1
|
Sun CC, Lee SY, Kao CH, Chen LH, Shen ZQ, Lai CH, Tzeng TY, Pang JHS, Chiu WT, Tsai TF. Cisd2 plays an essential role in corneal epithelial regeneration. EBioMedicine 2021; 73:103654. [PMID: 34740104 PMCID: PMC8577409 DOI: 10.1016/j.ebiom.2021.103654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/24/2021] [Accepted: 10/14/2021] [Indexed: 02/05/2023] Open
Abstract
Background Age-related changes affecting the ocular surface cause vision loss in the elderly. Cisd2 deficiency drives premature aging in mice as well as resulting in various ocular surface abnormalities. Here we investigate the role of CISD2 in corneal health and disease. Methods We studied the molecular mechanism underlying the ocular phenotypes brought about by Cisd2 deficiency using both Cisd2 knockout (KO) mice and a human corneal epithelial cell (HCEC) cell line carrying a CRISPR-mediated CISD2KO background. We also develop a potential therapeutic strategy that targets the Ca2+ signaling pathway, which has been found to be dysregulated in the corneal epithelium of subjects with ocular surface disease in order to extend the mechanistic findings into a translational application. Findings Firstly, in patients with corneal epithelial disease, CISD2 is down-regulated in their corneal epithelial cells. Secondly, using mouse cornea, Cisd2 deficiency causes a cycle of chronic injury and persistent repair resulting in exhaustion of the limbal progenitor cells. Thirdly, in human corneal epithelial cells, CISD2 deficiency disrupts intracellular Ca2+ homeostasis, impairing mitochondrial function, thereby retarding corneal repair. Fourthly, cyclosporine A and EDTA facilitate corneal epithelial wound healing in Cisd2 knockout mice. Finally, cyclosporine A treatment restores corneal epithelial erosion in patients with dry eye disease, which affects the ocular surface. Interpretation These findings reveal that Cisd2 plays an essential role in the cornea and that Ca2+ signaling pathways are potential targets for developing therapeutics of corneal epithelial diseases. Funding This study was supported by the Ministry of Science and Technology (MOST) and Chang Gung Medical Research Foundation, Taiwan.
Collapse
Affiliation(s)
- Chi-Chin Sun
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan; School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shao-Yun Lee
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Cheng-Heng Kao
- Center of General Education, Chang Gung University, Taoyuan, Taiwan
| | - Li-Hsien Chen
- Department of Pharmacology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Taiwan
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chia-Hui Lai
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Kwei-shan, Taoyuan, Taiwan
| | - Tsai-Yu Tzeng
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jong-Hwei Su Pang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Kwei-shan, Taoyuan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Aging and Health Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
2
|
Lavker RM, Kaplan N, Wang J, Peng H. Corneal epithelial biology: Lessons stemming from old to new. Exp Eye Res 2020; 198:108094. [PMID: 32697979 DOI: 10.1016/j.exer.2020.108094] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
The anterior surface of the eye functions as a barrier to the external environment and protects the delicate underlying tissues from injury. Central to this protection are the corneal, limbal and conjunctival epithelia. The corneal epithelium is a self-renewing stratified squamous epithelium that protects the underlying delicate structures of the eye, supports a tear film and maintains transparency so that light can be transmitted to the interior of the eye (Basu et al., 2014; Cotsarelis et al., 1989; Funderburgh et al., 2016; Lehrer et al., 1998; Pajoohesh-Ganji and Stepp, 2005; Parfitt et al., 2015; Peng et al., 2012b; Stepp and Zieske, 2005). In this review, dedicated to James Funderburgh and his contributions to visual science, in particular the limbal niche, corneal stroma and corneal stromal stem cells, we will focus on recent data on the identification of novel regulators in corneal epithelial cell biology, their roles in stem cell homeostasis, wound healing, limbal/corneal boundary maintenance and the utility of single cell RNA sequencing (scRNA-seq) in vision biology studies.
Collapse
Affiliation(s)
- Robert M Lavker
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Nihal Kaplan
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Junyi Wang
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Ophthalmology, The First Center of the PLA General Hospital, Haidian District, Beijing, China
| | - Han Peng
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Kaplan N, Ventrella R, Peng H, Pal-Ghosh S, Arvanitis C, Rappoport JZ, Mitchell BJ, Stepp MA, Lavker RM, Getsios S. EphA2/Ephrin-A1 Mediate Corneal Epithelial Cell Compartmentalization via ADAM10 Regulation of EGFR Signaling. Invest Ophthalmol Vis Sci 2018; 59:393-406. [PMID: 29351356 PMCID: PMC5774870 DOI: 10.1167/iovs.17-22941] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Progenitor cells of the limbal epithelium reside in a discrete area peripheral to the more differentiated corneal epithelium and maintain tissue homeostasis. What regulates the limbal-corneal epithelial boundary is a major unanswered question. Ephrin-A1 ligand is enriched in the limbal epithelium, whereas EphA2 receptor is concentrated in the corneal epithelium. This reciprocal pattern led us to assess the role of ephrin-A1 and EphA2 in limbal-corneal epithelial boundary organization. Methods EphA2-expressing corneal epithelial cells engineered to express ephrin-A1 were used to study boundary formation in vitro in a manner that mimicked the relative abundance of these juxtamembrane signaling proteins in the limbal and corneal epithelium in vivo. Interaction of these two distinct cell populations following initial seeding into discrete culture compartments was assessed by live cell imaging. Immunofluoresence and immunoblotting was used to evaluate the contribution of downstream growth factor signaling and cell-cell adhesion systems to boundary formation at sites of heterotypic contact between ephrin-A1 and EphA2 expressing cells. Results Ephrin-A1-expressing cells impeded and reversed the migration of EphA2-expressing corneal epithelial cells upon heterotypic contact formation leading to coordinated migration of the two cell populations in the direction of an ephrin-A1-expressing leading front. Genetic silencing and pharmacologic inhibitor studies demonstrated that the ability of ephrin-A1 to direct migration of EphA2-expressing cells depended on an a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and epidermal growth factor receptor (EGFR) signaling pathway that limited E-cadherin-mediated adhesion at heterotypic boundaries. Conclusions Ephrin-A1/EphA2 signaling complexes play a key role in limbal-corneal epithelial compartmentalization and the response of these tissues to injury.
Collapse
Affiliation(s)
- Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, Illinois, United States
| | - Rosa Ventrella
- Department of Dermatology, Northwestern University, Chicago, Illinois, United States
| | - Han Peng
- Department of Dermatology, Northwestern University, Chicago, Illinois, United States
| | - Sonali Pal-Ghosh
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, District of Columbia, United States
| | - Constadina Arvanitis
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, United States
| | - Joshua Z Rappoport
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, United States
| | - Brian J Mitchell
- Department of Cell and Molecular Biology, Northwestern University, Chicago, Illinois, United States
| | - Mary Ann Stepp
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, District of Columbia, United States
| | - Robert M Lavker
- Department of Dermatology, Northwestern University, Chicago, Illinois, United States
| | - Spiro Getsios
- Department of Dermatology, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
4
|
Peng H, Park JK, Katsnelson J, Kaplan N, Yang W, Getsios S, Lavker RM. microRNA-103/107 Family Regulates Multiple Epithelial Stem Cell Characteristics. Stem Cells 2016; 33:1642-56. [PMID: 25639731 DOI: 10.1002/stem.1962] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/14/2015] [Indexed: 12/28/2022]
Abstract
The stem cell niche is thought to affect cell cycle quiescence, proliferative capacity, and communication between stem cells and their neighbors. How these activities are controlled is not completely understood. Here we define a microRNA family (miRs-103/107) preferentially expressed in the stem cell-enriched limbal epithelium that regulates and integrates these stem cell characteristics. miRs-103/107 target the ribosomal kinase p90RSK2, thereby arresting cells in G0/G1 and contributing to a slow-cycling phenotype. Furthermore, miRs-103/107 increase the proliferative capacity of keratinocytes by targeting Wnt3a, which enhances Sox9 and YAP1 levels and thus promotes a stem cell phenotype. This miRNA family also regulates keratinocyte cell-cell communication by targeting: (a) the scaffolding protein NEDD9, preserving E-cadherin-mediated cell adhesion; and (b) the tyrosine phosphatase PTPRM, which negatively regulates connexin 43-based gap junctions. We propose that such regulation of cell communication and adhesion molecules maintains the integrity of the stem cell niche ultimately preserving self-renewal, a hallmark of epithelial stem cells.
Collapse
Affiliation(s)
- Han Peng
- Department of Dermatology, Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
White R, Chenciner N, Bonello G, Salas M, Blancou P, Gauduin MC. Epithelial stem cells as mucosal antigen-delivering cells: A novel AIDS vaccine approach. Vaccine 2013; 33:6914-21. [PMID: 24286835 DOI: 10.1016/j.vaccine.2013.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/12/2013] [Accepted: 09/06/2013] [Indexed: 10/26/2022]
Abstract
A key obstacle limiting development of an effective AIDS vaccine is the inability to deliver antigen for a sufficient period of time resulting in weak and transient protection. HIV transmission occurs predominantly across mucosal surfaces; therefore, an ideal vaccine strategy would be to target HIV at mucosal entry sites to prevent infection. Such a novel strategy relies on the activation of mucosal immune response via presentation of viral antigens by the mucosal epithelial cells. The use of a terminally differentiated epithelial cell promoter to drive expression of antigens leading to viral protein production in the upper layers of the epithelium is central to the success of this approach. Our results show that when administered intradermally to mice, a GFP-reporter gene under the transcriptional control of the involucrin promoter is expressed in the upper layers of the epidermis and, although transduced cells were very low in number, high and sustained anti-GFP antibody production is observed in vivo. A subsequent experiment investigates the effectiveness of GFP-tagged replication-competent SIVdeltaNef and GFP-tagged replication-deficient SIVdeltaVifdeltaNef constructs under the transcriptional control of the involucrin promoter. Optimal conditions for production of pseudotyped VSV-G viral particles destined to transduce basal epithelial stem cells at the mucosal sites of entry of SIV in our animal model were determined. Altogether, the data demonstrate the feasibility of an epithelium-based vaccine containing involucrin-driven viral antigen encoding sequences that integrate into epithelial stem cells and show long-term expression in the upper layer of the epithelium even after multiple cycle of epithelia renewal. Such epithelium-based vaccine should elicit a long-term immunity against HIV/SIV infection at the site of entry of the virus.
Collapse
Affiliation(s)
- Robert White
- Texas Biomedical Research Institute, Department of Virology and Immunology, San Antonio, TX 78227, USA
| | - Nicole Chenciner
- Institut Pasteur, Unité de Rétrovirologie Moléculaire, CNRS URA 3015, 75724 Paris Cedex 15, France
| | - Gregory Bonello
- Texas Biomedical Research Institute, Department of Virology and Immunology, San Antonio, TX 78227, USA
| | - Mary Salas
- Texas Biomedical Research Institute, Department of Virology and Immunology, San Antonio, TX 78227, USA
| | - Philippe Blancou
- Institut National de la Santé et de la Recherche Médicale, University of Nice-Sophia Antipolis, Valbonne, France
| | - Marie-Claire Gauduin
- Texas Biomedical Research Institute, Department of Virology and Immunology, San Antonio, TX 78227, USA; Southwest National Primate Research Center, San Antonio, TX 78227, USA.
| |
Collapse
|
6
|
Zhang J, Webb SE, Ma LH, Chan CM, Miller AL. Necessary role for intracellular Ca2+ transients in initiating the apical-basolateral thinning of enveloping layer cells during the early blastula period of zebrafish development. Dev Growth Differ 2011; 53:679-96. [PMID: 21671916 DOI: 10.1111/j.1440-169x.2011.01275.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During the early blastula period of zebrafish embryos, the outermost blastomeres begin to undergo a significant thinning in the apical/basolateral dimension to form the first distinct cellular domain of the embryo, the enveloping layer (EVL). During this shape transformation, only the EVL-precursor cells generate a coincidental series of highly restricted Ca(2+) transients. To investigate the role of these localized Ca(2+) transients in this shape-change process, embryos were treated with a Ca(2+) chelator (5,5'-difluoro BAPTA AM; DFB), or the Ca(2+) ionophore (A23187), to downregulate and upregulate the transients, respectively, while the shape-change of the forming EVL cells was measured. DFB was shown to significantly slow, and A23187 to significantly facilitate the shape change of the forming EVL cells. In addition, to investigate the possible involvement of the phosphoinositide and Wnt/Ca(2+) signaling pathways in the Ca(2+) transient generation and/or shape-change processes, embryos were treated with antagonists (thapsigargin, 2-APB and U73122) or an agonist (Wnt-5A) of these pathways. Wnt-5A upregulated the EVL-restricted Ca(2+) transients and facilitated the change in shape of the EVL cells, while 2-APB downregulated the Ca(2+) transients and significantly slowed the cell shape-change process. Furthermore, thapsigargin and U73122 also both inhibited the EVL cell shape-change. We hypothesize, therefore, that the highly localized and coincidental Ca(2+) transients play a necessary role in initiating the shape-change of the EVL cells.
Collapse
Affiliation(s)
- Jiao Zhang
- Division of Life Science, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | |
Collapse
|
7
|
Zhao B, Ma A, Martin FL, Fullwood NJ. An investigation into corneal alkali burns using an organ culture model. Cornea 2009; 28:541-6. [PMID: 19421042 DOI: 10.1097/ico.0b013e3181901e08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To evaluate the usefulness of an in vitro corneal organ culture system for studying severe alkali burns. METHODS Fresh bovine cornea was cultured using an established organ culture system. Two molar sodium hydroxide was applied to the corneal and limbal epithelia for 60 seconds. Gross and ultrastructural changes were evaluated at different time points over a 1-week period. RESULTS The condition of the alkali-burned cornea deteriorated in a time-dependent manner over the 1-week period. Gross changes were evident immediately, and ultrastructural changes were detected in the epithelium, stroma, and endothelium at 1 hour after the alkali burn. By 7 days, most of the corneal and limbal epithelia were destroyed. The corneal stroma was disrupted with separation of lamella and fragmentation of collagen fibrils. By day 7, the endothelium was reduced to cellular debris, although Descemet membrane remained intact. CONCLUSIONS The changes observed in the in vitro organ culture model in response to a severe alkali burn are similar to those observed by other groups in clinical and in vivo studies. We believe that this or similar organ culture systems could be used to evaluate some aspects of severe alkali burns.
Collapse
Affiliation(s)
- Bojun Zhao
- Department of Biological Sciences, Biomedical Sciences, Lancaster University, Lancaster, United Kingdom
| | | | | | | |
Collapse
|
8
|
Huang CC, Huang CJ, Cheng JS, Liu SI, Chen IS, Tsai JY, Chou CT, Lin MC, Jan CR. Effect of clomiphene on [Ca2+]irises and cell viability in rabbit corneal epithelial cells. Drug Dev Res 2008. [DOI: 10.1002/ddr.20253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Radoja N, Gazel A, Banno T, Yano S, Blumenberg M. Transcriptional profiling of epidermal differentiation. Physiol Genomics 2006; 27:65-78. [PMID: 16822832 DOI: 10.1152/physiolgenomics.00031.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In epidermal differentiation basal keratinocytes detach from the basement membrane, stop proliferating, and express a new set of structural proteins and enzymes, which results in an impermeable protein/lipid barrier that protects us. To define the transcriptional changes essential for this process, we purified large quantities of basal and suprabasal cells from human epidermis, using the expression of beta4 integrin as the discriminating factor. The expected expression differences in cytoskeletal, cell cycle, and adhesion genes confirmed the effective separation of the cell populations. Using DNA microarray chips, we comprehensively identify the differences in genes expressed in basal and differentiating layers of the epidermis, including the ECM components produced by the basal cells, the proteases in both the basal and suprabasal cells, and the lipid and steroid metabolism enzymes in suprabasal cells responsible for the permeability barrier. We identified the signaling pathways specific for the two populations and found two previously unknown paracrine and one juxtacrine signaling pathway operating between the basal and suprabasal cells. Furthermore, using specific expression signatures, we identified a new set of late differentiation markers and mapped their chromosomal loci, as well as a new set of melanocyte-specific markers. The data represent a quantum jump in understanding the mechanisms of epidermal differentiation.
Collapse
Affiliation(s)
- Nada Radoja
- Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | |
Collapse
|
10
|
Zhou M, Li XM, Lavker RM. Transcriptional profiling of enriched populations of stem cells versus transient amplifying cells. A comparison of limbal and corneal epithelial basal cells. J Biol Chem 2006; 281:19600-9. [PMID: 16675456 DOI: 10.1074/jbc.m600777200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basal layer of limbal and central corneal epithelium is enriched in stem cells and transient amplifying cells, respectively. This physical separation of stem and transient amplifying cells makes the limbal/corneal epithelium an exceptionally suitable system for isolating basal cells enriched in these two proliferative populations. Prior attempts to isolate epithelial stem cells used methods such as proteolytic tissue dissociation and cell sorting that could potentially alter their gene expression profile. Using laser capture microdissection, we were able to isolate resting limbal and corneal basal cells from frozen sections with minimal tissue processing, thereby improving the yield and quality of RNA. Analyses of RNA isolated from 300 limbal and corneal basal cells from eight mice revealed a set of approximately 100 genes that are differentially expressed in limbal cells versus corneal epithelial basal cells. Semiquantitative reverse transcription-PCR confirmed the up-regulation of three limbal and three corneal genes. LacZ identification of epiregulin from epiregulin-null mice and immunohistochemical staining of wild type mice confirmed that epiregulin, one of the limbal epithelium-enriched genes, was associated with the limbal epithelial basal cells. Within the limbal and corneal basal cells, we detected previously unknown genes that were differentially expressed in these two regions that contribute further to our understanding of the unique heterogeneity of these two closely related basal cell populations. Our findings indicate that we can obtain accurate gene expression profiles of the stem cell-enriched limbal basal cell population in their "natural" quiescent state.
Collapse
Affiliation(s)
- Mingyuan Zhou
- Department of Dermatology, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
11
|
Sun L, Ryan DG, Zhou M, Sun TT, Lavker RM. EEDA: a protein associated with an early stage of stratified epithelial differentiation. J Cell Physiol 2006; 206:103-11. [PMID: 15920738 PMCID: PMC1523255 DOI: 10.1002/jcp.20433] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Using suppressive subtractive hybridization, we have identified a novel gene, which we named early epithelial differentiation associated (EEDA), which is uniquely associated with an early stage of stratified epithelial differentiation. In epidermis, esophageal epithelium, and tongue epithelium, EEDA mRNA, and antigen was abundant in suprabasal cells, but was barely detectable in more differentiated cells. Consistent with the limbal location of corneal epithelial stem cells, EEDA was expressed in basal corneal epithelial cells that are out of the stem cell compartment, as well as the suprabasal corneal epithelial cells. The strongest EEDA expression occurred in suprabasal precortical cells of mouse, bovine, and human anagen follicles. Developmental studies showed that the appearance of EEDA in embryonic mouse epidermis (E 15.5) coincided with morphological keratinization. Interestingly, EEDA expression is turned off when epithelia were perturbed by wounding and by cultivation under both low and high Ca2+ conditions. Our results indicate that EEDA is involved in the early stages of normal epithelial differentiation, and that EEDA is important for the "normal" differentiation pathway in a wide range of stratified epithelia.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
12
|
Birger Y, Davis J, Furusawa T, Rand E, Piatigorsky J, Bustin M. A role for chromosomal protein HMGN1 in corneal maturation. Differentiation 2006; 74:19-29. [PMID: 16466397 PMCID: PMC3730489 DOI: 10.1111/j.1432-0436.2006.00054.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Corneal differentiation and maturation are associated with major changes in the expression levels of numerous genes, including those coding for the chromatin-binding high-mobility group (HMG) proteins. Here we report that HMGN1, a nucleosome-binding protein that alters the structure and activity of chromatin, affects the development of the corneal epithelium in mice. The corneal epithelium of Hmgn1(-/-) mice is thin, has a reduced number of cells, is poorly stratified, is depleted of suprabasal wing cells, and its most superficial cell layer blisters. In mature Hmgn1(-/-)mice, the basal cells retain the ovoid shape of immature cells, and rest directly on the basal membrane which is disorganized. Gene expression was modified in Hmgn1(-/-) corneas: glutathione-S-transferase (GST)alpha 4 and GST omega 1, epithelial layer-specific markers, were selectively reduced while E-cadherin and alpha-, beta-, and gamma-catenin, components of adherens junctions, were increased. Immunofluorescence analysis reveals a complete co-localization of HMGN1 and p 63 in small clusters of basal corneal epithelial cells of wild-type mice, and an absence of p 63 expressing cells in the central region of the Hmgn1(-/-) cornea. We suggest that interaction of HMGN1 with chromatin modulates the fidelity of gene expression and affects corneal development and maturation.
Collapse
Affiliation(s)
- Yehudit Birger
- Protein Section, Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892, USA, Tel: +1-301-496-5234
| | - Janine Davis
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA, Tel: +1-301-402-4343
| | - Takashi Furusawa
- Protein Section, Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892, USA, Tel: +1-301-496-5234
| | - Eyal Rand
- Protein Section, Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892, USA, Tel: +1-301-496-5234
| | - Joram Piatigorsky
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA, Tel: +1-301-402-4343
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892, USA, Tel: +1-301-496-5234
| |
Collapse
|
13
|
Nachat R, Méchin MC, Charveron M, Serre G, Constans J, Simon M. Peptidylarginine deiminase isoforms are differentially expressed in the anagen hair follicles and other human skin appendages. J Invest Dermatol 2005; 125:34-41. [PMID: 15982300 DOI: 10.1111/j.0022-202x.2005.23763.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptidylarginine deiminases (PAD) catalyze the conversion of arginine residues to citrullines. Five isoforms are known that present distinct tissue locations. In the epidermis, like in the skin, only PAD1, 2, and 3 are expressed. Their pattern of expression in skin appendages is not known. Here, confocal microscopy analysis using highly specific antibodies demonstrated that PAD1 and 3 are expressed in human anagen hair follicles, PAD1 and 2, in arrector pili muscles and sweat glands, whereas no PAD were detected in sebaceous glands. PAD1 was detected in the cuticle and the Huxley layer of the inner root sheath (IRS), and in the companion layer. PAD3 was localized in the medulla, and in the three layers of the IRS. Using anti-modified citrulline antibodies, we also showed that deiminated proteins appeared in the lower part of the IRS, first in the Henle layer, then in the cuticle, and finally in the Huxley layer. Our data demonstrate that PAD3 is the enzyme that deiminates trichohyalin in the medulla and the Henle layer, indicate that PAD1 and 3 are involved in the hair follicle program of differentiation, and suggest a role for PAD1 and 2 in the physiology of sweat glands and arrector pili muscles.
Collapse
Affiliation(s)
- Rachida Nachat
- CNRS-University of Toulouse III UMR 5165 Epidermis differentiation and rheumatoid autoimmunity, Institut Fédératif de Recherche 30 (INSERM; CNRS; Centre Hospitalier Universitaire de Toulouse; Université Paul Sabatier), Toulouse Cedex, France
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
Corneal epithelium is a self-renewing tissue. Recent studies indicate that corneal epithelial stem cells reside preferentially in the basal layer of peripheral cornea in the limbal zone, rather than uniformly in the entire corneal epithelium. This idea is supported by a unique limbal/corneal expression pattern of the K3 keratin marker for corneal-type differentiation; the preferential distribution of the slow-cycling (label-retaining) cells in the limbus; the superior proliferative capacity of limbal cells as compared with central corneal epithelial cells in vitro and in vivo; and the ability of limbal basal cells to rescue/reconstitute severely damaged or completely depleted corneal epithelium upon transplantation. The limbal/stem cell concept provides explanations for several paradoxical properties of corneal epithelium including the predominance of tumor formation in the limbal zone, the centripetal migration of peripheral corneal cells toward the central cornea, and the "mature-looking" phenotype of the corneal basal cells. The limbal stem cell concept has led to a better understanding of the strategies that a stratified squamous epithelium uses in repair, to a new classification of various anterior surface epithelial diseases, to a repudiation of the classical idea of "conjunctival transdifferentiation", and to a new surgical procedure called limbal stem cell transplantation.
Collapse
Affiliation(s)
- Tung-Tien Sun
- Epithelial Biology Unit, Departments of Dermatology, Pharmacology and Urology, NYU Cancer Institute, New York University School of Medicine, New York, New York, USA
| | | |
Collapse
|
15
|
Lavker RM, Tseng SCG, Sun TT. Corneal epithelial stem cells at the limbus: looking at some old problems from a new angle. Exp Eye Res 2004; 78:433-46. [PMID: 15106923 DOI: 10.1016/j.exer.2003.09.008] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Corneal epithelium is traditionally thought to be a self-sufficient, self-renewing tissue implying that its stem cells are located in its basal cell layer. Recent studies indicate however that corneal epithelial stem cells reside in the basal layer of peripheral cornea in the limbal zone, and that corneal and conjunctival epithelia represent distinct cell lineages. These ideas are supported by the unique limbal/corneal expression pattern of the K3 keratin marker for corneal-type differentiation; the restriction of the slow-cycling (label-retaining) cells in the limbus; the distinct keratin expression patterns of corneal and conjunctival epithelial cells even when they are provided with identical in vivo and in vitro growth environments; and the limbal cells' superior ability as compared with central corneal epithelial cells in undergoing in vitro proliferation and in reconstituting in vivo an intact corneal epithelium. The realization that corneal epithelial stem cells reside in the limbal zone provides explanations for several paradoxical properties of corneal epithelium including its 'mature-looking' basal cells, the preponderance of tumor formation in the limbal zone, and the centripetal cellular migration. The limbal stem cell concept has led to a better understanding of the strategies of corneal epithelial repair, to a new classification of various anterior surface epithelial diseases, to the use of limbal stem cells for the reconstruction of corneal epithelium damaged or lost as a consequence of trauma or disease ('limbal stem cell transplantation'), and to the rejection of the traditional notion of 'conjunctival transdifferentiation'. The fact that corneal epithelial stem cells reside outside of the cornea proper suggests that studying corneal epithelium per se without taking into account its limbal zone will yield partial pictures. Future studies need to address the signals that constitute the limbal stem cell niche, the mechanism by which amniotic membrane facilitates limbal stem cell transplantation and ex vivo expansion, and the lineage flexibility of limbal stem cells.
Collapse
Affiliation(s)
- Robert M Lavker
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
16
|
Abstract
Ocular surface reconstruction (OSR) is now a standard procedure in the treatment of severe ocular surface disorders. The past few years have revealed the long-term results of patients who were operated on during the early stages of OSR development, and we now have a more realistic view of the benefits and limits of the procedure. On the other hand, further understanding of the physiologic role played by the amniotic membrane (AM) has opened doors to further refined techniques in treating these patients. This review will introduce some of the major contributions made during the past years in the advancement of OSR. Clinically, we are at a stage of reviewing the pros and cons of the various transplantation techniques. Identification of factors crucial for a successful OSR procedure will further improve surgical results. Basic researchers are on the verge of identifying the so-called limbal stem cells, and further understanding of AM physiology will lead the way to tissue engineering techniques as another alternative in OSR surgery.
Collapse
Affiliation(s)
- Shigeto Shimmura
- Department of Ophthalmology, Tokyo Dental College, Tokyo, Japan.
| | | |
Collapse
|
17
|
Mirghomizadeh F, Pfister M, Apaydin F, Petit C, Kupka S, Pusch CM, Zenner HP, Blin N. Substitutions in the conserved C2C domain of otoferlin cause DFNB9, a form of nonsyndromic autosomal recessive deafness. Neurobiol Dis 2002; 10:157-64. [PMID: 12127154 DOI: 10.1006/nbdi.2002.0488] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DFNB, the nonsyndromic hearing loss with an autosomal recessive mode of inheritance constitutes the majority of severe to profound prelingual forms of hearing impairment, usually leading to inability of speech acquisition. We analyzed a consanguineous family with autosomal recessive deafness which has been shown to segregate within chromosomal region 2p23.1 (DFNB9; MIM 601071). By SSCP analysis and DNA sequencing of the 48 exons of the DFNB9 gene, coding for otoferlin, previously reported mutations in OTOF were excluded. Next to a frequent T > C single nucleotide polymorphism in exon 8, two novel mutations linked in exon 15 of the OTOF long splice form were identified comprising substitutions at positions 490 (Pro > Gln) and 515 (Ile > Thr), both located in the conserved Ca(2+) binding C2C domain of this peptide. Comparisons of homology using human and mice otoferlins and closely related peptides and computer simulation analyses suggest that changes in the mutated segment's secondary structure affect the Ca(2+) binding capacity of the C2C domain in otoferlin.
Collapse
Affiliation(s)
- F Mirghomizadeh
- Department of Otolaryngology, UKT, D72074, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Schmidt M, Gillitzer R, Toksoy A, Bröcker EB, Rapp UR, Paus R, Roth J, Ludwig S, Goebeler M. Selective expression of calcium-binding proteins S100a8 and S100a9 at distinct sites of hair follicles. J Invest Dermatol 2001; 117:748-50. [PMID: 11564187 DOI: 10.1046/j.0022-202x.2001.01485.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|