behavioral data revealed overall effects of IVM treatments. This multilevel analysis shows detrimental effects related to swimming behavior and predator avoidance which could affect population size and size-structure of P. lineatus. To our knowledge this is the first attempt to assess the effects of IVM on Neotropical fishes using an integrative approach based on biomarkers from different levels of biological organization.
Collapse
Affiliation(s)
- Ismael Esteban Lozano
- Laboratorio de Ecotoxicología Acuática, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Argentina
| | - Yanina Grisel Piazza
- Laboratorio de Ecotoxicología Acuática, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Argentina
| | - Paola Babay
- Gerencia Química, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - Emanuel Sager
- Grupo de Estudios de Contaminación Antrópica en Peces (GECAP), Instituto de Ecología y Desarrollo Sustentable, Departamento de Ciencias Básicas, CONICET-Universidad Nacional de Luján, Argentina
| | - Fernando Román de la Torre
- Grupo de Estudios de Contaminación Antrópica en Peces (GECAP), Instituto de Ecología y Desarrollo Sustentable, Departamento de Ciencias Básicas, CONICET-Universidad Nacional de Luján, Argentina
| | - Fabiana Laura Lo Nostro
- Laboratorio de Ecotoxicología Acuática, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA, CONICET-UBA), Argentina; Laboratorio de Ecotoxicología Acuática, Departamento de Biodiversidad y Biología Experimental (DBBE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
| |
Collapse
|
15
|
Portruneli N, Bonansea RI, Valdés ME, da Silva LCM, Viana NP, Goulart BV, Souza IDC, Espíndola ELG, Montagner CC, Wunderlin DA, Fernandes MN. Whole-body bioconcentration and biochemical and morphological responses of gills of the neotropical fish Prochilodus lineatus exposed to 2,4-dichlorophenoxyacetic acid or fipronil individually or in a mixture. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105987. [PMID: 34644674 DOI: 10.1016/j.aquatox.2021.105987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and the insecticide fipronil have been used widely in agriculture and detected in aquatic ecosystems, where they threaten wildlife. This study evaluated the whole-body bioconcentration and the biochemical and morphological changes in the gills of the neotropical fish Prochilodus lineatus exposed for 96 h to 2,4-D or fipronil as single compounds or as a mixture (2,4-D + fipronil). Fish exposed to either compound alone bioconcentrated 2,4-D (77 ± 23 ng g - 1 fish dry mass) and fipronil (789 ± 178 ng g - 1 fish dry mass). Fish exposed to 2,4-D + fipronil bioconcentrated fipronil (683 ± 73 ng g - 1 fish dry mass) but not 2,4-D. In the gills, catalase (CAT) and glutathione-S-transferase (GST) activities and the lipid peroxidation (LPO) level increased after exposure to 2,4-D. GST activity increased after exposure to fipronil. Conversely, no changes occurred in CAT and GST activities and LPO upon exposure to 2,4-D + fipronil. Histopathological changes such as hyperplasia, cellular hypertrophy, epithelial lifting, and vascular congestion were frequent in the gills of fish exposed to 2,4-D or fipronil individually or 2,4-D + fipronil. The mitochondria-rich cell (MRC) density increased on gill surface in fish exposed to fipronil or 2,4-D + fipronil. Only exposure to 2,4-D alone induced oxidative stress in the gills. Most morphological changes showed defense responses against the pesticides; however, hypertrophy and the change in MRC indicated compensatory responses to maintain the gill osmoregulatory function. The 2,4-D + fipronil mixture showed antagonistic interaction, except for the MRC fractional area at gill surface, which showed synergistic interaction. This is the first report showing antagonistic interaction of 2,4-D and fipronil in the gills after exposing fish to the mixture of both pesticides. The biochemical and morphological changes in gills endanger the gill functions, a phenomenon that implies an energy cost for fish.
Collapse
Affiliation(s)
- Natália Portruneli
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brasil
| | - Rocío Inés Bonansea
- ICYTAC: Instituto de Ciencia e Tecnologia de Alimentos Córdoba, CONICET e Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - UNC, Córdoba, Argentina
| | - Maria Eugenia Valdés
- ICYTAC: Instituto de Ciencia e Tecnologia de Alimentos Córdoba, CONICET e Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - UNC, Córdoba, Argentina
| | | | - Natália Prudêncio Viana
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brasil
| | - Bianca V Goulart
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brasil
| | - Iara da Costa Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brasil
| | | | - Cassiana Carolina Montagner
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brasil
| | - Daniel Alberto Wunderlin
- ICYTAC: Instituto de Ciencia e Tecnologia de Alimentos Córdoba, CONICET e Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - UNC, Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brasil.
| |
Collapse
|
16
|
Liu MJ, Guo HY, Liu B, Zhu KC, Guo L, Liu BS, Zhang N, Yang JW, Jiang SG, Zhang DC. Gill oxidative damage caused by acute ammonia stress was reduced through the HIF-1α/NF-κb signaling pathway in golden pompano (Trachinotus ovatus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112504. [PMID: 34265533 DOI: 10.1016/j.ecoenv.2021.112504] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to investigate the intoxication mechanism of golden pompano (Trachinotus ovatus) exposed to high ammonia levels and the effects on the immune and antioxidant mechanisms of gills. Juvenile golden pompano was exposed to ammonia (total ammonia: 26.9 mg/L) to induce 96 h of ammonia stress, and a 96 h recovery experiment was performed after poisoning. Then, we evaluated hematological parameters, the histological structure and the expression of related genes. In this experiment, continuous exposure to high levels of ammonia led to a significant increase in plasma alkaline phosphatase (ALP), acid phosphatase (ACP) and lactate dehydrogenase (LDH) levels (P < 0.05), and the levels of triiodothyronine (T3) and tetraiodothyronine (T4) were significantly reduced (P < 0.05). Moreover, the expression of antioxidant genes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and inflammatory cytokines such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) increased (P < 0.05). These results indicate that ammonia activates the active osmotic regulatory mechanism of fish gills and participates in defense and immune responses. However, with prolonged exposure to ammonia, the balance of the defense system is disrupted, leading to oxidative damage and inflammation of the gill tissue. This research not only helps elucidate the intoxication mechanism of golden pompano by ammonia at the molecular level but also provides a theoretical basis for further research on detoxification mechanisms.
Collapse
Affiliation(s)
- Ming-Jian Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; College of Fisheries, Tianjin Agricultural University, 300384 Tianjin, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangdong Province, China
| | - Hua-Yang Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangdong Province, China
| | - Bo Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangdong Province, China
| | - Ke-Cheng Zhu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangdong Province, China
| | - Liang Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangdong Province, China
| | - Bao-Suo Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangdong Province, China
| | - Nan Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangdong Province, China
| | - Jing-Wen Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangdong Province, China
| | - Shi-Gui Jiang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Dian-Chang Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, Guangdong Province, China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| |
Collapse
|
17
|
Stankevičiūtė M, Makaras T, Pažusienė J, Čapukoitienė B, Sauliutė G, Jurgelėnė Ž, Raudonytė-Svirbutavičienė E, Jokšas K. Biological effects of multimetal (Ni, Cd, Pb, Cu, Cr, Zn) mixture in rainbow trout Oncorhynchus mykiss: Laboratory exposure and recovery study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112202. [PMID: 33838460 DOI: 10.1016/j.ecoenv.2021.112202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/12/2021] [Accepted: 03/28/2021] [Indexed: 06/12/2023]
Abstract
The present study tested the biological consequences of exposure to a multimetal mixture as a multiple chemical stressor on Oncorhynchus mykiss at molecular, cellular, physiological and whole-organism levels and on biomarker responses of this fish during the depuration period. To represent environmentally relevant multiple chemical stressors, in our study, we used the mixture of Zn, Cu, Ni, Cr, Pb and Cd at the concentrations corresponding to Maximum-Permissible-Concentrations (MPCs) acceptable for the EU inland waters. This study was undertaken with a view to elucidate if changes in the MPC of the test mixture components (Ni, Pb, Cd) could cause significantly different biomarker responses in O. mykiss from those previously determined in the carnivorous and omnivorous fishes exposed to the mixture of the same metals but at different MPCs of Ni, Pb and Cd. This study has revealed that exposure to mixtures of metals at MPC produces genotoxic effects in fish blood erythrocytes and a lethargic effect on O. mykiss behaviour, and, also, significantly increases the levels of Cd, Cr and Ni accumulated in the gills tissue. O. mykiss successfully depurated Cr and Ni in less than 28 days, however, the level of Cd decreased by only approximately 40% over the same period. A significant capacity of O. mykiss to restore its DNA integrity (Comet assay) after exposure to metal mixtures was revealed. However, the 28-day recovery period proved to be insufficiently long for erythrocytes with nuclear abnormalities to recover to the unexposed level. In conclusion, changes in the MPCs of Ni, Pb and Cd in the test mixture produce biological effects similar to those previously determined in S. salar, R. rutilus and P. fluviatilis exposed to the mixture of the same metals but at lower MPCs of Ni and Pb and at higher MPC of Cd.
Collapse
Affiliation(s)
- Milda Stankevičiūtė
- Nature Research Centre, Laboratory of Genotoxicology, Akademijos St. 2, LT-08412 Vilnius, Lithuania.
| | - Tomas Makaras
- Nature Research Centre, Laboratory of Fish Ecology, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - Janina Pažusienė
- Nature Research Centre, Laboratory of Genotoxicology, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - Brigita Čapukoitienė
- Nature Research Centre, Laboratory of Genotoxicology, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - Gintarė Sauliutė
- Nature Research Centre, Laboratory of Genotoxicology, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | - Živilė Jurgelėnė
- Nature Research Centre, Laboratory of Fish Ecology, Akademijos St. 2, LT-08412 Vilnius, Lithuania
| | | | - Kęstutis Jokšas
- Nature Research Centre, Laboratory of Geoenvironmental Research, Akademijos St. 2, LT-08412 Vilnius, Lithuania; Vilnius University, Faculty of Chemistry and Geosciences, Naugarduko St. 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
18
|
Sachi ITDC, Bonomo MM, Sakuragui MM, Modena PZ, Paulino MG, Carlos RM, Fernandes JB, Fernandes MN. Biochemical and morphological biomarker responses in the gills of a Neotropical fish exposed to a new flavonoid metal-insecticide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111459. [PMID: 33069948 DOI: 10.1016/j.ecoenv.2020.111459] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The flavonoid metal-insecticide [Mg(hesp)2(phen)], denominated MgHP, has high potential for controlling agricultural pests. If applied in large scale, it may reach aquatic ecosystems and be harmful to the biota. This study evaluated the effects of MgHP in the gills of the Neotropical fish, Prochilodus lineatus by determining the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione s-transferase (GST), and the levels of glutathione (GSH) and lipid peroxidation (LPO) after 24 and 96 h exposure to 0, 1, 10, 100 and 1000 μg L-1. The histopathological changes with emphases to mitochondria-rich cells (MRC) were evaluated as well. After 24 h exposure the enzyme activities and the GSH and LPO levels were unchanged however, after 96 h exposure to high MgHP concentration (1000 μg L-1), the GST activity and GSH levels increased. Oxidative stress measured as LPO levels did not occur after MgHP exposure in both periods. Gill tissue alterations increased after MgHP exposure to 10, 100 and 1000 μg L-1. Cellular atrophy, pillar cells changes, filament epithelium hyperplasia and hypertrophy, lamellar epithelium hyperplasia were the most frequent histopathology. MRC in the filament epithelium decreased after exposure to 24 h and increased after 96 h indicating possible transitory osmo-ionic disruption. P. lineatus exhibited high tolerance to MgHP. The increased GST activity and GSH levels after 96 h exposure suggested possible MgHP accumulation and concentration- and time-dependent response. Histopathology in the gills of exposed fish occurred at high MgHP concentrations. These results suggested that the MgHP into water, at high concentrations, affect the gills by changing GST activity, GSH levels and histology being useful biomarkers for MgHP water contamination.
Collapse
Affiliation(s)
- Ivelise Teresa de Castro Sachi
- Postgraduate Program in Ecology and Natural Resources, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, 13563-905 São Carlos, SP, Brazil; Department of Physiological Sciences, Federal University of São Carlos, Rodovia Washington, Luiz Km 235, 13563-905 São Carlos, SP, Brazil
| | - Marina Marques Bonomo
- Postgraduate Program in Ecology and Natural Resources, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, 13563-905 São Carlos, SP, Brazil; Department of Physiological Sciences, Federal University of São Carlos, Rodovia Washington, Luiz Km 235, 13563-905 São Carlos, SP, Brazil
| | - Marise Margareth Sakuragui
- Postgraduate Program in Ecology and Natural Resources, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, 13563-905 São Carlos, SP, Brazil; Department of Physiological Sciences, Federal University of São Carlos, Rodovia Washington, Luiz Km 235, 13563-905 São Carlos, SP, Brazil
| | - Pamela Zaganin Modena
- Department of Physiological Sciences, Federal University of São Carlos, Rodovia Washington, Luiz Km 235, 13563-905 São Carlos, SP, Brazil
| | - Marcelo Gustavo Paulino
- Federal University of Tocantins, Campus Araguaína, Avenida Paraguai, s/n°, Setor Cimba, 77824-838 Araguaína, TO, Brazil
| | - Rose Maria Carlos
- Chemistry Department, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, SP, Brazil
| | - João Batista Fernandes
- Chemistry Department, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Marisa Narciso Fernandes
- Postgraduate Program in Ecology and Natural Resources, Federal University of São Carlos, Rodovia Washington Luiz, Km 235, 13563-905 São Carlos, SP, Brazil; Department of Physiological Sciences, Federal University of São Carlos, Rodovia Washington, Luiz Km 235, 13563-905 São Carlos, SP, Brazil.
| |
Collapse
|
19
|
Cheng B, Zou L, Zhang H, Cao Z, Liao X, Shen T, Xiong G, Xiao J, Liu H, Lu H. Effects of cyhalofop-butyl on the developmental toxicity and immunotoxicity in zebrafish (Danio rerio). CHEMOSPHERE 2021; 263:127849. [PMID: 33297003 DOI: 10.1016/j.chemosphere.2020.127849] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 06/12/2023]
Abstract
Cyhalofop-butyl is a kind of aromatic phenoxypropionic acid herbicide widely used in agriculture. However, studies on its immunotoxicity to aquatic organisms have not been reported. In this study paper, morphological, immunological, cytological, biochemical and molecular biology methods were used to study the effects of cyhalofop-butyl on the developmental toxicity and immunotoxicity in zebrafish. After cyhalofop-butyl exposed, the results showed that the zebrafish embryos had shorter length, yolk sac edema, significantly reduced number of immune cells, inflammatory response and immunocytes apoptosis. In addition, we found that the expression of immune-related genes and pro-apoptotic genes were up-regulated, and the JAK-STAT signaling pathway mediated the immunotoxicity induced by cyhalofop-butyl. Therefore, our results indicate that cyhalofop-butyl has developmental toxicity and immunotoxicity to zebrafish, and this study offer new contents for the effects of cyhalofop-butyl exposure on aquatic organisms.
Collapse
Affiliation(s)
- Bo Cheng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China; Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Lufang Zou
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China
| | - Hua Zhang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China
| | - Tianzhu Shen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, China
| | - Huasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, China.
| |
Collapse
|
20
|
Castaldo G, Delahaut V, Slootmaekers B, Bervoets L, Town RM, Blust R, De Boeck G. A comparative study on the effects of three different metals (Cu, Zn and Cd) at similar toxicity levels in common carp,
Cyprinus carpio. J Appl Toxicol 2020; 41:1400-1413. [DOI: 10.1002/jat.4131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Giovanni Castaldo
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology University of Antwerp Antwerp Belgium
| | - Vyshal Delahaut
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology University of Antwerp Antwerp Belgium
| | - Bart Slootmaekers
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology University of Antwerp Antwerp Belgium
| | - Lieven Bervoets
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology University of Antwerp Antwerp Belgium
| | - Raewyn M. Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology University of Antwerp Antwerp Belgium
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology University of Antwerp Antwerp Belgium
| | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology University of Antwerp Antwerp Belgium
| |
Collapse
|
21
|
Castaldo G, Flipkens G, Pillet M, Town RM, Bervoets L, Blust R, De Boeck G. Antagonistic bioaccumulation of waterborne Cu(II) and Cd(II) in common carp (Cyprinus carpio) and effects on ion-homeostasis and defensive mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105561. [PMID: 32688145 DOI: 10.1016/j.aquatox.2020.105561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/06/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
In the aquatic environment, metals are present as mixtures, therefore studies on mixture toxicity are crucial to thoroughly understand their toxic effects on aquatic organisms. Common carp (Cyprinus carpio) were used to assess the effects of short-term Cu(II) and Cd(II) mixtures, using a fixed concentration of one of the metals, representing 25 % of its individual 96h-LC50 (concentration lethal for 50 % of the population) combined with a variable concentration of the other metal corresponding to 10, 25 or 50 % of its 96h-LC50, and vice versa. Our results showed a fast Cu and Cd bioaccumulation, with the percentage of increase in the order gill > liver > carcass. An inhibitory effect of Cu on Cd uptake was observed; higher Cu concentrations at fixed Cd levels resulted in a decreased accumulation of Cd. The presence of the two metal ions resulted in losses of total Na, K and Ca. Fish tried to compensate for the Na loss through the induction of the genes coding for Na+/K+-ATPase and H+-ATPase. Additionally, a counterintuitive induction of the gene encoding the high affinity copper transporter (CTR1) occurred, while a downregulation was expected to prevent further metal ion uptake. An induction of defensive mechanisms, both metal ion binding protein and anti-oxidant defences, was observed. Despite the metal accumulation and electrolyte loss, the low mortality suggest that common carp is able to cope with these metal levels, at least during a one-week exposure.
Collapse
Affiliation(s)
- G Castaldo
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - G Flipkens
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - M Pillet
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - R M Town
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - L Bervoets
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - R Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - G De Boeck
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
22
|
Chen Y, Bai Y, Hu X, Yang X, Xu S. Effects of chronic exposure of waterborne copper on the antioxidant system and tissue accumulation in golden trout (Oncorhynchus mykiss aguabonita). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1537-1547. [PMID: 32383148 DOI: 10.1007/s10695-020-00810-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
We assessed the acute and chronic effects of copper (Cu2+) on the antioxidant system in golden trout (Oncorhynchus mykiss aguabonita). The median lethal concentration after 96 h was determined as 0.24 mg L-1. We then used 0.06 (L) and 0.12 mg L-1 (H) Cu2+ to assess the responses of the antioxidant system to long-term exposure. The activities of superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, reduced glutathione, and oxidized glutathione were measured in gill and liver tissue after 24 and 72 h and 7, 14, 21, and 28 days of exposure, as well as after 16 days of recovery in Cu2+-free water. Cu2+ accumulated to a greater extent in the liver than in the gill (0.61-0.75 mg kg-1 vs. 24.0-69.9 mg kg-1 in L group and 0.98-1.47 mg kg-1 vs. 33.3-66.03 mg kg-1 in H group). In the gill, we observed increases in the activities of superoxide dismutase, catalase, and glutathione peroxidase, as well as in the concentrations of reduced glutathione and oxidized glutathione. In the liver of L group, we observed increases in glutathione reductase activity and in the levels of reduced glutathione and oxidized glutathione. In L group, the activity of superoxide dismutase and reduced glutathione content increased after 24 h and then decreased over time, while catalase and glutathione reductase activity and oxidized glutathione levels increased. Data from the recovery period indicated that higher concentrations of Cu2+ may induce irreversible oxidative damage to the gill of golden trout.
Collapse
Affiliation(s)
- Yan Chen
- Beijing Fisheries Research Institute, Beijing, 100068, People's Republic of China
| | - Yucen Bai
- China Rural Technology Development Center, 54 Sanlihe Road, Beijing, 100045, China
| | - Xiaolu Hu
- China Rural Technology Development Center, 54 Sanlihe Road, Beijing, 100045, China
| | - Xiaofei Yang
- Beijing Fisheries Research Institute, Beijing, 100068, People's Republic of China
| | - Shaogang Xu
- Beijing Fisheries Research Institute, Beijing, 100068, People's Republic of China.
| |
Collapse
|
23
|
Malhotra N, Ger TR, Uapipatanakul B, Huang JC, Chen KHC, Hsiao CD. Review of Copper and Copper Nanoparticle Toxicity in Fish. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1126. [PMID: 32517348 PMCID: PMC7353310 DOI: 10.3390/nano10061126] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 01/14/2023]
Abstract
This review summarizes the present knowledge on the toxicity of copper and copper nanoparticles (CuNPs) to various fish species. In previous decades, the excessive usage of metal and metallic nanoparticles has increased significantly, increasing the probability of the accumulation and discharge of metals in various trophic levels of the environment. Due to these concerns, it is important to understand the toxicity mechanisms of metals and metallic nanoparticles before they lead to unhealthy effects on human health. In this review paper, we specifically focus on the effect of metal copper and CuNPs on different fish organs under different physiochemical parameters of various water bodies. Nowadays, different forms of copper have distinctive and specific usages, e.g., copper sulfate is a well-established pesticide which is used to control the growth of algae in lakes and ponds. Deactivating the fungi enzymes prevents fungal spores from germinating. This process of deactivation is achieved via the free cupric ions, which are established as the most toxic forms of copper. Complexes of copper with other ligands may or may not be bioavailable for use in aquatic organisms. On the other hand, CuNPs have shown cost-effectiveness and numerous promising uses, but the toxicity and availability of copper in a nanoparticle form is largely unknown, Additionally, physiochemical factors such as the hardness of the water, alkalinity, presence of inorganic and organic ligands, levels of pH, and temperature in various different water bodies affect the toxicity caused by copper and CuNPs. However, comprehensive knowledge and data regarding the pattern of toxicity for copper metal ions and CuNPs in marine organisms is still limited. In this review, we carry out a critical analysis of the availability of the toxicological profiles of copper metal ions and CuNPs for different fishes in order to understand the toxicity mechanisms of copper and CuNPs. We believe that this review will provide valuable information on the toxicological profile of copper, which will further help in devising safe guidelines for the usage of copper and CuNPs in a sustainable manner.
Collapse
Affiliation(s)
- Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (N.M.); (T.-R.G.)
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan;
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (N.M.); (T.-R.G.)
| | - Boontida Uapipatanakul
- Department of Applied Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thanyaburi 12110, Thailand;
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan;
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan;
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
24
|
Qian D, Xu C, Chen C, Qin JG, Chen L, Li E. Toxic effect of chronic waterborne copper exposure on growth, immunity, anti-oxidative capacity and gut microbiota of Pacific white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 100:445-455. [PMID: 32173448 DOI: 10.1016/j.fsi.2020.03.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Copper can be accumulated in water through excessive sewage discharge or residual algaecide to generate toxic effect to aquatic animals. In this study, the juvenile of Pacific white shrimp, Litopenaeus vannamei was exposed to 0 (control), 0.05, 0.1, 0.2, 0.5 or 1 mg Cu2+ L-1 for 30 days. Growth, immune function, anti-oxidative status and gut microbiota were evaluated. Weight gain and specific growth rate of L. vannamei were significantly decreased with the increase of ambient Cu2+. Enlarged lumen and ruptured cells were found in the hepatopancreas of shrimp in the 0.5 or 1 mg Cu2+ L-1 treatment. Total hemocyte counts of shrimp in 0.5 or 1 mg Cu2+ L-1 were significantly lower than in the control. The hemocyanin concentration was also significantly increased in 0.2 or 0.5 mg Cu2+ L-1. Lysozyme contents were reduced in shrimp when Cu2+ exceeded 0.2 mg L-1. Meanwhile, activities of superoxide dismutase and glutathione peroxidase were increased in the hepatopancreas and the activity of Na+-K+ ATPase was decreased in the gills with increasing Cu2+. The mRNA expressions of immune deficiency, toll-like receptor and caspase-3 were all significantly higher in the hepatopancreas in 0.05 mg Cu2+ L-1 than in the control. For the diversity of intestinal microbes, Bacteroidetes significantly decreased in 1 mg Cu2+ L-1 at the phylum level. KEGG pathway analysis demonstrates that 1 mg L-1 Cu2+ can significantly alter metabolism, cellular processes and environmental information processing. This study indicates that the concentration of 1 mg L-1 Cu can negatively impact growth, hemolymph immunity, anti-oxidative capacity and gut microbiota composition of L. vannamei.
Collapse
Affiliation(s)
- Dunwei Qian
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Chang Xu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| | - Chengzhuang Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Erchao Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, Hainan, 570228, China; Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China.
| |
Collapse
|
25
|
Delahaut V, Rašković B, Salvado MS, Bervoets L, Blust R, De Boeck G. Toxicity and bioaccumulation of Cadmium, Copper and Zinc in a direct comparison at equitoxic concentrations in common carp (Cyprinus carpio) juveniles. PLoS One 2020; 15:e0220485. [PMID: 32271754 PMCID: PMC7145017 DOI: 10.1371/journal.pone.0220485] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 12/31/2019] [Indexed: 11/23/2022] Open
Abstract
The individual toxicity and bioaccumulation of cadmium, copper and zinc for common carp juveniles was evaluated in a direct comparison in two experimental setups. First, fish were exposed for 10 days to different metal concentrations in order to link metal bioaccumulation to LC50 values (concentration lethal to 50% of the animals) and incipient lethal levels (ILL, concentration where 50% survives indefinitely). Accumulated metals showed a positive dose dependent uptake for cadmium and copper, but not for zinc. Toxicity was in the order cadmium>copper>zinc with 96h LC50 values for cadmium at 0.20±0.16 μM, for copper at 0.77±0.03 μM, and for zinc at 29.89±9.03 μM respectively. For copper, the 96h exposure was sufficient to calculate the incipient lethal level and therefore 96h LC50 and ILL levels were the same, while for cadmium and zinc 5 to 6 days were needed to reach ILL resulting in slightly lower values at 0.16 μM and 28.33 μM respectively. Subsequently, a subacute exposure experiment was conducted, where carp juveniles were exposed to 2 equitoxic concentrations (10% and 50% of LC50 96 h) of the three metals for 1, 3 and 7 days. Again a significant dose-dependent increase in gill cadmium and copper, but not in zinc, was observed during the 7-day exposure. Copper clearly affected sodium levels in gill tissue, while zinc and cadmium did not significantly alter any of the gill electrolytes. The overall histopathological effects (e.g. hyperemia and hypertrophy) of the metal exposures were mild for most of the alterations. Our study showed that copper an cadmium (but not zinc) showed dose dependent metal accumulation, however this bioaccumulation was only correlated with mortality for cadmium. Metal specific alterations were reduced gill sodium levels in copper exposed fish and oedema of the primary epithelium which typically occurred in both levels of zinc exposure.
Collapse
Affiliation(s)
- Vyshal Delahaut
- Department of Biology, University of Antwerp—Faculty of Sciences, Antwerp, Belgium
| | - Božidar Rašković
- University of Belgrade—Faculty of Agriculture, Institute of Animal Science, Zemun, Belgrade, Serbia
| | | | - Lieven Bervoets
- Department of Biology, University of Antwerp—Faculty of Sciences, Antwerp, Belgium
| | - Ronny Blust
- Department of Biology, University of Antwerp—Faculty of Sciences, Antwerp, Belgium
| | - Gudrun De Boeck
- Department of Biology, University of Antwerp—Faculty of Sciences, Antwerp, Belgium
- * E-mail:
| |
Collapse
|
26
|
Hu L, Chernick M, Lewis AM, Ferguson PL, Hinton DE. Chronic microfiber exposure in adult Japanese medaka (Oryzias latipes). PLoS One 2020; 15:e0229962. [PMID: 32150587 PMCID: PMC7062270 DOI: 10.1371/journal.pone.0229962] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/17/2020] [Indexed: 11/18/2022] Open
Abstract
Microplastic fibers (MFs) pollute aquatic habitats globally via sewage release, stormwater runoff, or atmospheric deposition. Of the synthetic MFs, polyester (PES) and polypropylene (PP) are the most common. Field studies show that fish ingest large quantities of MFs. However, few laboratory studies have addressed host responses, particularly at the organ and tissue levels. Adult Japanese medaka (Oryzias latipes), a laboratory model fish, were exposed to aqueous concentrations of PES or PP MFs (10,000 MFs/L) for 21 days. Medaka egested 1,367 ± 819 PES MFs (0.1 ± 0.04 mg) and 157 ± 105 PP MFs (1.4 ± 0.06 mg) per 24 hrs, with PP egestion increasing over time. Exposure did not result in changes in body condition, gonadosomatic- or hepatosomatic indices. PES exposure resulted in no reproductive changes, but females exposed to PP MFs produced more eggs over time. MF exposure did not affect embryonic mortality, development, or hatching. Scanning electron microscopy (SEM) of gills revealed denuding of epithelium on arches, fusion of primary lamellae, and increased mucus. Histologic sections revealed aneurysms in secondary lamellae, epithelial lifting, and swellings of inner opercular membrane that altered morphology of rostral most gill lamellae. SEM and histochemical analyses showed increased mucous cells and secretions on epithelium of foregut; however, overt abrasions with sloughing of cells were absent. For these reasons, increased focus at the tissue and cell levels proved necessary to appreciate toxicity associated with MFs.
Collapse
Affiliation(s)
- Lingling Hu
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Anna M. Lewis
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - P. Lee Ferguson
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - David E. Hinton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Tesser ME, de Paula AA, Risso WE, Monteiro RA, do Espirito Santo Pereira A, Fraceto LF, Bueno Dos Reis Martinez C. Sublethal effects of waterborne copper and copper nanoparticles on the freshwater Neotropical teleost Prochilodus lineatus: A comparative approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135332. [PMID: 31806348 DOI: 10.1016/j.scitotenv.2019.135332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Copper nanoparticles can contaminate the aquatic environment, but their effects on fish and how they may differ from copper salts is not understood. Thus, in this work we compare the sublethal effects of copper nanoparticles (nCu) and copper chloride (Cu) on the freshwater teleost Prochilodus lineatus, known for its sensitivity to copper. Juveniles (n = 8/group) were exposed to 20 μg L-1 of copper as CuCl2 (Cu), 40 μg L-1 of copper nanoparticles (nCu), or only water (control), for 96 h. These concentrations were chosen to achieve similar dissolved copper concentration in both treatments (Cu: 10.29 ± 0.94 μg L-1; nCu: 12.16 ± 1.77 μg L-1). After the exposure, the following biological parameters were evaluated: copper accumulation in the gills, liver, gastrointestinal tract, kidney, and muscle; hematocrit (Ht) and hemoglobin content (Hb); branchial activity of Na+-K+-ATPase (NaKATP), H+-ATPase (HATP), Ca2+-ATPase (CaATP), and carbonic anhydrase (CA); glutathione content (GSH) and lipid peroxidation (LPO) in the liver; acetylcholinesterase activity (AChE) in the brain and muscle; and histopathology of the gills and liver. The gills of Cu-exposed fish were adversely affected, with increased copper content, inhibition of H+-ATPase and Ca2+-ATPase, and histological damage, including proliferation of mitochondria rich cells and/or mucous cells. In addition, LPO levels increased in the liver of Cu-exposed fish, indicating the occurrence of oxidative stress. Exposure to nCu promoted a decrease in Ht and Hb, indicating anemia, and an increase in branchial Na+-K+-ATPase and H+-ATPase activities, which can be an adaptive response to metabolic acidosis. Within the chosen biomarkers and the conditions tested, copper nanoparticles were less toxic than copper. However, the effects promoted by the nanoparticles were different from those promoted by copper. These results emphasize the need for a better understanding of copper nanoparticles toxicity in order to establish safe concentrations and avoid environment impacts.
Collapse
Affiliation(s)
- Maria Eduarda Tesser
- Department of Physiological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Angélica Alves de Paula
- Department of Physiological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Wagner Ezequiel Risso
- Department of Physiological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | | | | | | | | |
Collapse
|
28
|
Kulesza A, Leonard EM, McClelland GB. Influence of 96h sub-lethal copper exposure on aerobic scope and recovery from exhaustive exercise in killifish (Fundulus heteroclitus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105373. [PMID: 31786386 DOI: 10.1016/j.aquatox.2019.105373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Production of industrial effluents have led to increased copper (Cu) pollution of aquatic ecosystems, impacting the physiology of aquatic vertebrates. Past work has shown that Cu exerts its toxicity by disruption ion regulation and/ or increasing oxidative stress. However, it remains unclear how Cu may influence aerobic metabolism and hypoxia tolerance, two possible targets of its toxicity. To address this issue, we exposed freshwater acclimated killifish (F. heteroclitus) to a 96 h Cu exposure at a target concentration of 100 μg L-1. We determined resting oxygen consumption (ṀO2), ṀO2max after exhaustive exercise, and followed ṀO2 for 3 h in post-exercise recovery in water with either no Cu or 100 μg L-1 Cu. We assessed hypoxia tolerance by determining the critical oxygen tension (Pcrit). It was found that killifish exposed to combined 96 h Cu exposure and Cu present during metabolic measurements, showed a significant decrease in ṀO2max and in aerobic scope (ṀO2max - ṀO2rest), compared to control fish. However, changes in blood and muscle lactate and muscle glycogen were not consistent with an upregulation of anaerobic metabolism as compensation for reduced aerobic performance in Cu exposed fish. Hypoxia tolerance was not influenced by the 96 h Cu exposure or by presence or absence of Cu during the Pcrit test. This study suggests that Cu differentially influences responses to changes in oxygen demand and oxygen availability.
Collapse
Affiliation(s)
- Adomas Kulesza
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Erin M Leonard
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Grant B McClelland
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
29
|
Castaldo G, Pillet M, Slootmaekers B, Bervoets L, Town RM, Blust R, De Boeck G. Investigating the effects of a sub-lethal metal mixture of Cu, Zn and Cd on bioaccumulation and ionoregulation in common carp, Cyprinus carpio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105363. [PMID: 31783302 DOI: 10.1016/j.aquatox.2019.105363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The aquatic environment is continuously under threat because it is the final receptor and sink of waste streams. The development of industry, mining activities and agriculture gave rise to an increase in metal pollution in the aquatic system. Thus a wide occurrence of metal mixtures exists in the aquatic environment. The assessment of mixture stress remains a challenge considering that we can not predict the toxicity of a mixture on the basis of single compounds. Therefore the analysis of the effects of environmentally relevant waterborne mixtures is needed to improve our understanding of the impact of metal pollution in aquatic ecosystems. Our aim was to assess whether 10 % of the concentration of the 96 h LC50 (the concentration that is lethal to 50 % of the population in 96 h) of individual metal exposures can be considered as a "safe" concentration when applied in a trinomial mixture. Therefore, common carp were exposed to a sublethal mixture of Cu 0.07 ± 0.001 μM (4.3 ± 0.6 μg/L), Zn 2.71 ± 0.81 μM (176.9 ± 52.8 μg/L) and Cd 0.03 ± 0.0004 μM (3.0 ± 0.4 μg/L) at 20 °C for a period of one week. Parameters assessed included survival rate, bioaccumulation and physiological biomarkers related to ionoregulation and defensive mechanisms such as MT induction. Our results showed a sharp increase in Cu and Cd concentration in gills within the first day of exposure while Zn levels remained stable. The accumulation of these metals led to a Na drop in gills, liver and muscle as well as a decreased K content in the liver. Biomarkers related to Na uptake were also affected: on the first day gene expression for H+-ATPase was transiently increased while a concomitant decreased gene expression of the Na+/H+ exchanger occurred. A fivefold induction of metallothionein gene expression was reported during the entire duration of the experiment. Despite the adverse effects on ionoregulation all fish survived, indicating that common carp are able to cope with these low metal concentrations, at least during a one week exposure.
Collapse
Affiliation(s)
- G Castaldo
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - M Pillet
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - B Slootmaekers
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - L Bervoets
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - R M Town
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - R Blust
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - G De Boeck
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
30
|
Nimet J, Neves MP, Viana NP, de Arruda Amorim JP, Delariva RL. Histopathological alterations in gills of a fish (Astyanax bifasciatus) in neotropical streams: negative effects of riparian forest reduction and presence of pesticides. ENVIRONMENTAL MONITORING AND ASSESSMENT 2019; 192:58. [PMID: 31858272 DOI: 10.1007/s10661-019-8030-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
The reduction of riparian vegetation around aquatic environments causes several physicochemical alterations and favors the entry of pesticides via surface runoff. Such changes have negative effects on aquatic organisms. In this study, we evaluated histopathological alterations in gills of Astyanax bifasciatus to test the hypothesis that more severe histopathological alterations occur in gills of fish from streams with higher agricultural impact from the surrounding area. The specimens were collected by electrofishing in seven streams of the lower Iguaçu basin between August 2015 and February 2016. The gills were processed according to routine histological methods and examined by light microscopy. The histopathological alterations, mainly stage II (lamellar aneurysm and total fusion of lamellae), were observed in fish collected in streams with higher agricultural activity. In these streams, the histopathological index indicated slight to moderate organ lesions. In contrast, in streams with more vegetation cover, fish collected presented stage I histopathological alterations (lamellar edema and lamellar hyperplasia), and the HI indicated normal functioning of the gills. In addition, chloride and acid mucous cells were more abundant in the gills of fish collected in rural streams. Our findings demonstrate that more severe histopathological alterations were registered in fish collected from streams with intense agricultural activity in the surrounding area. Therefore, it highlights that vegetation cover around the streams is a positive force for the conservation and health of aquatic organisms.
Collapse
Affiliation(s)
- Jardel Nimet
- Universidade Estadual de Maringá, Centro de Ciências Biológicas, Programa de Pós-Graduação em Biologia Comparada, Avenida Colombo 5790, bloco G-80, sala 201. CEP 878020-900., Maringá, Paraná (PR), Brazil.
| | - Mayara Pereira Neves
- Departamento de Zoologia, Pós-graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Avenida Bento Gonçalves 9500, bloco IV, prédio 4343-5. CEP 91501-970, Porto Alegre, Rio Grande do Sul (RS), Brazil
| | - Natália Prudêncio Viana
- Universidade Federal de São Carlos, Pós-graduação em Ecologia e Recursos Naturais. Rodovia Washington Luiz km 235, Caixa postal 676. CEP 13565-905, São Carlos, São Paulo (SP), Brazil
| | - João Paulo de Arruda Amorim
- Centro de Ciências Biológicas e Saúde, Laboratório de Biologia Tecidual e Reprodução, Universidade Estadual do Oeste do Paraná. Rua Universitária 2069, Caixa postal 711. CEP 85819-110, Cascavel, Paraná (PR), Brazil
| | - Rosilene Luciana Delariva
- Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde. Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais. Rua Universitária 2069, Caixa postal 711. CEP 85819-110, (+55 045)3220-7396, Cascavel, Paraná (PR), Brazil
| |
Collapse
|
31
|
Olayinka OO, Adewusi AA, Olujimi OO, Aladesida AA. Polycyclic Aromatic Hydrocarbons in Sediment and Health Risk of Fish, Crab and Shrimp Around Atlas Cove, Nigeria. J Health Pollut 2019; 9:191204. [PMID: 31893165 PMCID: PMC6905136 DOI: 10.5696/2156-9614-9.24.191204] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 09/02/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are toxic contaminants and pose health risks to humans and the ecosystem due to their persistence in the environment. OBJECTIVES This study determined the concentrations of PAHs in sediment, two species of fish (Drepane africana and Pomadasys jubelini), crabs (Callinectes amnicola) and shrimps (Penaeus notialis) around the Atlas Cove jetty, Lagos, Nigeria. METHODS Polycyclic aromatic hydrocarbons were extracted from fish, shrimp, and crabs that were purchased from local fishermen. Sediments were collected at five locations impacted by ship movement and cargo offloading around the Atlas Cove jetty during the period of June to August 2016, using standard methods. Potential toxicity of PAHs in the sediments on the surrounding aquatic organisms was assessed. The PAHs were analyzed using gas chromatography-mass spectrometry. Human health risk assessment was calculated from biota using dietary daily intake and carcinogenic potencies of individual PAH concentrations. RESULTS A total of 17 PAH congeners were detected in sediment samples and ten were detected in biota samples. Concentrations of total PAHs obtained in sediment and fish samples ranged from 2.15 - 36.46 mg/kg and 11.89 - 71.06 mg/kg, respectively. The total PAHs concentration pattern follow the order of P. notialis > C. amnicola > P. jubelini (whole) > D. africana (whole) > D. africana (fillet) > P. jubelini (fillet) > sediment. Concentrations of total PAHs were higher in whole fish than in fillet samples (muscle) in both fish species. High values of PAHs were recorded in the dietary intake (0.10 - 2.33 mg/kg body weight/day) of the organisms. Toxic equivalent quotient values (0.01 to 0.10 mg/kg) were observed to be higher than the screening values (0.0014 to 0.0599 mg/kg). In the muscle of Drepane africana and Pomadasys jubelini, splitting and atrophy of the muscle bundles were observed. CONCLUSIONS The concentrations of PAHs in analyzed sediment and organisms were higher than the maximum permissible limit of the United State Environmental Protection Agency (USEPA). Most of the detected PAHs were of petrogenic origin, which is an indication that anthropogenic activities were influencing PAH concentrations. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Oluwafunmilayo O. Olayinka
- Department of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Adetomi Adeola Adewusi
- Department of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olanrewaju Olusoji Olujimi
- Department of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta, Nigeria
| | | |
Collapse
|
32
|
Vaz C, Afonso F, Barata M, Ribeiro L, Pousão-Ferreira P, Soares F. Effect of copper exposure and recovery period in reared Diplodus sargus. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1075-1084. [PMID: 31559557 DOI: 10.1007/s10646-019-02109-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
The aquaculture growth can be followed by the occurrence of more and new pathogenic agents, since the production leads to higher fish densities in confined areas more appropriate to the appearance and propagation of pathologies. Copper sulfate has been widely used in preventing and controlling fish parasites. The objective of this study is to investigate the effects of copper treatments in the fish tissues (bioaccumulation and histological changes in different organs), mortality and evaluate what happens during the recovery period. White sea bream (Diplodus sargus) were exposed to copper sulfate (0.25 and 0.5 mg L-1) during 60 days followed with a 75-day recovery period. The results showed that the concentration of copper in fish liver was significantly higher in the 0.5 mg L-1 treatment than in the 0.25 mg L-1 treatment. Conversely, copper load in the muscle did not differ significantly between treatments and control. Copper levels in muscle, and especially in liver, increased during copper exposure (up to 60 days). In summary, at higher concentrations copper sulfate treatment (0.5 mg L-1) might be toxic to fish, which showed histological alterations and copper accumulation in their tissues, mainly in the liver. Nevertheless, individuals returned to their original state after a 75-day recovery period and the tested copper concentrations does not represents risk for food safety.
Collapse
Affiliation(s)
- Cristiana Vaz
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194, Olhão, Portugal
- CIISA - Faculty of Veterinary Medicine, Lisbon University, Lisbon, Portugal
| | - Fernando Afonso
- CIISA - Faculty of Veterinary Medicine, Lisbon University, Lisbon, Portugal
| | - Marisa Barata
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194, Olhão, Portugal
| | - Laura Ribeiro
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194, Olhão, Portugal
| | - Pedro Pousão-Ferreira
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194, Olhão, Portugal
| | - Florbela Soares
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194, Olhão, Portugal.
| |
Collapse
|
33
|
Tavares D, Paulino MG, Terezan AP, Batista Fernandes J, Giani A, Fernandes MN. Osmoregulatory disturbance in Neotropical fish exposed to the crude extracts of the cyanobacterium, Radiocystis fernandoi. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105315. [PMID: 31561138 DOI: 10.1016/j.aquatox.2019.105315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Blooms of cyanobacteria, a common event in eutrophic environments, result in the release of potentially toxic substances into the water. The cyanobacterium Radiocystis fernandoi produces microcystin (MC) and other peptides that may disturb homeostasis. This study evaluated the effect of intraperitoneal injections containing the crude extract (CE) of R. fernandoi strain R28 on the gills and kidneys of neotropical fish, Piaractus mesopotamicus, 3, 6 and 24 h post-injection. CE contained MC-RR, MC-YR and minor other oligopeptides. Plasma ions and the activities of the enzymes PP1 and PP2A, Na+/K+-ATPase (NKA), H+-ATPase (HA) and carbonic anhydrase (CA) were determined and morphological changes in both the gills and kidneys were characterized. Compared to controls, the concentration of Na+ within the plasma of P. mesopotamicus decreased after treatment with CE 3 h post treatment and increased after 24 h; the concentration of K+ decreased after 6 h. The activity of the endogenous PP1 and PP2A was unchanged in the gills and was inhibited in the kidneys 6 h after i.p. injection. In the gills, NKA activity increased after 3 h and decreased 6 h post i.p. exposure. Further, NKA activity did not differ from the controls 24-h post injection. In the kidneys, NKA, HA and CA activities were unaffected by treatment. The mitochondria-rich cell (MRC) density in the gills decreased after 3 h in the filament and 3 and 6 h in the lamellae and was restored to the control levels 24 h post-exposure. Filament epithelial hyperplasia and hypertrophy, lamellar atrophy and rupture of the lamellar epithelium were the most common effects of treatment in the gills. No histopathological changes occurred in the kidneys. This study demonstrates that a single dose of toxic CE from R. fernandoi can cause a transitory ion imbalance in P. mesopotamicus which is related to the changes in MRC levels and NKA activity. Ionic balance was recovered 24 h post i.p. injection, however, morphological changes that occurred in the gills took a longer amount of time to return to normal. To conclude, the effects of components contained within the CE of R. fernandoi may be harmful to P. mesopotamicus. In particular, the recovery of ionic regulation depends on MRC responses and histopathological changes produced by CE may affect gas exchange and other gill functions.
Collapse
Affiliation(s)
- Driele Tavares
- Department of Physiological Sciences, Federal University of São Carlos, Rodovia Washington Luiz km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Marcelo Gustavo Paulino
- Department of Physiological Sciences, Federal University of São Carlos, Rodovia Washington Luiz km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Ana Paula Terezan
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luiz km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - João Batista Fernandes
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luiz km 235, 13565-905 São Carlos, São Paulo, Brazil
| | - Alessandra Giani
- Department of Botany, Federal University of Minas Gerais, Av. Pres. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Marisa Narciso Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, Rodovia Washington Luiz km 235, 13565-905 São Carlos, São Paulo, Brazil.
| |
Collapse
|
34
|
Morroni L, Sartori D, Costantini M, Genovesi L, Magliocco T, Ruocco N, Buttino I. First molecular evidence of the toxicogenetic effects of copper on sea urchin Paracentrotus lividus embryo development. WATER RESEARCH 2019; 160:415-423. [PMID: 31163317 DOI: 10.1016/j.watres.2019.05.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
Bioassays with sea urchin embryos are widely used to define the environmental quality of marine waters. Anomalies during embryogenesis are generally considered as end-points, whereas a toxigenomic approach, despite it is wide use in other species, is yet in its infancy. In the present study we evaluated toxigenic effects induced by copper on the sea urchin Paracentrotus lividus embryo, combining morphological observations with gene expression analysis. Many anthropogenic activities release copper in the marine environment, with harmful effects on aquatic organisms. In the present study P. lidivus embryos were exposed to different concentrations of copper (24, 36, 48 μg/L) and the activation of fifty specific marker genes, involved in different biological processes (stress, skeletogenesis, development/differentiation, detoxification) was investigated at early blastula, late gastrula and pluteus stage. At blastula stage no morphological anomalies were found, with early down-regulation of genes involved in development/differentiation and a moderate up-regulation of some detoxification genes. At gastrula stage a slight increase in developmental anomalies (up to 19% of malformed embryos) was followed by an increased number of targeted genes belonging to the same two classes, relative to the blastula stage. At pluteus stage morphological anomalies increased in a dose dependent manner. All the analyzed genes were strongly up-regulated, stress and skeletogenic genes showing a "late response" and almost all genes were targeted by copper at all the concentrations tested. The present study represents the first molecular report on the potential negative effect of copper on P. lividus embryos in the environment. Gene expression analysis should be considered as a promising tool for future environmental biomonitoring programs.
Collapse
Affiliation(s)
- Lorenzo Morroni
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Davide Sartori
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Lorenzo Genovesi
- Department of Aquatics, Acquario di Livorno, Costa Edutainment S.p.A, Piazzale Razzauti 1, 57127, Livorno, Italy
| | - Thomas Magliocco
- Department of Aquatics, Acquario di Livorno, Costa Edutainment S.p.A, Piazzale Razzauti 1, 57127, Livorno, Italy
| | - Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy
| | - Isabella Buttino
- Institute for Environmental Protection and Research, ISPRA, Via del Cedro, 38, 57123, Livorno, Italy; Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy.
| |
Collapse
|
35
|
Effects of copper toxicity at different pH and temperatures on the in vitro enzyme activity in blood and liver of fish, Prochilodus lineatus. Mol Biol Rep 2019; 46:4933-4942. [DOI: 10.1007/s11033-019-04944-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
|
36
|
The Change of Metallothionein and Oxidative Response in Gills of the Oreochromis niloticus after Exposure to Copper. Animals (Basel) 2019; 9:ani9060353. [PMID: 31197097 PMCID: PMC6616881 DOI: 10.3390/ani9060353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Copper is an essential element for the aquatic organisms for a number of biological processes. However, it may be toxic at high concentrations. The present study revealed that the levels of Cu in gills of all Cu-exposed tilapia significantly increased during the first few days, and then gradually decreased, matching the control at D4-D5. The concentration of metallothionein (MT) and the activities of superoxide dismutase (SOD) and catalase (CAT) in the gills of Cu-exposed fish were in line with the accumulated Cu. The increase of MT, SOD, and CAT during the first few days might be the adaptive response of the animal to Cu toxicity. MT binds the elevated Cu, while SOD and CAT scavenge the increased free radicals due to the increasing level of Cu. Cu does not affect the malondialdehyde (MDA) concentration in gills of fish, which suggests the SOD, CAT and MT as antioxidant defense systems were able to completely scavenge the increased free radicals. Abstract In the present study, we investigated the effects of waterborne copper (Cu) on the levels of metallothionein (MT) and malondialdehyde (MDA), as well as activities of superoxide dismutase (SOD) and catalase (CAT) in gills of cichlid fish Oreochromis niloticus. The Cu concentrations in gills were measured using an atomic absorption spectrometer. The sandwich-ELISA was used to measure MT, SOD, CAT, and MDA. The Cu concentrations in gills of fish that were exposed to 1, 5, and 10 mg Cu/L were significantly increased at day 1 (D1), then gradually decreased starting from D2, and reaches the similar value with the controls at D5. A similar tendency has been observed in the MT levels in the gills. All of the Cu-exposed fish showed the highest level of MT on D1, and then decreased at D3 and a plateau at D4 and D5. The levels of SOD and CAT in gills in all Cu-exposed fish showed a similar pattern: increased significantly at D1, then gradually decreased starting from D2, and increased again at D4 and D5. The levels of MDA in gills of all Cu-exposed fish showed no significant difference. The indifference levels of MDA in gills of all Cu-exposed fish suggested the antioxidant defense systems (SOD and CAT) combined with the induction of MT were able to completely scavenge the increased ROS.
Collapse
|
37
|
Antagonistic Effects of Sublethal Concentrations of Certain Mixtures of Metal Oxide Nanoparticles and the Bulk (Al2O3, CuO, and SiO2) on Gill Histology in Clarias gariepinus. JOURNAL OF NANOTECHNOLOGY 2019. [DOI: 10.1155/2019/7686597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background. The effect of nanoparticles (NPs) on aquatic environments is poorly studied. Aim. This study evaluates the toxicity of joint effects of these different metal nanoparticles and their bulk in mixtures (Al2O3, CuO, and SiO2) on fish using histological biomarker. Materials and Methods. The bulk and nano sizes of three salts (Al2O3, CuO, and SiO2) were used. Nanosizes ranged from 25 nm to 100 nm. The juvenile fishes of Clarias gariepinus (mean Length: 12.3 ± 3.5 cm; mean weight: 18.52 ± 6.41 g) were used for the acute and chronic toxicity tests. They were exposed to 7 mg/L each of the bulk and nano sizes of the three metallic oxides either singly or in mixtures for 28 days. The basis for the sublethal concentration was that the 96 hr acute toxicity of the varied sizes of the three metallic oxides was nontoxic up to the concentrations of 100 mg/L with no significant mortality at the highest exposure concentrations. The gills were collected for histopathology. Results. Of the three metal oxide nanoparticles, SiO was the most toxic, with histopathological alteration index (HAI) of 20.0, followed by nano-CuO (HAI, 10.0) and nano-Al2O3 (HAI, 2.0). In single exposure, the gill alterations include high frequencies of erosion of gill lamella (EGL), hypertrophy (HPT), oedema (OD), and necrosis (N). Less damage was observed at the combination of the metal oxide nanoparticles of SiO + Al2O3, SiO + CuO and SiO + Al2O3 + CuO in equal (1 : 1—HAI, 2 and 6; 1 : 1 : 1—HAI, 6) and unequal ratios (1 : 2—HAI, 16 and 6; 2 : 1—HAI, 8 and 6). Similarly, all bulk combinations were also antagonistic except for the equal ratio of bulk CuO (HAI, 20) and bulk Al2O3 (HAI, 10) that gave additive effect with HAI of 32. Conclusion. The joint actions of nano Al2O3 and CuO with SiO produced a low toxic effect, unlike the high toxicity of their single trials; this also indicates that nano Al2O3 and CuO are antagonists. Similarly, among the bulk metal oxides (SiO, Al2O3, and CuO), CuO was the most toxic. Bulk SiO and Al2O3 are antagonistic on the effects of CuO on the fish gill. There is need to properly document the ecological implications of nanoparticles in the aquatic environment.
Collapse
|
38
|
Koehlé-Divo V, Pain-Devin S, Bertrand C, Devin S, Mouneyrac C, Giambérini L, Sohm B. Corbicula fluminea gene expression modulated by CeO 2 nanomaterials and salinity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:15174-15186. [PMID: 30924045 DOI: 10.1007/s11356-019-04927-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Cerium dioxide nanomaterials (CeO2 NMs) are used in different fields and incorporated in daily products. Several studies highlighted their effects on organism physiology, although molecular studies remain scarce. NM behavior is strongly dependent on the environment but few data are available using complex exposure media, raising the question of its environmental impacts. The aim of the present work was to assess the toxic potential of three CeO2 NMs in Corbicula fluminea at a molecular level by RT-qPCR under a more realistic scenario of exposure, in a multistress context at two different salinities (1.5 and 15 psu). C. fluminea was exposed for 28 days to pulses of the three selected NMs (reference, manufactured, and aged manufactured). In bivalves, the gills and digestive gland are two key organs used for ecotoxicological studies. The expression change of 12 genes was measured in control organisms after 28 days in both organs, allowing us to clearly separate the responses for both organs and salinities. As gills come in contact with the environment first, we monitored gene the expression at intermediate time points (7, 14, and 21 days) for this organ in order to highlight clams responses to NM and salinity. Two genes (Se-GPx, MnSOD) had a salinity-dependent level of expression. HSP70, Se-GPx, and Trxr mRNAs presented significant changes in their expressions in the presence of NM. This study was completed using an integrated statistical approach. The exposed organisms differed more from control at field salinity than those exposed to hyper-saline conditions. At 15 psu, salinity pressure seems to cause the first molecular impact. At 1.5 psu, gene expression patterns allowed the effect of each NM to separate clearly. These results confirmed the usefulness of gene expression studies. Moreover, we highlighted the necessity to assess the environmental toxicity of the different forms of manufactured NM.
Collapse
Affiliation(s)
- Vanessa Koehlé-Divo
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France.
| | - Sandrine Pain-Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| | - Carole Bertrand
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
- Laboratoire Mer, Molécules et Santé (MMS, EA2160), Université Catholique de l'Ouest, 3 Place André Leroy, F-49000, Angers Cedex 01, France
| | - Simon Devin
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| | - Catherine Mouneyrac
- Laboratoire Mer, Molécules et Santé (MMS, EA2160), Université Catholique de l'Ouest, 3 Place André Leroy, F-49000, Angers Cedex 01, France
| | - Laure Giambérini
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| | - Bénédicte Sohm
- Université de Lorraine, CNRS, LIEC, F-57000 Campus Bridoux, Rue du Général Delestraint, 57070, Metz, France
| |
Collapse
|
39
|
Erdoğan K, Kandemir Ş, Doğru MI, Doğru A, Şimşek I, Yılmaz S, Örün G, Altaş L, Yazıcıoğlu O, Korkmaz N, Örün I. The effects of seasonal heavy-metal pollution of Ladik Lake on pike fish (Esox lucius). BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1607215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Kenan Erdoğan
- Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| | - Şevket Kandemir
- Department of Elementary Education, Faculty of Education, Amasya University, Amasya, Turkey
| | - Mehmet Ilker Doğru
- Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| | - Arzu Doğru
- Department of Elementary Education, Faculty of Education, Aksaray University, Aksaray, Turkey
| | - Ismail Şimşek
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, Aksaray, Turkey
| | - Savaş Yılmaz
- Department of Biology, Faculty of Science and Letters, Ondokuz Mayis University, Samsun, Turkey
| | - Gülnihal Örün
- Technical Sciences Vocational School, Aksaray University, Aksaray, Turkey
| | - Levent Altaş
- Department of Environmental Engineering, Faculty of Engineering, Aksaray University, Aksaray, Turkey
| | - Okan Yazıcıoğlu
- Technical Sciences Vocational School, Ahi Evran University, Kırşehir, Turkey
| | - Nuh Korkmaz
- Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| | - Ibrahim Örün
- Department of Biology, Faculty of Science and Letters, Aksaray University, Aksaray, Turkey
| |
Collapse
|
40
|
Capaldo A, Gay F, Laforgia V. Changes in the gills of the European eel (Anguilla anguilla) after chronic exposure to environmental cocaine concentration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:112-119. [PMID: 30445241 DOI: 10.1016/j.ecoenv.2018.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 05/20/2023]
Abstract
The recent discovery of illicit drugs in the aquatic environment has raised concerns about the possible effects on the aquatic fauna, because of the pharmacological activity of these substances. Cocaine is an illicit drug widespread in surface waters since it is the third most widely used drug in North America, Western and Central Europe, and the second in Latin America and the Caribbean. The aim of this study was to evaluate the influence of environmental concentrations of cocaine on the gills of the European eel (Anguilla anguilla). The gills of male silver eels exposed to 20 ng L-1 of cocaine for fifty days were compared to control, vehicle control and post-exposure recovery ten days groups. The following parameters were evaluated: the thickness of the interlamellar epithelium (TIE), the length of the secondary lamellae (LSL) and the fraction of the interlamellar epithelium and the secondary lamellae occupied by the mucous cells (MC(IE-SL)FA) 3) the plasma cortisol and prolactin levels. After cocaine exposure, the gill epithelium appeared hyperplastic. The following changes were observed: proliferation in the interlamellar epithelium; partial and total fusion of the secondary lamellae, that appeared shortened and dilated; epithelial lifting and aneurism in the secondary lamellae. Moreover, in cocaine exposed eels, an increase in TIE and MC(IE-SL)FA and a decrease in LSL were observed. These changes were still present ten days after the interruption of cocaine exposure. Plasma levels of both cortisol and prolactin increased after cocaine exposure; ten days after the interruption of cocaine exposure, the plasma cortisol levels were still higher, whereas the plasma prolactin levels were lower, than control values. Our results show that even a chronic exposure to low environmental cocaine concentrations severely harms the eel gills, suggesting damages to their functions, and potentially affecting the survival of this species.
Collapse
Affiliation(s)
- Anna Capaldo
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy.
| | - Flaminia Gay
- Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II, 132 - 84084 Fisciano, Salerno, Italy.
| | - Vincenza Laforgia
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy.
| |
Collapse
|
41
|
Coppo GC, Passos LS, Lopes TOM, Pereira TM, Merçon J, Cabral DS, Barbosa BV, Caetano LS, Kampke EH, Chippari-Gomes AR. Genotoxic, biochemical and bioconcentration effects of manganese on Oreochromis niloticus (Cichlidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:1150-1160. [PMID: 30120660 DOI: 10.1007/s10646-018-1970-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/17/2018] [Indexed: 06/08/2023]
Abstract
Manganese and iron were found at high concentrations (3.61 mg/L and 19.8 mg/L, respectively) in the water of the Rio Doce after the dams of Fundão and Santarém broke in Mariana/MG (Brazil). These same metals were found in fish and crustacean muscle (15 mg/kg and 8 mg/kg wet weight, respectively) in the specimens collected near the Rio Doce's outfall. Due to the variation in Mn concentration found in the lower Rio Doce, this study aimed to determine the effects of Mn in Oreochromis niloticus, at the concentrations allowed by CONAMA, and in concentrations found in the Rio Doce after the dams broke. The animals were exposed to the following dissolved concentrations: control group (0.0 mg/L), 0.2; 1.5 and 2.9 mg/L manganese for 96 h. In addition, a positive control was conducted, injecting intraperitoneally with cyclophosphamide (at 25 mg/kg). These exposures caused significant erythrocyte micronucleus formation in the organisms exposed to the highest concentration, as well a significant increase in the DNA damage index of erythrocytes from organisms exposed to 1.5 mg/L and 2.9 mg/L treatments. The glutathione S-transferase enzyme activity also showed a significant increase in the liver of the organisms exposed to 2.9 mg/L. However, catalase activity increased significantly in the gills of the animals exposed to all concentrations of manganese that were tested. Manganese bioconcentrated in greater quantities in the liver than the gills. Thus, manganese causes significant damage to genetic material, generates nuclear abnormalities, activates the body's detoxification system and can accumulate in animal tissue.
Collapse
Affiliation(s)
- Gabriel Carvalho Coppo
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Larissa Souza Passos
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Taciana Onesorge Miranda Lopes
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Tatiana Miura Pereira
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Julia Merçon
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Dandara Silva Cabral
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Bianca Vieira Barbosa
- Laboratory of Chemistry Sciences, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Lívia Sperandio Caetano
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Edgar Hell Kampke
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil
| | - Adriana Regina Chippari-Gomes
- Laboratory of Applied Ichthyology, Universidade Vila Velha, Av. Comissário José Dantas de Melo, 21, Boa Vista, Vila Velha, ES, 29102-920, Brazil.
| |
Collapse
|
42
|
do Carmo TLL, Azevedo VC, de Siqueira PR, Galvão TD, Dos Santos FA, Dos Reis Martinez CB, Appoloni CR, Fernandes MN. Reactive oxygen species and other biochemical and morphological biomarkers in the gills and kidneys of the Neotropical freshwater fish, Prochilodus lineatus, exposed to titanium dioxide (TiO 2) nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22963-22976. [PMID: 29858996 DOI: 10.1007/s11356-018-2393-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the action of titanium dioxide nanoparticles (TiO2-NPs), on the gills and kidneys of Neotropical freshwater fish, Prochilodus lineatus, with emphasis on reactive oxygen species (ROS) production, antioxidant responses, and morphological changes. Fish were exposed to 1, 5, 10, and 50 mg L-1 nominal TiO2-NPs suspended into water for 2 or 14 days. In gills, ROS decreased and glutathione (GSH) increased after 2 days, while ROS and GSH increased and superoxide dismutase activity decreased after 14 days. In kidneys, GSH and lipoperoxidation increased after 2 days and catalase activity decreased after 14 days. Common histopathologies in gills were epithelium hyperplasia, cellular hypertrophy, proliferation of mitochondria-rich cells (MRC), and lamellar stasis; in kidneys, there were cellular and nuclear hypertrophy, focal tubule degeneration, necrosis, and melanomacrophage (MM) proliferation. Although environmentally unlikely, high-dose exposures clarified biological effects of TiO2-NPs, such as ROS formation and MRC responses in the gills, which may impair ionic balance. It was also found that MM are likely responsible for eliminating NPs in the kidney. These findings will help to regulate TiO2-NP disposal, but longer-term studies are still needed.
Collapse
Affiliation(s)
- Talita Laurie Lustosa do Carmo
- Physiological Sciences Department, Federal University of São Carlos, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Vinicius Cavicchioli Azevedo
- Physiological Sciences Department, Federal University of São Carlos, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Priscila Rodrigues de Siqueira
- Physiological Sciences Department, Federal University of São Carlos, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Tiago Dutra Galvão
- Physics Department, State University of Londrina, Rodovia Celso Garcia Cid | Pr 445 Km 380, Londrina, PR, 86055-900, Brazil
| | - Fabrício Aparecido Dos Santos
- Physics Institute of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, SP, 13566-970, Brazil
| | - Cláudia Bueno Dos Reis Martinez
- Physiological Sciences Department, State University of Londrina, Rodovia Celso Garcia Cid | Pr 445 Km 380, Londrina, PR, 86055-990, Brazil
| | - Carlos Roberto Appoloni
- Physics Department, State University of Londrina, Rodovia Celso Garcia Cid | Pr 445 Km 380, Londrina, PR, 86055-900, Brazil
| | - Marisa Narciso Fernandes
- Physiological Sciences Department, Federal University of São Carlos, Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
43
|
Borges AC, Da Silva Montes C, Barbosa LA, Ferreira MAP, Berrêdo JF, Martins Rocha R. Integrated use of histological and ultrastructural biomarkers for assessing mercury pollution in piranhas (Serrasalmus rhombeus) from the Amazon mining region. CHEMOSPHERE 2018; 202:788-796. [PMID: 29614470 DOI: 10.1016/j.chemosphere.2018.02.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 02/07/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Ana Carolina Borges
- Cellular Ultrastructure Laboratories - Biological Sciences Institute, Federal University of Pará - Rua Augusto Corrêa, 01 - Guamá. CEP 66075-110, Belém, Pará, Brazil.
| | - Caroline Da Silva Montes
- Cellular Ultrastructure Laboratories - Biological Sciences Institute, Federal University of Pará - Rua Augusto Corrêa, 01 - Guamá. CEP 66075-110, Belém, Pará, Brazil
| | - Liziane Amaral Barbosa
- Cellular Ultrastructure Laboratories - Biological Sciences Institute, Federal University of Pará - Rua Augusto Corrêa, 01 - Guamá. CEP 66075-110, Belém, Pará, Brazil
| | - Maria Auxiliadora Pantoja Ferreira
- Laboratory of Immunohistochemistry and Developmental Biology, Biological Sciences Institute, Federal University of Pará - Rua Augusto Corrêa, 01 - Guamá. CEP 66075-110, Belém, Pará, Brazil.
| | - José Francisco Berrêdo
- Coordination of Earth Sciences and Ecology (CCTE), Museu Paraense Emílio Goeldi - Av. Perimetral, 1901, Terra Firme. CEP 66077-530, Belém, Pará, Brazil.
| | - Rossineide Martins Rocha
- Cellular Ultrastructure Laboratories - Biological Sciences Institute, Federal University of Pará - Rua Augusto Corrêa, 01 - Guamá. CEP 66075-110, Belém, Pará, Brazil.
| |
Collapse
|
44
|
Neves MP, de Arruda Amorim JP, Delariva RL. Influence of land use on the health of a detritivorous fish (Ancistrus mullerae) endemic to the Iguassu ecoregion: relationship between agricultural land use and severe histopathological alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11670-11682. [PMID: 29435799 DOI: 10.1007/s11356-018-1283-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
This study aimed to evaluate the histopathological biomarkers of the gills and liver of endemic catfish to test the hypothesis that, in environments under intense land use by agricultural activities, histopathological alterations occur more severely. Samples were collected by electrofishing in seven streams in the Lower Iguaçu basin quarterly from August 2015 to February 2016. The gills and livers were processed according to routine histological methods and examined by light microscopy. The histopathological alterations observed in fish from the streams with a higher percentage of natural vegetation cover were considered modest and indicated normal functioning of the organ (such as edema, hyperplasia, and leukocyte infiltration). As predicted, fish collected in streams with higher agricultural influence presented moderate to severe damage (aneurysm, vacuolization and cytoplasmic degeneration, and pyknotic nucleus). The abundance of chloride cells was significantly increased in the gills of Ancistrus mullerae collected in rural streams. In addition, in most streams, mucous cells were more abundant during the rainy period. Significant differences were observed in the histopathological index (HI) of the gills and livers, where severe histopathological alterations occurred in fish from streams with a higher agricultural influence. The observed alterations were more severe in the liver than in the gills, which are indeed related to the liver's key role in the detoxification of xenobiotics. We conclude that more severe histological alterations occurred in fish from streams with the highest land use by agricultural activities. Thus, our work provides important insight into the conservation and management of natural resources.
Collapse
Affiliation(s)
- Mayara Pereira Neves
- Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais, Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária 2069, Jardim Universitário, Cascavel, 85819110, Paraná, Brazil.
- CCBS, Universidade Estadual do Oeste do Paraná, Sala 017, Rua Universitária 2069, Jardim Universitário, Cascavel, Paraná, 85819-110, Brazil.
| | - João Paulo de Arruda Amorim
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária 2069, Jardim Universitário, Cascavel, Paraná, 85811280, Brazil
| | - Rosilene Luciana Delariva
- Centro de Ciências Biológicas e da Saúde, Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais, Universidade Estadual do Oeste do Paraná, Rua Universitária 2069, Jardim Universitário, Cascavel, 85819-110, Paraná, Brazil
| |
Collapse
|
45
|
Dalzochio T, Rodrigues GZP, Simões LAR, de Souza MS, Petry IE, Andriguetti NB, Silva GJH, da Silva LB, Gehlen G. In situ monitoring of the Sinos River, southern Brazil: water quality parameters, biomarkers, and metal bioaccumulation in fish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9485-9500. [PMID: 29353360 DOI: 10.1007/s11356-018-1244-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 01/08/2018] [Indexed: 06/07/2023]
Abstract
The Sinos River is an important water supply in Southern Brazil and receives industrial, agricultural, and domestic effluents which may affect aquatic biota. Water physicochemical and microbiological analyses, biomarker responses (scaled mass index (SMI), gill histopathology, and micronucleus and nuclear abnormality (MN and NA) frequencies), and metal bioaccumulation in muscle were assessed in the fish species Bryconamericus iheringii (Characidae) captured at three sampling sites (S1, S2, and S3) in four sampling periods. The mean values of five parameters (total phosphorus, thermotolerant coliforms, aluminum, iron, and lead) exceeded the limits established by the Brazilian legislation at the three sampling sites. Although physicochemical analysis indicated higher impacts at S3, in some samples, significantly higher MN frequencies and bioaccumulation of manganese in fish muscle were observed at S1, whereas low SMI and higher concentrations of aluminum and zinc in fish muscle were found at S2. Histopathological alterations in gills were observed in fish collected at the three sampling sites; however, no spatial differences were observed, indicating similar environmental conditions with respect to this biomarker. Moreover, temporal variation of biomarker responses and metal bioaccumulation were found at all sampling sites. Furthermore, the consumption of fish from the Sinos River should be avoided given the concentrations of chromium (all samples), cadmium, and lead in fish muscle above the threshold for safe human consumption.
Collapse
Affiliation(s)
- Thaís Dalzochio
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil.
| | | | | | | | | | | | | | - Luciano Basso da Silva
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| | - Günther Gehlen
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, RS 239, 2755, Novo Hamburgo, RS, CEP 93352-000, Brazil
| |
Collapse
|
46
|
Nimet J, Amorim JPDA, Delariva RL. Histopathological alterations in Astyanax bifasciatus (Teleostei: Characidae) correlated with land uses of surroundings of streams. NEOTROPICAL ICHTHYOLOGY 2018. [DOI: 10.1590/1982-0224-20170129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ABSTRACT This study evaluated gills and liver of Astyanax bifasciatus as histological biomarkers for biomonitoring of streams along areas with different land uses. The fish were collected by electrofishing in six streams in the basin of the lower Iguaçu River. The objective was to correlate the presence and degree of histopathological alterations of gills and liver with the environmental variables among streams along different land uses. The low frequency of histopathological alterations found in fish from the forest streams suggested normal organ functioning. In fish from the rural and urban streams, the histopathological alterations occurred were in higher frequency, indicated light to moderate damage in gills and liver of fish from the rural streams, and moderate to severe damage in liver of fish from urban streams. The histopathological alterations in gills (lamellar aneurysm) and livers (vascular congestion) verified in impacted streams were significantly more frequent and severe. It was possible to distinguish streams along different land uses, suggesting that these histopathological alterations can be used as biomarkers for biomonitoring studies. The health integrity of fish from streams in forest areas further reinforces the importance of maintaining preservation areas in basins under intensive land use.
Collapse
Affiliation(s)
- Jardel Nimet
- Universidade Estadual do Oeste do Paraná, Brazil
| | | | | |
Collapse
|
47
|
Dalzochio T, Ressel Simões LA, Santos de Souza M, Prado Rodrigues GZ, Petry IE, Andriguetti NB, Herbert Silva GJ, Gehlen G, Basso da Silva L. Water quality parameters, biomarkers and metal bioaccumulation in native fish captured in the Ilha River, southern Brazil. CHEMOSPHERE 2017; 189:609-618. [PMID: 28963978 DOI: 10.1016/j.chemosphere.2017.09.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
The Ilha River is one of the main tributaries of the Sinos River, southern Brazil, and it is located in an area characterized by low population density and presence of agricultural activities. Thus, this study aimed to assess the water quality of two sites of the Ilha River (source and mouth, S1 and S2 respectively) in five sampling periods using water physicochemical and microbiological analyses, biomarkers, such as condition factor, micronucleus test, gill histopathological analysis, and metal bioaccumulation in the native fish Bryconamericus iheringii. Mean values of BOD5, thermotolerant coliforms, aluminum, iron and lead exceeded the limits established by the Brazilian legislation for surface waters at both sampling sites. Significant higher micronucleus, nuclear abnormalities and mucous cells frequencies were found at S2 in, at least, one sampling period, whereas fish from S1 presented significant lower condition factor, higher frequencies of lamellar alterations and higher concentrations of chromium and nickel in muscle. Additionally, concentrations of cadmium, chromium and lead in fish muscle exceeded the limits considered safe for human consumption at both sites in at least one sampling period. Data from our study evidenced the mouth of the Ilha River suffers from point genotoxic effects, whereas the source is also contaminated by metals, despite being located in an area under minor anthropic activities.
Collapse
Affiliation(s)
- Thaís Dalzochio
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, Brazil
| | | | | | | | | | | | | | - Günther Gehlen
- Programa de Pós-Graduação em Qualidade Ambiental, Universidade Feevale, Brazil
| | | |
Collapse
|
48
|
Souza-Bastos LR, Bastos LP, Carneiro PCF, Guiloski IC, Silva de Assis HC, Padial AA, Freire CA. Evaluation of the water quality of the upper reaches of the main Southern Brazil river (Iguaçu river) through in situ exposure of the native siluriform Rhamdia quelen in cages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:1245-1255. [PMID: 28947314 DOI: 10.1016/j.envpol.2017.08.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/28/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Increase in industrial growth, urban and agricultural pollution, with consequent impacts on aquatic ecosystems are a major focus of research worldwide. Still, not many studies assess the impacts of contamination through in situ studies, using native species, also considering the influence of seasonality on their responses. This study aimed to evaluate the water quality of the basin of the Upper Iguaçu River, the main source of water supply to Curitiba, a major capital of Southern Brazil, and its Metropolitan area. Several biomarkers were evaluated after in situ exposure of the native catfish Rhamdia quelen inside cages for 7 days. Ten study sites were chosen along the basin, based on a diffuse gradient of contamination, corresponding to regions upstream, downstream, and within "great Curitiba". In each site, fish were exposed in Summer and Winter. The complex mixture of contaminants of this hydrographic basin generated mortality, and ion-, osmoregulatory and respiratory disturbances in the catfish as, for example, reduction of plasma osmolality and ionic concentrations, increased hematocrit levels and gill water content, altered branchial and renal activities of the enzyme carbonic anhydrase, as well as raised levels of plasma cortisol and glucose. Biomarkers were mostly altered in fish exposed in Great Curitiba and immediately downstream. There was a notable influence of season on the responses of the jundiá. A multivariate redundancy analysis revealed that the best environmental variables explained 30% of the variation in biomarkers after controlling for spatial autocorrelation. Thus, this approach and the chosen parameters can be satisfactorily used to evaluate contamination environments with complex mixtures of contaminants, in other urban basins as well.
Collapse
Affiliation(s)
- Luciana R Souza-Bastos
- Department of Physiology, Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil; Institute of Technology for Development - LACTEC, Curitiba, Paraná, Brazil.
| | - Leonardo P Bastos
- Institute of Technology for Development - LACTEC, Curitiba, Paraná, Brazil
| | - Paulo Cesar F Carneiro
- Brazilian Agricultural Research Company - EMBRAPA Tabuleiros Costeiros, Aracaju, Sergipe, Brazil
| | - Izonete C Guiloski
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Helena C Silva de Assis
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - André A Padial
- Department of Botany, Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Carolina A Freire
- Department of Physiology, Biological Sciences Sector, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
49
|
Díaz-de-Alba M, Canalejo Raya A, Granado-Castro MD, Oliva Ramírez M, El Mai B, Córdoba García F, Troyano-Montoro M, Espada-Bellido E, Torronteras Santiago R, Galindo-Riaño MD. Biomarker responses of Cu-induced toxicity in European seabass Dicentrarchus labrax: Assessing oxidative stress and histopathological alterations. MARINE POLLUTION BULLETIN 2017; 124:336-348. [PMID: 28756850 DOI: 10.1016/j.marpolbul.2017.07.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/04/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
A comprehensive approach to chemical accumulation and biological effects of short-term Cu exposure in juveniles of European seabass (Dicentrarchus labrax) has been achieved. Fish were exposed to 0.01-10mgL-1 nominal Cu concentrations for 24-96h. Metal concentrations in water and gills, liver, muscle and brain tissues were studied along with oxidative stress biomarkers (superoxide dismutase, catalase, glutathione peroxidase, lipid peroxidation). Induction of oxidative damage was observed in all the organs with differential antioxidant responses; gills appearing as the most sensitive from low environmentally water Cu concentrations as 0.01mgL-1. Histopathological alterations were also observed in liver and gills, even without a significant Cu accumulation. The results show that the combination of oxidative stress parameters, particularly lipid peroxidation and glutathione peroxidase activities, and histopathological alterations provide a good model fish and reliable early biomarkers for monitoring Cu pollution in seawater and might call for the protection agencies to revise the Cu environmental standards.
Collapse
Affiliation(s)
- M Díaz-de-Alba
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - A Canalejo Raya
- Department of Integrated Sciences, Faculty of Experimental Sciences, CEI-MAR, University of Huelva, Avda. Fuerzas Armadas, ES-21071 Huelva, Spain
| | - M D Granado-Castro
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - M Oliva Ramírez
- Department of Biology, Faculty of Sea and Environmental Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - B El Mai
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - F Córdoba García
- Department of Integrated Sciences, Faculty of Experimental Sciences, CEI-MAR, University of Huelva, Avda. Fuerzas Armadas, ES-21071 Huelva, Spain
| | - M Troyano-Montoro
- Department of Biology, Faculty of Sea and Environmental Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - E Espada-Bellido
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain
| | - R Torronteras Santiago
- Department of Integrated Sciences, Faculty of Experimental Sciences, CEI-MAR, University of Huelva, Avda. Fuerzas Armadas, ES-21071 Huelva, Spain
| | - M D Galindo-Riaño
- Department of Analytical Chemistry, Institute of Biomolecules (INBIO), Faculty of Sciences, CEI-MAR, University of Cadiz, Campus Rio San Pedro, ES-11510 Puerto Real, Cadiz, Spain.
| |
Collapse
|
50
|
Hou L, Xu H, Ying G, Yang Y, Shu H, Zhao J, Cheng X. Physiological responses and gene expression changes in the western mosquitofish (Gambusia affinis) exposed to progesterone at environmentally relevant concentrations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:69-77. [PMID: 28934642 DOI: 10.1016/j.aquatox.2017.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Progesterone (P4) is a natural and synthetic steroid, widely distributed in the aquatic environments. It can lead to adverse effects on the endocrine system in aquatic organisms. This study investigated the toxicological effects of exposure to environmentally relevant concentrations (4, 44, and 410ng/L) of progesterone for 42 d on adult female mosquitofish, Gambusia affinis. We performed morphological and histological analyses on gonads, anal fins, liver, and gills after the exposure of mosquito fish to P4. The expression levels of genes (vtg, er, and ar isoforms) related to fish reproduction and detoxification (cyp1a) in the liver were quantified by quantitative real-time polymerase chain reaction. The results showed that the progesterone exposure induced slight masculinization in female mosquitofish, influenced the oocyte maturation as revealed by histology of the ovaries, and caused severe damages to the liver and gills of adult female mosquitofish. It also suppressed the mRNAs expression of vtg, er, cyp1a, and significantly enhanced the expression of ar mRNA in the liver. This study reveals the molecular and physiological effects of progesterone at environmentally relevant concentrations, which might further be translated to alterations in the reproduction of mosquitofish.
Collapse
Affiliation(s)
- Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hongyan Xu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Guangguo Ying
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Yang Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hu Shu
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Jianliang Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China
| | - Xuemei Cheng
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| |
Collapse
|