1
|
Yu S, Chen C, Chen M, Liang J, Jiang K, Lou B, Lu J, Zhu X, Zhou D. MAGOH promotes gastric cancer progression via hnRNPA1 expression inhibition-mediated RONΔ160/PI3K/AKT signaling pathway activation. J Exp Clin Cancer Res 2024; 43:32. [PMID: 38268030 PMCID: PMC10809607 DOI: 10.1186/s13046-024-02946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is associated with high mortality and heterogeneity and poses a great threat to humans. Gene therapies for the receptor tyrosine kinase RON and its spliceosomes are attracting increasing amounts of attention due to their unique characteristics. However, little is known about the mechanism involved in the formation of the RON mRNA alternative spliceosome RONΔ160. METHODS Fourteen human GC tissue samples and six normal gastric tissue samples were subjected to label-free relative quantitative proteomics analysis, and MAGOH was identified as a candidate protein for subsequent studies. The expression of MAGOH in clinical specimens was verified by quantitative real-time PCR and western blotting. We then determined the biological function of MAGOH in GC through in vitro and in vivo experiments. RNA pulldown, RNA sequencing and RNA immunoprecipitation (RIP) were subsequently conducted to uncover the underlying mechanism by which MAGOH regulated the formation of RONΔ160. RESULTS Proteomic analysis revealed that MAGOH, which is located at key nodes and participates in RNA processing and mRNA splicing, was upregulated in GC tissue and GC cell lines and was associated with poor prognosis. Functional analysis showed that MAGOH promoted the proliferation, migration and invasion of GC cells in vitro and in vivo. Mechanistically, MAGOH inhibited the expression of hnRNPA1 and reduced the binding of hnRNPA1 to RON mRNA, thereby promoting the formation of RONΔ160 to activate the PI3K/AKT signaling pathway and consequently facilitating GC progression. CONCLUSIONS Our study revealed that MAGOH could promote the formation of RONΔ160 and activate the PI3K/AKT signaling pathway through the inhibition of hnRNPA1 expression. We elucidate a novel mechanism and potential therapeutic targets for the growth and metastasis of GC based on the MAGOH-RONΔ160 axis, and these findings have important guiding significance and clinical value for the future development of effective therapeutic strategies for GC.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxiao Liang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kecheng Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Lou
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohua Zhu
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Kim J, Koh DI, Lee M, Park YS, Hong SW, Shin JS, Lee MS, Kim MH, Lee JH, Jeong J, Bae S, Hong JK, Jeong HR, Ryu YS, Kim SM, Choi M, Kim H, Ryu H, Hur SC, Park J, Hur DY, Jin DH. Targeting isoforms of RON kinase (MST1R) drives antitumor efficacy. Cell Death Differ 2023; 30:2491-2507. [PMID: 37926711 PMCID: PMC10733321 DOI: 10.1038/s41418-023-01235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Recepteur d'origine nantais (RON, MST1R) is a single-span transmembrane receptor tyrosine kinase (RTK) aberrantly expressed in numerous cancers, including various solid tumors. How naturally occurring splicing isoforms of RON, especially those which are constitutively activated, affect tumorigenesis and therapeutic response, is largely unknown. Here, we identified that presence of activated RON could be a possible factor for the development of resistance against anti-EGFR (cetuximab) therapy in colorectal cancer patient tissues. Also, we elucidated the roles of three splicing variants of RON, RON Δ155, Δ160, and Δ165 as tumor drivers in cancer cell lines. Subsequently, we designed an inhibitor of RON, WM-S1-030, to suppress phosphorylation thereby inhibiting the activation of the three RON variants as well as the wild type. Specifically, WM-S1-030 treatment led to potent regression of tumor growth in solid tumors expressing the RON variants Δ155, Δ160, and Δ165. Two mechanisms for the RON oncogenic activity depending on KRAS genotype was evaluated in our study which include activation of EGFR and Src, in a trimeric complex, and stabilization of the beta-catenin. In terms of the immunotherapy, WM-S1-030 elicited notable antitumor immunity in anti-PD-1 resistant cell derived mouse model, likely via repression of M1/M2 polarization of macrophages. These findings suggest that WM-S1-030 could be developed as a new treatment option for cancer patients expressing these three RON variants.
Collapse
Affiliation(s)
- Joseph Kim
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-In Koh
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Minki Lee
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Yoon Sun Park
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Pharmacology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Jae-Sik Shin
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Mi So Lee
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Min-Hwa Kim
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | | | | | | | - Jun Ki Hong
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | | | - Yea Seong Ryu
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-Mi Kim
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Mingee Choi
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Hyojin Kim
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Hyun Ryu
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Sun-Chul Hur
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Junho Park
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea
| | - Dae Young Hur
- Department of Anatomy and Tumor Immunology, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong-Hoon Jin
- Wellmarkerbio Co., Ltd., Seoul, Republic of Korea.
- Department of Convergence Medicine, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea.
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
The Promoter Region of the Proto-Oncogene MST1R Contains the Main Features of G-Quadruplexes Formation. Int J Mol Sci 2022; 23:ijms232112905. [PMID: 36361696 PMCID: PMC9653784 DOI: 10.3390/ijms232112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/26/2022] Open
Abstract
MST1R (RON) is a receptor of the MET tyrosine kinase receptor family involved in several cancers such as pancreas, breast, ovary, colon, and stomach. Some studies have shown that overexpression of MST1R increases the migratory and invasive properties of cancer cells. The promoter region of the oncogene MST1R is enriched in guanine residues that can potentially form G-quadruplexes (G4s), as it was observed in other oncogenic promoters such as KRAS and c-MYC. There is abundant literature that links the presence of G4s in promoter regions of oncogenes to diverse gene regulation processes that are not well understood. In this work, we have studied the reverse and forward sequence of MST1R promoter region using the G4Hunter software and performed biophysical studies to characterize the best scored sequences.
Collapse
|
4
|
Cazes A, Childers BG, Esparza E, Lowy AM. The MST1R/RON Tyrosine Kinase in Cancer: Oncogenic Functions and Therapeutic Strategies. Cancers (Basel) 2022; 14:cancers14082037. [PMID: 35454943 PMCID: PMC9027306 DOI: 10.3390/cancers14082037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary MST1R/RON receptor tyrosine kinase is a highly conserved transmembrane protein present on epithelial cells, macrophages, and recently identified in a T-cell subset. RON activation attenuates inflammation in healthy tissue. Interestingly, it is overexpressed in several epithelial neoplasms with increasing levels of expression associated with worse outcomes. Though the mechanisms involved are still under investigation, RON is involved in carcinogenesis via immune modulation of the immune tumor microenvironment, activation of numerous oncogenic pathways, and is protective under cellular stress. Alternatively, inhibition of RON abrogates tumor progression in both animal and human tissue models. Given this, RON is a targetable protein of great interest for cancer treatment. Here, we review RON’s function in tissue inflammation and cancer progression, and review cancer clinical trials to date that have used agents targeting RON signaling. Abstract The MST1R/RON receptor tyrosine kinase is a homologue of the more well-known MET receptor. Like MET, RON orchestrates cell signaling pathways that promote oncogenesis and enable cancer cell survival; however, it has a more unique role in the regulation of inflammation. RON was originally described as a transmembrane receptor expressed on tissue resident macrophages and various epithelial cells. RON is overexpressed in a variety of cancers and its activation modifies multiple signaling pathways with resultant changes in epithelial and immune cells which together modulate oncogenic phenotypes. While several RON isoforms have been identified with differences in structure, activation, and pathway regulation, increased RON expression and/or activation is consistently associated with worse outcomes. Tyrosine kinase inhibitors targeting RON have been developed, making RON an actionable therapeutic target.
Collapse
|
5
|
Franco Nitta C, Green EW, Jhamba ED, Keth JM, Ortiz-Caraveo I, Grattan RM, Schodt DJ, Gibson AC, Rajput A, Lidke KA, Wilson BS, Steinkamp MP, Lidke DS. EGFR transactivates RON to drive oncogenic crosstalk. eLife 2021; 10:63678. [PMID: 34821550 PMCID: PMC8654365 DOI: 10.7554/elife.63678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/24/2021] [Indexed: 12/22/2022] Open
Abstract
Crosstalk between different receptor tyrosine kinases (RTKs) is thought to drive oncogenic signaling and allow therapeutic escape. EGFR and RON are two such RTKs from different subfamilies, which engage in crosstalk through unknown mechanisms. We combined high-resolution imaging with biochemical and mutational studies to ask how EGFR and RON communicate. EGF stimulation promotes EGFR-dependent phosphorylation of RON, but ligand stimulation of RON does not trigger EGFR phosphorylation – arguing that crosstalk is unidirectional. Nanoscale imaging reveals association of EGFR and RON in common plasma membrane microdomains. Two-color single particle tracking captured formation of complexes between RON and EGF-bound EGFR. Our results further show that RON is a substrate for EGFR kinase, and that transactivation of RON requires formation of a signaling competent EGFR dimer. These results support a role for direct EGFR/RON interactions in propagating crosstalk, such that EGF-stimulated EGFR phosphorylates RON to activate RON-directed signaling.
Collapse
Affiliation(s)
| | - Ellen W Green
- Department of Pathology, University of New Mexico, Albuquerque, United States
| | - Elton D Jhamba
- Department of Pathology, University of New Mexico, Albuquerque, United States
| | - Justine M Keth
- Department of Pathology, University of New Mexico, Albuquerque, United States
| | - Iraís Ortiz-Caraveo
- Department of Pathology, University of New Mexico, Albuquerque, United States
| | - Rachel M Grattan
- Department of Pathology, University of New Mexico, Albuquerque, United States
| | - David J Schodt
- Department of Physics & Astronomy, University of New Mexico, Albuquerque, United States
| | - Aubrey C Gibson
- Department of Pathology, University of New Mexico, Albuquerque, United States
| | - Ashwani Rajput
- Department of Surgery, University of New Mexico, Albuquerque, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, United States
| | - Keith A Lidke
- Department of Physics & Astronomy, University of New Mexico, Albuquerque, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, United States
| | - Bridget S Wilson
- Department of Pathology, University of New Mexico, Albuquerque, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, United States
| | - Mara P Steinkamp
- Department of Pathology, University of New Mexico, Albuquerque, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, United States
| | - Diane S Lidke
- Department of Pathology, University of New Mexico, Albuquerque, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, United States
| |
Collapse
|
6
|
CCL20 induces colorectal cancer neoplastic epithelial cell proliferation, migration, and further CCL20 production through autocrine HGF-c-Met and MSP-MSPR signaling pathways. Oncotarget 2021; 12:2323-2337. [PMID: 34853656 PMCID: PMC8629403 DOI: 10.18632/oncotarget.28131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
CCL20-CCR6 interactions promote colorectal cancer through direct effects on neoplastic epithelial cells and through modulating the tumor microenvironment. The mechanism of these effects on neoplastic epithelial cells is poorly understood. This study demonstrates that CCL20 induces secretion of hepatocyte growth factor (HGF) and phosphorylation of HGF’s cognate receptor c-Met in HT29 and HCT116 colorectal cancer cell lines both in concentration- and time-dependent manners. Similar to CCL20, HGF induces migration, autofeedback CCL20 secretion, and ERK1/2 phosphorylation in the colon cancer cells. CCL20-dependent ERK1/2 phosphorylation is blocked by HGF inhibition, and CCL20-dependent migration and CCL20 secretion are blocked by inhibition of HGF or ERK. Interestingly, unlike CCL20, HGF does not induce proliferation of colon cancer cells, and CCL20-dependent cell proliferation is not blocked by direct HGF inhibition. CCL20-dependent proliferation, however, is blocked by the multi-tyrosine kinase inhibitor crizotinib. Exploring this effect, it was found that CCL20 also induces production of MSP and phosphorylation of MSP’s receptor MSPR by the colorectal cancer cells. CCL20-dependent cell proliferation is inhibited by directly blocking MSP-MSPR interactions. Thus, CCL20-mediated migration and CCL20 secretion are regulated through a pathway involving HGF, c-Met, and ERK, while CCL20-mediated proliferation is instead regulated through MSP and its receptor MSPR.
Collapse
|
7
|
Li C, Morvaridi S, Lam G, Chheda C, Kamata Y, Katsumata M, Edderkaoui M, Yuan X, Nissen N, Pandol SJ, Wang Q. MSP-RON Signaling Is Activated in the Transition From Pancreatic Intraepithelial Neoplasia (PanIN) to Pancreatic Ductal Adenocarcinoma (PDAC). Front Physiol 2019; 10:147. [PMID: 30863319 PMCID: PMC6399467 DOI: 10.3389/fphys.2019.00147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest epithelial malignancies and remains difficult to treat. Pancreatic intraepithelial neoplasias (PanINs) represent the majority of the pre-cancer lesions in the pancreas. The PDAC microenvironment consists of activated pancreatic stellate cells (PSCs) and immune cells, which are thought to contribute to neoplastic transformation. However, the signaling events involved in driving the transition from the neoplastic precursor to the more advanced and aggressive forms in the pancreas are not well understood. Recepteur d’Origine Nantais (RON) is a c-MET family receptor tyrosine kinase that is implicated in playing a role in cell proliferation, migration and other aspects of tumorigenesis. Macrophage stimulating protein (MSP) is the ligand for RON and becomes activated upon proteolytic cleavage by matriptase (also known as ST14), a type II transmembrane serine protease. In the current study, by immunohistochemistry (IHC) analysis of human pancreatic tissues, we found that the expression levels MSP and matriptase are drastically increased during the transition from the preneoplastic PanIN stages to the more advanced and aggressive PDAC. Moreover, RON is highly expressed in both PDAC and in cancer-associated stellate cells. In contrast, MSP, RON, and matriptase are expressed at low levels, if any, in normal pancreas. Our study underscores an emerging role of MSP-RON autocrine and paracrine signaling events in driving malignant progression in the pancreas.
Collapse
Affiliation(s)
- Ce Li
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Susan Morvaridi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Gloria Lam
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Chintan Chheda
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yoshiko Kamata
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Makoto Katsumata
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Xiaopu Yuan
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nicholas Nissen
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Qiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
8
|
Ling Y, Kuang Y, Chen LL, Lao WF, Zhu YR, Wang LQ, Wang D. A novel RON splice variant lacking exon 2 activates the PI3K/AKT pathway via PTEN phosphorylation in colorectal carcinoma cells. Oncotarget 2018; 8:39101-39116. [PMID: 28388571 PMCID: PMC5503598 DOI: 10.18632/oncotarget.16603] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 11/25/2022] Open
Abstract
Abnormal expression of the Recepteur d'Origine Nantais (RON) receptor tyrosine kinase is accompanied by the generation of multiple splice or truncated variants, which mediate many critical cellular functions that contribute to tumor progression and metastasis. Here, we report a new RON splice variant in the human colorectal cancer (CRC) cell line HT29. This variant is a 165 kda protein generated by alternative pre-mRNA splicing that eliminates exon 2, causing an in-frame deletion of 63 amino acids in the extracellular domain of the RON β chain. The deleted transcript was a single chain expressed in the intracellular compartment. Although it lacked tyrosine phosphorylation activity, the RONΔ165E2 variant could phosphorylate phosphatase and tensin homolog (PTEN), thereby activating the PI3K/AKT pathway. In addition, in vitro and in vivo experiments showed that the RONΔ165E2 promoted cell migration and tumor growth. Finally, in an investigation of 67 clinical CRC samples, the variant was highly expressed in about 58% of the samples, and was positively correlated with the invasive depth of the tumor (P < 0.05). These results demonstrate that the novel RONΔ165E2 variant promoted tumor progression while activating the PI3K/AKT pathway via PTEN phosphorylation.
Collapse
Affiliation(s)
- Yu Ling
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Yeye Kuang
- Biomedical Center, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lin-Lin Chen
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Wei-Feng Lao
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Yao-Ru Zhu
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Le-Qi Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Da Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| |
Collapse
|
9
|
Zarei O, Benvenuti S, Ustun-Alkan F, Hamzeh-Mivehroud M, Dastmalchi S. Identification of a RON tyrosine kinase receptor binding peptide using phage display technique and computational modeling of its binding mode. J Mol Model 2017; 23:267. [DOI: 10.1007/s00894-017-3437-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/01/2017] [Indexed: 12/18/2022]
|
10
|
LoRusso PM, Gounder M, Jalal SI, André V, Kambhampati SRP, Loizos N, Hall J, Holzer TR, Nasir A, Cosaert J, Kauh J, Chiorean EG. Phase 1 study of narnatumab, an anti-RON receptor monoclonal antibody, in patients with advanced solid tumors. Invest New Drugs 2017; 35:442-450. [PMID: 28161886 DOI: 10.1007/s10637-016-0413-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/22/2016] [Indexed: 01/21/2023]
Abstract
Purpose Macrophage-stimulating 1-receptor (RON) is expressed on macrophages, epithelial cells, and a variety of tumors. Narnatumab (IMC-RON8; LY3012219) is a neutralizing monoclonal antibody that blocks RON binding to its ligand, macrophage-stimulating protein (MSP). This study assessed safety, maximum tolerated dose (MTD), pharmacokinetics, pharmacodynamics, and efficacy of narnatumab in patients with advanced solid tumors. Methods Narnatumab was administered intravenously weekly at 5, 10, 15, or 20 mg/kg or every 2 weeks at 15, 20, 30, or 40 mg/kg in 4-week cycles. Results Thirty-nine patients were treated, and 1 dose-limiting toxicity (DLT) (grade 3 hyponatremia, 5 mg/kg) was reported. The most common narnatumab-related adverse events (AEs) were fatigue (20.5%) and decreased appetite, diarrhea, nausea, and vomiting (10.3% each). Except for 2 treatment-related grade 3 AEs (hyponatremia, hypokalemia), all treatment-related AEs were grade 1 or 2. Narnatumab had a short half-life (<7 days). After Cycle 2, no patients had concentrations above 140 μg/mL (concentration that demonstrated antitumor activity in animal models), except for 1 patient receiving 30 mg/kg biweekly. Eleven patients had a best response of stable disease, ranging from 6 weeks to 11 months. Despite only 1 DLT, due to suboptimal drug exposure, the dose was not escalated beyond 40 mg/kg biweekly. This decision was based on published data reporting that mRNA splice variants of RON are highly prevalent in tumors, accumulate in cytoplasm, and are not accessible by large-molecule monoclonal antibodies. Conclusions Narnatumab was well tolerated and showed limited antitumor activity with this dosing regimen.
Collapse
Affiliation(s)
- Patricia M LoRusso
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA. .,Yale Cancer Center, New Haven, CT, USA.
| | - Mrinal Gounder
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shadia I Jalal
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | | | | | - Nick Loizos
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Jennifer Hall
- Eli Lilly and Company, Indianapolis, IN, USA.,Boehringer Ingelheim, Ridgefield, CT, USA
| | | | - Aejaz Nasir
- Eli Lilly and Company, Indianapolis, IN, USA
| | - Jan Cosaert
- Eli Lilly and Company, Indianapolis, IN, USA.,Merck KGaA, Darmstadt, Germany
| | - John Kauh
- Eli Lilly and Company, Indianapolis, IN, USA
| | - E Gabriela Chiorean
- Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA.,Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
11
|
Moon H, Zheng X, Loh TJ, Jang HN, Liu Y, Jung DW, Williams DR, Shen H. Effects of PTCs on nonsense-mediated mRNA decay are dependent on PTC location. Oncol Lett 2017; 13:1944-1948. [PMID: 28454348 DOI: 10.3892/ol.2017.5627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/26/2016] [Indexed: 01/21/2023] Open
Abstract
The récepteur d'origine nantais (RON) gene is a proto-oncogene that is responsible for encoding the human macrophage-stimulating protein (MSP) 1 receptor. MSP activation induces RON-mediated cell dissociation, migration and matrix invasion. Isoforms of RON that exclude exons 5 and 6 encode the RONΔ160 protein, which promotes cell transformation in vitro and tumor metastasis in vivo. Premature termination codons (PTCs) in exons activate the nonsense-mediated mRNA decay (NMD) signaling pathway. The present study demonstrated that PTCs at various locations in the alternative exons 5 and 6 could induce NMD of the majority of the spliced, or partially spliced, isoforms. However, the isoforms that excluded exon 6 or exons 5 and 6 were markedly increased when produced from mutated minigenes with inserted PTCs. Furthermore, the unspliced isoform of intron 5 was not observed to be decreased by the presence of PTCs. Notably, these effects may be dependent on the location of the PTCs. The current study demonstrated a novel mechanism underlying the regulation of NMD in alternative splicing.
Collapse
Affiliation(s)
- Heegyum Moon
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Xuexiu Zheng
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Tiing Jen Loh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ha Na Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yongchao Liu
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Da-Woon Jung
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Darren R Williams
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
12
|
Faham N, Welm AL. RON Signaling Is a Key Mediator of Tumor Progression in Many Human Cancers. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:177-188. [PMID: 28057847 DOI: 10.1101/sqb.2016.81.031377] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With an increasing body of literature covering RON receptor tyrosine kinase function in different types of human cancers, it is becoming clear that RON has prominent roles in both cancer cells and in the tumor-associated microenvironment. RON not only activates several oncogenic signaling pathways in cancer cells, leading to more aggressive behavior, but also promotes an immunosuppressive, alternatively activated phenotype in macrophages and limits the antitumor immune response. These two unique functions of this oncogene, the strong correlation between RON expression and poor outcomes in cancer, and the high tolerability of a new RON inhibitor make it an exciting therapeutic target, the blocking of which offers an advantage toward improving the survival of cancer patients. Here, we discuss recent findings on the role of RON signaling in cancer progression and its potential in cancer therapy.
Collapse
Affiliation(s)
- Najme Faham
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|
13
|
Zarei O, Benvenuti S, Ustun-Alkan F, Hamzeh-Mivehroud M, Dastmalchi S. Strategies of targeting the extracellular domain of RON tyrosine kinase receptor for cancer therapy and drug delivery. J Cancer Res Clin Oncol 2016; 142:2429-2446. [PMID: 27503093 DOI: 10.1007/s00432-016-2214-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/01/2016] [Indexed: 01/22/2023]
Abstract
PURPOSE Cancer is one of the most important life-threatening diseases in the world. The current efforts to combat cancer are being focused on molecular-targeted therapies. The main purpose of such approaches is based on targeting cancer cell-specific molecules to minimize toxicity for the normal cells. RON (Recepteur d'Origine Nantais) tyrosine kinase receptor is one of the promising targets in cancer-targeted therapy and drug delivery. METHODS In this review, we will summarize the available agents against extracellular domain of RON with potential antitumor activities. RESULTS The presented antibodies and antibody drug conjugates against RON in this review showed wide spectrum of in vitro and in vivo antitumor activities promising the hope for them entering the clinical trials. CONCLUSION Due to critical role of extracellular domain of RON in receptor activation, the development of therapeutic agents against this region could lead to fruitful outcome in cancer therapy.
Collapse
Affiliation(s)
- Omid Zarei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Silvia Benvenuti
- Molecular Therapeutics and Exploratory Research Laboratory, Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Turin, Italy
| | - Fulya Ustun-Alkan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Xu P, Ding S, Zhu L, Le F, Huang X, Tian Y, Zhang X. Elevated RON protein expression in endometriosis and disease-associated ovarian cancers. Arch Gynecol Obstet 2016; 295:631-639. [PMID: 27888297 DOI: 10.1007/s00404-016-4248-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 11/22/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recepteur d'origine nantais (RON) protein expression has been demonstrated to correlate with tumor progression, metastasis, and prognosis, and its mRNA expression increases in deeply infiltrating endometriotic lesions. However, it remains unclear whether RON protein expression also increases in endometriotic lesions, and may be a risk factor of malignant transformation in endometriotic lesions. METHODS The protein expression of RON in control (n = 19), eutopic (n = 16), and ectopic (n = 51) endometria, as well as in endometriosis-associated ovarian cancers (EAOC, n = 16) was determined by immunohistochemical (IHC) staining. RESULTS Endometriotic lesions expressed low levels of RON protein, but no RON protein expression appeared in matched eutopic or control endometrium. EAOC exhibited high levels of RON protein. The frequency and IHC score of RON protein expression were both significantly higher in EAOC [100.0% (14/14), 5.37 ± 0.74] than those in endometriotic lesions [51.0% (26/51), 2.15 ± 1.12; P = 0.002, 0.001]. Multivariate analysis of covariance only revealed a correlation of RON protein expression and EAOC (P = 0.006), but no correlations of RON protein expression and clinical parameters (P > 0.05). CONCLUSIONS These obtained results suggest that increased RON expression might be involved in the pathogenesis of endometriosis and disease-associated ovarian cancers.
Collapse
Affiliation(s)
- Ping Xu
- The Department of Gynecology, Women's Hospital School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Shaojie Ding
- The Department of Gynecology, Women's Hospital School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Libo Zhu
- The Department of Gynecology, Women's Hospital School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Fang Le
- The Department of Gynecology, Women's Hospital School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Xiufeng Huang
- The Department of Gynecology, Women's Hospital School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Yonghong Tian
- The Department of Gynecology, Women's Hospital School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China
| | - Xinmei Zhang
- The Department of Gynecology, Women's Hospital School of Medicine, Zhejiang University, 1 Xueshi Road, Hangzhou, Zhejiang, 310006, People's Republic of China.
| |
Collapse
|
15
|
Greenbaum A, Rajput A, Wan G. RON kinase isoforms demonstrate variable cell motility in normal cells. Heliyon 2016; 2:e00153. [PMID: 27656686 PMCID: PMC5021793 DOI: 10.1016/j.heliyon.2016.e00153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/31/2016] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Aberrant RON (Recepteur d'Origine Nantais) tyrosine kinase activation causes the epithelial cell to evade normal growth pathways, resulting in unregulated cell proliferation, increased cell motility and decreased apoptosis. Wildtype (wt) RON has been shown to play a role in metastasis of epithelial malignancies. It presents an important potential therapeutic target for colorectal, breast, gastric and pancreatic cancer. Little is known about functional differences amongst RON isoforms RON155, RON160 and RON165. The purpose of this study was to determine the effect of various RON kinase isoforms on cell motility. METHODS Cell lines with stable expression of wtRON were generated by inserting the coding region of RON in pTagRFP (tagged red fluorescence protein plasmid). The expression constructs of RON variants (RON155, RON160 and RON165) were generated by creating a mutagenesis-based wtRON-pTag RFP plasmid and stably transfected into HEK 293 cells. The wound closure scratch assay was used to investigate the effect on cell migratory capacity of wild type RON and its variants. RESULTS RON transfected cells demonstrated increased cell motility compared to HEK293 control cells. RON165 cell motility was significantly increased compared to RON160 (mean percentage of wound covered 37.37% vs. 32.40%; p = 0.03). CONCLUSIONS RON tyrosine kinase isoforms have variable cell motility. This may reflect a difference in the behavior of malignant epithelial cells and their capacity for metastasis.
Collapse
Affiliation(s)
- Alissa Greenbaum
- University of New Mexico Health Sciences Center, MSC 10 5610, 1 University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ashwani Rajput
- Division of Surgical Oncology, Department of Surgery, UNM Comprehensive Cancer Center, MSC 07 4025, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Guanghua Wan
- Division of Surgical Oncology, Department of Surgery, MSC 07 4025, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
16
|
Moon H, Zheng X, Loh TJ, Jang HN, Liu Y, Jung DW, Williams DR, Shen H. Identification of Regulatory-RNAs for Alternative Splicing of Ron Proto-Oncogene. J Cancer 2015; 6:1346-51. [PMID: 26640595 PMCID: PMC4643091 DOI: 10.7150/jca.13361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/07/2015] [Indexed: 12/02/2022] Open
Abstract
RON receptor tyrosine kinase is a proto-oncogene that induces cell migration and matrix invasion. RONΔ160 protein, which is produced by exclusion of exon 5 and 6, promotes cell migration, matrix invasion and protection from apoptosis. Alternative splicing regulation of exon 5 and 6 is not well understood. In this manuscript, we identified several new RNA regulatory elements for alternative splicing of Ron proto-oncogene. Firstly, we demonstrated that RNA sequences from EcoRI cleavage sites regulate alternative splicing of Ron exon 5 and 6. Secondly, we showed that the ~30 nt RNA at upstream end of exon 4 and the ~33 nt RNA at downstream end of exon 7 also modulate splicing of exon 5 and 6. Thirdly, our results indicate that the RNA sequences of the ends in exon 4 and 7 are required for the regulatory functions of the RNA from restriction enzyme cleavage sites. Our results provide a new insight for regulation of alternative splicing of Ron proto-oncogene.
Collapse
Affiliation(s)
- Heegyum Moon
- 1These authors contributed equally to this manuscript
| | - Xuexiu Zheng
- 1These authors contributed equally to this manuscript
| | - Tiing Jen Loh
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Ha Na Jang
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Yongchao Liu
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Da-Woon Jung
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Darren R Williams
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | - Haihong Shen
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| |
Collapse
|
17
|
MAYER SEBASTIAN, HIRSCHFELD MARC, JAEGER MARKUS, PIES SUSANNE, IBORRA SEVERINE, ERBES THALIA, STICKELER ELMAR. RON alternative splicing regulation in primary ovarian cancer. Oncol Rep 2015; 34:423-30. [DOI: 10.3892/or.2015.3995] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/30/2015] [Indexed: 11/06/2022] Open
|
18
|
Koh YW, Yoon DH, Suh C, Cha HJ, Huh J. Insulin-like growth factor-1 receptor is associated with better prognosis in classical Hodgkin's lymphoma: Correlation with MET expression. Int J Exp Pathol 2015; 96:232-9. [PMID: 25916750 DOI: 10.1111/iep.12128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 03/06/2015] [Indexed: 12/11/2022] Open
Abstract
The purpose of this study was to examine the prognostic significance of insulin-like growth factor-1 receptor (IGF-1R) expression alone and in relation to the expression of the MET- receptor and the MET-homologous receptor RON, in classical Hodgkin's lymphoma (cHL). Tumour samples from patients with cHL (n = 202; median age 37.5 years) were analysed retrospectively for IGF-R1, MET or RON expression by immunohistochemistry using tissue microarrays. The median follow-up time was 3.7 years (range, 0.1-20 years). Twenty-nine patients (14.3%) expressed IGF-1R protein in Hodgkin/Reed-Sternberg (HRS) cells, which was associated with a better overall survival (OS) (P = 0.036). IGF-1R expression was closely associated with MET receptor expression and low level of lactate dehydrogenase. In patients with cHL receiving doxorubicin, bleomycin, vinblastine and dacarbazine, those expressing IGF-1R showed a trend towards better OS and event-free survival than IGF-1R-negative patients (P = 0.129 and P = 0.115 respectively), but statistical significance was not reached. This study suggests that IGF-1R expression could be associated with better clinical outcome in cHL but is significantly associated with the expression of MET receptor.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ajou University School of Medicine, Suwon, Korea
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Cheolwon Suh
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hee Jeong Cha
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
19
|
Wang X, Yennawar N, Hankey PA. Autoinhibition of the Ron receptor tyrosine kinase by the juxtamembrane domain. Cell Commun Signal 2014; 12:28. [PMID: 24739671 PMCID: PMC4021555 DOI: 10.1186/1478-811x-12-28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 02/05/2014] [Indexed: 01/21/2023] Open
Abstract
Background The Ron receptor tyrosine kinase (RTK) has been implicated in the progression of a number of carcinomas, thus understanding the regulatory mechanisms governing its activity is of potential therapeutic significance. A critical role for the juxtamembrane domain in regulating RTK activity is emerging, however the mechanism by which this regulation occurs varies considerably from receptor to receptor. Results Unlike other RTKs described to date, tyrosines in the juxtamembrane domain of Ron are inconsequential for receptor activation. Rather, we have identified an acidic region in the juxtamembrane domain of Ron that plays a central role in promoting receptor autoinhibition. Furthermore, our studies demonstrate that phosphorylation of Y1198 in the kinase domain promotes Ron activation, likely by relieving the inhibitory constraints imposed by the juxtamembrane domain. Conclusions Taken together, our experimental data and molecular modeling provide a better understanding of the mechanisms governing Ron activation, which will lay the groundwork for the development of novel therapeutic approaches for targeting Ron in human malignancies.
Collapse
Affiliation(s)
| | | | - Pamela A Hankey
- Graduate Program in Cell and Developmental Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
20
|
RON (recepteur d’origine nantais) expression and its association with tumor progression in laryngeal squamous cell carcinoma. Auris Nasus Larynx 2014; 41:201-6. [DOI: 10.1016/j.anl.2013.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/11/2013] [Accepted: 10/31/2013] [Indexed: 01/22/2023]
|
21
|
MET and MST1R as prognostic factors for classical Hodgkin's lymphoma. Mod Pathol 2013; 26:1172-82. [PMID: 23558571 DOI: 10.1038/modpathol.2013.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 11/06/2012] [Accepted: 01/10/2013] [Indexed: 01/18/2023]
Abstract
MST1R (RON) and MET are receptor tyrosine kinase gene family members that form a noncovalent complex on the cell surface, a critical step in tumor progression. A recent study suggested a prognostic role of MET expression in Hodgkin/Reed-Sternberg (HRS) cells in classical Hodgkin's lymphoma (cHL). The purpose of this study was to examine the prognostic significance of MET and MST1R expression in cHL. The prognostic impact of MET and MST1R was examined in 100 patients with cHL (median age: 32 years) by immunohistochemistry and mRNA in situ hybridization. The median follow-up time was 95 months (interquartile range: 42-126 months). MET or MST1R protein expression was associated with high MET or MST1R mRNA expression, respectively. Thirty-eight patients (38%) expressed MET protein in HRS cell, which was associated with better overall survival (P=0.004). Twenty-six patients (26%) expressed MST1R protein, which was associated with better overall survival (P=0.022) and event-free survival (P=0.021). Multivariate analysis identified MET protein as an independent prognostic factor for overall survival and MST1R protein as an independent prognostic factor for event-free survival. Subgroup analysis according to Ann Arbor stage showed that expressions of MET and MST1R protein have prognostic impact in the advanced stage only. In particular, coexpression of MST1R and MET protein was associated with a better survival outcome than MET or MST1R expression alone or no expression. This study suggests that MET and MST1R are independent prognostic factors in classical cHL, and may allow the identification of a subgroup of cHL patients who require more intensive therapy.
Collapse
|
22
|
Chaudhuri A, Wilson NS, Yang B, Paler Martinez A, Liu J, Zhu C, Bricker N, Couto S, Modrusan Z, French D, Cupp J, Ashkenazi A. Host genetic background impacts modulation of the TLR4 pathway by RON in tissue-associated macrophages. Immunol Cell Biol 2013; 91:451-60. [PMID: 23817579 PMCID: PMC3736205 DOI: 10.1038/icb.2013.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/04/2013] [Accepted: 05/20/2013] [Indexed: 12/27/2022]
Abstract
Toll-like receptors (TLRs) enable metazoans to mount effective innate immune responses to microbial and viral pathogens, as well as to endogenous host-derived ligands. It is understood that genetic background of the host can influence TLR responsiveness, altering susceptibility to pathogen infection, autoimmunity and cancer. Macrophage stimulatory protein (MSP), which activates the receptor tyrosine kinase recepteur d'origine nantais (RON), promotes key macrophage functions such as motility and phagocytic activity. MSP also acts via RON to modulate signaling by TLR4, which recognizes a range of pathogen or endogenous host-derived molecules. Here, we show that RON exerts divergent control over TLR4 activity in macrophages from different mouse genetic backgrounds. RON potently modulated the TLR4 response in macrophages from M2-prone FVB mice, as compared with M1-skewed C57Bl6 mice. Moreover, global expression analysis revealed that RON suppresses the TLR4-dependent type-I interferon gene signature only in FVB macrophages. This leads to attenuated production of the potent inflammatory mediator, tumor necrosis factor-α. Eliminating RON kinase activity markedly decreased carcinogen-mediated tumorigenesis in M2/Th2-biased FVB mice. We propose that host genetic background influences RON function, thereby contributing to the variability in TLR4 responsiveness in rodents and, potentially, in humans. These findings provide novel insight into the complex interplay between genetic context and immune function.
Collapse
Affiliation(s)
- Amitabha Chaudhuri
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Nicholas S Wilson
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Becky Yang
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | | | - Jinfeng Liu
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, USA
| | - Catherine Zhu
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Nicole Bricker
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| | - Suzana Couto
- Departments of Pathology and Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Zora Modrusan
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA, USA
| | - Dorothy French
- Departments of Pathology and Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - James Cupp
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA, USA
| | - Avi Ashkenazi
- Department of Molecular Oncology, Genentech Inc., South San Francisco, CA, USA
| |
Collapse
|
23
|
Zou Y, Howell GM, Humphrey LE, Wang J, Brattain MG. Ron knockdown and Ron monoclonal antibody IMC-RON8 sensitize pancreatic cancer to histone deacetylase inhibitors (HDACi). PLoS One 2013; 8:e69992. [PMID: 23922886 PMCID: PMC3726703 DOI: 10.1371/journal.pone.0069992] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/13/2013] [Indexed: 02/06/2023] Open
Abstract
Recepteur d'origine nantais (Ron) is overexpressed in a panel of pancreatic cancer cells and tissue samples from pancreatic cancer patients. Ron can be activated by its ligand macrophage stimulating protein (MSP), thereby activating oncogenic signaling pathways. Crosstalk between Ron and EGFR, c-Met, or IGF-1R may provide a mechanism underlying drug resistance. Thus, targeting Ron may represent a novel therapeutic strategy. IMC-RON8 is the first Ron monoclonal antibody (mAb) entering clinical trial for targeting Ron overexpression. Our studies show IMC-RON8 downmodulated Ron expression in pancreatic cancer cells and significantly blocked MSP-stimulated Ron activation, downstream Akt and ERK phosphorylation, and survivin mRNA expression. IMC-RON8 hindered MSP-induced cell migration and reduced cell transformation. Histone deacetylase inhibitors (HDACi) are reported to target expression of various genes through modification of nucleosome histones and non-histone proteins. Our work shows HDACi TSA and Panobinostat (PS) decreased Ron mRNA and protein expression in pancreatic cancer cells. PS also reduced downstream signaling of pAkt, survivin, and XIAP, as well as enhanced cell apoptosis. Interestingly, PS reduced colony formation in Ron knockdown cells to a greater extent than Ron scramble control cells in colony formation and soft agarose assays. IMC-RON8 could also sensitize pancreatic cancer cells to PS, as reflected by reduced colony numbers and size in combination treatment with IMC-RON8 and PS compared to single treatment alone. The co-treatment further reduced Ron expression and pAkt, and increased PARP cleavage compared to either treatment alone. This study suggests the potential for a novel combination approach which may ultimately be of value in treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yi Zou
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Gillian M. Howell
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Lisa E. Humphrey
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Jing Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael G. Brattain
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
24
|
Koh YW, Hwang HS, Jung SJ, Park C, Yoon DH, Suh C, Huh J. Receptor tyrosine kinases MET and RON as prognostic factors in diffuse large B-cell lymphoma patients receiving R-CHOP. Cancer Sci 2013; 104:1245-51. [PMID: 23745832 DOI: 10.1111/cas.12215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/16/2013] [Accepted: 06/07/2013] [Indexed: 01/08/2023] Open
Abstract
Receptor tyrosine kinases MET and RON (MST1R) form non-covalent complexes on the cell surface, a critical step in tumor progression. A recent study suggested a prognostic role for MET expression in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to examine the impact of MET and RON expression in uniformly treated DLBCL patients. The expression of MET and RON was retrospectively examined by immunohistochemistry in 120 DLBCL patients treated with rituximab combined with a CHOP regimen (cyclophosphamide, doxorubicin, vincristine, and prednisone). The median follow-up time was 42.5 months (range, 1-89 months). Thirty-two (26%) and 30 patients (25%) expressed MET or RON, respectively. Seventy-five patients (62.5%) were negative for both MET and RON (MET(-) RON(-) ). MET negativity was associated with worse overall survival (P = 0.029). In multivariate analysis, negativity for both MET and RON (MET(-) RON(-) ) was strongly associated with inferior overall survival (P = 0.008). Interestingly, the MET(-) RON(-) phenotype retained its prognostic impact after subgroup analysis according to the international prognostic index or by the cell of origin by immunohistochemical algorithm by Choi et al. This study suggests that the MET(-) RON(-) phenotype is an independent prognostic factor in DLBCL patients receiving R-CHOP, and may identify a subgroup of DLBCL patients who require more intensive therapy.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Northrup AB, Katcher MH, Altman MD, Chenard M, Daniels MH, Deshmukh SV, Falcone D, Guerin DJ, Hatch H, Li C, Lu W, Lutterbach B, Allison TJ, Patel SB, Reilly JF, Reutershan M, Rickert KW, Rosenstein C, Soisson SM, Szewczak AA, Walker D, Wilson K, Young JR, Pan BS, Dinsmore CJ. Discovery of 1-[3-(1-methyl-1H-pyrazol-4-yl)-5-oxo-5H-benzo[4,5]cyclohepta[1,2-b]pyridin-7-yl]-N-(pyridin-2-ylmethyl)methanesulfonamide (MK-8033): A Specific c-Met/Ron dual kinase inhibitor with preferential affinity for the activated state of c-Met. J Med Chem 2013; 56:2294-310. [PMID: 23379595 DOI: 10.1021/jm301619u] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This report documents the first example of a specific inhibitor of protein kinases with preferential binding to the activated kinase conformation: 5H-benzo[4,5]cyclohepta[1,2-b]pyridin-5-one 11r (MK-8033), a dual c-Met/Ron inhibitor under investigation as a treatment for cancer. The design of 11r was based on the desire to reduce time-dependent inhibition of CYP3A4 (TDI) by members of this structural class. A novel two-step protocol for the synthesis of benzylic sulfonamides was developed to access 11r and analogues. We provide a rationale for the observed selectivity based on X-ray crystallographic evidence and discuss selectivity trends with additional examples. Importantly, 11r provides full inhibition of tumor growth in a c-Met amplified (GTL-16) subcutaneous tumor xenograft model and may have an advantage over inactive form kinase inhibitors due to equal potency against a panel of oncogenic activating mutations of c-Met in contrast to c-Met inhibitors without preferential binding to the active kinase conformation.
Collapse
Affiliation(s)
- Alan B Northrup
- Department of Chemistry, Merck & Co., Inc. , 33 Avenue Louis Pasteur, BMB-3, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Park JS, Khoi PN, Joo YE, Lee YH, Lang SA, Stoeltzing O, Jung YD. EGCG inhibits recepteur d'origine nantais expression by suppressing Egr-1 in gastric cancer cells. Int J Oncol 2013; 42:1120-6. [PMID: 23337910 DOI: 10.3892/ijo.2013.1775] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 12/19/2012] [Indexed: 11/06/2022] Open
Abstract
Abnormal accumulation and activation of the recepteur d'origine nantais (RON) has been implicated in epithelial tumor carcinogenesis. In the present study, we examined the effect of epigallocatechin-3-gallate (EGCG), the major green tea catechin, on the induction of RON and tumor growth in human gastric cancer. EGCG inhibited phorbol 12-myristate 13-acetate (PMA)-induced RON expression and reduced RON transcriptional activity. However, (-)-epigalloca-techin (EGC), (-)-epicatechin gallate (ECG) and (-)‑epicatechin (EC) did not affect RON expression. Experiments with deleted and site-directed mutagenesis of the RON promoter indicated that Egr-1 binding sites in the RON promoter may be the EGCG‑response element acting as a cis-element in gastric cancer cells. EGCG also inhibited PMA-induced Egr-1 expression and DNA binding in a dose-dependent manner. Furthermore, gastric cancer cells pretreated with PMA showed markedly enhanced invasiveness, which was partially abrogated by EGCG and siRNA-targeted RON and Egr-1. EGCG significantly reduced tumor growth in an in vivo tumor model, whereas RON expression was downregulated. These results suggest that EGCG may exert at least part of its anticancer effect by controlling RON expression through suppression of Egr-1 activation.
Collapse
Affiliation(s)
- Jung Sun Park
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
27
|
Lee KE, Park JS, Khoi PN, Joo YE, Lee YH, Jung YD. Upregulation of recepteur d'origine nantais tyrosine kinase and cell invasiveness via early growth response-1 in gastric cancer cells. J Cell Biochem 2012; 113:1217-23. [PMID: 22095683 DOI: 10.1002/jcb.23454] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abnormal accumulation and activation of the recepteur d'origine nantais (RON) has been implicated in carcinogenesis of epithelial tumors. RON expression was induced by the tumor promoter, phorbol 12-myristate 13-acetate (PMA), in gastric adenocarcinoma AGS cells. Studies with deleted and site-directed mutagenesis of Egr-1 promoter and with expression vectors encoding Egr-1 confirmed that Egr-1 is essential for RON expression. In addition, AGS cells pretreated with PMA showed remarkably enhanced invasiveness, which was partially abrogated by siRNA-targeted RON and Egr-1. These results suggest that tumor promoter induces RON expression via Egr-1, which, in turn, stimulates cell invasiveness in AGS cells.
Collapse
Affiliation(s)
- Ko E Lee
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-190, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
MOON HEEGYUM, CHO SUNGHEE, YANG XIAOMING, ZHOU JIANHUA, LOH TIINGJEN, ZHENG XUEXIU, SHEN HAIHONG. Identification of novel splicing variants from RON proto-oncogene pre-mRNA. Oncol Rep 2012; 28:2217-20. [DOI: 10.3892/or.2012.2043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/16/2012] [Indexed: 11/05/2022] Open
|
29
|
Wang D, Lao WF, Kuang YY, Geng SM, Mo LJ, He C. A novel variant of the RON receptor tyrosine kinase derived from colorectal carcinoma cells which lacks tyrosine phosphorylation but induces cell migration. Exp Cell Res 2012; 318:2548-58. [PMID: 22975341 DOI: 10.1016/j.yexcr.2012.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/23/2012] [Accepted: 08/28/2012] [Indexed: 10/27/2022]
Abstract
Generation of splice variants in the RON receptor tyrosine kinase facilitates the invasive phenotype of colorectal cancers. Here, we report a new splice variant of RON in the human colorectal cancer cell line HCT116. This variant is encoded by a transcript differing from the full-length RON mRNA by an in-frame deletion of 106 amino acids in the extracellular domain of RON β-chain. The deleted transcript originates by an alternative deletion of exon 2 and exon 3. The molecular weight of this variant is 160 kDa. Thus, we named this variant RONΔ160(E2E3). This variant is a single-chain protein and expressed in the intracellular compartment. We found that RONΔ160(E2E3) had no tyrosine phosphorylation ability, but it has constitutively activated Akt activity in transfected HEK293 epithelial cells. The expression of this variant in HEK293 cells resulted in an increased migratory activity in vitro mediated through the PI-3K/Akt pathway. Our data describes a new splice variant of RON and suggests a novel role for the RON receptor in the progression of metastasis in colorectal cancer.
Collapse
Affiliation(s)
- Da Wang
- Department of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine/SRRSH, 3 East Qingchun Road, Hangzhou, Zhejiang 310016, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
INTRODUCTION Since its discovery nearly 20 years ago, the Ron receptor tyrosine kinase has been extensively studied. These studies have elucidated many of the major signaling pathways activated by Ron. In the context of the inflammation and cancer, studies have shown that Ron plays differential roles; Ron activation limits the inflammatory response, whereas in cancer, Ron activation is associated with increased metastases and poor prognosis. AREAS COVERED This review discusses the current literature with regard to Ron signaling and consequences of its activation in cancer as well as its role in cancer therapy. Further, we discuss the mechanisms by which Ron influences the inflammatory response and its role in chronic inflammatory diseases. Finally, we discuss Ron's connection between chronic inflammation and progression to cancer. EXPERT OPINION The complex nature of Ron's signaling paradigm necessitates additional studies to understand the pathways by which Ron is functioning and how these differ in inflammation and cancer. This will be vital to understanding the impact that Ron signaling has in disease states. Additional studies of targeted therapies, either alone or in conjunction with current therapies are needed to determine if inhibition of Ron signaling will provide long-term benefits to cancer patients.
Collapse
Affiliation(s)
- Nancy M Benight
- University of Cincinnati College of Medicine, Cincinnati Veterans Affairs Medical Center, Department of Cancer and Cell Biology, OH 45267-0521, USA
| | | |
Collapse
|
31
|
Yoon TM, Kim SA, Park YL, Lee KH, Sung MW, Lee JK, Lim SC, Chung IJ, Joo YE. Expression of the receptor tyrosine kinase recepteur d'origine nantais and its association with tumor progression in hypopharyngeal cancer. Head Neck 2012; 35:1106-13. [PMID: 22887469 DOI: 10.1002/hed.23090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The purpose of this study was to investigate expression of recepteur d'origine nantais (RON) in human hypopharyngeal squamous cell carcinoma (SCC) and to determine whether RON affects tumor cell behavior in hypopharyngeal SCC cell line and if this would serve as a target for molecular therapy in a preclinical model. METHODS Reverse transcriptase-polymerase chain reaction, immunohistochemistry, Western blotting, cell invasion, migration, proliferation, and apoptosis assays were used to assess alteration of RON expression and its impact to cancer progression in human hypopharyngeal SCC. RESULTS Immunoreactivity of RON was observed in hypopharyngeal SCC tissues relative to adjacent normal mucosa in all cases. RON protein expression was significantly increased in metastatic lymph nodes than nonmetastatic lymph nodes by Western blotting. Knockdown of RON resulted in significantly reduced cell invasion, migration, and proliferation in human hypopharyngeal SCC cells. Knockdown of RON enhanced cell apoptosis through activation of caspase 3, caspase 7, and poly ADP-ribose polymerase (PARP). CONCLUSION These results indicate that knockdown of RON expression may be associated with the reversal of invasive phenotype in hypopharyngeal SCC.
Collapse
Affiliation(s)
- Tae Mi Yoon
- Department of Otorhinolaryngology-Head and Neck Surgery, Chonnam National University Medical School, Gwanju, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Zou HY, Li Q, Lee JH, Arango ME, Burgess K, Qiu M, Engstrom LD, Yamazaki S, Parker M, Timofeevski S, Cui JJ, McTigue M, Los G, Bender SL, Smeal T, Christensen JG. Sensitivity of selected human tumor models to PF-04217903, a novel selective c-Met kinase inhibitor. Mol Cancer Ther 2012; 11:1036-47. [PMID: 22389468 DOI: 10.1158/1535-7163.mct-11-0839] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The c-Met pathway has been implicated in a variety of human cancers for its critical role in tumor growth, invasion, and metastasis. PF-04217903 is a novel ATP-competitive small-molecule inhibitor of c-Met kinase. PF-04217903 showed more than 1,000-fold selectivity for c-Met compared with more than 150 kinases, making it one of the most selective c-Met inhibitors described to date. PF-04217903 inhibited tumor cell proliferation, survival, migration/invasion in MET-amplified cell lines in vitro, and showed marked antitumor activity in tumor models harboring either MET gene amplification or a hepatocyte growth factor (HGF)/c-Met autocrine loop at well-tolerated dose levels in vivo. Antitumor efficacy of PF-04217903 was dose-dependent and showed a strong correlation with inhibition of c-Met phosphorylation, downstream signaling, and tumor cell proliferation/survival. In human xenograft models that express relatively high levels of c-Met, complete inhibition of c-Met activity by PF-04217903 only led to partial tumor growth inhibition (38%-46%) in vivo. The combination of PF-04217903 with Recepteur d'origine nantais (RON) short hairpin RNA (shRNA) knockdown in the HT29 model that also expresses activated RON kinase-induced tumor cell apoptosis and resulted in enhanced antitumor efficacy (77%) compared with either PF-04217903 (38%) or RON shRNA alone (56%). PF-04217903 also showed potent antiangiogenic properties in vitro and in vivo. Furthermore, PF-04217903 strongly induced phospho-PDGFRβ (platelet-derived growth factor receptor) levels in U87MG xenograft tumors, indicating a possible oncogene switching mechanism in tumor cell signaling as a potential resistance mechanism that might compromise tumor responses to c-Met inhibitors. Collectively, these results show the use of highly selective inhibition of c-Met and provide insight toward targeting tumors exhibiting different mechanisms of c-Met dysregulation.
Collapse
Affiliation(s)
- Helen Y Zou
- PGRD-La Jolla, Pfizer, Inc., San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Okubo J, Takita J, Chen Y, Oki K, Nishimura R, Kato M, Sanada M, Hiwatari M, Hayashi Y, Igarashi T, Ogawa S. Aberrant activation of ALK kinase by a novel truncated form ALK protein in neuroblastoma. Oncogene 2012; 31:4667-76. [PMID: 22249260 DOI: 10.1038/onc.2011.616] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Anaplastic lymphoma kinase (ALK) was originally identified from a rare subtype of non-Hodgkin's lymphomas carrying t(2;5)(p23;q35) translocation, where ALK was constitutively activated as a result of a fusion with nucleophosmin (NPM). Aberrant ALK fusion proteins were also generated in inflammatory fibrosarcoma and a subset of non-small-cell lung cancers, and these proteins are implicated in their pathogenesis. Recently, ALK has been demonstrated to be constitutively activated by gene mutations and/or amplifications in sporadic as well as familial cases of neuroblastoma. Here we describe another mechanism of aberrant ALK activation observed in a neuroblastoma-derived cell line (NB-1), in which a short-form ALK protein (ALK(del2-3)) having a truncated extracellular domain is overexpressed because of amplification of an abnormal ALK gene that lacks exons 2 and 3. ALK(del2-3) was autophosphorylated in NB-1 cells as well as in ALK(del2-3)-transduced cells and exhibited enhanced in vitro kinase activity compared with the wild-type kinase. ALK(del2-3)-transduced NIH3T3 cells exhibited increased colony-forming capacity in soft agar and tumorigenicity in nude mice. RNAi-mediated ALK knockdown resulted in the growth suppression of ALK(del2-3)-expressing cells, arguing for the oncogenic role of this mutant. Our findings provide a novel insight into the mechanism of deregulation of the ALK kinase and its roles in neuroblastoma pathogenesis.
Collapse
Affiliation(s)
- J Okubo
- Department of Pediatrics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Thobe MN, Gray JK, Gurusamy D, Paluch AM, Wagh PK, Pathrose P, Lentsch AB, Waltz SE. The Ron receptor promotes prostate tumor growth in the TRAMP mouse model. Oncogene 2011; 30:4990-8. [PMID: 21625214 PMCID: PMC3165145 DOI: 10.1038/onc.2011.205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/22/2011] [Accepted: 04/28/2011] [Indexed: 12/27/2022]
Abstract
The Ron receptor tyrosine kinase (TK) is overexpressed in many cancers, including prostate cancer. To examine the significance of Ron in prostate cancer in vivo, we utilized a genetically engineered mouse model, referred to as TRAMP mice, that is predisposed to develop prostate tumors. In this model, we show that prostate tumors from 30-week-old TRAMP mice have increased Ron expression compared with age-matched wild-type prostates. Based on the upregulation of Ron in human prostate cancers and in this murine model of prostate tumorigenesis, we hypothesized that this receptor has a functional role in the development of prostate tumors. To test this hypothesis, we crossed TRAMP mice with mice that are deficient in Ron signaling (TK-/-). Interestingly, TK-/- TRAMP+ mice show a significant decrease in prostate tumor mass relative to TRAMP mice containing functional Ron. Moreover, TK-/- TRAMP+ prostate tumors exhibited decreased tumor vascularization relative to TK+/+ TRAMP+ prostate tumors, which correlated with reduced levels of the angiogenic molecules vascular endothelial growth factor and CXCL2. Although Ron loss did not alter tumor cell proliferation, a significant decrease in cell survival was observed. Similarly, murine prostate cancer cell lines containing a Ron deficiency exhibited decreased levels of active nuclear factor-κB, suggesting that Ron may be important in regulating prostate cell survival at least partly through this pathway. In total, our data show for the first time that Ron promotes prostate tumor growth, prostate tumor angiogenesis and prostate cancer cell survival in vivo.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Cell Survival/genetics
- Chemokine CXCL2/genetics
- Chemokine CXCL2/metabolism
- Crosses, Genetic
- Disease Models, Animal
- Female
- Humans
- Male
- Mice
- Mice, Knockout
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Tumor Necrosis Factor, Member 25/genetics
- Receptors, Tumor Necrosis Factor, Member 25/metabolism
Collapse
Affiliation(s)
- Megan N. Thobe
- Department of Cancer and Cell Biology University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521
| | - Jerilyn K. Gray
- Department of Cancer and Cell Biology University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521
| | - Devikala Gurusamy
- Department of Cancer and Cell Biology University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521
| | - Andrew M. Paluch
- Department of Cancer and Cell Biology University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521
| | - Purnima K. Wagh
- Department of Cancer and Cell Biology University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521
| | - Peterson Pathrose
- Department of Cancer and Cell Biology University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521
| | - Alex B. Lentsch
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521
| | - Susan E. Waltz
- Department of Cancer and Cell Biology University of Cincinnati College of Medicine, Cincinnati, OH 45267-0521
- Cincinnati Veterans Affairs Medical Center, Cincinnati, OH 45220
| |
Collapse
|
35
|
Song YA, Park YL, Kim KY, Myung E, Chung CY, Cho SB, Lee WS, Jung YD, Kweon SS, Joo YE. RON is associated with tumor progression via the inhibition of apoptosis and cell cycle arrest in human gastric cancer. Pathol Int 2011; 62:127-36. [PMID: 22243783 DOI: 10.1111/j.1440-1827.2011.02765.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The recepteur d'origine nantais (RON) receptor tyrosine kinase is overexpressed in epithelial cancers, including gastric cancer. The aims of the present study were to evaluate whether RON affects tumor cell behaviors and oncogenic signaling pathways, and to document the relationship of its expression with various clinicopathological parameters in gastric cancer. The biological role of RON in tumor cell behaviors and oncogenic signaling pathways was investigated by using small interfering RNA in gastric cancer cell lines including AGS and MKN28. The expression of RON in gastric cancer tissues was investigated by using reverse transcription polymerase chain reaction and immunohistochemistry. Knockdown of RON suppressed tumor cell migration and invasion in AGS and MKN28, induced apoptosis through modulation of anti-apoptotic and pre-apoptotic genes and induced cell cycle arrest by decreasing cyclin D1, cyclin D3 and CDK4, and by inducing p21 and p27 expression. Signaling cascades, including Akt and mitogen-activated protein kinase (MAPK), were significantly blocked by knockdown of RON. Expression of RON was significantly associated with tumor size, depth of invasion, lymph node metastasis, tumor stage and poor survival. These results indicate that RON is associated with tumor progression via the inhibition of apoptosis and cell cycle arrest in human gastric cancer.
Collapse
Affiliation(s)
- Young-A Song
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Prognostic significance of phosphorylated RON in esophageal squamous cell carcinoma. Med Oncol 2011; 29:1699-706. [PMID: 22086736 DOI: 10.1007/s12032-011-0112-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/02/2011] [Indexed: 01/14/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the most common type of esophageal cancer. RON is a transmembrane receptor overexpressed in various cancers; however, the clinical significance of its phosphorylated form (pRON) is not fully deciphered. This report is the first to investigate the expression and clinical significance of pRON in human ESCC. Quantitative polymerase chain reaction revealed an up-regulation of RON mRNA in 70% (7/10) of ESCC tissues when compared to the adjacent nontumor tissues. An overexpression of pRON protein was found in most of the ESCC cell lines studied (4/5) when compared to two non-neoplastic esophageal epithelial cells using immunoblot. In 64 ESCC tissues, pRON was localized at the cell membrane, cytoplasm and nucleus in 15 (23.4%), 63 (98.4%) and 61 (95.3%) cases using immunohistochemistry. Patients having high expression of cytoplasmic pRON significantly associated with shorter median survival when compared to those with low expression (25.41 months vs. 14.43 months), suggesting cytoplasmic pRON as a potential marker for poor prognosis in ESCC patients.
Collapse
|
37
|
Alternative splicing in oncogenic kinases: from physiological functions to cancer. J Nucleic Acids 2011; 2012:639062. [PMID: 22007291 PMCID: PMC3189609 DOI: 10.1155/2012/639062] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/14/2011] [Indexed: 01/13/2023] Open
Abstract
Among the 518 protein kinases encoded by the human kinome, several of them act as oncoproteins in human cancers. Like other eukaryotic genes, oncogenes encoding protein kinases are frequently subjected to alternative splicing in coding as well as noncoding sequences. In the present paper, we will illustrate how alternative splicing can significantly impact on the physiological functions of oncogenic protein kinases, as demonstrated by mouse genetic model studies. This includes examples of membrane-bound tyrosine kinases receptors (FGFR2, Ret, TrkB, ErbB4, and VEGFR) as well as cytosolic protein kinases (B-Raf). We will further discuss how regular alternative splicing events of these kinases are in some instances implicated in oncogenic processes during tumor progression (FGFR, TrkB, ErbB2, Abl, and AuroraA). Finally, we will present typical examples of aberrant splicing responsible for the deregulation of oncogenic kinases activity in cancers (AuroraB, Jak2, Kit, Met, and Ron).
Collapse
|
38
|
Ron receptor overexpression in the murine prostate induces prostate intraepithelial neoplasia. Cancer Lett 2011; 314:92-101. [PMID: 22004727 DOI: 10.1016/j.canlet.2011.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/06/2011] [Accepted: 09/18/2011] [Indexed: 01/11/2023]
Abstract
Previous studies have shown that the Ron receptor is overexpressed in prostate cancer and Ron expression increases with disease severity in humans and the mouse TRAMP model. Here, the causal role of Ron overexpression in the murine prostate was examined in the development and progression of prostate cancer. Transgenic mouse strains were generated which selectively overexpressed Ron in the prostate epithelium and prostate histopathology was evaluated and compared to wild type controls. Ron overexpression led to the development of prostate intraepithelial neoplasia (mPIN) with local invasion and was associated with increases in prostate cell proliferation and decreases in cell death.
Collapse
|
39
|
Isolation of Fully Human Antagonistic RON Antibodies Showing Efficient Block of Downstream Signaling and Cell Migration. Transl Oncol 2011; 4:38-46. [PMID: 21286376 DOI: 10.1593/tlo.10211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 10/22/2010] [Accepted: 11/01/2010] [Indexed: 01/14/2023] Open
Abstract
RON belongs to the c-MET family of receptor tyrosine kinases. As its well-known family member MET, RON and its ligand macrophage-stimulating protein have been implicated in the progression and metastasis of tumors and have been shown to be overexpressed in cancer. We generated and tested a large number of human monoclonal antibodies (mAbs) against human RON. Our screening yielded three high-affinity antibodies that efficiently block ligand-dependent intracellular AKT and MAPK signaling. This effect correlates with the strong reduction of ligand-activated migration of T47D breast cancer cell line. By cross-competition experiments, we showed that the antagonistic antibodies fall into three distinct epitope regions of the RON extracellular Sema domain. Notably, no inhibition of tumor growth was observed in different epithelial tumor xenografts in nude mice with any of the antibodies. These results suggest that distinct properties beside ligand antagonism are required for anti-RON mAbs to exert antitumor effects in vivo.
Collapse
|
40
|
Park JS, Park JH, Khoi PN, Joo YE, Jung YD. MSP-induced RON activation upregulates uPAR expression and cell invasiveness via MAPK, AP-1 and NF-κB signals in gastric cancer cells. Carcinogenesis 2011; 32:175-181. [PMID: 21081472 DOI: 10.1093/carcin/bgq241] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Overexpression of recepteur d'Origine nantais (RON) and urokinase plasminogen activator receptor (uPAR) have been observed in human gastric cancers. However, the interaction between RON and uPAR in gastric cancer is unclear. The present study investigated the effect of macrophage-stimulating protein (MSP, the RON ligand) on uPAR expression and the underlying signal pathways in human gastric cancer AGS cells. uPAR messenger RNA expression was induced by MSP in a time- and concentration-dependent manner. MSP also induced uPAR promoter activity. The introduction of RON-specific small interfering RNA (siRNA) significantly affected the MSP-induced uPAR transcription. Deleted and site-directed mutagenesis studies demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the MSP-induced uPAR expression. Studies with expression vectors encoding mutated-type NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the MSP-induced uPAR expression. In addition, MSP induced the activation of extracellular signal-regulated kinase-1/2 (Erk-1/2), c-Jun amino terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Dominant-negative mutants (K97M and TAM67) and specific inhibitors of Erk-1/2 and JNK were able to suppress the MSP-induced uPAR expression. AGS cells pretreated with MSP showed a remarkably enhanced invasiveness, which was partially abrogated by siRNA-targeted RON and uPAR-neutralizing antibodies. The above results suggest that MSP induces uPAR expression via MAPK, AP-1 and NF-κB signaling pathways and, in turn, stimulates cell invasiveness in human gastric cancer AGS cells.
Collapse
Affiliation(s)
- Jung Sun Park
- Research Institute of Medical Sciences, Chonnam National University Medical School, Kwangju 501-190, Korea
| | | | | | | | | |
Collapse
|
41
|
Benvenuti S, Lazzari L, Arnesano A, Li Chiavi G, Gentile A, Comoglio PM. Ron kinase transphosphorylation sustains MET oncogene addiction. Cancer Res 2011; 71:1945-55. [PMID: 21212418 DOI: 10.1158/0008-5472.can-10-2100] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Receptors for the scatter factors HGF and MSP that are encoded by the MET and RON oncogenes are key players in invasive growth. Receptor cross-talk between Met and Ron occurs. Amplification of the MET oncogene results in kinase activation, deregulated expression of an invasive growth phenotype, and addiction to MET oncogene signaling (i.e., dependency on sustained Met signaling for survival and proliferation). Here we show that cancer cells addicted to MET also display constitutive activation of the Ron kinase. In human cancer cell lines coexpressing the 2 oncogenes, Ron is specifically transphosphorylated by activated Met. In contrast, Ron phosphorylation is not triggered in cells harboring constitutively active kinase receptors other than Met, including Egfr or Her2. Furthermore, Ron phosphorylation is suppressed by Met-specific kinase inhibitors (PHA-665752 or JNJ-38877605). Last, Ron phosphorylation is quenched by reducing cell surface expression of Met proteins by antibody-induced shedding. In MET-addicted cancer cells, short hairpin RNA-mediated silencing of RON expression resulted in decreased proliferation and clonogenic activity in vitro and tumorigenicity in vivo. Our findings establish that oncogene addiction to MET involves Ron transactivation, pointing to Ron kinase as a target for combinatorial cancer therapy.
Collapse
Affiliation(s)
- Silvia Benvenuti
- Exploratory Research Laboratory, Institute for Cancer Research and Treatment (IRCC), University of Turin Medical School, 10060 Candiolo, Turin, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Liu T, Xue R, Dong L, Wu H, Zhang D, Shen X. Rapid determination of serological cytokine biomarkers for hepatitis B virus-related hepatocellular carcinoma using antibody microarrays. Acta Biochim Biophys Sin (Shanghai) 2011; 43:45-51. [PMID: 21138899 DOI: 10.1093/abbs/gmq111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent tumors worldwide with an increasing incidence. The exploration of biomarkers for HCC is one of the main aims for improving the efficacy of diagnosis and treatment. The microarray technology provides a high-throughput platform for parallel exploration of biomarkers for clinics. In this study, we used antibody microarrays to screen the novel cytokine biomarkers of hepatitis B virus (HBV)-related HCC. Cytokine-secreting patterns in sera were determined from 109 cases including 43 HBV-related HCC patients, 33 chronic hepatitis B patients, and 33 normal controls by RayBio Biotin label-based human antibody array. The correlation analysis was performed with conventional clinical diagnostic biomarkers, including serum alanine aminotransferase, alpha-fetoprotein (AFP) and hepatitis B surface antigen. Our results showed that in HBV-related HCC group, which had the highest percentage of AFP positive (>20 ng/ml) ratio, six cytokines were found differentially expressed in HCC patients (P < 0.05), compared with either normal controls or chronic hepatitis B group. Two macrophage-related cytokines, macrophage-derived chemokine (MDC) and macrophage-stimulating protein α (MSPα), displayed significant difference in the HCC group. Furthermore, an HCC diagnostic model for prediction was constructed, by which the combination of MDC and MSPα together with AFP had improved the diagnostic sensitivity from 60% (AFP alone) to 73.2% with similar specificity. Our results suggested that MDC and MSPα screened by antibody microarrays might serve as novel cytokines biomarkers for potential auxiliary diagnosis of HBV-related HCC.
Collapse
Affiliation(s)
- Taotao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
43
|
Ma Q, Zhang K, Guin S, Zhou YQ, Wang MH. Deletion or insertion in the first immunoglobulin-plexin-transcription (IPT) domain differentially regulates expression and tumorigenic activities of RON receptor Tyrosine Kinase. Mol Cancer 2010; 9:307. [PMID: 21114864 PMCID: PMC3001714 DOI: 10.1186/1476-4598-9-307] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/29/2010] [Indexed: 12/28/2022] Open
Abstract
Background Activation of the RON receptor tyrosine kinase, a member of the c-MET family, regulates tumorigenic phenotypes. The RON extracellular domains are critical in regulating these activities. The objective of this study was to determine the role of the first IPT domain in regulating RON-mediated tumorigenic activities and the underlying mechanisms. Results Two RON variants, RON160 and RONE5/6in with deletion and insertion in the first IPT domain, respectively, were molecularly cloned. RON160 was a splicing variant generated by deletion of 109 amino acids encoded by exons 5 and 6. In contrast, RONE5/6in was derived from a transcript with an insertion of 20 amino acids between exons 5 and 6. Both RON160 and RONE5/6in were proteolytically matured into two-chain receptor and expressed on the cell surface. RON160 was constitutively active with tyrosine phosphorylation. However, activation of RONE5/6in required ligand stimulation. Deletion resulted in the resistance of RON160 to proteolytic digestion by cell associated trypsin-like enzymes. RON160 also resisted anti-RON antibody-induced receptor internalization. These features contributed to sustained intracellular signaling cascades. On the other hand, RONE5/6in was highly susceptible to protease digestion, which led to formation of a truncated variant known as RONp110. RONE5/6in also underwent rapid internalization upon anti-RON antibody treatment, which led to signaling attenuation. Although ligand-induced activation of RONE5/6in partially caused epithelial to mesenchymal transition (EMT), it was RON160 that showed cell-transforming activities in cell focus formation and anchorage-independent growth. RON160-mediated EMT is also associated with increased motile/invasive activity. Conclusions Alterations in the first IPT domain in extracellular region differentially regulate RON mediated tumorigenic activities. Deletion of the first IPT results in formation of oncogenic variant RON160. Enhanced degradation and internalization with attenuated signaling cascades could be the mechanisms underlying non-tumorigenic features of RONE5/6in.
Collapse
Affiliation(s)
- Qi Ma
- Laboratory of Cancer Biology in State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P, R, China
| | | | | | | | | |
Collapse
|
44
|
Han SY, Lee CO, Ahn SH, Lee MO, Kang SY, Cha HJ, Cho SY, Ha JD, Ryu JW, Jung H, Kim HR, Koh JS, Lee J. Evaluation of a multi-kinase inhibitor KRC-108 as an anti-tumor agent in vitro and in vivo. Invest New Drugs 2010; 30:518-23. [PMID: 21080208 DOI: 10.1007/s10637-010-9584-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 11/01/2010] [Indexed: 12/19/2022]
Abstract
Kinases have been studied as potential cancer targets because they play important roles in the cellular signaling of tumors. A number of small molecules targeting kinases are prescribed in clinics and many kinase inhibitors are being evaluated in the clinical phase. Previously, we discovered a series of aminopyridines substituted with benzoxazole as orally active c-Met kinase inhibitors. One of the compounds, KRC-108, has been evaluated as an anti-cancer agent in vitro and in vivo. A kinase panel assay exhibited that KRC-108 is a potent inhibitor of Ron, Flt3 and TrkA as well as c-Met. Moreover, KRC-108 inhibited oncogenic c-Met M1250T and Y1230D more strongly than wild type c-Met. The anti-proliferative activity of KRC-108 was measured by performing a cytotoxicity assay on a panel of cancer cell lines. The GI(50) values (i.e., 50% inhibition of cell growth) for KRC-108 ranged from 0.01 to 4.22 μM for these cancer cell lines. KRC-108 was also effective for the inhibition of tumor growth in human HT29 colorectal cancer and NCI-H441 lung cancer xenograft models in athymic BALB/c nu/nu mice. This molecule should serve as a useful lead for inhibitors targeting kinases and may lead to new therapeutics for the treatment of cancer.
Collapse
Affiliation(s)
- Sun-Young Han
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Yuseong, Daejeon 305-600, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Raeppel S, Gaudette F, Mannion M, Claridge S, Saavedra O, Isakovic L, Déziel R, Beaulieu N, Beaulieu C, Dupont I, Nguyen H, Wang J, Macleod AR, Maroun C, Besterman JM, Vaisburg A. Identification of a novel series of potent RON receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett 2010; 20:2745-9. [PMID: 20363625 DOI: 10.1016/j.bmcl.2010.03.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 11/28/2022]
Abstract
A novel series of N-(3-fluoro-4-(2-substituted-thieno[3,2-b]pyridin-7-yloxy)phenyl)-1-phenyl-5-(trifluoromethyl)-1H-pyrazole-4-carboxamides targeting RON receptor tyrosine kinase was designed and synthesized. SAR study of the series allowed us to identify compounds possessing either inhibitory activity of RON kinase enzyme in the low nanomolar range with low residual activity against the closely related c-Met or potent dual inhibitory activity against RON and c-Met, with no significant activity against VEGFR2 in both cases.
Collapse
Affiliation(s)
- Stéphane Raeppel
- Department of Medicinal Chemistry, MethylGene Inc., 7220 rue Frederick-Banting, Montréal, QC, Canada H4S 2A1.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Meyer SE, Waltz SE, Goss KH. The Ron receptor tyrosine kinase is not required for adenoma formation in Apc(Min/+) mice. Mol Carcinog 2009; 48:995-1004. [PMID: 19452510 DOI: 10.1002/mc.20551] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Ron receptor tyrosine kinase is overexpressed in approximately half of all human colon cancers. Increased Ron expression positively correlates with tumor progression, and reduction of Ron levels in human colon adenocarcinoma cells reverses their tumorigenic properties. Nearly all colon tumors demonstrate loss of the adenomatous polyposis coli (APC) tumor suppressor, an early initiating event, subsequently leading to beta-catenin stabilization. To understand the role of Ron in early stage intestinal tumorigenesis, we generated Apc-mutant (Apc(Min/+)) mice with and without Ron signaling. Interestingly, we report here that significantly more Apc(Min/+) Ron-deficient mice developed higher tumor burden than Apc(Min/+) mice with wild-type Ron. Even though baseline levels of intestinal crypt proliferation were increased in the Apc(Min/+) Ron-deficient mice, loss of Ron did not influence tumor size or histological appearance of the Apc(Min/+) adenomas, nor was beta-catenin localization changed compared to Apc(Min/+) mice with Ron. Together, these data suggest that Ron may be important in normal intestinal tissue homeostasis, but that the expression of this receptor is not required for the formation and growth of adenomas in Apc(Min/+) mice.
Collapse
Affiliation(s)
- Sara E Meyer
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | |
Collapse
|
47
|
Thobe MN, Gurusamy D, Pathrose P, Waltz SE. The Ron receptor tyrosine kinase positively regulates angiogenic chemokine production in prostate cancer cells. Oncogene 2009; 29:214-26. [PMID: 19838218 PMCID: PMC2806938 DOI: 10.1038/onc.2009.331] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Overexpression of the Ron receptor tyrosine kinase has recently been shown in a wide variety of human cancers. However, no studies have examined Ron receptor expression or function during prostate tumorigenesis. We report here that Ron is highly expressed in human prostate adenocarcinoma and metastatic lymph nodes compared to normal prostate or benign prostate hyperplasia. Furthermore, we show that Ron is overexpressed in PC-3 and DU145 prostate cancer cell lines, and that levels of angiogenic chemokines produced by prostate cancer cells positively correlates with Ron expression. Knockdown of Ron in PC-3 or DU145 cells results in a significant decrease in angiogenic chemokine production and is associated with decreased activation of the transcription factor NF-kappaB. Moreover, exogenous overexpression of Ron in LNCaP cells is sufficient to induce a significant increase in angiogenic chemokines that can be abrogated by inhibition of NF-kappaB signaling. Given that the function of angiogenic chemokines is important in the development of new blood vessels, we also examined the ability of Ron to modulate endothelial cell migration. Our data show that knockdown of Ron in prostate cancer cells results both in significantly less endothelial cell chemotaxis compared to Ron-expressing cells in vitro as well as in reduced tumor growth and decreased microvessel density following orthotopic transplantation into the prostate in vivo. In total, our data suggest that the Ron receptor is important in modulating prostate tumor growth by modulating angiogenic chemokine production and subsequent endothelial cell recruitment.
Collapse
Affiliation(s)
- M N Thobe
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | | | | |
Collapse
|
48
|
Eckerich C, Schulte A, Martens T, Zapf S, Westphal M, Lamszus K. RON receptor tyrosine kinase in human gliomas: expression, function, and identification of a novel soluble splice variant. J Neurochem 2009; 109:969-80. [PMID: 19519771 DOI: 10.1111/j.1471-4159.2009.06027.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Malignant gliomas are incurable because of their diffuse infiltration of the surrounding brain. The recepteur d'origine nantais (RON) receptor tyrosine kinase is highly expressed in several epithelial cancer types and mediates tumorigenic, pro-invasive as well as metastatic effects. Analyzing RON expression in human gliomas, we found that different splice variants with known oncogenic activity are expressed in glioblastomas (GBM). In addition, the RON ligand macrophage-stimulating protein (MSP) is secreted by cultured GBM cells. MSP showed no mitogenic effect on GBM cells but displayed significant chemotactic activity for several GBM cell lines. We identified a novel splice variant, RONDelta90, which is generated by a transcript missing exon 6. As a result of a frameshift, translation is terminated in exon 7, resulting in a truncated soluble protein. RONDelta90 transcripts are expressed in normal human brain as well as in low grade astrocytomas but only in approximately 50% of highly malignant astrocytomas. In addition, RONDelta90 is detectable in supernatants of GBM cell lines. We cloned the RONDelta90 cDNA, and purified the recombinant protein from transfected cells. RONDelta90 inhibited MSP-induced phosphorylation of cellular RON and also attenuated basal activation levels. In addition, RONDelta90 inhibited MSP-induced glioma cell migration as well as random motility. To conclude, RONDelta90 is a novel soluble receptor variant with antagonistic activity that may act as a physiological modulator of RON signaling. The expression of several oncogenic RON splice variants in malignant gliomas suggests that these could represent candidate targets for treatment with agents inhibiting RON activity.
Collapse
Affiliation(s)
- Carmen Eckerich
- Department of Neurosurgery, Laboratory for Brain Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Kobayashi T, Furukawa Y, Kikuchi J, Ito C, Miyata Y, Muto S, Tanaka A, Kusano E. Transactivation of RON receptor tyrosine kinase by interaction with PDGF receptor beta during steady-state growth of human mesangial cells. Kidney Int 2009; 75:1173-1183. [PMID: 19242504 DOI: 10.1038/ki.2009.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although it is well known that platelet-derived growth factor (PDGF) causes mesangial cell proliferation (presumably contributing to progression of glomerular disease), targeted inhibition of the PDGF receptor system has shown only limited efficacy against glomerular diseases. To examine whether this discrepancy is due to the involvement of other pathways, we used phosphorylated receptor tyrosine kinase arrays and found that RON (recepteur d'origine nantais) was phosphorylated while the PDGF receptor was dephosphorylated (thus inactive) in human mesangial cells (HMCs) at the time of cell cycle entry. Further, RON remained active during steady-state growth. Activation of RON was independent of its canonical ligand, macrophage-stimulating protein, but was mediated by transactivation from the PDGF-engaged PDGF receptor. Following stimulation with PDGF we found that the two receptors physically interacted. Knockdown of RON by siRNA increased the number of apoptotic cells without affecting the rate of DNA synthesis, suggesting that RON has anti-apoptotic functions. Immunohistochemical analysis found phosphorylated RON in glomerular lesions of patients with IgA nephropathy but not those with minimal change nephrotic syndrome, a disease not associated with mesangial proliferation. These results suggest that RON is involved in mesangial cell proliferation under both physiological and pathological conditions, and may be a relevant target for therapeutic intervention.
Collapse
Affiliation(s)
- Takahisa Kobayashi
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan; Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yusuke Furukawa
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | - Jiro Kikuchi
- Division of Stem Cell Regulation, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Chiharu Ito
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yukio Miyata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shigeaki Muto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Akira Tanaka
- Department of Pathology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Eiji Kusano
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
50
|
Wang J, Rajput A, Kan JLC, Rose R, Liu XQ, Kuropatwinski K, Hauser J, Beko A, Dominquez I, Sharratt EA, Brattain L, Levea C, Sun FL, Keane DM, Gibson NW, Brattain MG. Knockdown of Ron kinase inhibits mutant phosphatidylinositol 3-kinase and reduces metastasis in human colon carcinoma. J Biol Chem 2009; 284:10912-22. [PMID: 19224914 DOI: 10.1074/jbc.m809551200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abnormal accumulation and activation of receptor tyrosine kinase Ron (recepteur d'origine nantais) has been demonstrated in a variety of primary human cancers. We show that RNA interference-mediated knockdown of Ron kinase in a highly tumorigenic colon cancer cell line led to reduced proliferation as compared with the control cells. Decreased Ron expression sensitized HCT116 cells to growth factor deprivation stress-induced apoptosis as reflected by increased DNA fragmentation and caspase 3 activation. In addition, cell motility was decreased in Ron knockdown cells as measured by wound healing assays and transwell assays. HCT116 cells are heterozygous for gain of function mutant PIK3CA H1047R. Analysis of signaling proteins that are affected by Ron knockdown revealed that phosphatidylinositol 3-kinase (PI3K) activity of the mutant PI3K as well as AKT phosphorylation was substantially reduced in the Ron knockdown cells compared with the control cells. Moreover, we demonstrated in vivo that knockdown of Ron expression significantly reduced lung metastasis as compared with the control cells in the orthotopic models. In summary, our results demonstrate that Ron plays an essential role in maintaining malignant phenotypes of colon cancer cells through regulating mutant PI3K activity. Therefore, targeting Ron kinase could be a potential strategy for colon cancer treatment, especially in patients bearing gain of function mutant PI3K activity.
Collapse
Affiliation(s)
- Jing Wang
- University of Nebraska Medical Center, Eppley Institute for Research in Cancer and Allied Diseases, Omaha, Nebraska 68198, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|