1
|
Jiang N, Vazquez Do Campo R, Kazamel M. Case report: A novel homozygous histidine triad nucleotide-binding protein 1 mutation featuring distal hereditary motor-predominant neuropathy with rimmed vacuoles. Front Neurol 2023; 14:1007051. [PMID: 36846110 PMCID: PMC9943687 DOI: 10.3389/fneur.2023.1007051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
Introduction Recessive mutations in the gene encoding the histidine triad nucleotide-binding protein 1 (HINT1) are associated with axonal motor-predominant Charcot-Marie-Tooth (CMT) disease with neuromyotonia. A total of 24 HINT1 gene mutations have been reported so far. Some of these cases had mild to moderate elevations of creatinine kinase with no earlier reports of muscle biopsy findings in these cases. In this study, we describe a patient with axonal motor-predominant neuropathy and myopathy with rimmed vacuoles, likely due to a novel HINT1 gene mutation. Case report A 35-year-old African American man presented with insidious onset and progressive symmetric distal leg weakness followed by hand muscle atrophy and weakness since the age of 25. He had no muscle cramps or sensory complaints. His 38-year-old brother developed similar symptoms beginning in his early 30 s. On neurologic examination, the patient had distal weakness and atrophy in all limbs, claw hands, pes cavus, absent Achilles reflexes, and normal sensory examination. Electrodiagnostic studies revealed absent/reduced compound motor action potential amplitudes distally with normal sensory responses with no neuromyotonia. His sural nerve biopsy showed a chronic non-specific axonal neuropathy, and a biopsy of the tibialis anterior muscle demonstrated myopathic features and several muscle fibers harboring rimmed vacuoles without inflammation in addition to chronic denervation changes. A homozygous variant, p.I63N (c.188T > A), in the HINT1 gene was found in both brothers. Conclusion We describe a novel, likely pathogenic, HINT1 pI63N (c.188T > A) homozygous variant associated with hereditary axonal motor-predominant neuropathy without neuromyotonia in two African American brothers. The presence of rimmed vacuoles on muscle biopsy raises the possibility that mutations in the HINT1 gene may also cause myopathy.
Collapse
Affiliation(s)
- Nan Jiang
- Division of Neuromuscular Disease, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rocio Vazquez Do Campo
- Division of Neuromuscular Disease, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | |
Collapse
|
2
|
Yu W, Yin H, Sun Y, Shi S, Li J, Wang X. The attenuation effect of potassium 2-(1-hydroxypentyl)-benzoate in a mouse model of diabetes-associated cognitive decline: The protein expression in the brain. CNS Neurosci Ther 2022; 28:1108-1123. [PMID: 35445545 PMCID: PMC9160457 DOI: 10.1111/cns.13847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/14/2022] Open
Abstract
Aims dl‐PHPB (potassium 2‐(1‐hydroxypentyl)‐benzoate) has been shown to have neuroprotective effects against acute cerebral ischemia, vascular dementia, and Alzheimer's disease. The aim of this study was to investigate the effects of dl‐PHPB on memory deficits and preliminarily explore the underlying molecular mechanism. Methods Blood glucose and behavioral performance were evaluated in the KK‐Ay diabetic mouse model before and after dl‐PHPB administration. Two‐dimensional difference gel electrophoresis (2D‐DIGE)‐based proteomics was used to identify differentially expressed proteins in brain tissue. Western blotting was used to study the molecular mechanism of the related signaling pathways. Results Three‐month‐old KK‐Ay mice were given 150 mg/kg dl‐PHPB by oral gavage for 2 months, which produced no effect on the level of serum glucose. In the Morris water maze test, KK‐Ay mice treated with dl‐PHPB showed significant improvements in spatial learning and memory deficits compared with vehicle‐treated KK‐Ay mice. Additionally, we performed 2D‐DIGE to compare brain proteomes of 5‐month KK‐Ay mice treated with and without dl‐PHPB. We found 14 altered proteins in the cortex and 11 in the hippocampus; two of the 25 altered proteins and another four proteins that were identified in a previous study on KK‐Ay mice were then validated by western blot to further confirm whether dl‐PHPB can reverse the expression levels of these proteins. The phosphoinositide 3‐kinase/protein kinase B/glycogen synthase kinase‐3β (PI3K/Akt/GSK‐3β) signaling pathway was also changed in KK‐Ay mice and dl‐PHPB treatment could reverse it. Conclusions These results indicate that dl‐PHPB may play a potential role in diabetes‐associated cognitive impairment through PI3K/Akt/GSK‐3β signaling pathway and the differentially expressed proteins may become putative therapeutic targets.
Collapse
Affiliation(s)
- Wenwen Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Huajing Yin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yingni Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Si Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoliang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Department of Pharmacology, Institute of materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Liu P, Chu Z, Lei G, Deng L, Yang L, Dang Y. The role of HINT1 protein in morphine addiction: An animal model-based study. Addict Biol 2021; 26:e12897. [PMID: 32171181 DOI: 10.1111/adb.12897] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 01/17/2023]
Abstract
Drug addiction is a recurrent, chronic brain disease. The existing treatment methods have limitations, such as poor adherence and inability to completely avoid relapse. Histidine triad nucleotide-binding protein 1 (HINT1) is involved in many neuropsychiatric diseases, such as schizophrenia, pain, and drug dependence. Studies have confirmed that there is a genetic link between HINT1 and addictions such as nicotine and cocaine. However, there is no research on the role of HINT1 protein in morphine addiction at home and abroad. Thus, we designed this project by constructing different types of morphine addiction animal models, including conditioned place preference and behavioral sensitization. We comprehensively examined the participation of HINT1 protein in key brain regions associated with addiction, including prefrontal cortex, nucleus accumbens, corpus striatum, and hippocampus, in different stages of different models. In addition, we used HINT1 knockout mice to establish the above models and physical dependence model to investigate the effect of HINT1 protein deletion on morphine addiction-related behaviors. We found that HINT1 has varying degrees of involvement in different stages of multiple addictive animal models. The absence of HINT1 can attenuate morphine-mediated addictive behavior to a certain extent and can alleviate the withdrawal symptoms of morphine.
Collapse
Affiliation(s)
- Peng Liu
- College of Medicine and Forensics, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an 710061 China
- Department of Pharmacology and Toxicology Institute of Basic Medicine Science, Xi'an Medical University Xi'an 710021 China
| | - Zheng Chu
- College of Medicine and Forensics, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an 710061 China
| | - Gang Lei
- College of Medicine and Forensics, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an 710061 China
| | - Li‐sha Deng
- College of Medicine and Forensics, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an 710061 China
| | - Liu Yang
- College of Medicine and Forensics, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an 710061 China
| | - Yong‐hui Dang
- College of Medicine and Forensics, Key Laboratory of the Health Ministry for Forensic Medicine, Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an 710061 China
| |
Collapse
|
4
|
Carrillo-Najar C, Rembao-Bojórquez D, Tena-Suck ML, Zavala-Vega S, Gelista-Herrera N, Ramos-Peek MA, Gómez-Amador JL, Cazares-Raga F, Hernández-Hernández FDLC, Ortiz-Plata A. Comparative Proteomic Study Shows the Expression of Hint-1 in Pituitary Adenomas. Diagnostics (Basel) 2021; 11:diagnostics11020330. [PMID: 33671384 PMCID: PMC7922225 DOI: 10.3390/diagnostics11020330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 12/28/2022] Open
Abstract
Pituitary adenomas (PAs) can be unpredictable and aggressive tumors. No reliable markers of their biological behavior have been found. Here, a proteomic analysis was applied to identify proteins in the expression profile between invasive and non-invasive PAs to search for possible biomarkers. A histopathological and immunohistochemical (adenohypophyseal hormones, Ki-67, p53, CD34, VEGF, Flk1 antibodies) analysis was done; a proteomic map was evaluated in 64 out of 128 tumors. There were 107 (84%) invasive and 21 (16%) non-invasive PAs; 80.5% belonged to III and IV grades of the Hardy–Vezina classification. Invasive PAs (n = 56) showed 105 ± 43 spots; 86 ± 32 spots in non-invasive PAs (n = 8) were observed. The 13 most prominent spots were selected and 11 proteins related to neoplastic process in different types of tumors were identified. Hint1 (Histidine triad nucleotide-binding protein 1) high expression in invasive PA was found (11.8 ± 1.4, p = 0.005), especially at high index (>10; p = 0.0002). High Hint1 expression was found in invasive VEGF positive PA (13.8 ± 2.3, p = 0.005) and in Flk1 positive PA (14.04 ± 2.28, p = 0.006). Hint1 is related to human tumorigenesis by its interaction with signaling pathways and transcription factors. It could be related to invasive behavior in PAs. This is the first report on Hint expression in PAs. More analysis is needed to find out the possible role of Hint in these tumors.
Collapse
Affiliation(s)
- Carolina Carrillo-Najar
- Experimental Neuropathology Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico;
| | - Daniel Rembao-Bojórquez
- Neuropathology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico; (D.R.-B.); (M.L.T.-S.); (S.Z.-V.); (N.G.-H.)
| | - Martha L. Tena-Suck
- Neuropathology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico; (D.R.-B.); (M.L.T.-S.); (S.Z.-V.); (N.G.-H.)
| | - Sergio Zavala-Vega
- Neuropathology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico; (D.R.-B.); (M.L.T.-S.); (S.Z.-V.); (N.G.-H.)
| | - Noemí Gelista-Herrera
- Neuropathology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico; (D.R.-B.); (M.L.T.-S.); (S.Z.-V.); (N.G.-H.)
| | - Miguel A. Ramos-Peek
- Neurosurgery Division, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico; (M.A.R.-P.); (J.L.G.-A.)
| | - Juan L. Gómez-Amador
- Neurosurgery Division, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico; (M.A.R.-P.); (J.L.G.-A.)
| | - Febe Cazares-Raga
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of National Polytechnic Institute, IPN Avenue 2508, Mexico City 07360, Mexico; (F.C.-R.); (F.d.l.C.H.-H.)
| | - Fidel de la Cruz Hernández-Hernández
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies of National Polytechnic Institute, IPN Avenue 2508, Mexico City 07360, Mexico; (F.C.-R.); (F.d.l.C.H.-H.)
| | - Alma Ortiz-Plata
- Experimental Neuropathology Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Insurgentes Sur 3877, Mexico City 14269, Mexico;
- Correspondence: ; Tel.: +52-(55)5606-3822 (ext. 2008)
| |
Collapse
|
5
|
Jung A, Yun JS, Kim S, Kim SR, Shin M, Cho DH, Choi KS, Chang JH. Crystal Structure of Histidine Triad Nucleotide-Binding Protein from the Pathogenic Fungus Candida albicans. Mol Cells 2019; 42:56-66. [PMID: 30622225 PMCID: PMC6354057 DOI: 10.14348/molcells.2018.0377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 12/19/2022] Open
Abstract
Histidine triad nucleotide-binding protein (HINT) is a member of the histidine triad (HIT) superfamily, which has hydrolase activity owing to a histidine triad motif. The HIT superfamily can be divided to five classes with functions in galactose metabolism, DNA repair, and tumor suppression. HINTs are highly conserved from archaea to humans and function as tumor suppressors, translation regulators, and neuropathy inhibitors. Although the structures of HINT proteins from various species have been reported, limited structural information is available for fungal species. Here, to elucidate the structural features and functional diversity of HINTs, we determined the crystal structure of HINT from the pathogenic fungus Candida albicans (CaHINT) in complex with zinc ions at a resolution of 2.5 Å. Based on structural comparisons, the monomer of CaHINT overlaid best with HINT protein from the protozoal species Leishmania major. Additionally, structural comparisons with human HINT revealed an additional helix at the C-terminus of CaHINT. Interestingly, the extended C-terminal helix interacted with the N-terminal loop (α1-β1) and with the α3 helix, which appeared to stabilize the dimerization of CaHINT. In the C-terminal region, structural and sequence comparisons showed strong relationships among 19 diverse species from archea to humans, suggesting early separation in the course of evolution. Further studies are required to address the functional significance of variations in the C-terminal region. This structural analysis of CaHINT provided important insights into the molecular aspects of evolution within the HIT superfamily.
Collapse
Affiliation(s)
- Ahjin Jung
- Department of Biology Education, Kyungpook National University, Daegu 41566,
Korea
| | - Ji-Sook Yun
- Department of Biology Education, Kyungpook National University, Daegu 41566,
Korea
| | - Shinae Kim
- Department of Biology Education, Kyungpook National University, Daegu 41566,
Korea
| | - Sang Ryong Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566,
Korea
| | - Minsang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41566,
Korea
| | - Dong Hyung Cho
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566,
Korea
| | - Kwang Shik Choi
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566,
Korea
- Research Institute for Dokdo and Ulleungdo Island, Kyungpook National University, Daegu 41566,
Korea
- Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566,
Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566,
Korea
- Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu 41566,
Korea
| |
Collapse
|
6
|
Zhou Y, Zhang HK, Liu F, Lei G, Liu P, Jiao T, Dang YH. Altered Light Conditions Contribute to Abnormalities in Emotion and Cognition Through HINT1 Dysfunction in C57BL/6 Mice. Front Behav Neurosci 2018; 12:110. [PMID: 29937721 PMCID: PMC6002487 DOI: 10.3389/fnbeh.2018.00110] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/09/2018] [Indexed: 12/02/2022] Open
Abstract
In recent years, the environmental impact of artificial light at night has been a rapidly growing global problem, affecting 99% of the population in the US and Europe, and 62% of the world population. The present study utilized a mouse model exposed to long-term artificial light and light deprivation to explore the impact of these conditions on emotion and cognition. Based on the potential links between histidine triad nucleotide binding protein 1 (HINT1) and mood disorders, we also examined the expression of HINT1 and related apoptosis factors in the suprachiasmatic nucleus (SCN), prefrontal cortex (PFC), nucleus accumbens (NAc) and hippocampus (Hip). Mice exposed to constant light (CL) exhibited depressive- and anxiety-like behaviors, as well as impaired spatial memory, as demonstrated by an increased immobility time in the tail suspension and forced swimming tests, less entries and time spent in the open arms of elevated plus-maze, and less platform site crossings and time spent in the target quadrant in the Morris water maze (MWM). The effects of constant darkness (CD) partially coincided with long-term illumination, except that mice in the CD group failed to show anxiety-like behaviors. Furthermore, HINT1 was upregulated in four encephalic regions, indicating that HINT1 may be involved in mood disorders and cognitive impairments due to altered light exposure. The apoptosis-related proteins, BAX and BCL-2, showed the opposite expression pattern, reflecting an activated apoptotic pathway. These findings suggest that exposure to CL and/or darkness can induce significant changes in affective and cognitive responses, possibly through HINT1-induced activation of apoptotic pathways.
Collapse
Affiliation(s)
- Yuan Zhou
- College of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Hao-Kang Zhang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Fei Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Gang Lei
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Peng Liu
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Tong Jiao
- Department of Psychiatry, First Affiliated Hospital of Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yong-Hui Dang
- College of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
7
|
HINT1 in Neuropsychiatric Diseases: A Potential Neuroplastic Mediator. Neural Plast 2017; 2017:5181925. [PMID: 29214080 PMCID: PMC5682914 DOI: 10.1155/2017/5181925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/23/2017] [Accepted: 09/18/2017] [Indexed: 01/25/2023] Open
Abstract
Although many studies have investigated the functions of histidine triad nucleotide-binding protein 1 (HINT1), its roles in neurobiological processes remain to be fully elucidated. As a member of the histidine triad (HIT) enzyme superfamily, HINT1 is distributed in almost every organ and has both enzymatic and nonenzymatic activity. Accumulating clinical and preclinical evidence suggests that HINT1 may play an important role as a neuroplastic mediator in neuropsychiatric diseases, such as schizophrenia, inherited peripheral neuropathies, mood disorders, and drug addiction. Though our knowledge of HINT1 is limited, it is believed that further research on the neuropathological functions of HINT1 would eventually benefit patients with neuropsychiatric and even psychosomatic diseases.
Collapse
|
8
|
Sun L, Liu P, Liu F, Zhou Y, Chu Z, Li Y, Chu G, Zhang Y, Wang J, Dang YH. Effects of Hint1 deficiency on emotional-like behaviors in mice under chronic immobilization stress. Brain Behav 2017; 7:e00831. [PMID: 29075577 PMCID: PMC5651401 DOI: 10.1002/brb3.831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 07/08/2017] [Accepted: 08/15/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Histidine triad nucleotide-binding protein 1 (HINT1) is regarded as a haplo-insufficient tumor suppressor and is closely associated with diverse neuropsychiatric diseases. Moreover, HINT1 is related to gender-specific acute behavior changes in schizophrenia and in response to nicotine. Stress has a range of molecular effects in emotional disorders, which can cause a reduction in brain-derived neurotrophic factor (BDNF) expression in the hippocampus, resulting in hippocampal atrophy and neuronal cell loss. METHODS This study examined the role of HINT1 deficiency in anxiety-related and depression-like behaviors and BDNF expression in the hippocampus under chronic immobilization stress, and investigated whether the sex-specific and haplo-insufficient effects exist in emotional-like behaviors under the same condition. RESULTS In a battery of behavior tests, the results of the control group, not exposed to stress, showed that knockout (KO) and heterozygosity (HT) of Hint1 had anxiolytic-like and antidepression-like effects on the male and female mice. However, both male and female Hint1-KO mice showed elevated anxiety-related and antidepression-like behavior under chronic immobilization stress; moreover, both male and female Hint1-HT mice displayed elevated anxiety-related behavior and increased depression-like behavior under chronic immobilization stress. There were no significant differences in general locomotor activity between Hint1-KO and -HT mice and their wild-type (WT) littermates. Hint1-KO mice under basal and chronic immobilization stress conditions expressed more BDNF in the hippocampus than did Hint1-HT and WT mice; overall, there were no significant sex differences in emotional-like behaviors of Hint1-KO and -HT mice. Additionally, Hint1-HT mice showed haplo-insufficient effects on emotional-like behaviors under basic conditions, rather than under chronic immobilization stress. CONCLUSIONS Both male and female HINT 1 KO and HT mice had a trend of anxiolytic-like behavior and antidepression-like behavior at control group. However, both male and female HINT1 KO mice showed elevated anxiety-related and antidepression-like behavior under chronic immobilization stress; moreover, both male and female HINT1 HT mice displayed elevated anxiety-related behavior and increased depression-like behavior under chronic immobilization stress.
Collapse
Affiliation(s)
- Liankang Sun
- First Affiliated Hospital Xi'an Jiaotong University Xi'an China
| | - Peng Liu
- College of Medicine & Forensics Key Laboratory of the Health Ministry for Forensic Medicine Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an China
| | - Fei Liu
- College of Medicine & Forensics Key Laboratory of the Health Ministry for Forensic Medicine Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases College of Stomatology Xi'an Jiaotong University Xi'an China
| | - Yuan Zhou
- Qi De College Xi'an Jiaotong University Xi'an China
| | - Zheng Chu
- College of Medicine & Forensics Key Laboratory of the Health Ministry for Forensic Medicine Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an China
| | - Yuqi Li
- Qi De College Xi'an Jiaotong University Xi'an China
| | - Guang Chu
- Zong Lian College Xi'an Jiaotong University Xi'an China
| | - Ying Zhang
- Qi De College Xi'an Jiaotong University Xi'an China
| | - Jiabei Wang
- Department of Pharmaceutical Sciences School of Pharmacy University of Maryland Baltimore MD USA
| | - Yong-Hui Dang
- College of Medicine & Forensics Key Laboratory of the Health Ministry for Forensic Medicine Key Laboratory of Environment and Genes Related to Diseases of the Education Ministry Xi'an Jiaotong University Health Science Center Xi'an China
| |
Collapse
|
9
|
Li JP, Liu P, Lei G, Chu Z, Liu F, Shi CF, Dang YH, Chen T. The Role of HINT1 in Methamphetamine-Induced Conditioned Place Preference. Neurotox Res 2017; 33:353-361. [DOI: 10.1007/s12640-017-9797-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 08/05/2017] [Accepted: 08/10/2017] [Indexed: 12/21/2022]
|
10
|
Liang G, Webster CE. Phosphoramidate hydrolysis catalyzed by human histidine triad nucleotide binding protein 1 (hHint1): a cluster-model DFT computational study. Org Biomol Chem 2017; 15:8661-8668. [DOI: 10.1039/c7ob02098h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The histidine triad of hHint1 serves as a proton shuttle in the DFT proposed mechanism of the hydrolysis of phosphoramidate.
Collapse
Affiliation(s)
- Guangchao Liang
- Department of Chemistry and Center for Computational Sciences
- Mississippi State University
- Mississippi State
- USA
- Department of Chemistry
| | - Charles Edwin Webster
- Department of Chemistry and Center for Computational Sciences
- Mississippi State University
- Mississippi State
- USA
- Department of Chemistry
| |
Collapse
|
11
|
Liu F, Ma J, Liu P, Chu Z, Lei G, Jia X, Wang J, Dang Y. Hint1 gene deficiency enhances the supraspinal nociceptive sensitivity in mice. Brain Behav 2016; 6:e00496. [PMID: 27547499 PMCID: PMC4885746 DOI: 10.1002/brb3.496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/07/2016] [Accepted: 04/16/2016] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Previous studies have indicated a possible role of histidine triad nucleotide-binding protein 1 (HINT1) on sustaining the regulatory crosstalk of N-methyl-D-aspartate acid glutamate receptors (NMDARs) and G-protein-coupled receptors (GPCRs) such as the μ-opioid receptor (MOR). Both receptors are present in the midbrain periaqueductal gray neurons, an area that plays a central role in the supraspinal antinociceptive process. METHODS In the present study, a battery of pain-related behavioral experiments was applied to Hint1 knockout, heterozygous and wild-type mice. Both the male and female mice were investigated to assess the differences between genders. RESULTS Hint1-/- mice presented significant shorter latency at 50°C in both male and female in hot plate test while no significant difference was found in tail filck test. In Von Frey hairs test Hint1-/- mice were more sensitive than Hint1+/+ mice, presenting a lower withdrawal threshold and enhanced relative frequency of paw withdrawal. The average flinches and licking time of Hint1-/- mice were more than that of Hint1+/+ mice in formalin test. CONCLUSION The absence of Hint1 gene-enhanced supraspinal nociceptive sensitivity in mice, including thermal, mechanical and inflammatory hyperalgesia. Meanwhile, there was no certain evidence indicating the haploinsufficiency and gender differences of Hint1 gene in pain-related behaviors.
Collapse
Affiliation(s)
- Fei Liu
- College of Medicine & ForensicsXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
- Affiliated Stomatology Hospital of Xi'an Jiaotong University Health Science CenterXi'an710004ShaanxiChina
| | - Jing Ma
- Affiliated Stomatology Hospital of Xi'an Jiaotong University Health Science CenterXi'an710004ShaanxiChina
| | - Peng Liu
- College of Medicine & ForensicsXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
| | - Zheng Chu
- College of Medicine & ForensicsXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
| | - Gang Lei
- College of Medicine & ForensicsXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
| | - Xiao‐di Jia
- College of Medicine & ForensicsXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
- Key Laboratory of the Health Ministry for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
- Key Laboratory of Forensic Medicine of Shaanxi ProvinceXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
| | - Jia‐bei Wang
- Department of Pharmaceutical SciencesUniversity of Maryland School of PharmacyBaltimoreMaryland21201
| | - Yong‐hui Dang
- College of Medicine & ForensicsXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
- Key Laboratory of the Health Ministry for Forensic MedicineXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
- Key Laboratory of Forensic Medicine of Shaanxi ProvinceXi'an Jiaotong University Health Science CenterXi'an710061ShaanxiChina
| |
Collapse
|
12
|
Dolot R, Kaczmarek R, Sęda A, Krakowiak A, Baraniak J, Nawrot B. Crystallographic studies of the complex of human HINT1 protein with a non-hydrolyzable analog of Ap4A. Int J Biol Macromol 2016; 87:62-9. [PMID: 26905466 DOI: 10.1016/j.ijbiomac.2016.02.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 02/05/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
Histidine triad nucleotide-binding protein 1 (HINT1) represents the most ancient and widespread branch in the histidine triad proteins superfamily. HINT1 plays an important role in various biological processes, and it has been found in many species. Here, we report the first structure (at a 2.34Å resolution) of a complex of human HINT1 with a non-hydrolyzable analog of an Ap4A dinucleotide, containing bis-phosphorothioated glycerol mimicking a polyphosphate chain, obtained from a primitive monoclinic space group P21 crystal. In addition, the apo form of hHINT1 at the space group P21 refined to 1.92Å is reported for comparative studies.
Collapse
Affiliation(s)
- Rafał Dolot
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland.
| | - Renata Kaczmarek
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Aleksandra Sęda
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Agnieszka Krakowiak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Janina Baraniak
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Barbara Nawrot
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| |
Collapse
|
13
|
Tarique KF, Devi S, Abdul Rehman SA, Gourinath S. Crystal structure of HINT from Helicobacter pylori. Acta Crystallogr F Struct Biol Commun 2016; 72:42-8. [PMID: 26750483 PMCID: PMC4708049 DOI: 10.1107/s2053230x15023316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/04/2015] [Indexed: 11/10/2022] Open
Abstract
Proteins belonging to the histidine triad (HIT) superfamily bind nucleotides and use the histidine triad motif to carry out dinucleotidyl hydrolase, nucleotidyltransferase and phosphoramidite hydrolase activities. Five different branches of this superfamily are known to exist. Defects in these proteins in humans are linked to many diseases such as ataxia, diseases of RNA metabolism and cell-cycle regulation, and various types of cancer. The histidine triad nucleotide protein (HINT) is nearly identical to proteins that have been classified as protein kinase C-interacting proteins (PKCIs), which also have the ability to bind and inhibit protein kinase C. The structure of HINT, which exists as a homodimer, is highly conserved from humans to bacteria and shares homology with the product of fragile histidine triad protein (FHit), a tumour suppressor gene of this superfamily. Here, the structure of HINT from Helicobacter pylori (HpHINT) in complex with AMP is reported at a resolution of 3 Å. The final model has R and Rfree values of 26 and 28%, respectively, with good electron density. Structural comparison with previously reported homologues and phylogenetic analysis shows H. pylori HINT to be the smallest among them, and suggests that it branched out separately during the course of evolution. Overall, this structure has contributed to a better understanding of this protein across the animal kingdom.
Collapse
Affiliation(s)
- K. F. Tarique
- School of Life Science, Jawaharlal Nehru University, New Delhi, Delhi 110 067, India
| | - S. Devi
- School of Life Science, Jawaharlal Nehru University, New Delhi, Delhi 110 067, India
| | - S. A. Abdul Rehman
- School of Life Science, Jawaharlal Nehru University, New Delhi, Delhi 110 067, India
| | - S. Gourinath
- School of Life Science, Jawaharlal Nehru University, New Delhi, Delhi 110 067, India
| |
Collapse
|
14
|
Zhang F, Fang Z, Wang JB. Hint1 knockout results in a compromised activation of protein kinase C gamma in the brain. Brain Res 2015; 1622:196-203. [DOI: 10.1016/j.brainres.2015.06.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023]
|
15
|
Dolot R, Włodarczyk A, Bujacz GD, Nawrot B. Expression, purification, crystallization and preliminary X-ray crystallographic analysis of human histidine triad nucleotide-binding protein 2 (hHINT2). Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:783-7. [PMID: 23832208 PMCID: PMC3702325 DOI: 10.1107/s1744309113015200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/01/2013] [Indexed: 11/10/2022]
Abstract
Histidine triad nucleotide-binding protein 2 (HINT2) is a mitochondrial adenosine phosphoramidase mainly expressed in the pancreas, liver and adrenal gland. HINT2 possibly plays a role in apoptosis, as well as being involved in steroid biosynthesis, hepatic lipid metabolism and regulation of hepatic mitochondria function. The expression level of HINT2 is significantly down-regulated in hepatocellular carcinoma patients. To date, endogenous substrates for this enzyme, as well as the three-dimensional structure of human HINT2, are unknown. In this study, human HINT2 was cloned, overexpressed in Escherichia coli and purified. Crystallization was performed at 278 K using PEG 4000 as the main precipitant; the crystals, which belonged to the tetragonal space group P41212 with unit-cell parameters a = b = 76.38, c = 133.25 Å, diffracted to 2.83 Å resolution. Assuming two molecules in the asymmetric unit, the Matthews coefficient and the solvent content were calculated to be 2.63 Å(3) Da(-1) and 53.27%, respectively.
Collapse
Affiliation(s)
- Rafał Dolot
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, 90-363 Łódź, Poland.
| | | | | | | |
Collapse
|
16
|
Linde CI, Feng B, Wang JB, Golovina VA. Histidine triad nucleotide-binding protein 1 (HINT1) regulates Ca(2+) signaling in mouse fibroblasts and neuronal cells via store-operated Ca(2+) entry pathway. Am J Physiol Cell Physiol 2013; 304:C1098-104. [PMID: 23576580 DOI: 10.1152/ajpcell.00073.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent findings indicate that histidine triad nucleotide-binding protein 1 (HINT1) is implicated in the pathophysiology of certain psychiatric disorders and also exhibits tumor suppressor properties. However, the authentic functions of HINT1 in cellular physiology and especially its role in Ca(2+) signaling remain unclear. Here, we studied Ca(2+) signaling in cultured embryonic fibroblasts derived from wild-type control and HINT1 knockout (KO) mice. The resting cytosolic Ca(2+) level (measured with fura-2) was not altered in fibroblasts lacking HINT1. The stored Ca(2+) evaluated by measuring peak amplitude of ATP (10 μM)-induced Ca(2+) transients in Ca(2+)-free medium was significantly larger in HINT1 KO fibroblasts than in wild-type cells. Ca(2+) influx after external Ca(2+) restoration, likely via store- and receptor-operated channels (SOCs and ROCs, respectively), was greatly (by 2-fold) reduced in HINT1 KO fibroblasts. This correlated with a downregulated expression of Orai1 and stromal interacting molecule 1 (STIM1), essential components of store-operated Ca(2+) entry pathway. Expression of canonical transient receptor potential (TRPC)3 and TRPC6, which function as ROCs, was not altered in HINT1 KO fibroblasts. Immunoblots also revealed that Orai1 was downregulated by twofold in brain lysates of HINT1 KO mice compared with the wild-type littermates. Importantly, silencer RNA knockdown of HINT1 in Neuro-2A cells markedly downregulated Orai1 and STIM1 protein expression and significantly (by 2.5-fold) reduced ATP-induced Ca(2+) influx, while ATP-evoked Ca(2+) release was not changed. Thus the study demonstrates a novel function of HINT1 that involves the regulation of SOC-mediated Ca(2+) entry pathway (Orai1 and STIM1), essential for regulation of cellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Cristina I Linde
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
17
|
Dolot R, Ozga M, Włodarczyk A, Krakowiak A, Nawrot B. A new crystal form of human histidine triad nucleotide-binding protein 1 (hHINT1) in complex with adenosine 5'-monophosphate at 1.38 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:883-8. [PMID: 22869114 PMCID: PMC3412765 DOI: 10.1107/s1744309112029491] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 06/28/2012] [Indexed: 11/10/2022]
Abstract
Histidine triad nucleotide-binding protein 1 (HINT1) represents the most ancient and widespread branch of the histidine triad protein superfamily. HINT1 plays an important role in various biological processes and has been found in many species. Here, the structure of the human HINT1-adenosine 5'-monophosphate (AMP) complex at 1.38 Å resolution obtained from a new monoclinic crystal form is reported. The final structure has R(cryst) = 0.1207 (R(free) = 0.1615) and the model exhibits good stereochemical quality. Detailed analysis of the high-resolution data allowed the details of the protein structure to be updated in comparison to the previously published data.
Collapse
Affiliation(s)
- Rafał Dolot
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Sienkiewicza 112, 90-363 Łódź, Poland.
| | | | | | | | | |
Collapse
|
18
|
Rodríguez-Muñoz M, Sánchez-Blázquez P, Vicente-Sánchez A, Bailón C, Martín-Aznar B, Garzón J. The histidine triad nucleotide-binding protein 1 supports mu-opioid receptor-glutamate NMDA receptor cross-regulation. Cell Mol Life Sci 2011; 68:2933-49. [PMID: 21153910 PMCID: PMC11114723 DOI: 10.1007/s00018-010-0598-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 11/04/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
Abstract
A series of pharmacological and physiological studies have demonstrated the functional cross-regulation between MOR and NMDAR. These receptors coexist at postsynaptic sites in midbrain periaqueductal grey (PAG) neurons, an area implicated in the analgesic effects of opioids like morphine. In this study, we found that the MOR-associated histidine triad nucleotide-binding protein 1 (HINT1) is essential for maintaining the connection between the NMDAR and MOR. Morphine-induced analgesic tolerance is prevented and even rescued by inhibiting PKC or by antagonizing NMDAR. However, in the absence of HINT1, the MOR becomes supersensitive to morphine before suffering a profound and lasting desensitization that is refractory to PKC inhibition or NMDAR antagonism. Thus, HINT1 emerges as a key protein that is critical for sustaining NMDAR-mediated regulation of MOR signaling strength. Thus, HINT1 deficiency may contribute to opioid-intractable pain syndromes by causing long-term MOR desensitization via mechanisms independent of NMDAR.
Collapse
Affiliation(s)
- María Rodríguez-Muñoz
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Pilar Sánchez-Blázquez
- Neurofarmacología, Instituto Cajal, CSIC, Avda Dr. Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Ana Vicente-Sánchez
- Neurofarmacología, Instituto Cajal, CSIC, Avda Dr. Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Concha Bailón
- Neurofarmacología, Instituto Cajal, CSIC, Avda Dr. Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Beatriz Martín-Aznar
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| | - Javier Garzón
- Neurofarmacología, Instituto Cajal, CSIC, Avda Dr. Arce 37, 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, ISCIII, Avda Dr. Arce 37, 28002 Madrid, Spain
| |
Collapse
|
19
|
Dolot R, Ozga M, Krakowiak A, Nawrot B. High-resolution X-ray structure of the rabbit histidine triad nucleotide-binding protein 1 (rHINT1)–adenosine complex at 1.10 Å resolution. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:601-7. [DOI: 10.1107/s0907444911015605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 04/25/2011] [Indexed: 11/11/2022]
|
20
|
Abstract
Childhood-onset psychiatric disorders, such as attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), mood disorders, obsessive compulsive spectrum disorders (OCSD), and schizophrenia (SZ), affect many school-age children, leading to a lower quality of life, including difficulties in school and personal relationships that persist into adulthood. Currently, the causes of these psychiatric disorders are poorly understood, resulting in difficulty diagnosing affected children, and insufficient treatment options. Family and twin studies implicate a genetic contribution for ADHD, ASD, mood disorders, OCSD, and SZ. Identification of candidate genes and chromosomal regions associated with a particular disorder provide targets for directed research, and understanding how these genes influence the disease state will provide valuable insights for improving the diagnosis and treatment of children with psychiatric disorders. Transgenic mouse models are one important approach in the study of human diseases, allowing for the use of a variety of experimental approaches to dissect the contribution of a specific chromosomal or genetic abnormality in human disorders. While it is impossible to model an entire psychiatric disorder in a single mouse model, these models can be extremely valuable in dissecting out the specific role of a gene, pathway, neuron subtype, or brain region in a particular abnormal behavior. In this review we discuss existing transgenic mouse models for childhood-onset psychiatric disorders. We compare the strength and weakness of various transgenic mouse models proposed for each of the common childhood-onset psychiatric disorders, and discuss future directions for the study of these disorders using cutting-edge genetic tools.
Collapse
|
21
|
Martin J, St-Pierre MV, Dufour JF. Hit proteins, mitochondria and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:626-32. [PMID: 21316334 DOI: 10.1016/j.bbabio.2011.02.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 11/30/2022]
Abstract
The histidine triad (HIT) superfamily comprises proteins that share the histidine triad motif, His-ϕ-His-ϕ-His-ϕ-ϕ, where ϕ is a hydrophobic amino acid. HIT proteins are ubiquitous in prokaryotes and eukaryotes. HIT proteins bind nucleotides and exert dinucleotidyl hydrolase, nucleotidylyl transferase or phosphoramidate hydrolase enzymatic activity. In humans, 5 families of HIT proteins are recognized. The accumulated epidemiological and experimental evidence indicates that two branches of the superfamily, the HINT (Histidine Triad Nucleotide Binding) members and FHIT (Fragile Histidine Triad), have tumor suppressor properties but a conclusive physiological role can still not be assigned to these proteins. Aprataxin forms another discrete branch of the HIT superfamily, is implicated in DNA repair mechanisms and unlike the HINT and FHIT members, a defective protein can be conclusively linked to a disease, ataxia with oculomotor apraxia type 1. The scavenger mRNA decapping enzyme, DcpS, forms a fourth branch of the HIT superfamily. Finally, the GalT enzymes, which exert specific nucleoside monophosphate transferase activity, form a fifth branch that is not implicated in tumorigenesis. The molecular mechanisms by which the HINT and FHIT proteins participate in bioenergetics of cancer are just beginning to be unraveled. Their purported actions as tumor suppressors are highlighted in this review.
Collapse
Affiliation(s)
- Juliette Martin
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Switzerland
| | | | | |
Collapse
|
22
|
Varadarajulu J, Lebar M, Krishnamoorthy G, Habelt S, Lu J, Bernard Weinstein I, Li H, Holsboer F, Turck CW, Touma C. Increased anxiety-related behaviour in Hint1 knockout mice. Behav Brain Res 2011; 220:305-11. [PMID: 21316396 DOI: 10.1016/j.bbr.2011.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 12/14/2022]
Abstract
Several reports have implicated a role for the histidine triad nucleotide-binding protein-1 (Hint1) in psychiatric disorders. We have studied the emotional behaviour of male Hint1 knockout (Hint1 KO) mice in a battery of tests and performed biochemical analyses on brain tissue. The behavioural analysis revealed that Hint1 KO mice exhibit an increased emotionality phenotype compared to wildtype (WT) mice, while no significant differences in locomotion or general exploratory activity were noted. In the elevated plus-maze (EPM) test, the Hint1 KO animals entered the open arms of the apparatus less often than WT littermates. Similarly, in the dark-light box test, Hint1 KO mice spent less time in the lit compartment and the number of entries were reduced, which further confirmed an increased anxiety-related behaviour. Moreover, the Hint1 KO animals showed significantly more struggling and less floating behaviour in the forced swim test (FST), indicating an increased emotional arousal in aversive situations. Hint1 is known as a protein kinase C (PKC) interacting protein. Western blot analysis showed that PKCγ expression was elevated in Hint1 KO compared to WT mice. Interestingly, PKCγ mRNA levels of the two groups did not show a significant difference, implying a post-transcriptional PKCγ regulation. In addition, PKC enzymatic activity was increased in Hint1 KO compared to WT mice. In summary, our results indicate a role for Hint1 and PKCγ in modulating anxiety-related and stress-coping behaviour in mice.
Collapse
Affiliation(s)
- Jeeva Varadarajulu
- Research Group of Proteomics & Biomarkers and Research Group of Psychoneuroendocrinology, Max Planck Institute of Psychiatry, Kraepelinstrasse 2, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bai G, Feng B, Wang JB, Pozharski E, Shapiro M. Studies on ligand binding to histidine triad nucleotide binding protein 1. Bioorg Med Chem 2010; 18:6756-62. [DOI: 10.1016/j.bmc.2010.07.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 07/14/2010] [Accepted: 07/22/2010] [Indexed: 11/26/2022]
|
24
|
Association of the histidine-triad nucleotide-binding protein-1 (HINT1) gene variants with nicotine dependence. THE PHARMACOGENOMICS JOURNAL 2010; 11:251-7. [PMID: 20514075 DOI: 10.1038/tpj.2010.41] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The histidine triad nucleotide-binding protein-1 gene (HINT1) is implicated in schizophrenia and in the behavioral effects of morphine and amphetamine. Because nicotine dependence (ND) is highly comorbid with schizophrenia and other substance abuse, we examined the association of HINT1 with ND. Association analyses from two independent samples show that HINT1 gene variants are associated with ND phenotypes. Furthermore, human postmortem mRNA expression shows that smoking status and genotype influence HINT1 expression in the brain. In animal studies, western blot analyses show an increase of HINT1 protein level in the mouse nucleus accumbens (NAc) after chronic nicotine exposure. This increase was reduced after treatment with the nicotinic-receptor antagonist mecamylamine, and 24 and 72 h after cessation of nicotine treatment. These results indicate a genetic association between HINT1 variants and ND, and indicate that nicotine-induced modulation of HINT1 level may be involved in mechanisms of excess smoking.
Collapse
|
25
|
Wu L, Wu X, Deng H, Huang Y. First identification and functional analysis of a histidine triad nucleotide binding protein in an invertebrate species Haliotis diversicolor supertexta. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:76-83. [PMID: 19720079 DOI: 10.1016/j.dci.2009.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 08/21/2009] [Accepted: 08/21/2009] [Indexed: 05/28/2023]
Abstract
Histidine triad nucleotide binding protein (HINT) represents the most ancient and widespread branches in the histidine triad superfamily. HINT plays an important role in many biological processes especially in cell biology, and it has been found in a wide variety of species. However, the functional attributes of HINT homologues in invertebrates have not yet been reported. Here we identified a HINT homologue in abalone, which we named ab-HINT. The ab-HINT shows significant structural and functional similarities to mammalian HINT. RT-PCR and western blot analysis show that ab-HINT is ubiquitously expressed in abalone tissues and highly expressed in hemocyte and gills. In addition, significant up-regulation of ab-HINT was observed after LPS or Poly I:C challenge. Immunostainings suggest that ab-HINT is expressed predominantly in epithelial cells and mainly localized in the cytoplasmic compartment. Studies of the effect on cell apoptosis indicate that ab-HINT can trigger hemocytes apoptosis and p53 is involved in this process. These results conclude that ab-HINT is involved in the immune response of abalone and may be a potential pro-apoptotic factor. To the best of our knowledge, this is the first identification and characterization of a HINT homologue in invertebrates.
Collapse
Affiliation(s)
- Liuji Wu
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, 268 Kaixuan Road, Hangzhou 310029, PR China
| | | | | | | |
Collapse
|
26
|
Barbier E, Wang JB. Anti-depressant and anxiolytic like behaviors in PKCI/HINT1 knockout mice associated with elevated plasma corticosterone level. BMC Neurosci 2009; 10:132. [PMID: 19912621 PMCID: PMC2780446 DOI: 10.1186/1471-2202-10-132] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 11/13/2009] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Protein kinase C interacting protein (PKCI/HINT1) is a small protein belonging to the histidine triad (HIT) family proteins. Its brain immunoreactivity is located in neurons and neuronal processes. PKCI/HINT1 gene knockout (KO) mice display hyper-locomotion in response to D-amphetamine which is considered a positive symptom of schizophrenia in animal models. Postmortem studies identified PKCI/HINT1 as a candidate molecule for schizophrenia and bipolar disorder. We investigated the hypothesis that the PKCI/HINT1 gene may play an important role in regulating mood function in the CNS. We submitted PKCI/HINT1 KO mice and their wild type (WT) littermates to behavioral tests used to study anti-depressant, anxiety like behaviors, and goal-oriented behavior. Additionally, as many mood disorders coincide with modifications of hypothalamic-pituitary-adrenal (HPA) axis function, we assessed the HPA activity through measurement of plasma corticosterone levels. RESULTS Compared to the WT controls, KO mice exhibited less immobility in the forced swim (FST) and the tail suspension (TST) tests. Activity in the TST tended to be attenuated by acute treatment with valproate at 300 mg/kg in KO mice. The PKCI/HINT1 KO mice presented less thigmotaxis in the Morris water maze and spent progressively more time in the lit compartment in the light/dark test. In a place navigation task, KO mice exhibited enhanced acquisition and retention. Furthermore, the afternoon basal plasma corticosterone level in PKCI/HINT1 KO mice was significantly higher than in the WT. CONCLUSION PKCI/HINT1 KO mice displayed a phenotype of behavioral and endocrine features which indicate changes of mood function, including anxiolytic-like and anti-depressant like behaviors, in conjunction with an elevated corticosterone level in plasma. These results suggest that the PKCI/HINT 1 gene could be important for the mood regulation function in the CNS.
Collapse
Affiliation(s)
- Elisabeth Barbier
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
27
|
Banerjee H, Palenchar JB, Lukaszewicz M, Bojarska E, Stepinski J, Jemielity J, Guranowski A, Ng S, Wah DA, Darzynkiewicz E, Bellofatto V. Identification of the HIT-45 protein from Trypanosoma brucei as an FHIT protein/dinucleoside triphosphatase: substrate specificity studies on the recombinant and endogenous proteins. RNA (NEW YORK, N.Y.) 2009; 15:1554-64. [PMID: 19541768 PMCID: PMC2714743 DOI: 10.1261/rna.1426609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A new member of the FHIT protein family, designated HIT-45, has been identified in the African trypanosome Trypanosoma brucei. Recombinant HIT-45 proteins were purified from trypanosomal and bacterial protein expression systems and analyzed for substrate specificity using various dinucleoside polyphosphates, including those that contain the 5'-mRNA cap, i.e., m(7)GMP. This enzyme exhibited typical dinucleoside triphosphatase activity (EC 3.6.1.29), having its highest specificity for diadenosine triphosphate (ApppA). However, the trypanosome enzyme contains a unique amino-terminal extension, and hydrolysis of cap dinucleotides with monomethylated guanosine or dimethylated guanosine always yielded m(7)GMP (or m(2,7)GMP) as one of the reaction products. Interestingly, m(7)Gpppm(3)(N6, N6, 2'O)A was preferred among the methylated substrates. This hypermethylated dinucleotide is unique to trypanosomes and may be an intermediate in the decay of cap 4, i.e., m(7)Gpppm(3)(N6, N6, 2'O)Apm(2'O)Apm(2'O)Cpm(2)(N3, 2'O)U, that occurs in these organisms.
Collapse
Affiliation(s)
- Hiren Banerjee
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bai G, Feng B, Wang JB, Varney KM, Shapiro M. Backbone assignment of HINT1 protein, a mouse histidine triad nucleotide binding protein. BIOMOLECULAR NMR ASSIGNMENTS 2009; 3:57-59. [PMID: 19636947 DOI: 10.1007/s12104-008-9141-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 12/19/2008] [Indexed: 05/28/2023]
Abstract
HINT1 is a mouse histidine triad nucleotide binding protein. Here we report the assignments for the backbone nitrogen, carbon and proton NMR signals.
Collapse
Affiliation(s)
- Guoyun Bai
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
29
|
Cen B, Li H, Weinstein IB. Histidine Triad Nucleotide-binding Protein 1 Up-regulates Cellular Levels of p27KIP1 by Targeting ScfSKP2 Ubiquitin Ligase and Src. J Biol Chem 2009; 284:5265-76. [DOI: 10.1074/jbc.m804531200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Chen Q, Wang X, O’Neill FA, Walsh D, Kendler KS, Chen X. Is the histidine triad nucleotide-binding protein 1 (HINT1) gene a candidate for schizophrenia? Schizophr Res 2008; 106:200-7. [PMID: 18799291 PMCID: PMC2729541 DOI: 10.1016/j.schres.2008.08.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 07/31/2008] [Accepted: 08/01/2008] [Indexed: 02/05/2023]
Abstract
BACKGROUND : The histidine triad nucleotide-binding protein 1, HINT1, hydrolyzes adenosine 5'-monophosphoramidate substrates such as AMP-morpholidate. The human HINT1 gene is located on chromosome 5q31.2, a region implicated in linkage studies of schizophrenia. HINT1 had been shown to have different expression in postmortem brains between schizophrenia patients and unaffected controls. It was also found to be associated with the dysregulation of postsynaptic dopamine transmission, thus suggesting a potential role in several neuropsychiatric diseases. METHODS : In this work, we studied 8 SNPs around the HINT1 gene region using the Irish study of high density schizophrenia families (ISHDSF, 1350 subjects and 273 pedigrees) and the Irish case control study of schizophrenia (ICCSS, 655 affected subjects and 626 controls). The expression level of HINT1 was compared between the postmortem brain cDNAs from schizophrenic patients and unaffected controls provided by the Stanley Medical Research Institute. RESULTS : We found nominally significant differences in allele frequencies in several SNPs for both ISHDSF and ICCSS samples in sex-stratified analyses. However, the sex effect differed between the two samples. In expression studies, no significant difference in expression was observed between patients and controls. However, significant interactions amongst sex, diagnosis and rs3864283 genotypes were observed. CONCLUSION : Data from both association and expression studies suggested that variants at HINT1 may be associated with schizophrenia and the associations may be sex-specific. However, the markers showing associations were in high LD to the SPEC2/PDZ-GEF2/ACSL6 locus reported previously in the same samples. This made it difficult to separate the association signals amongst these genes. Other independent studies may be necessary to distinguish these candidate genes.
Collapse
Affiliation(s)
- Qi Chen
- Department of Psychiatry and Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298
| | - Xu Wang
- Department of Psychiatry and Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298
| | - Francis A. O’Neill
- The Department of Psychiatry, The Queens University, Belfast, Northern Ireland
| | | | - Kenneth S. Kendler
- Department of Psychiatry and Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298
| | - Xiangning Chen
- Department of Psychiatry and Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298
| |
Collapse
|
31
|
Li H, Balajee AS, Su T, Cen B, Hei TK, Weinstein IB. The HINT1 tumor suppressor regulates both gamma-H2AX and ATM in response to DNA damage. J Cell Biol 2008; 183:253-65. [PMID: 18852295 PMCID: PMC2568022 DOI: 10.1083/jcb.200711150] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 09/19/2008] [Indexed: 12/24/2022] Open
Abstract
Hint1 is a haploinsufficient tumor suppressor gene and the underlying molecular mechanisms for its tumor suppressor function are unknown. In this study we demonstrate that HINT1 participates in ionizing radiation (IR)-induced DNA damage responses. In response to IR, HINT1 is recruited to IR-induced foci (IRIF) and associates with gamma-H2AX and ATM. HINT1 deficiency does not affect the formation of gamma-H2AX foci; however, it impairs the removal of gamma-H2AX foci after DNA damage and this is associated with impaired acetylation of gamma-H2AX. HINT1 deficiency also impairs acetylation of ATM and activation of ATM and its downstream effectors, and retards DNA repair, in response to IR. HINT1-deficient cells exhibit resistance to IR-induced apoptosis and several types of chromosomal abnormalities. Our findings suggest that the tumor suppressor function of HINT1 is caused by, at least in part, its normal role in enhancing cellular responses to DNA damage by regulating the functions of both gamma-H2AX and ATM.
Collapse
Affiliation(s)
- Haiyang Li
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
32
|
Cen B, Deguchi A, Weinstein IB. Activation of protein kinase G Increases the expression of p21CIP1, p27KIP1, and histidine triad protein 1 through Sp1. Cancer Res 2008; 68:5355-62. [PMID: 18593937 DOI: 10.1158/0008-5472.can-07-6869] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The anticancer role of cyclic guanosine 3',5'-monophosphate (cGMP)-dependent protein kinase G (PKG) has become of considerable interest, but the underlying mechanisms are not fully established. In this study, we examined the effects of activation of PKG on the expression of three tumor suppressor proteins in human SW480 colon cancer cells. Our results revealed that treatment with cell permeable cGMP derivatives, or the cGMP phosphodiesterase inhibitor sulindac sulfone (exisulind, aptosyn, hereafter called exisulind) led to increased expression of the tumor suppressor proteins p21(CIP1), p27(KIP1), and Histidine triad protein 1 (HINT1), and their corresponding mRNAs. Overexpression of PKG Ibeta also caused increased expression of the p21(CIP1), p27(KIP1), and HINT1 proteins. Both the p21(CIP1) and p27(KIP1) promoters contain Sp1 binding sites and they were activated by PKG in luciferase reporter assays. Specific Sp1 sites in the p21 and p27 promoters were sufficient to mediate PKG-induced luciferase reporter activity, suggesting an interaction between Sp1 and PKG. Indeed, we found that PKG can phosphorylate Sp1 on serine residue(s) and this resulted in transcriptional activation of Sp1. Knockdown of Sp1 expression with siRNA inhibited the increased expression of p21(CIP1), p27(KIP1), and HINT1 induced by the cGMP derivative 8-pCPT-cGMP in SW480 cells. These novel effects of PKG activation on the expression of three tumor suppressor genes may explain, at least in part, the anticancer effects of activation of PKG. They also provide a rationale for further developing activators of PKG for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Bo Cen
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
33
|
Liu Q, Puche AC, Wang JB. Distribution and Expression of Protein Kinase C Interactive Protein (PKCI/HINT1) in Mouse Central Nervous System (CNS). Neurochem Res 2008; 33:1263-76. [DOI: 10.1007/s11064-007-9578-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Accepted: 12/20/2007] [Indexed: 11/30/2022]
|
34
|
Chou TF, Cheng J, Tikh IB, Wagner CR. Evidence that human histidine triad nucleotide binding protein 3 (Hint3) is a distinct branch of the histidine triad (HIT) superfamily. J Mol Biol 2007; 373:978-89. [PMID: 17870088 DOI: 10.1016/j.jmb.2007.08.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 08/03/2007] [Accepted: 08/10/2007] [Indexed: 10/22/2022]
Abstract
Human Hint3 (hHint3) has been classified as a member of the histidine triad nucleotide (Hint) binding protein subfamily. While Hint1 is ubiquitously expressed by both eukaryotes and prokaryotes, Hint3 is found only in eukaryotes. Previously, our laboratory has characterized and compared the aminoacyl-adenylate and nucleoside phosphoramidate hydrolase activity of hHint1 and Escherichia coli hinT. In this study, hHint3-1(Ala36) and its single nucleotide polymorphism, hHint3-2 (A36G variant), were cloned, overexpressed, and purified. Steady-state kinetic studies with a synthetic fluorogenic indolepropinoic acyl-adenylate (AIPA) and with a series of fluorogenic tryptamine nucleoside phosphoramidates revealed that hHint3-1 and hHint3-2 are adenylate and phosphoramidate hydrolases with apparent second-order rate constants (kcat/Km) ranging from 10(2) to 10(6) s(-1) M(-1). Unlike hHint1, hHint3-1 and hHint3-2 prefer AIPA over tryptamine adenosine phosphoramidate by factors of 33- and 16-fold, respectively. In general, hHint3s hydrolyze phosphoramidate 370- to 2000-fold less efficiently than hHint1. Substitution of the potential active-site nucleophile, His145, by Ala was shown to abolish the adenylate and phosphoramidate hydrolase activity for hHint3-1. However, 0.2-0.4% residual activity was observed for the H145A mutant of hHint3-2. Both hHint3-1 and hHint3-2 were found to hydrolyze lysyl-adenylate generated by human lysyl-tRNA synthetase (hLysRS) by proceeding through an adenylated protein intermediate. hLysRS-dependent labeling of hHint3-1 and hHint3-2 was found to depend on His145, which aligns with the His112 of the Hint1 active site. The extent of active-site His145-AMP labeling was shown to be similar to His112-AMP labeling of hHint1. In contrast to all previously characterized members of the histidine triad superfamily, which have been shown to exist exclusively as homodimers, wild type and the H145A of hHint3-1 were found to exist across a range of multimeric states, from dimers to octamers and even larger oligomers, while wild type and the H145A of hHint3-2 exist predominantly in a monomeric state. The differences in oligomeric state may be important in vivo, because unlike tetracysteine-tagged Hint1, which was found along linear arrays exclusively in the cytoplasm in transfected HeLa cells, tagged Hint3-1 and Hint3-2 were found as aggregates both in the cytosol and in the nucleus. Taken together, these results imply that while Hint3 and Hint1 prefer aminoacyl-adenylates as substrates and catalytically interact with aminoacyl-tRNA synthetases, the significant differences in phosphoramidase activity, oligomeric state, and cellular localization suggest that Hint3s should be placed in a distinct branch of the histidine triad superfamily.
Collapse
Affiliation(s)
- Tsui-Fen Chou
- Department of Medicinal Chemistry, University of Minnesota, 8-174 Weaver Densford Hall, 308 Harvard St. S.E., Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
35
|
Barbier E, Zapata A, Oh E, Liu Q, Zhu F, Undie A, Shippenberg T, Wang JB. Supersensitivity to amphetamine in protein kinase-C interacting protein/HINT1 knockout mice. Neuropsychopharmacology 2007; 32:1774-82. [PMID: 17203012 DOI: 10.1038/sj.npp.1301301] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein kinase C interacting protein/histidine triad nucleotide binding protein 1 (PKCI/HINT1) is a member of the histidine triad protein family. Although this protein is widely expressed in the mammalian brain including mesocorticolimbic and mesostriatal regions, its physiological function in CNS remains unknown. Recent microarray studies reported decreased mRNA expression of PKCI/HINT1 in the frontal cortex of individuals with schizophrenia, suggesting the possible involvement of this protein in the pathophysiology of the disease. In view of the documented link between dopamine (DA) transmission and schizophrenia, the present study used behavioral and neurochemical approaches to examine the influence of constitutive PKCI/HINT1 deletion upon: (i) basal and amphetamine (AMPH)-evoked locomotor activity; (ii) DA dynamics in the dorsal striatum, and (iii) postsynaptic DA receptor function. PKCI/HINT1(-/-) (KO) mice displayed lower spontaneous locomotion relative to wild-type (WT) controls. Acute AMPH administration significantly increased locomotor activity in WT mice; nonetheless, the effect was enhanced in KO mice. Quantitative microdialysis studies revealed no alteration in basal DA dynamics in the striatum or nucleus accumbens of KO mice. The ability of acute AMPH to increase DA levels was unaltered indicating that function in presynaptic DA neurotransmission in these regions do not underlie the behavioral phenotype of KO mice. In contrast to WT mice, systemic administration of the direct-acting DA receptor agonist apomorphine (10 mg/kg) significantly increased locomotor activity in KO mice suggesting that postsynaptic DA function is altered in these animals. These results demonstrate an important role of PKCI/HINT1 in modulating the behavioral response to AMPH. Furthermore, they indicate that the absence of this protein may be associated with dysregulation of postsynaptic DA transmission.
Collapse
Affiliation(s)
- Elisabeth Barbier
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
The network of transcription factors in mast cells has not been investigated as widely as it has been in other differentiated hematopoietic cells. There are still many mechanisms of transcriptional regulation that need to be fully elucidated to understand how mast cell external stimuli lead to the appropriate physiological responses. Such information could be used to determine potential therapeutic targets for the control of mast cell activation in inflammatory diseases, allergy, and asthma. The aim of this article is to review hallmark studies in the field of transcription factor regulation in mast cells. We elaborate especially on several transcription factors studied in our laboratory in the past decade, including activator protein-1, microphthalmia-associated transcription factor, upstream stimulating factor-2, and signal transducer and activator of transcription 3.
Collapse
|
37
|
Wang L, Zhang Y, Li H, Xu Z, Santella RM, Weinstein IB. Hint1 inhibits growth and activator protein-1 activity in human colon cancer cells. Cancer Res 2007; 67:4700-8. [PMID: 17510397 DOI: 10.1158/0008-5472.can-06-4645] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is accumulating evidence that histidine triad (HIT) nucleotide-binding protein 1 (HINT1), a member of the evolutionary highly conserved HIT protein super family, is a novel tumor suppressor. However, the mechanism of action of HINT1 with respect to tumor suppression is not known. In the present study, we found that a series of human colon cancer cell lines displayed various levels of expression of HINT1, with a very low level in SW480 cells. This cell line also displayed partial methylation of the promoter region of the Hint1 gene, and treatment of these cells with 5-azadeoxycitidine increased expression of Hint1 mRNA and protein. Therefore, the decreased expression of HINT1 in SW480 cells seems to be due to epigenetic silencing. Increased expression of HINT1 in these cells, using a retrovirus vector (pLNCX2) that encodes either wild-type (WT) Hint1 or a point mutant (His(112)/Asn(112)) of Hint1, inhibited the proliferation of SW480 cells. Because of the important role of the activator protein-1 (AP-1) transcription factor in cancer cells, we examined possible effects of HINT1 on AP-1 transcription factor activity in SW480 cells transfected with an AP-1-luciferase reporter. We found that cotransfection with a pHA-Hint1 plasmid DNA significantly inhibited this activity. Studies with inhibitors indicated that AP-1 activity in SW480 cells requires the activity of c-Jun NH(2)-terminal kinase (JNK) 2 and not JNK1. Cotransfection with the Hint1 plasmid DNA also inhibited AP-1-luciferase reporter activity in WT mouse embryo fibroblast (MEF) studies, and studies with JNK1 deleted or JNK2 deleted MEFs confirmed the essential role for JNK2, but not JNK1, in mediating AP-1 activity. Recent studies indicate that the protein plenty of SH3 (POSH) provides a scaffold that enhances JNK activity. We found that cotransfection of a plasmid DNA encoding POSH stimulated the phosphorylation of c-Jun and also AP-1 reporter activity, and cotransfection with Hint1 inhibited both of these activities. Furthermore, coimmunoprecipitation studies provided evidence that HINT1 forms an in vivo complex with POSH and JNK. These results suggest that HINT1 inhibits AP-1 activity by binding to a POSH-JNK2 complex, thus inhibiting the phosphorylation of c-Jun. This effect could contribute to the tumor suppressor activity of HINT1.
Collapse
Affiliation(s)
- Lin Wang
- Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University, New York, New York 10032-2704, USA
| | | | | | | | | | | |
Collapse
|
38
|
Weiske J, Huber O. The histidine triad protein Hint1 triggers apoptosis independent of its enzymatic activity. J Biol Chem 2006; 281:27356-66. [PMID: 16835243 DOI: 10.1074/jbc.m513452200] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hint1 is a member of the evolutionarily conserved family of histidine triad proteins that acts as a haplo-insufficient tumor suppressor inducing spontaneous tumor formation in Hint+/- and Hint-/- mouse models. However, the molecular mechanisms for the tumor-suppressing activity are poorly defined. In this respect, we have recently shown that Hint1, by interaction with Pontin and Reptin, inhibits T-cell factor/beta-catenin-mediated transcription of Wnt target genes. In this study, we have found that, after transient transfection with Hint1, SW480 and MCF-7 cells undergo apoptosis as analyzed by pro-caspase-3 and poly(ADP-ribose) polymerase cleavage, M30 CytoDEATH staining, cytochrome c release, and DNA fragmentation enzyme-linked immunosorbent assay. Hint1 is involved in the regulation of apoptotic pathways by inducing an up-regulation of p53 expression coinciding with an up-regulation of the proapoptotic factor Bax and a concomitant down-regulation of the apoptosis inhibitor Bcl-2. Bad and Puma levels remained unchanged. Further analyses revealed that Hint1 is associated with the Bax promoter and is a component of the Tip60 histone acetyltransferase complex and, in this context, appears to be involved in the regulation of Bax expression. Knockdown of Hint1 by short hairpin RNA resulted in down-regulation of p53 and Bax but had no effect on Bcl-2 expression. A mutant Hint1 (H112N) protein defective in enzymatic activity as an AMP-NH2 hydrolase was not impaired in induction of apoptosis, suggesting that the Hint1 pro-apoptotic activity is independent of the Hint1 enzymatic activity.
Collapse
Affiliation(s)
- Jörg Weiske
- Department of Laboratory Medicine and Pathobiochemistry, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | | |
Collapse
|
39
|
Li H, Zhang Y, Su T, Santella RM, Weinstein IB. Hint1 is a haplo-insufficient tumor suppressor in mice. Oncogene 2006; 25:713-21. [PMID: 16186798 DOI: 10.1038/sj.onc.1209111] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The HINT1 protein, a member of the histidine triad (HIT) family, is highly conserved in diverse species and ubiquitously expressed in mammalian tissues. However, its precise function in mammalian cells is not known. As a result of its structural similarity to the tumor-suppressor protein FHIT, we used homozygous-deleted Hint1 mice to study its role in tumorigenesis. We discovered that after 2 to 3 years of age the spontaneous tumor incidence in Hint1 -/- mice was significantly greater than that in wild-type Hint1 +/+ mice (P < 0.05). Using a well-established mouse model of 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary carcinogenesis we found a marked and significant (P < 0.05) increase in the incidence of mammary and ovarian tumors in both, Hint1 -/- and +/- mice versus +/+ mice. The Hint1 -/- and +/- mice had similar tumor incidence and similar tumor histologies. Therefore, deletion of Hint1 in mice enhances both spontaneous tumor development and susceptibility to tumor induction by DMBA. In addition, since the Hint1 +/- tumors retained expression of the unmutated wild-type allele, Hint1 is haplo-insufficient with respect to tumor suppression in this model system.
Collapse
Affiliation(s)
- H Li
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
40
|
Weiske J, Huber O. The histidine triad protein Hint1 interacts with Pontin and Reptin and inhibits TCF-beta-catenin-mediated transcription. J Cell Sci 2006; 118:3117-29. [PMID: 16014379 DOI: 10.1242/jcs.02437] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pontin and Reptin previously were identified as nuclear beta-catenin interaction partners that antagonistically modulate beta-catenin transcriptional activity. In this study, Hint1/PKCI, a member of the evolutionary conserved family of histidine triad proteins, was characterised as a new interaction partner of Pontin and Reptin. Pull-down assays and co-immunoprecipitation experiments show that Hint1/PKCI directly binds to Pontin and Reptin. The Hint1/PKCI-binding site was mapped to amino acids 214-295 and 218-289 in Pontin and Reptin, respectively. Conversely, Pontin and Reptin bind to the N-terminus of Hint1/PKCI. Moreover, by its interaction with Pontin and Reptin, Hint1/PKCI is associated with the LEF-1/TCF-beta-catenin transcription complex. In this context, Hint1/PKCI acts as a negative regulator of TCF-beta-catenin transcriptional activity in Wnt-transfected cells and in SW480 colon carcinoma cells as shown in reporter gene assays. Consistent with these observations, Hint1/PKCI represses expression of the endogenous target genes cyclin D1 and axin2 whereas knockdown of Hint1/PKCI by RNA interference increases their expression. Disruption of the Pontin/Reptin complex appears to mediate this modulatory effect of Hint1/PKCI on TCF-beta-catenin-mediated transcription. These data now provide a molecular mechanism to explain the tumor suppressor function of Hint1/PKCI recently suggested from the analysis of Hint1/PKCI knockout mice.
Collapse
Affiliation(s)
- Jörg Weiske
- Institute of Clinical Chemistry and Pathobiochemistry, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany
| | | |
Collapse
|
41
|
Lee JH, Cho ES, Kim MY, Seo YW, Kho DH, Chung IJ, Kook H, Kim NS, Ahn KY, Kim KK. Suppression of progression and metastasis of established colon tumors in mice by intravenous delivery of short interfering RNA targeting KITENIN, a metastasis-enhancing protein. Cancer Res 2005; 65:8993-9003. [PMID: 16204073 DOI: 10.1158/0008-5472.can-05-0590] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
KITENIN promotes invasion of mouse colon adenocarcinoma (CT-26) cells in vivo. Here, we studied the effects of in vivo KITENIN ablation on established tumors by using pSUPER vectors (pSUPER-KITENIN) producing short interfering RNA (siRNA). When pSUPER-KITENIN was given weekly or semiweekly for 1 month into tail vein of syngeneic mice that have established colon tumors, tumor size regressed markedly and metastases were inhibited. In mice injected with pSUPER-KITENIN, serum interleukin-2 (IL-2) and IFN-gamma increased and CD4+ and CD8+ T cells infiltrated in the regressed tumor tissues. These effects, observed beginning 2 days after i.v. injection, imply that immune response is involved in the antitumor action of pSUPER-KITENIN. Using a yeast two-hybrid assay, we identified two KITENIN-interacting proteins for the possible mediators of these actions: 90K protein, a known immune modulatory glycoprotein, and protein kinase C inhibitor (PKCI). 90K was increased in the culture medium from CT-26/antisense KITENIN/90K cells. Double culture of accessory cells with CT-26/antisense KITENIN/90K cells revealed increased secretion of IL-1 and IL-6. Overexpression of 90K in CT-26/antisense KITENIN cells further delayed tumor growth compared with that of CT-26/antisense KITENIN cells. Actin arrangement was distorted in CT-26/antisense KITENIN and CT-26/antisense PKCI cells, whereas overexpression of PKCI resulted in increased invasiveness to fibronectin. Thus, antitumor effects of KITENIN siRNA derives from both the generation of a tumor-specific immune response in vivo through increased 90K secretion from tumor cells and the suppression of tumor invasion in which PKCI is related to increased invasiveness. Moreover, siRNA targeting of KITENIN can function as a chemotherapeutic strategy against colon cancer.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/immunology
- Adenocarcinoma/pathology
- Adenocarcinoma/therapy
- Animals
- Antigens, Neoplasm
- Biomarkers, Tumor
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Cell Line, Tumor
- Coculture Techniques
- Colonic Neoplasms/genetics
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/therapy
- DNA, Antisense/genetics
- Glycoproteins/biosynthesis
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Humans
- Injections, Intravenous
- Interleukin-1/metabolism
- Interleukin-6/metabolism
- Macrophages/metabolism
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/biosynthesis
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Protein Kinase C/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- Transfection
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ji Hee Lee
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Kwangju, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Yuan BZ, Jefferson AM, Popescu NC, Reynolds SH. Aberrant gene expression in human non small cell lung carcinoma cells exposed to demethylating agent 5-aza-2'-deoxycytidine. Neoplasia 2005; 6:412-9. [PMID: 15256063 PMCID: PMC1502114 DOI: 10.1593/neo.03490] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes undergoing genetic or epigenetic alterations and contributing to the development of cancer is critical to our understanding of the molecular mechanisms of carcinogenesis. A new approach in identifying alterations of genes that might be relevant to the process of tumor development was used in this study by examining the gene expression profile in human lung cancer cells exposed to 5-aza-2'-deoxycytidine (5-aza-dC). A cDNA array analysis was carried out on 5-aza-dC-treated and untreated non small cell lung cancer (NSCLC) cell line NCI-H522. Sixteen and 14 genes were upregulated and downregulated, respectively, by 5-aza-dC treatment. Among them, downregulation of tyrosine protein kinase ABL2 (ABL2) gene and upregulation of hint/protein kinase C inhibitor 1 (Hint/PKCI-1), DVL1, TIMP-1, and TRP-1 genes were found in expanded observations in two or three of five 5-aza-dC-treated NSCLC cell lines. Among these genes, we found that cDNA transfer of Hint/PKCI-1 resulted in a significant in vitro growth inhibition in two cell lines exhibiting 5-aza-dC-induced upregulation of Hint/PKCI-1 and significantly reduced in vivo tumorigenicity of one NSCLC cell line. Hint/PKCI-1, which is the only other characterized human histidine triad (HIT) nucleotide-binding protein in addition to tumor-suppressor gene FHIT, might be involved in lung carcinogenesis.
Collapse
Affiliation(s)
- Bao-Zhu Yuan
- Laboratory of Cancer Genetics, Toxicology and Molecular Biology Branch, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, USA.
| | | | | | | |
Collapse
|
43
|
Guang W, Wang H, Su T, Weinstein IB, Wang JB. Role of mPKCI, a Novel μ-Opioid Receptor Interactive Protein, in Receptor Desensitization, Phosphorylation, and Morphine-Induced Analgesia. Mol Pharmacol 2004. [DOI: 10.1124/mol.66.5.1285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Abstract
One or more members of the HIT (histidine triad) family of proteins is encoded in the genomes of diverse species, ranging from prokaryotes to humans. However, the precise cellular and biochemical functions of many of these proteins are largely enigmatic. Therefore, the paper by Lee et al. in this issue of Immunity that ascribes a role for the histidine triad protein HINT (also designated HINT1) in regulating the activity of the microphthalmia transcription factor (MITF) is of great interest. Furthermore, this study implicates a role for an exotic endogenous nucleotide Ap4A in this process. This naturally occurring compound consists of two adenosines linked by four phosphate residues, and has been proposed as an intracellular and extracellular signaling molecule.
Collapse
Affiliation(s)
- I Bernard Weinstein
- College of Physicians and Surgeons, Columbia University, 701 West 168th Street, HHSC 1509, New York, NY 10032, USA
| | | |
Collapse
|
45
|
Su T, Suzui M, Wang L, Lin CS, Xing WQ, Weinstein IB. Deletion of histidine triad nucleotide-binding protein 1/PKC-interacting protein in mice enhances cell growth and carcinogenesis. Proc Natl Acad Sci U S A 2003; 100:7824-9. [PMID: 12810953 PMCID: PMC164672 DOI: 10.1073/pnas.1332160100] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PKC-interacting protein (PKCI), also designated histidine triad nucleotide-binding protein 1, belongs to the histidine triad (HIT) family of proteins. Its structure is highly conserved from bacteria to humans and shares homology with the tumor-suppressor gene fragile histidine triad (FHIT). Although it was originally thought to inhibit PKC, its actual physiologic function is not known. Therefore, we used the technique of homologous recombination to generate homozygous deleted PKCI-/- mice. These mice display normal fetal and adult development. However, when mouse embryo fibroblasts were established from 13.5-day embryos and serially passaged the PKCI-/- cells displayed an increase in growth rate and underwent spontaneous immortalization, whereas the PKCI+/+ cells senesced and ceased growing. Furthermore, the PKCI-/- mouse embryo fibroblasts displayed increased resistance to cytotoxicity by ionizing radiation. In view of these findings we examined possible effects of PKCI on susceptibility to carcinogenicity. Both PKCI+/+ and PKCI-/- mice were treated with the chemical carcinogen N-nitrosomethylbenzylamine (NMBA) by intragastric administration and killed 12 weeks later. As expected with this protocol, NMBA induced squamous tumors (both papillomas and carcinomas) of the forestomach. The incidence, multiplicity per mouse, volume, and degree of malignancy of these tumors were significantly greater in the PKCI-/- than in the PKCI+/+ mice. Furthermore, four adenomas and one adenocarcinoma of the glandular stomach were found in the NMBA-treated PKCI-/- mice but no tumors of the glandular stomach were found in the NMBA-treated PKCI+/+ mice or in any of the untreated mice. Taken together, these findings suggest that, like FHIT, PKCI may normally play a tumor-suppressor role. The possible role of PKCI as a tumor suppressor in humans remains to be determined.
Collapse
Affiliation(s)
- Tao Su
- Herbert Irving Comprehensive Cancer Center and Integrated Program in Cellular, Molecular, and Biophysical Studies, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
46
|
Korsisaari N, Rossi DJ, Luukko K, Huebner K, Henkemeyer M, Mäkelä TP. The histidine triad protein Hint is not required for murine development or Cdk7 function. Mol Cell Biol 2003; 23:3929-35. [PMID: 12748294 PMCID: PMC155213 DOI: 10.1128/mcb.23.11.3929-3935.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The histidine triad (HIT) protein Hint has been found to associate with mammalian Cdk7, as well as to interact both physically and genetically with the budding yeast Cdk7 homologue Kin28. To study the function of Hint and to explore its possible role in modulating Cdk7 activity in vivo, we have characterized the expression pattern of murine Hint and generated Hint-deficient (Hint(-/-)) mice. Hint was widely expressed during mouse development, with pronounced expression in several neuronal ganglia, epithelia, hearts, and testes from embryonic day 15 onward. Despite this widespread expression, disruption of Hint did not impair murine development. Moreover, Hint-deficient mice had a normal life span and were apparently healthy. Histological examination of tissues with high Hint expression in wild-type animals did not show signs of abnormal pathology in Hint(-/-) mice. Functional redundancy within the HIT family was addressed by crossing Hint(-/-) mice with mice lacking the related HIT protein, Fhit, and by assaying the expression levels of the HIT protein gene family members Hint2 and Hint3 in Hint(+/+) and Hint(-/-) tissues. Finally, Cdk7 kinase activity and cell cycle kinetics were found to be comparable in wild-type and Hint(-/-) mouse embryonic fibroblasts, suggesting that Hint may not be a key regulator of Cdk7 activity.
Collapse
Affiliation(s)
- Nina Korsisaari
- Haartman Institute and Helsinki University Central Hospital, Biomedicum Helsinki, 00014 University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
47
|
Marionnet C, Lalou C, Mollier K, Chazal M, Delestaing G, Compan D, Verola O, Vilmer C, Cuminet J, Dubertret L, Basset-Séguin N. Differential molecular profiling between skin carcinomas reveals four newly reported genes potentially implicated in squamous cell carcinoma development. Oncogene 2003; 22:3500-5. [PMID: 12776202 DOI: 10.1038/sj.onc.1206571] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are skin tumors with different invasive potential. In this work, we analysed mRNA differential expression between seven BCC and five SCC and their normal skin counterparts using 1176 cDNA macroarrays and verification by RT-PCR to identify genes modulated in each tumor type. We identified 37 genes commonly modulated in both tumors and four genes specifically modulated in SCC. Among these latter RhoC and EMMPRIN genes seem to be of particular interest and could participate in SCC aggressivity.
Collapse
|
48
|
Abstract
Mutation of microphthalmia transcription factor (MITF) results in deafness, bone loss, small eyes, and poorly pigmented eyes and skin. The primary cell types affected in MITF-deficient mice are melanocytes, osteoclasts and mast cells. A search for MITF-associated proteins, using a mast cell library that was screened with a construct that encodes the basic helix-loop-helix leucine zipper (bHLH-Zip) domain of MITF, resulted in the isolation of the protein kinase C interacting (PKCI) protein 1 and protein inhibitor of activated STAT3 (PIAS3). We have accumulated clear evidence of a function for these two proteins as repressors of MITF-induced transcriptional activity. Here, we describe this evidence and ideas that give some insight into the cellular network of interactions between various transcription factors and MITF.
Collapse
Affiliation(s)
- Hovav Nechushtan
- Department of Biochemistry, Hebrew University-Hadassah Medical School, P.O. Box 12272, 91120, Jerusalem, Israel
| | | |
Collapse
|
49
|
Gibert Y, Spada S, Wall JG, Pembroke JT. Cloning and characterisation of the Hint homologue of the thermophile Thermus thermophilus. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2002; 12:179-85. [PMID: 11762193 DOI: 10.3109/10425170109080772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Screening of a genomic library of the thermophile Thermus thermophilus revealed a novel thermophilic hint gene, homologues of which are highly conserved in genera from archaea to mammals. Hint belongs to the HIT protein super-family, which contains two broad groups, Fhit, associated with tumour suppression in eukaryotes and Hint with putatitively protein kinase C inhibitory activity. In T. thermophilus the 321 bp gene has a GC content of 67% overall and 94.4% in the third nucleotide position, with unusually no thymine as a wobble base. The gene product, a small highly conserved 11,996 Da predicted soluble cytoplasmic protein, offers an ideal opportunity to investigate thermostabilising amino acid substitutions. Here we report on the characterisation of the novel hint sequence.
Collapse
Affiliation(s)
- Y Gibert
- Industrial Biochemistry Group, Department of Chemical and Environmental Sciences, University of Limerick, Limerick, Ireland
| | | | | | | |
Collapse
|
50
|
Lemaire R, Prasad J, Kashima T, Gustafson J, Manley JL, Lafyatis R. Stability of a PKCI-1-related mRNA is controlled by the splicing factor ASF/SF2: a novel function for SR proteins. Genes Dev 2002; 16:594-607. [PMID: 11877379 PMCID: PMC155348 DOI: 10.1101/gad.939502] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pre-mRNA splicing is a widely used regulatory mechanism for controlling gene expression, and a family of conserved proteins, SR proteins, participate in both constitutive and alternative splicing. Here we describe a novel function for the SR protein ASF/SF2. We used an embryonic chicken cDNA library to screen for differential mRNA expression in the chicken B-cell line DT40-ASF, expressing or not expressing ASF/SF2. Remarkably, out of 3 x 10(6) clones screened, only one, isolated several times independently, showed ASF/SF2-related differential expression. The isolated cDNA, referred to here as PKCI-r (for PKCI-related), is closely related to the protein kinase C interacting protein (PKCI-1) gene. Transcript levels were increased approximately sixfold in ASF/SF2-depleted cells compared with cells expressing ASF/SF2, indicating a negative role for the SR protein. Strikingly, inhibition of ASF/SF2 expression had no significant effect on PKCI-r splicing, or transcription, but markedly increased the half-life of PKCI-r mRNA (6.6-fold). Similarly, increased mRNA stability was also observed upon expression of exogenous PKCI-r mRNA in cells depleted of ASF/SF2. ASF/SF2 bound to a discrete region containing a purine-rich sequence in the 3' UTR of the PKCI-r transcript, and deletion of this region eliminated ASF/SF2-mediated regulation of transcript stability. Together these data indicate a novel, direct effect of ASF/SF2 on PKCI-r mRNA stability. Therefore, ASF/SF2, and perhaps other SR proteins, affects gene expression in vertebrate cells through regulation of mRNA stability as well as splicing.
Collapse
Affiliation(s)
- Raphael Lemaire
- Boston University School of Medicine, The Arthritis Center, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|