1
|
Amiri M, Tabatabai TS, Seifi Z, Rostaminasab G, Mikaeili A, Hosseini F, Rezakhani L. Three-dimensional in vitro models in head and neck cancer: current trends and applications. Med Oncol 2025; 42:194. [PMID: 40320444 DOI: 10.1007/s12032-025-02737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/18/2025] [Indexed: 06/01/2025]
Abstract
Head and neck cancer (HNC) is the sixth most prevalent malignancy worldwide and includes a variety of upper gastrointestinal abnormalities. HNC includes oral, throat, voice box, nasal cavity, paranasal sinuses, and salivary gland cancers. Squamous cells in the mouth, nose, and throat cause HNC. Drugs, alcohol, poor diets, smoking, and genetics all contribute to this condition. Cancer research has focused on three-dimensional (3D) models in HNC biology in recent decades. An adequate microenvironmental system and cancer cell culture are the initial steps to understanding cancer cells' complicated interactions with their surroundings. New 3D models claim to bridge in vivo and in vitro investigations and erase the gap. Interdisciplinary cell biology and tissue engineering researchers are creating 3D cancer tissue models to better understand the illness and develop more accurate cancer medicines. Tissue engineering researchers, who are always exploring novel approaches to treat cancer, have been able to include the third dimension into laboratory settings and mimic cell-to-cell and cell-to-matrix interactions by recreating the tumor microenvironment using 3D models and so make research on cancer easier. This review addresses recent developments in tissue engineering with an emphasis on 3D models in HNC.
Collapse
Affiliation(s)
- Masoumeh Amiri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zahra Seifi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Abdolhamid Mikaeili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Hosseini
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Deipenbrock A, Wilmes BE, Sommermann T, Abdo N, Moustakas K, Raasch M, Rennert K, Teusch NE. Modelling of the multicellular tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC) on a fit-for-purpose biochip for preclinical drug discovery. LAB ON A CHIP 2025; 25:2168-2181. [PMID: 40018951 DOI: 10.1039/d4lc01016g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and lethal form of pancreatic cancer. One major cause for a fast disease progression is the presence of a highly fibrotic tumor microenvironment (TME) mainly composed of cancer-associated fibroblasts (CAF), and various immune cells, especially tumor-associated macrophages (TAM). To conclusively evaluate drug efficacy, it is crucial to develop in vitro models that can recapitulate the cross talk between tumor cells and the surrounding stroma. Here, we constructed a fit-for-purpose biochip platform which allows the integration of PDAC spheroids (composed of PANC-1 cells and pancreatic stellate cells (PSC)). Additionally, the chip design enables dynamic administration of drugs or immune cells via a layer of human umbilical vein endothelial cells (HUVEC). As a proof-of-concept for drug administration, vorinostat, an FDA-approved histone deacetylase inhibitor for cutaneous T cell lymphoma (CTCL), subjected via continuous flow for 72 h, resulted in a significantly reduced viability of PDAC spheroids without affecting vascular integrity. Furthermore, dynamic perfusion with peripheral mononuclear blood cells (PBMC)-derived monocytes resulted in an immune cell migration through the endothelium into the spheroids. After 72 h of infiltration, monocytes differentiated into macrophages which polarized into the M2 phenotype. The polarization into M2 macrophages persisted for at least 168 h, verified by expression of the M2 marker CD163 which increased from 72 h to 168 h, while the M1 markers CD86 and HLA-DR were significantly downregulated. Overall, the described spheroid-on-chip model allows the evaluation of novel therapeutic strategies by mimicking and targeting the complex TME of PDAC.
Collapse
Affiliation(s)
- Alina Deipenbrock
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | - Ben Eric Wilmes
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | - Kyra Moustakas
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | - Nicole E Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
3
|
Nielsen BS, Madsen NH, Larsen J, Skandorff I, Gad M, Holmstrøm K. Architectural organization and molecular profiling of 3D cancer heterospheroids and their application in drug testing. Front Oncol 2024; 14:1386097. [PMID: 39011470 PMCID: PMC11246882 DOI: 10.3389/fonc.2024.1386097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/31/2024] [Indexed: 07/17/2024] Open
Abstract
3D cancer cell cultures have enabled new opportunities for replacing compound testing in experimental animals. However, most solid tumors are composed of multiple cell types, including fibroblasts. In this study we developed multicellular tumor heterospheroids composed of cancer and fibroblasts cell lines. We developed heterospheroids by combining HT-29, MCF-7, PANC-1 or SW480 with 1BR.3.G fibroblasts, which we have previously reported support spheroid formation. We also tested fibroblast cell lines, MRC-5, GM00498 and HIF, but 1BR.3.G was found to best form heterospheroids with morphological similarity to in vivo tumor tissue. The architectural organization of heterospheroids was based on histological examination using immunohistochemistry. We found that HT-29 and MCF-7 cells developed spheroids with the cancer cells surrounding the fibroblasts, whereas PANC-1 cells interspersed with the fibroblasts and SW480 cells were surrounded by fibroblasts. The fibroblasts also expressed collagen-1 and FAP-α, and whole transcriptomic analysis (WTA) showed abundant ECM- and EMT-related expression in heterospheroids, thus reflecting a representative tumor-like microenvironment. The WTA showed that PANC-1 heterospheroids possess a strong EMT profile with abundant Vimentin and CDH2 expression. Drug testing was evaluated by measuring cytotoxicity of 5FU and cisplatin using cell viability and apoptosis assays. We found no major impact on the cytotoxicity when fibroblasts were added to the spheroids. We conclude that the cancer cell lines together with fibroblasts shape the architectural organization of heterospheroids to form tumor-like morphology, and we propose that the various 3D tumor structures can be used for drug testing directed against the cancer cells as well as the fibroblasts.
Collapse
Affiliation(s)
- Boye Schnack Nielsen
- Department of Cellular Engineering & Disease Modeling, Bioneer A/S, Hørsholm, Denmark
| | | | | | | | | | | |
Collapse
|
4
|
Arutyunyan I, Jumaniyazova E, Makarov A, Fatkhudinov T. In Vitro Models of Head and Neck Cancer: From Primitive to Most Advanced. J Pers Med 2023; 13:1575. [PMID: 38003890 PMCID: PMC10672510 DOI: 10.3390/jpm13111575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
For several decades now, researchers have been trying to answer the demand of clinical oncologists to create an ideal preclinical model of head and neck squamous cell carcinoma (HNSCC) that is accessible, reproducible, and relevant. Over the past years, the development of cellular technologies has naturally allowed us to move from primitive short-lived primary 2D cell cultures to complex patient-derived 3D models that reproduce the cellular composition, architecture, mutational, or viral load of native tumor tissue. Depending on the tasks and capabilities, a scientific laboratory can choose from several types of models: primary cell cultures, immortalized cell lines, spheroids or heterospheroids, tissue engineering models, bioprinted models, organoids, tumor explants, and histocultures. HNSCC in vitro models make it possible to screen agents with potential antitumor activity, study the contribution of the tumor microenvironment to its progression and metastasis, determine the prognostic significance of individual biomarkers (including using genetic engineering methods), study the effect of viral infection on the pathogenesis of the disease, and adjust treatment tactics for a specific patient or groups of patients. Promising experimental results have created a scientific basis for the registration of several clinical studies using HNSCC in vitro models.
Collapse
Affiliation(s)
- Irina Arutyunyan
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of the Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| | - Enar Jumaniyazova
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
| | - Andrey Makarov
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- Histology Department, Pirogov Russian National Research Medical University, Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, RUDN University, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia; (I.A.); (A.M.); (T.F.)
- Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution Petrovsky National Research Centre of Surgery, 3 Tsyurupy Street, 117418 Moscow, Russia
| |
Collapse
|
5
|
Batalha S, Gomes CM, Brito C. Immune microenvironment dynamics of HER2 overexpressing breast cancer under dual anti-HER2 blockade. Front Immunol 2023; 14:1267621. [PMID: 38022643 PMCID: PMC10643871 DOI: 10.3389/fimmu.2023.1267621] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The clinical prognosis of the HER2-overexpressing (HER2-OE) subtype of breast cancer (BC) is influenced by the immune infiltrate of the tumor. Specifically, monocytic cells, which are promoters of pro-tumoral immunosuppression, and NK cells, whose basal cytotoxic function may be enhanced with therapeutic antibodies. One of the standards of care for HER2+ BC patients includes the combination of the anti-HER2 antibodies trastuzumab and pertuzumab. This dual combination was a breakthrough against trastuzumab resistance; however, this regimen does not yield complete clinical benefit for a large fraction of patients. Further therapy refinement is still hampered by the lack of knowledge on the immune mechanism of action of this antibody-based dual HER2 blockade. Methods To explore how the dual antibody challenge influences the phenotype and function of immune cells infiltrating the HER2-OE BC microenvironment, we developed in vitro 3D heterotypic cell models of this subtype. The models comprised aggregates of HER2+ BC cell lines and human peripheral blood mononuclear cells. Cells were co-encapsulated in a chemically inert alginate hydrogel and maintained in agitation-based culture system for up to 7 days. Results The 3D models of the HER2-OE immune microenvironment retained original BC molecular features; the preservation of the NK cell compartment was achieved upon optimization of culture time and cytokine supplementation. Challenging the models with the standard-of-care combination of trastuzumab and pertuzumab resulted in enhanced immune cytotoxicity compared with trastuzumab alone. Features of the response to therapy within the immune tumor microenvironment were recapitulated, including induction of an immune effector state with NK cell activation, enhanced cell apoptosis and decline of immunosuppressive PD-L1+ immune cells. Conclusions This work presents a unique human 3D model for the study of immune effects of anti-HER2 biologicals, which can be used to test novel therapy regimens and improve anti-tumor immune function.
Collapse
Affiliation(s)
- Sofia Batalha
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Monteiro Gomes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
6
|
Vakhshiteh F, Bagheri Z, Soleimani M, Ahvaraki A, Pournemat P, Alavi SE, Madjd Z. Heterotypic tumor spheroids: a platform for nanomedicine evaluation. J Nanobiotechnology 2023; 21:249. [PMID: 37533100 PMCID: PMC10398970 DOI: 10.1186/s12951-023-02021-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023] Open
Abstract
Nanomedicine has emerged as a promising therapeutic approach, but its translation to the clinic has been hindered by the lack of cellular models to anticipate how tumor cells will respond to therapy. Three-dimensional (3D) cell culture models are thought to more accurately recapitulate key features of primary tumors than two-dimensional (2D) cultures. Heterotypic 3D tumor spheroids, composed of multiple cell types, have become more popular than homotypic spheroids, which consist of a single cell type, as a superior model for mimicking in vivo tumor heterogeneity and physiology. The stromal interactions demonstrated in heterotypic 3D tumor spheroids can affect various aspects, including response to therapy, cancer progression, nanomedicine penetration, and drug resistance. Accordingly, to design more effective anticancer nanomedicinal therapeutics, not only tumor cells but also stromal cells (e.g., fibroblasts and immune cells) should be considered to create a more physiologically relevant in vivo microenvironment. This review aims to demonstrate current knowledge of heterotypic 3D tumor spheroids in cancer research, to illustrate current advances in utilizing these tumor models as a novel and versatile platform for in vitro evaluation of nanomedicine-based therapeutics in cancer research, and to discuss challenges, guidelines, and future directions in this field.
Collapse
Affiliation(s)
- Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zeinab Bagheri
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Marziye Soleimani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Akram Ahvaraki
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Parisa Pournemat
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Seyed Ebrahim Alavi
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
7
|
Fröhlich E. The Variety of 3D Breast Cancer Models for the Study of Tumor Physiology and Drug Screening. Int J Mol Sci 2023; 24:ijms24087116. [PMID: 37108283 PMCID: PMC10139112 DOI: 10.3390/ijms24087116] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer is the most common cancer in women and responsible for multiple deaths worldwide. 3D cancer models enable a better representation of tumor physiology than the conventional 2D cultures. This review summarizes the important components of physiologically relevant 3D models and describes the spectrum of 3D breast cancer models, e.g., spheroids, organoids, breast cancer on a chip and bioprinted tissues. The generation of spheroids is relatively standardized and easy to perform. Microfluidic systems allow control over the environment and the inclusion of sensors and can be combined with spheroids or bioprinted models. The strength of bioprinting relies on the spatial control of the cells and the modulation of the extracellular matrix. Except for the predominant use of breast cancer cell lines, the models differ in stromal cell composition, matrices and fluid flow. Organoids are most appropriate for personalized treatment, but all technologies can mimic most aspects of breast cancer physiology. Fetal bovine serum as a culture supplement and Matrigel as a scaffold limit the reproducibility and standardization of the listed 3D models. The integration of adipocytes is needed because they possess an important role in breast cancer.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
8
|
Albert V, Piendl G, Yousseff D, Lammert H, Hummel M, Ortmann O, Jagla W, Gaumann A, Wege AK, Brockhoff G. Protein kinase C targeting of luminal (T-47D), luminal/HER2-positive (BT474), and triple negative (HCC1806) breast cancer cells in-vitro with AEB071 (Sotrastaurin) is efficient but mediated by subtype specific molecular effects. Arch Gynecol Obstet 2022; 306:1197-1210. [PMID: 35298675 PMCID: PMC9470618 DOI: 10.1007/s00404-022-06434-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
Purpose Protein kinase C (PKC) plays a pivotal role in malignant cell proliferation, apoptosis, invasiveness and migration. However, its exploitation as therapeutic target in breast cancer has been merely explored. Here were evaluated the AEB071 (Sotrastaurin™) treatment efficiency of breast cancer cell lines derived from estrogen receptor positive (T-47D), estrogen/HER2 receptor positive (BT474), and triple negative (HCC1806) breast cancer cells under 2D (monolayer) and 3D (multicellular tumor spheroids) culture conditions. Additionally, spheroid cocultures of BC and N1 fibroblasts were analyzed. Methods We quantitatively assessed the proliferation capacity of breast cancer cells and fibroblasts as a function of AEB071 treatment using flow cytometry. The activities of PKC isoforms, substrates, and key molecules of the PKC signaling known to be involved in the regulation of tumor cell proliferation and cellular survival were additionally evaluated. Moreover, a multigene expression analysis (PanCancer Pathways assay) using the nanoString™ technology was applied. Results All breast cancer cell lines subjected to this study were sensitive to AEB071 treatment, whereby cell proliferation in 2D culture was considerably (BT474) or moderately (HCC1806) retarded in G0/G1 or in G2/M phase (T-47D) of the cell cycle. Regardless of the breast cancer subtype the efficiency of AEB071 treatment was significantly lower in the presence of N1 fibroblast cells. Subtype specific driver molecules, namely IL19, c-myb, and NGFR were mostly affected by the AEB071 treatment. Conclusion A combined targeting of PKC and a subtype specific driver molecule might complement specified breast cancer treatment.
Collapse
Affiliation(s)
- Veruschka Albert
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Gerhard Piendl
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | | | - Hedwig Lammert
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Hummel
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | | | | | - Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
9
|
Franchi-Mendes T, Eduardo R, Domenici G, Brito C. 3D Cancer Models: Depicting Cellular Crosstalk within the Tumour Microenvironment. Cancers (Basel) 2021; 13:4610. [PMID: 34572836 PMCID: PMC8468887 DOI: 10.3390/cancers13184610] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
The tumour microenvironment plays a critical role in tumour progression and drug resistance processes. Non-malignant cell players, such as fibroblasts, endothelial cells, immune cells and others, interact with each other and with the tumour cells, shaping the disease. Though the role of each cell type and cell communication mechanisms have been progressively studied, the complexity of this cellular network and its role in disease mechanism and therapeutic response are still being unveiled. Animal models have been mainly used, as they can represent systemic interactions and conditions, though they face recognized limitations in translational potential due to interspecies differences. In vitro 3D cancer models can surpass these limitations, by incorporating human cells, including patient-derived ones, and allowing a range of experimental designs with precise control of each tumour microenvironment element. We summarize the role of each tumour microenvironment component and review studies proposing 3D co-culture strategies of tumour cells and non-malignant cell components. Moreover, we discuss the potential of these modelling approaches to uncover potential therapeutic targets in the tumour microenvironment and assess therapeutic efficacy, current bottlenecks and perspectives.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rodrigo Eduardo
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Giacomo Domenici
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Catarina Brito
- iBET—Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (T.F.-M.); (R.E.); (G.D.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
10
|
Franchi-Mendes T, Lopes N, Brito C. Heterotypic Tumor Spheroids in Agitation-Based Cultures: A Scaffold-Free Cell Model That Sustains Long-Term Survival of Endothelial Cells. Front Bioeng Biotechnol 2021; 9:649949. [PMID: 34178955 PMCID: PMC8219978 DOI: 10.3389/fbioe.2021.649949] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/06/2021] [Indexed: 12/25/2022] Open
Abstract
Endothelial cells (ECs) are an important component of the tumor microenvironment, playing key roles in tumor development and progression that span from angiogenesis to immune regulation and drug resistance. Heterotypic tumor spheroids are one of the most widely used in vitro tumor microenvironment models, presenting improved recapitulation of tumor microenvironments compared to 2D cultures, in a simple and low-cost setup. Heterotypic tumor spheroid models incorporating endothelial cells have been proposed but present multiple limitations, such as the short culture duration typically obtained, the use of animal-derived matrices, and poor reproducibility; the diversity of culture conditions employed hinders comparison between studies and standardization of relevant culture parameters. Herein, we developed long-term cultures of triple heterotypic spheroids composed of the HCC1954 tumor cell line, human fibroblasts, and ECs. We explored culture parameters potentially relevant for EC maintenance, such as tumor cell line, seeding cell number, cell ratio, and agitation vs. static culture. In HCC1954-based spheroids, we observed maintenance of viable EC for up to 1 month of culture in agitation, with retention of the identity markers CD31 and von Willebrand factor. At the optimized tumor cell:fibroblast:EC ratio of 1:3:10, HCC1954-based spheroids had a higher EC area/total spheroid area at 1 month of culture than the other cell ratios tested. EC maintenance was tumor cell line-dependent, and in HCC1954-based spheroids it was also dependent on the presence of fibroblasts and agitation. Moreover, vascular endothelial growth factor (VEGF) supplementation was not required for maintenance of EC, as the factor was endogenously produced. ECs co-localized with fibroblasts, which accumulated preferentially in the core of the spheroids and secreted EC-relevant extracellular matrix proteins, such as collagen I and IV. This simple model setup does not rely on artificial or animal-derived scaffolds and can serve as a useful tool to explore the culture parameters influencing heterotypic spheroids, contributing to model standardization, as well as to explore molecular cross talk of ECs within the tumor microenvironment, and potentially its effects on drug response.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Nuno Lopes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Oeiras, Portugal
| |
Collapse
|
11
|
Guo J, Wei C, Wang X, Hou Y, Guo W. An in situ mechanical adjustable double crosslinking hyaluronic acid/poly-lysine hydrogel matrix: Fabrication, characterization and cell morphology. Int J Biol Macromol 2021; 180:234-241. [PMID: 33737180 DOI: 10.1016/j.ijbiomac.2021.03.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/26/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023]
Abstract
Cell fate and morphologies are influenced by the mechanical property of matrix. However, the relevant works about the dynamic adjustable of matrix mechanical property is rare and most of them need extra stimulation, such as the controllable of the degradation. In this study, double crosslinking (DC) hydrogels are fabricated by sequential covalent crosslinking and electrostatic interactions between hyaluronic acid and poly-lysine. Without any extra stimulation or treatment, the compressive stress of DC-hydrogels increases from 22.4 ± 9.4 kPa to 320.1 ± 6.6 kPa with the elongation of incubation time in DMEM solution. The change of compressive stress of matrix induced the morphology of L929 fibroblast cells adjusted from the distributed round shape to spheroid cell clusters and finally to spread shape. RNA sequence analysis also demonstrated that the differentially gene expression and GO enrichment between the cells seeded on the DC-hydrogel with different incubation time. In addition, by increasing the electrostatic interactions ratio of the hydrogel, the biodegradation, compressive stress and energy dissipation of the DC-hydrogels were also significantly improved. Therefore, our study provides new and critical insights into the design strategy to achieve DC-hydrogels which can in situ alter cells morphology and open up a new avenue for the application of disease therapy.
Collapse
Affiliation(s)
- Jiahong Guo
- Shanghai Qisheng Biological Preparation Co. Ltd., Shanghai 201106, PR China; Shanghai Haohai Biological Technology Co. Ltd., Shanghai 200052, PR China; Polymer Processing Laboratory, Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Changzheng Wei
- Shanghai Qisheng Biological Preparation Co. Ltd., Shanghai 201106, PR China.
| | - Xiaotong Wang
- Shanghai Qisheng Biological Preparation Co. Ltd., Shanghai 201106, PR China
| | - Yongtai Hou
- Shanghai Haohai Biological Technology Co. Ltd., Shanghai 200052, PR China
| | - Weihong Guo
- Polymer Processing Laboratory, Key Laboratory for Preparation and Application of Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
12
|
Yakavets I, Francois A, Benoit A, Merlin JL, Bezdetnaya L, Vogin G. Advanced co-culture 3D breast cancer model for investigation of fibrosis induced by external stimuli: optimization study. Sci Rep 2020; 10:21273. [PMID: 33277538 PMCID: PMC7718236 DOI: 10.1038/s41598-020-78087-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Radiation-induced fibrosis (RIF) is the main late radiation toxicity in breast cancer patients. Most of the current 3D in vitro breast cancer models are composed by cancer cells only and are unable to reproduce the complex cellular homeostasis within the tumor microenvironment to study RIF mechanisms. In order to account complex cellular interactions within the tumor microenvironment, an advanced 3D spheroid model, consisting of the luminal breast cancer MCF-7 cells and MRC-5 fibroblasts, was developed. The spheroids were generated using the liquid overlay technique in culture media into 96-well plates previously coated with 1% agarose (m/v, in water). In total, 21 experimental setups were tested during the optimization of the model. The generated spheroids were characterized using fluorescence imaging, immunohistology and immunohistochemistry. The expression of ECM components was confirmed in co-culture spheroids. Using α-SMA staining, we confirmed the differentiation of healthy fibroblasts into myofibroblasts upon the co-culturing with cancer cells. The induction of fibrosis was studied in spheroids treated 24 h with 10 ng/mL TGF-β and/or 2 Gy irradiation. Overall, the developed advanced 3D stroma-rich in vitro model of breast cancer provides a possibility to study fibrosis mechanisms taking into account 3D arrangement of the complex tumor microenvironment.
Collapse
Affiliation(s)
- Ilya Yakavets
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Aurelie Francois
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Alice Benoit
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Jean-Louis Merlin
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France
| | - Lina Bezdetnaya
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France.
| | - Guillaume Vogin
- UMR7039 CRAN, Institut de Cancérologie de Lorraine, CNRS, Université de Lorraine, 6 Avenue de Bourgogne, 54519, Vandoeuvre-lès-Nancy, France.,UMR 7365 CNRS-UL, IMoPA, Vandœuvre-lès-Nancy, France.,Centre François Baclesse, Centre National de Radiothérapie du Grand-Duché du Luxembourg, Esch Sur Alzette, Luxembourg
| |
Collapse
|
13
|
Doctor A, Seifert V, Ullrich M, Hauser S, Pietzsch J. Three-Dimensional Cell Culture Systems in Radiopharmaceutical Cancer Research. Cancers (Basel) 2020; 12:cancers12102765. [PMID: 32993034 PMCID: PMC7600608 DOI: 10.3390/cancers12102765] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
In preclinical cancer research, three-dimensional (3D) cell culture systems such as multicellular spheroids and organoids are becoming increasingly important. They provide valuable information before studies on animal models begin and, in some cases, are even suitable for reducing or replacing animal experiments. Furthermore, they recapitulate microtumors, metastases, and the tumor microenvironment much better than monolayer culture systems could. Three-dimensional models show higher structural complexity and diverse cell interactions while reflecting (patho)physiological phenomena such as oxygen and nutrient gradients in the course of their growth or development. These interactions and properties are of great importance for understanding the pathophysiological importance of stromal cells and the extracellular matrix for tumor progression, treatment response, or resistance mechanisms of solid tumors. Special emphasis is placed on co-cultivation with tumor-associated cells, which further increases the predictive value of 3D models, e.g., for drug development. The aim of this overview is to shed light on selected 3D models and their advantages and disadvantages, especially from the radiopharmacist's point of view with focus on the suitability of 3D models for the radiopharmacological characterization of novel radiotracers and radiotherapeutics. Special attention is paid to pancreatic ductal adenocarcinoma (PDAC) as a predestined target for the development of new radionuclide-based theranostics.
Collapse
Affiliation(s)
- Alina Doctor
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Verena Seifert
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (A.D.); (V.S.); (M.U.); (S.H.)
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01069 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-2622
| |
Collapse
|
14
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
15
|
Norberg KJ, Liu X, Fernández Moro C, Strell C, Nania S, Blümel M, Balboni A, Bozóky B, Heuchel RL, Löhr JM. A novel pancreatic tumour and stellate cell 3D co-culture spheroid model. BMC Cancer 2020; 20:475. [PMID: 32460715 PMCID: PMC7251727 DOI: 10.1186/s12885-020-06867-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma is a devastating disease with poor outcome, generally characterized by an excessive stroma component. The purpose of this study was to develop a simple and reproducible in vitro 3D-assay employing the main constituents of pancreatic ductal adenocarcinoma, namely pancreatic stellate and cancer cells. METHOD A spheroid assay, directly co-culturing human pancreatic stellate cells with human pancreatic tumour cells in 3D was established and characterized by electron microscopy, immunohistochemistry and real-time RT-PCR. In order to facilitate the cell type-specific crosstalk analysis by real-time RT-PCR, we developed a novel in vitro 3D co-culture model, where the participating cell types were from different species, human and mouse, respectively. Using species-specific PCR primers, we were able to investigate the crosstalk between stromal and cancer cells without previous cell separation and sorting. RESULTS We found clear evidence for mutual influence, such as increased proliferation and a shift towards a more mesenchymal phenotype in cancer cells and an activation of pancreatic stellate cells towards the myofibroblast phenotype. Using a heterospecies approach, which we coined virtual sorting, confirmed the findings we made initially in the human-human spheroids. CONCLUSIONS We developed and characterized different easy to set up 3D models to investigate the crosstalk between cancer and stroma cells for pancreatic cancer.
Collapse
Affiliation(s)
- K J Norberg
- Pancreas Cancer Research Lab, Department of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Novum, floor 6, room 613, SE-141 86, Stockholm, Sweden
| | - X Liu
- Pancreas Cancer Research Lab, Department of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Novum, floor 6, room 613, SE-141 86, Stockholm, Sweden
| | - C Fernández Moro
- Department of Laboratory Medicine (LabMed), Division of Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - C Strell
- Department of Cancer, Division of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | - S Nania
- Pancreas Cancer Research Lab, Department of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Novum, floor 6, room 613, SE-141 86, Stockholm, Sweden
| | - M Blümel
- Pancreas Cancer Research Lab, Department of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Novum, floor 6, room 613, SE-141 86, Stockholm, Sweden
| | - A Balboni
- Pancreas Cancer Research Lab, Department of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Novum, floor 6, room 613, SE-141 86, Stockholm, Sweden
| | - B Bozóky
- Department of Laboratory Medicine (LabMed), Division of Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Pathology/Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - R L Heuchel
- Pancreas Cancer Research Lab, Department of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Novum, floor 6, room 613, SE-141 86, Stockholm, Sweden.
| | - J M Löhr
- Pancreas Cancer Research Lab, Department of Clinical Intervention and Technology (CLINTEC), Karolinska Institutet, Novum, floor 6, room 613, SE-141 86, Stockholm, Sweden
- Department of Cancer, Division of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Zhao L, Liu Y, Liu Y, Zhang M, Zhang X. Microfluidic Control of Tumor and Stromal Cell Spheroids Pairing and Merging for Three-Dimensional Metastasis Study. Anal Chem 2020; 92:7638-7645. [PMID: 32374153 DOI: 10.1021/acs.analchem.0c00408] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three-dimensional cell culture provides an efficient way to simulate the in vivo tumorigenic microenvironment where tumor-stroma interaction intrinsically plays a pivotal role. Conventional three-dimensional (3D) culture is inadequate to address precise coexistential heterogeneous pairing and quantitative measurement in a parallel algorithm format. Herein, we implemented a set of microwell array microfluidic devices to study the cell spheroids-based tumor-stromal metastatic process in vitro. This approach enables accurate one-to-one pairing between tumor and fibroblast spheroid for dissecting 3D tumor invasion in the manner of high-content imaging. On one single device, 240 addressable tumor-stroma pairings can be formed with convenient pipetting and centrifugation within a small area of 1 cm2. Consequential confocal imaging analysis disclosed that the tumor spheroid could envelop the fibroblast spheroid. Specific chemicals can effectively hamper or promote this 3D metastasis. Due to the addressable time-resolved measurements of the merging process of hundreds of doublets, our approach allows us to decipher the metastatic phenotype between different tumor spheroids. Compared with traditional protocols, massive heterogeneous cellular spheroids pairing and merging using this method is well-defined with microfluidic control, which leads to a favorable high-content tumor-stroma doublet metastasis analysis. This simple technique will be a useful tool for investigating heterotypic spheroid-spheroid interactions.
Collapse
Affiliation(s)
- Liang Zhao
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| | - Yingying Liu
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| | - Yang Liu
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| | - Meiqin Zhang
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| | - Xueji Zhang
- Institute of Precision Medicine and Health, Research Center for Bioengineering and Sensing Technology, Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China, 100083
| |
Collapse
|
17
|
Mishriki S, Aithal S, Gupta T, Sahu RP, Geng F, Puri IK. Fibroblasts Accelerate Formation and Improve Reproducibility of 3D Cellular Structures Printed with Magnetic Assistance. RESEARCH (WASHINGTON, D.C.) 2020; 2020:3970530. [PMID: 32776011 PMCID: PMC7395227 DOI: 10.34133/2020/3970530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/18/2020] [Indexed: 12/05/2022]
Abstract
Fibroblasts (mouse, NIH/3T3) are combined with MDA-MB-231 cells to accelerate the formation and improve the reproducibility of 3D cellular structures printed with magnetic assistance. Fibroblasts and MDA-MB-231 cells are cocultured to produce 12.5 : 87.5, 25 : 75, and 50 : 50 total population mixtures. These mixtures are suspended in a cell medium containing a paramagnetic salt, Gd-DTPA, which increases the magnetic susceptibility of the medium with respect to the cells. A 3D monotypic MDA-MB-231 cellular structure is printed within 24 hours with magnetic assistance, whereas it takes 48 hours to form a similar structure through gravitational settling alone. The maximum projected areas and circularities, and cellular ATP levels of the printed structures are measured for 336 hours. Increasing the relative amounts of the fibroblasts mixed with the MDA-MB-231 cells decreases the time taken to form the structures and improves their reproducibility. Structures produced through gravitational settling have larger maximum projected areas and cellular ATP, but are deemed less reproducible. The distribution of individual cell lines in the cocultured 3D cellular structures shows that printing with magnetic assistance yields 3D cellular structures that resemble in vivo tumors more closely than those formed through gravitational settling. The results validate our hypothesis that (1) fibroblasts act as a "glue" that supports the formation of 3D cellular structures, and (2) the structures are produced more rapidly and with greater reproducibility with magnetically assisted printing than through gravitational settling alone. Printing of 3D cellular structures with magnetic assistance has applications relevant to drug discovery, lab-on-chip devices, and tissue engineering.
Collapse
Affiliation(s)
- Sarah Mishriki
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Srivatsa Aithal
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Tamaghna Gupta
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Rakesh P. Sahu
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Fei Geng
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
- Walter Booth School of Engineering Practice and Technology, Hamilton, Ontario, Canada
| | - Ishwar K. Puri
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
18
|
Barton M, Santucci-Pereira J, Vaccaro OG, Nguyen T, Su Y, Russo J. BC200 overexpression contributes to luminal and triple negative breast cancer pathogenesis. BMC Cancer 2019; 19:994. [PMID: 31646972 PMCID: PMC6813071 DOI: 10.1186/s12885-019-6179-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 09/20/2019] [Indexed: 01/04/2023] Open
Abstract
Background Long non coding RNAs (lncRNAs) are RNA molecules longer than 200 nucleotides that are not translated into proteins, but regulate the transcription of genes involved in different cellular processes, including cancer. Epidemiological analyses have demonstrated that parous women have a decreased risk of developing breast cancer in postmenopausal years if they went through a full term pregnancy in their early twenties. We here provide evidence of the role of BC200 in breast cancer and, potentially, in pregnancy’s preventive effect in reducing the lifetime risk of developing breast cancer. Methods Transcriptome analysis of normal breast of parous and nulliparous postmenopausal women revealed that several lncRNAs are differentially expressed in the parous breast. RNA sequencing of healthy postmenopausal breast tissue biopsies from eight parous and eight nulliparous women showed that there are 42 novel lncRNAs differentially expressed between these two groups. Screening of several of these 42 lncRNAs by RT-qPCR in different breast cancer cell lines, provided evidence that one in particular, lncEPCAM (more commonly known as BC200), was a strong candidate involved in cancer progression. Proliferation, migration, invasion and xerograph studies confirmed this hypothesis. Results The poorly studied oncogenic BC200 was selected to be tested in vitro and in vivo to determine its relevance in breast cancer and also to provide us with an understanding of its role in the increased susceptibility of the nulliparous women to cancer. Our results show that BC200 is upregulated in nulliparous women, and breast cancer cells and tissue. The role of BC200 is not completely understood in any of the breast cancer subtypes. We here provide evidence that BC200 has a role in luminal breast cancer as well as in the triple negative breast cancer subtype. Conclusion When overexpressed in luminal and triple negative breast cancer cell lines, BC200 shows increased proliferation, migration, and invasion in vitro. In vivo, overexpression of BC200 increased tumor size. Although treatment for cancer using lncRNAs as targets is in its infancy, the advancement in knowledge and technology to study their relevance in disease could lead to the development of novel treatment and preventive strategies for breast cancer.
Collapse
Affiliation(s)
- Maria Barton
- Biochemistry Department, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA. .,The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA.
| | - Julia Santucci-Pereira
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| | - Olivia G Vaccaro
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| | - Theresa Nguyen
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| | - Yanrong Su
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| | - Jose Russo
- The Irma H. Russo, MD Breast Cancer Research Laboratory, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, 19111, USA
| |
Collapse
|
19
|
3D breast cancer microtissue reveals the role of tumor microenvironment on the transport and efficacy of free-doxorubicin in vitro. Acta Biomater 2018; 75:200-212. [PMID: 29864516 DOI: 10.1016/j.actbio.2018.05.055] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/21/2018] [Accepted: 05/31/2018] [Indexed: 12/17/2022]
Abstract
The use of 3D cancer models will have both ethical and economic impact in drug screening and development, to promote the reduction of the animals employed in preclinical studies. Nevertheless, to be effective, such cancer surrogates must preserve the physiological relevance of the in vivo models in order to provide realistic information on drugs' efficacy. To figure out the role of the architecture and composition of 3D cancer models on their tumor-mimicking capability, here we studied the efficacy of doxorubicin (DOX), a well-known anticancer molecule in two different 3D cancer models: our 3D breast cancer microtissue (3D-μTP) versus the golden standard represented by spheroid model (sph). Both models were obtained by using cancer associated fibroblast (CAF) and breast cancer cells (MCF-7) as cellular component. Unlike spheroid model, 3D-μTP was engineered in order to induce the production of endogenous extracellular matrix by CAF. 3D-μTP have been compared to spheroid in mono- (MCF-7 alone) and co-culture (MCF-7/CAF), after the treatment with DOX in order to study cytotoxicity effect, diffusional transport and expression of proteins related to cancer progression. Compared to the spheroid model, 3D-μTP showed higher diffusion coefficient of DOX and lower cell viability. Also, the expression of some tumoral biomarkers related to cell junctions were different in the two models. STATEMENTS OF SIGNIFICANCE Cancer biology has made progress in unraveling the mechanism of cancer progression, anyway the most of the results are still obtained by 2D cell cultures or animal models, that do not faithfully copycat the tumor microenvironment. The lack of correlation between preclinical models and in vivo organisms negatively influences the clinical efficacy of chemotherapeutic drugs. Consequently, even if a huge amount of new drugs has been developed in the last decades, still people are dying because of cancer. Pharmaceutical companies are interested in 3D tumor model as valid alternative in drug screening in preclinical studies. However, a 3D tumor model that completely mimics tumor heterogeneity is still far to achieve. In our work we compare 3D human breast cancer microtissues and spheroids in terms of response to doxorubicin and drug diffusion. We believe that our results are interesting because they highlight the potential role of the proposed tumor model in the attempts to improve efficacy tests.
Collapse
|
20
|
Coculture of conjunctiva derived mesenchymal stem cells (CJMSCs) and corneal epithelial cells to reconstruct the corneal epithelium. Biologicals 2018; 54:39-43. [DOI: 10.1016/j.biologicals.2018.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 11/21/2022] Open
|
21
|
Ruutu M, Rautava J, Turunen A, Tirri T, Syrjänen S. 17β-estradiol and progesterone effect on human papillomavirus 16 positive cells grown as spheroid co-cultures. Cytotechnology 2018; 70:235-244. [PMID: 28983728 PMCID: PMC5809654 DOI: 10.1007/s10616-017-0137-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 09/02/2017] [Indexed: 02/06/2023] Open
Abstract
Human papillomavirus (HPV) is the key epidemiologic factor of cervical cancer, but additional cofactors are mandatory. Estrogen has been considered as one of those. Here, the aim was to study the effects of steroid hormones on HPV16 E6-E7, estradiol receptors ERα and ERβ, and progesterone receptor (PR) in HPV16-positive cervical carcinoma cell lines SiHa and CaSki grown as epithelial and fibroblast spheroid co-cultures. The spheroid co-cultures were exposured to 17β-estradiol or progesterone from day 7 onwards. mRNA levels of HPV16 E6-E7, ERα, ERβ and PR normalized against GAPDH were analyzed with quantitative reverse transcription-qPCR (RT-qPCR). 17β-estradiol and progesterone decreased HPV16 E6-E7 mRNA expression in CaSki and increased in SiHA co-cultures. In CaSki co-cultures, ERβ expression was blocked after 17β-estradiol exposure while in SiHa cells it slightly increased ERβ expression. PR expression was seen only in CaSki spheroids and it vanished after exposure to steroid hormones. Fibroblasts expressed all three hormone receptors as monolayers but ERβ expression decreased and ERα and PR vanished after co-culturing. Cell culturing platform changes both oncogene and hormone receptor expression in HPV16 positive cervical cancer cell lines. This needs to be considered when in vitro results are extrapolated to in vivo situations.
Collapse
Affiliation(s)
- Merja Ruutu
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry and MediCity Research Laboratory, Faculty of Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Dermcare-Vet Pty Ltd, 7 Centenary Road, Slacks Creek, QLD, 4127, Australia
| | - Jaana Rautava
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry and MediCity Research Laboratory, Faculty of Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland.
- Department of Pathology, Turku University Hospital, Kiinanmyllynkatu 4-8, 20520, Turku, Finland.
| | - Aaro Turunen
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry and MediCity Research Laboratory, Faculty of Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Teemu Tirri
- Biomaterials Research and Department of Prosthetic Dentistry, Institute of Dentistry, Faculty of Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
| | - Stina Syrjänen
- Department of Oral Pathology and Oral Radiology, Institute of Dentistry and MediCity Research Laboratory, Faculty of Medicine, University of Turku, Lemminkäisenkatu 2, 20520, Turku, Finland
- Department of Pathology, Turku University Hospital, Kiinanmyllynkatu 4-8, 20520, Turku, Finland
| |
Collapse
|
22
|
Costa MHG, de Soure AM, Cabral JMS, Ferreira FC, da Silva CL. Hematopoietic Niche - Exploring Biomimetic Cues to Improve the Functionality of Hematopoietic Stem/Progenitor Cells. Biotechnol J 2017; 13. [PMID: 29178199 DOI: 10.1002/biot.201700088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/27/2017] [Indexed: 12/19/2022]
Abstract
The adult bone marrow (BM) niche is a complex entity where a homeostatic hematopoietic system is maintained through a dynamic crosstalk between different cellular and non-cellular players. Signaling mechanisms triggered by cell-cell, cell-extracellular matrix (ECM), cell-cytokine interactions, and local microenvironment parameters are involved in controlling quiescence, self-renewal, differentiation, and migration of hematopoietic stem/progenitor cells (HSPC). A promising strategy to more efficiently expand HSPC numbers and tune their properties ex vivo is to mimic the hematopoietic niche through integration of adjuvant stromal cells, soluble cues, and/or biomaterial-based approaches in HSPC culture systems. Particularly, mesenchymal stem/stromal cells (MSC), through their paracrine activity or direct contact with HSPC, are thought to be a relevant niche player, positioning HSPC-MSC co-culture as a valuable platform to support the ex vivo expansion of hematopoietic progenitors. To improve the clinical outcome of hematopoietic cell transplantation (HCT), namely when the available HSPC are present in a limited number such is the case of HSPC collected from umbilical cord blood (UCB), ex vivo expansion of HSPC is required without eliminating the long-term repopulating capacity of more primitive HSC. Here, we will focus on depicting the characteristics of co-culture systems, as well as other bioengineering approaches to improve the functionality of HSPC ex vivo.
Collapse
Affiliation(s)
- Marta H G Costa
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - António M de Soure
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.,The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
23
|
Ringleb J, Strack E, Angioni C, Geisslinger G, Steinhilber D, Weigert A, Brüne B. Apoptotic Cancer Cells Suppress 5-Lipoxygenase in Tumor-Associated Macrophages. THE JOURNAL OF IMMUNOLOGY 2017; 200:857-868. [PMID: 29229677 DOI: 10.4049/jimmunol.1700609] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
Abstract
The enzyme 5-lipoxygenase (5-LO) is key in the synthesis of leukotrienes, which are potent proinflammatory lipid mediators involved in chronic inflammatory diseases including cancer. 5-LO is expressed in immune cells but also found in cancer cells. Although the role of 5-LO in tumor cells is beginning to emerge, with the notion that tumor-promoting functions are attributed to its products, the function of 5-LO in the tumor microenvironment remains unclear. To understand the role of 5-LO and its products in the tumor microenvironment, we analyzed its expression and function in tumor-associated macrophages (TAMs). TAMs were generated by coculturing primary human macrophages (MΦ) with human MCF-7 breast carcinoma cells, which caused cell death of cancer cells followed by phagocytosis of cell debris by MΦ. Expression and activity of 5-LO in TAMs were reduced upon coculture with cancer cells. Downregulation of 5-LO in TAMs required tumor cell death and the direct contact between MΦ and dying cancer cells via Mer tyrosine kinase. Subsequently, upregulation of proto-oncogene c-Myb in TAMs induced a stable transcriptional repression of 5-LO. Reduced 5-LO expression in TAMs was mechanistically coupled to an attenuated T cell recruitment. In primary TAMs from human and murine breast tumors, 5-LO expression was absent or low when compared with monocyte-derived MΦ. Our data reveal that 5-LO, which is required for leukotriene production and subsequent T cell recruitment, is downregulated in TAMs through Mer tyrosine kinase-dependent recognition of apoptotic cancer cells. Mechanistically, we noticed transcriptional repression of 5-LO by proto-oncogene c-Myb and conclude that loss of stromal 5-LO expression favors tumor progression.
Collapse
Affiliation(s)
- Julia Ringleb
- Department of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Elisabeth Strack
- Department of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Carlo Angioni
- Department of Clinical Pharmacology, University Hospital Frankfurt, 60590 Frankfurt, Germany; and
| | - Gerd Geisslinger
- Department of Clinical Pharmacology, University Hospital Frankfurt, 60590 Frankfurt, Germany; and
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, 60438 Frankfurt, Germany
| | - Andreas Weigert
- Department of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Bernhard Brüne
- Department of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany;
| |
Collapse
|
24
|
Ham SL, Thakuri PS, Plaster M, Li J, Luker KE, Luker GD, Tavana H. Three-dimensional tumor model mimics stromal - breast cancer cells signaling. Oncotarget 2017; 9:249-267. [PMID: 29416611 PMCID: PMC5787462 DOI: 10.18632/oncotarget.22922] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022] Open
Abstract
Tumor stroma is a major contributor to the biological aggressiveness of cancer cells. Cancer cells induce activation of normal fibroblasts to carcinoma-associated fibroblasts (CAFs), which promote survival, proliferation, metastasis, and drug resistance of cancer cells. A better understanding of these interactions could lead to new, targeted therapies for cancers with limited treatment options, such as triple negative breast cancer (TNBC). To overcome limitations of standard monolayer cell cultures and xenograft models that lack tumor complexity and/or human stroma, we have developed a high throughput tumor spheroid technology utilizing a polymeric aqueous two-phase system to conveniently model interactions of CAFs and TNBC cells and quantify effects on signaling and drug resistance of cancer cells. We focused on signaling by chemokine CXCL12, a hallmark molecule secreted by CAFs, and receptor CXCR4, a driver of tumor progression and metastasis in TNBC. Using three-dimensional stromal-TNBC cells cultures, we demonstrate that CXCL12 – CXCR4 signaling significantly increases growth of TNBC cells and drug resistance through activation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) pathways. Despite resistance to standard chemotherapy, upregulation of MAPK and PI3K signaling sensitizes TNBC cells in co-culture spheroids to specific inhibitors of these kinase pathways. Furthermore, disrupting CXCL12 – CXCR4 signaling diminishes drug resistance of TNBC cells in co-culture spheroid models. This work illustrates the capability to identify mechanisms of drug resistance and overcome them using our engineered model of tumor-stromal interactions.
Collapse
Affiliation(s)
- Stephanie Lemmo Ham
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Pradip Shahi Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Madison Plaster
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Jun Li
- Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA
| | - Kathryn E Luker
- Department of Radiology, Microbiology and Immunology, Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gary D Luker
- Department of Radiology, Microbiology and Immunology, Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
25
|
Organotypic three-dimensional cancer cell cultures mirror drug responses in vivo: lessons learned from the inhibition of EGFR signaling. Oncotarget 2017; 8:107423-107440. [PMID: 29296175 PMCID: PMC5746077 DOI: 10.18632/oncotarget.22475] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/27/2017] [Indexed: 01/07/2023] Open
Abstract
Complex three-dimensional (3D) in vitro models that recapitulate human tumor biology are essential to understand the pathophysiology of the disease and to aid in the discovery of novel anti-cancer therapies. 3D organotypic cultures exhibit intercellular communication, nutrient and oxygen gradients, and cell polarity that is lacking in two-dimensional (2D) monolayer cultures. In the present study, we demonstrate that 2D and 3D cancer models exhibit different drug sensitivities towards both targeted inhibitors of EGFR signaling and broad acting cytotoxic agents. Changes in the kinase activities of ErbB family members and differential expression of apoptosis- and survival-associated genes before and after drug treatment may account for the differential drug sensitivities. Importantly, EGFR oncoprotein addiction was evident only in the 3D cultures mirroring the effect of EGFR inhibition in the clinic. Furthermore, targeted drug efficacy was strongly increased when incorporating cancer-associated fibroblasts into the 3D cultures. Taken together, we provide conclusive evidence that complex 3D cultures are more predictive of the clinical outcome than their 2D counterparts. In the future, 3D cultures will be instrumental for understanding the mode of action of drugs, identifying genotype-drug response relationships and developing patient-specific and personalized cancer treatments.
Collapse
|
26
|
Riffle S, Hegde RS. Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:102. [PMID: 28774341 PMCID: PMC5543535 DOI: 10.1186/s13046-017-0570-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/18/2017] [Indexed: 12/17/2022]
Abstract
Under hypoxic conditions, tumor cells undergo a series of adaptations that promote evolution of a more aggressive tumor phenotype including the activation of DNA damage repair proteins, altered metabolism, and decreased proliferation. Together these changes mitigate the negative impact of oxygen deprivation and allow preservation of genomic integrity and proliferative capacity, thus contributing to tumor growth and metastasis. As a result the presence of a hypoxic microenvironment is considered a negative clinical feature of many solid tumors. Hypoxic niches in tumors also represent a therapeutically privileged environment in which chemo- and radiation therapy is less effective. Although the negative impact of tumor hypoxia has been well established, the precise effect of oxygen deprivation on tumor cell behavior, and the molecular signals that allow a tumor cell to survive in vivo are poorly understood. Multicellular tumor spheroids (MCTS) have been used as an in vitro model for the avascular tumor niche, capable of more accurately recreating tumor genomic profiles and predicting therapeutic response. However, relatively few studies have used MCTS to study the molecular mechanisms driving tumor cell adaptations within the hypoxic tumor environment. Here we will review what is known about cell proliferation, DNA damage repair, and metabolic pathways as modeled in MCTS in comparison to observations made in solid tumors. A more precise definition of the cell populations present within 3D tumor models in vitro could better inform our understanding of the heterogeneity within tumors as well as provide a more representative platform for the testing of therapeutic strategies.
Collapse
Affiliation(s)
- Stephen Riffle
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
27
|
Carvalho MP, Costa EC, Correia IJ. Assembly of breast cancer heterotypic spheroids on hyaluronic acid coated surfaces. Biotechnol Prog 2017; 33:1346-1357. [PMID: 28547896 DOI: 10.1002/btpr.2497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/04/2017] [Indexed: 12/20/2022]
Abstract
Drug screening is currently demanding for realistic models that are able to reproduce the structural features of solid tumors. 3D cell culture systems, namely spheroids, emerged as a promising approach to provide reliable results during drug development. So far, liquid overlay technique (LOT) is one of the most used methods for spheroids assembly. It comprises cellular aggregation due to their limited adhesion to certain biomaterials, like agarose. However, researchers are currently improving this technique in order to obtain spheroids on surfaces that mimic cancer extracellular matrix (ECM), since cell-ECM interactions modulate cells behavior and their drug resistance profile. Herein, hyaluronic acid (HA) coated surfaces were used, for the first time, for the production of reproducible heterotypic breast cancer spheroids. The obtained results revealed that it is possible to control the size, shape, and number of spheroids gotten per well by changing the HA concentration and the number of cells initially seeded in each well. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1346-1357, 2017.
Collapse
Affiliation(s)
- Marco P Carvalho
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Elisabete C Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| | - Ilídio J Correia
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, 6200-506, Portugal
| |
Collapse
|
28
|
Leek R, Grimes DR, Harris AL, McIntyre A. Methods: Using Three-Dimensional Culture (Spheroids) as an In Vitro Model of Tumour Hypoxia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 899:167-96. [PMID: 27325267 DOI: 10.1007/978-3-319-26666-4_10] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Regions of hypoxia in tumours can be modelled in vitro in 2D cell cultures with a hypoxic chamber or incubator in which oxygen levels can be regulated. Although this system is useful in many respects, it disregards the additional physiological gradients of the hypoxic microenvironment, which result in reduced nutrients and more acidic pH. Another approach to hypoxia modelling is to use three-dimensional spheroid cultures. In spheroids, the physiological gradients of the hypoxic tumour microenvironment can be inexpensively modelled and explored. In addition, spheroids offer the advantage of more representative modelling of tumour therapy responses compared with 2D culture. Here, we review the use of spheroids in hypoxia tumour biology research and highlight the different methodologies for spheroid formation and how to obtain uniformity. We explore the challenge of spheroid analyses and how to determine the effect on the hypoxic versus normoxic components of spheroids. We discuss the use of high-throughput analyses in hypoxia screening of spheroids. Furthermore, we examine the use of mathematical modelling of spheroids to understand more fully the hypoxic tumour microenvironment.
Collapse
Affiliation(s)
- Russell Leek
- Nuffield Division of Clinical Laboratory Sciences, Department of Oncology, University of Oxford, Oxford, OX3 9DU, UK
| | - David Robert Grimes
- Gray Laboratory, Cancer Research UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Adrian L Harris
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Alan McIntyre
- Cancer Biology, Division of Cancer and Stem Cells, University of Nottingham, QMC, D Floor, West Block, W/D/1374, Nottingham, NG7 2UH, UK.
| |
Collapse
|
29
|
Cui X, Hartanto Y, Zhang H. Advances in multicellular spheroids formation. J R Soc Interface 2017; 14:20160877. [PMID: 28202590 PMCID: PMC5332573 DOI: 10.1098/rsif.2016.0877] [Citation(s) in RCA: 328] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/11/2017] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional multicellular spheroids (MCSs) have a complex architectural structure, dynamic cell-cell/cell-matrix interactions and bio-mimicking in vivo microenvironment. As a fundamental building block for tissue reconstruction, MCSs have emerged as a powerful tool to narrow down the gap between the in vitro and in vivo model. In this review paper, we discussed the structure and biology of MCSs and detailed fabricating methods. Among these methods, the approach in microfluidics with hydrogel support for MCS formation is promising because it allows essential cell-cell/cell-matrix interactions in a confined space.
Collapse
Affiliation(s)
- X Cui
- School of Chemical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Y Hartanto
- School of Chemical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - H Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
30
|
A novel three-dimensional heterotypic spheroid model for the assessment of the activity of cancer immunotherapy agents. Cancer Immunol Immunother 2016; 66:129-140. [PMID: 27858101 PMCID: PMC5222939 DOI: 10.1007/s00262-016-1927-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/07/2016] [Indexed: 12/03/2022]
Abstract
The complexity of the tumor microenvironment is difficult to mimic in vitro, particularly regarding tumor–host interactions. To enable better assessment of cancer immunotherapy agents in vitro, we developed a three-dimensional (3D) heterotypic spheroid model composed of tumor cells, fibroblasts, and immune cells. Drug targeting, efficient stimulation of immune cell infiltration, and specific elimination of tumor or fibroblast spheroid areas were demonstrated following treatment with a novel immunocytokine (interleukin-2 variant; IgG-IL2v) and tumor- or fibroblast-targeted T cell bispecific antibody (TCB). Following treatment with IgG-IL2v, activation of T cells, NK cells, and NKT cells was demonstrated by increased expression of the activation marker CD69 and enhanced cytokine secretion. The combination of TCBs with IgG-IL2v molecules was more effective than monotherapy, as shown by enhanced effects on immune cell infiltration; activation; increased cytokine secretion; and faster, more efficient elimination of targeted cells. This study demonstrates that the 3D heterotypic spheroid model provides a novel and versatile tool for in vitro evaluation of cancer immunotherapy agents and allows for assessment of additional aspects of the activity of cancer immunotherapy agents, including analysis of immune cell infiltration and drug targeting.
Collapse
|
31
|
Jimenez Valencia AM, Wu PH, Yogurtcu ON, Rao P, DiGiacomo J, Godet I, He L, Lee MH, Gilkes D, Sun SX, Wirtz D. Collective cancer cell invasion induced by coordinated contractile stresses. Oncotarget 2016; 6:43438-51. [PMID: 26528856 PMCID: PMC4791242 DOI: 10.18632/oncotarget.5874] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 10/20/2015] [Indexed: 12/17/2022] Open
Abstract
The physical underpinnings of fibrosarcoma cell dissemination from a tumor in a surrounding collagen-rich matrix are poorly understood. Here we show that a tumor spheroid embedded in a 3D collagen matrix exerts large contractile forces on the matrix before invasion. Cell invasion is accompanied by complex spatially and temporally dependent patterns of cell migration within and at the surface of the spheroids that are fundamentally different from migratory patterns of individual fibrosarcoma cells homogeneously distributed in the same type of matrix. Cells display a continuous transition from a round morphology at the spheroid core, to highly aligned elongated morphology at the spheroid periphery, which depends on both β1-integrin-based cell-matrix adhesion and myosin II/ROCK-based cell contractility. This isotropic-to-anisotropic transition corresponds to a shift in migration, from a slow and unpolarized movement at the core, to a fast, polarized and persistent one at the periphery. Our results also show that the ensuing collective invasion of fibrosarcoma cells is induced by anisotropic contractile stresses exerted on the surrounding matrix.
Collapse
Affiliation(s)
- Angela M Jimenez Valencia
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Osman N Yogurtcu
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Pranay Rao
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Josh DiGiacomo
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Inês Godet
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Lijuan He
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Meng-Horng Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Daniele Gilkes
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Sean X Sun
- Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Physical Sciences-Oncology Center and Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA.,Department of Oncology and Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland, 21218, USA
| |
Collapse
|
32
|
Menyhárt O, Harami-Papp H, Sukumar S, Schäfer R, Magnani L, de Barrios O, Győrffy B. Guidelines for the selection of functional assays to evaluate the hallmarks of cancer. Biochim Biophys Acta Rev Cancer 2016; 1866:300-319. [PMID: 27742530 DOI: 10.1016/j.bbcan.2016.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/06/2016] [Accepted: 10/08/2016] [Indexed: 01/05/2023]
Abstract
The hallmarks of cancer capture the most essential phenotypic characteristics of malignant transformation and progression. Although numerous factors involved in this multi-step process are still unknown to date, an ever-increasing number of mutated/altered candidate genes are being identified within large-scale cancer genomic projects. Therefore, investigators need to be aware of available and appropriate techniques capable of determining characteristic features of each hallmark. We review the methods tailored to experimental cancer researchers to evaluate cell proliferation, programmed cell death, replicative immortality, induction of angiogenesis, invasion and metastasis, genome instability, and reprogramming of energy metabolism. Selecting the ideal method is based on the investigator's goals, available equipment and also on financial constraints. Multiplexing strategies enable a more in-depth data collection from a single experiment - obtaining several results from a single procedure reduces variability and saves time and relative cost, leading to more robust conclusions compared to a single end point measurement. Each hallmark possesses characteristics that can be analyzed by immunoblot, RT-PCR, immunocytochemistry, immunoprecipitation, RNA microarray or RNA-seq. In general, flow cytometry, fluorescence microscopy, and multiwell readers are extremely versatile tools and, with proper sample preparation, allow the detection of a vast number of hallmark features. Finally, we also provide a list of hallmark-specific genes to be measured in transcriptome-level studies. Although our list is not exhaustive, we provide a snapshot of the most widely used methods, with an emphasis on methods enabling the simultaneous evaluation of multiple hallmark features.
Collapse
Affiliation(s)
- Otília Menyhárt
- MTA TTK Lendület Cancer Biomarker Research Group, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | | | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Reinhold Schäfer
- German Cancer Consortium (DKTK), DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg and Charité Comprehensive Cancer Center, Invalidenstr. 80, D-10115 Berlin, Germany
| | - Luca Magnani
- Department of Surgery and Cancer, Imperial College London, London W12 0NN, UK
| | - Oriol de Barrios
- Group of Transcriptional Regulation of Gene Expression, Department of Oncology and Hematology, IDIBAPS, Barcelona, Spain
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Magyar tudósok körútja 2, H-1117 Budapest, Hungary; 2nd Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary.
| |
Collapse
|
33
|
Sawant S, Dongre H, Singh AK, Joshi S, Costea DE, Mahadik S, Ahire C, Makani V, Dange P, Sharma S, Chaukar D, Vaidya M. Establishment of 3D Co-Culture Models from Different Stages of Human Tongue Tumorigenesis: Utility in Understanding Neoplastic Progression. PLoS One 2016; 11:e0160615. [PMID: 27501241 PMCID: PMC4976883 DOI: 10.1371/journal.pone.0160615] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/21/2016] [Indexed: 12/19/2022] Open
Abstract
To study multistep tumorigenesis process, there is a need of in-vitro 3D model simulating in-vivo tissue. Present study aimed to reconstitute in-vitro tissue models comprising various stages of neoplastic progression of tongue tumorigenesis and to evaluate the utility of these models to investigate the role of stromal fibroblasts in maintenance of desmosomal anchoring junctions using transmission electron microscopy. We reconstituted in-vitro models representing normal, dysplastic, and malignant tissues by seeding primary keratinocytes on either fibroblast embedded in collagen matrix or plain collagen matrix in growth factor-free medium. The findings of histomorphometry, immunohistochemistry, and electron microscopy analyses of the three types of 3D cultures showed that the stratified growth, cell proliferation, and differentiation were comparable between co-cultures and their respective native tissues; however, they largely differed in cultures grown without fibroblasts. The immunostaining intensity of proteins, viz., desmoplakin, desmoglein, and plakoglobin, was reduced as the disease stage increased in all co-cultures as observed in respective native tissues. Desmosome-like structures were identified using immunogold labeling in these cultures. Moreover, electron microscopic observations revealed that the desmosome number and their length were significantly reduced and intercellular spaces were increased in cultures grown without fibroblasts when compared with their co-culture counterparts. Our results showed that the major steps of tongue tumorigenesis can be reproduced in-vitro. Stromal fibroblasts play a role in regulation of epithelial thickness, cell proliferation, differentiation, and maintenance of desmosomalanchoring junctions in in-vitro grown tissues. The reconstituted co-culture models could help to answer various biological questions especially related to tongue tumorigenesis.
Collapse
Affiliation(s)
- Sharada Sawant
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
- * E-mail:
| | - Harsh Dongre
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Archana Kumari Singh
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Shriya Joshi
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Daniela Elena Costea
- Gade Laboratory for Pathology, Department of Clinical Medicine, and Center for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Snehal Mahadik
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Chetan Ahire
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Vidhi Makani
- Nups and Sumo Biology Group, Department of Biological Sciences, Indian Institute of Science, Education and Research, Bhopal, Madhya Pradesh, India
| | - Prerana Dange
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Shilpi Sharma
- Oral Surgery, Head and Neck Unit, Tata Memorial Hospital (TMH), Parel, Mumbai, India
| | - Devendra Chaukar
- Oral Surgery, Head and Neck Unit, Tata Memorial Hospital (TMH), Parel, Mumbai, India
| | - Milind Vaidya
- Vaidya Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| |
Collapse
|
34
|
Ham SL, Joshi R, Thakuri PS, Tavana H. Liquid-based three-dimensional tumor models for cancer research and drug discovery. Exp Biol Med (Maywood) 2016; 241:939-54. [PMID: 27072562 PMCID: PMC4950350 DOI: 10.1177/1535370216643772] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tumors are three-dimensional tissues where close contacts between cancer cells, intercellular interactions between cancer and stromal cells, adhesion of cancer cells to the extracellular matrix, and signaling of soluble factors modulate functions of cancer cells and their response to therapeutics. Three-dimensional cultures of cancer cells overcome limitations of traditionally used monolayer cultures and recreate essential characteristics of tumors such as spatial gradients of oxygen, growth factors, and metabolites and presence of necrotic, hypoxic, quiescent, and proliferative cells. As such, three-dimensional tumor models provide a valuable tool for cancer research and oncology drug discovery. Here, we describe different tumor models and primarily focus on a model known as tumor spheroid. We summarize different technologies of spheroid formation, and discuss the use of spheroids to address the influence of stromal fibroblasts and immune cells on cancer cells in tumor microenvironment, study cancer stem cells, and facilitate compound screening in the drug discovery process. We review major techniques for quantification of cellular responses to drugs and discuss challenges ahead to enable broad utility of tumor spheroids in research laboratories, integrate spheroid models into drug development and discovery pipeline, and use primary tumor cells for drug screening studies to realize personalized cancer treatment.
Collapse
Affiliation(s)
- Stephanie L Ham
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Pradip S Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
35
|
Park JI, Lee J, Kwon JL, Park HB, Lee SY, Kim JY, Sung J, Kim JM, Song KS, Kim KH. Scaffold-Free Coculture Spheroids of Human Colonic Adenocarcinoma Cells and Normal Colonic Fibroblasts Promote Tumorigenicity in Nude Mice. Transl Oncol 2016; 9:79-88. [PMID: 26947885 PMCID: PMC4800065 DOI: 10.1016/j.tranon.2015.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to form a scaffold-free coculture spheroid model of colonic adenocarcinoma cells (CACs) and normal colonic fibroblasts (NCFs) and to use the spheroids to investigate the role of NCFs in the tumorigenicity of CACs in nude mice. We analysed three-dimensional (3D) scaffold-free coculture spheroids of CACs and NCFs. CAC Matrigel invasion assays and tumorigenicity assays in nude mice were performed to examine the effect of NCFs on CAC invasive behaviour and tumorigenicity in 3D spheroids. We investigated the expression pattern of fibroblast activation protein-α (FAP-α) by immunohistochemical staining. CAC monocultures did not form densely-packed 3D spheroids, whereas cocultured CACs and NCFs formed 3D spheroids. The 3D coculture spheroids seeded on a Matrigel extracellular matrix showed higher CAC invasiveness compared to CACs alone or CACs and NCFs in suspension. 3D spheroids injected into nude mice generated more and faster-growing tumors compared to CACs alone or mixed suspensions consisting of CACs and NCFs. FAP-α was expressed in NCFs-CACs cocultures and xenograft tumors, whereas monocultures of NCFs or CACs were negative for FAP-α expression. Our findings provide evidence that the interaction between CACs and NCFs is essential for the tumorigenicity of cancer cells as well as for tumor propagation.
Collapse
Affiliation(s)
- Jong-Il Park
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jisu Lee
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Ju-Lee Kwon
- Department of Pathology, Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Hong-Bum Park
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Su-Yel Lee
- Chungnam National University Hospital Biobank, Daejeon, Republic of Korea
| | - Ji-Yeon Kim
- Department of Surgery, Division of Colorectal Surgery, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jaekye Sung
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Jin Man Kim
- Department of Pathology, Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Kyu Sang Song
- Department of Pathology, Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea
| | - Kyung-Hee Kim
- Department of Pathology, Cancer Research Institute, Chungnam National University School of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
36
|
Jamieson LE, Harrison DJ, Campbell CJ. Chemical analysis of multicellular tumour spheroids. Analyst 2015; 140:3910-20. [PMID: 25923379 DOI: 10.1039/c5an00524h] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Conventional two dimensional (2D) monolayer cell culture has been considered the 'gold standard' technique for in vitro cellular experiments. However, the need for a model that better mimics the three dimensional (3D) architecture of tissue in vivo has led to the development of Multicellular Tumour Spheroids (MTS) as a 3D tissue culture model. To some extent MTS mimic the environment of in vivo tumours where, for example, oxygen and nutrient gradients develop, protein expression changes and cells form a spherical structure with regions of proliferation, senescence and necrosis. This review focuses on the development of techniques for chemical analysis of MTS as a tool for understanding in vivo tumours and a platform for more effective drug and therapy discovery. While traditional monolayer techniques can be translated to 3D models, these often fail to provide the desired spatial resolution and z-penetration for live cell imaging. More recently developed techniques for overcoming these problems will be discussed with particular reference to advances in instrument technology for achieving the increased spatial resolution and imaging depth required.
Collapse
Affiliation(s)
- L E Jamieson
- EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3JJ, UK.
| | | | | |
Collapse
|
37
|
Hickman JA, Graeser R, de Hoogt R, Vidic S, Brito C, Gutekunst M, van der Kuip H. Three-dimensional models of cancer for pharmacology and cancer cell biology: capturing tumor complexity in vitro/ex vivo. Biotechnol J 2015; 9:1115-28. [PMID: 25174503 DOI: 10.1002/biot.201300492] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 07/11/2014] [Accepted: 08/05/2014] [Indexed: 12/12/2022]
Abstract
Cancers are complex and heterogeneous pathological "organs" in a dynamic interplay with their host. Models of human cancer in vitro, used in cancer biology and drug discovery, are generally highly reductionist. These cancer models do not incorporate complexity or heterogeneity. This raises the question as to whether the cancer models' biochemical circuitry (not their genome) represents, with sufficient fidelity, a tumor in situ. Around 95% of new anticancer drugs eventually fail in clinical trial, despite robust indications of activity in existing in vitro pre-clinical models. Innovative models are required that better capture tumor biology. An important feature of all tissues, and tumors, is that cells grow in three dimensions. Advances in generating and characterizing simple and complex (with added stromal components) three-dimensional in vitro models (3D models) are reviewed in this article. The application of stirred bioreactors to permit both scale-up/scale-down of these cancer models and, importantly, methods to permit controlled changes in environment (pH, nutrients, and oxygen) are also described. The challenges of generating thin tumor slices, their utility, and potential advantages and disadvantages are discussed. These in vitro/ex vivo models represent a distinct move to capture the realities of tumor biology in situ, but significant characterization work still remains to be done in order to show that their biochemical circuitry accurately reflects that of a tumor.
Collapse
|
38
|
Unger C, Kramer N, Walzl A, Scherzer M, Hengstschläger M, Dolznig H. Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development. Adv Drug Deliv Rev 2014; 79-80:50-67. [PMID: 25453261 DOI: 10.1016/j.addr.2014.10.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/02/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022]
Abstract
Anti-cancer drug development is inefficient, mostly due to lack of efficacy in human patients. The high fail rate is partly due to the lack of predictive models or the inadequate use of existing preclinical test systems. However, progress has been made and preclinical models were improved or newly developed, which all account for basic features of solid cancers, three-dimensionality and heterotypic cell interaction. Here we give an overview of available in vivo and in vitro models of cancer, which meet the criteria of being 3D and mirroring human tumor-stroma interactions. We only focus on drug response models without touching models for pharmacokinetic and dynamic, toxicity or delivery aspects.
Collapse
|
39
|
Benton G, Arnaoutova I, George J, Kleinman HK, Koblinski J. Matrigel: from discovery and ECM mimicry to assays and models for cancer research. Adv Drug Deliv Rev 2014; 79-80:3-18. [PMID: 24997339 DOI: 10.1016/j.addr.2014.06.005] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 01/06/2023]
Abstract
The basement membrane is an important extracellular matrix that is found in all epithelial and endothelial tissues. It maintains tissue integrity, serves as a barrier to cells and to molecules, separates different tissue types, transduces mechanical signals, and has many biological functions that help to maintain tissue specificity. A well-defined soluble basement membrane extract, termed BME/Matrigel, prepared from an epithelial tumor is similar in content to authentic basement membrane, and forms a hydrogel at 24-37°C. It is used in vitro as a substrate for 3D cell culture, in suspension for spheroid culture, and for various assays, such as angiogenesis, invasion, and dormancy. In vivo, BME/Matrigel is used for angiogenesis assays and to promote xenograft and patient-derived biopsy take and growth. Studies have shown that both the stiffness of the BME/Matrigel and its components (i.e. chemical signals) are responsible for its activity with so many different cell types. BME/Matrigel has widespread use in assays and in models that improve our understanding of tumor biology and help define therapeutic approaches.
Collapse
|
40
|
Fibroblast α11β1 integrin regulates tensional homeostasis in fibroblast/A549 carcinoma heterospheroids. PLoS One 2014; 9:e103173. [PMID: 25076207 PMCID: PMC4116160 DOI: 10.1371/journal.pone.0103173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/18/2014] [Indexed: 12/19/2022] Open
Abstract
We have previously shown that fibroblast expression of α11β1 integrin stimulates A549 carcinoma cell growth in a xenograft tumor model. To understand the molecular mechanisms whereby a collagen receptor on fibroblast can regulate tumor growth we have used a 3D heterospheroid system composed of A549 tumor cells and fibroblasts without (α11+/+) or with a deletion (α11-/-) in integrin α11 gene. Our data show that α11-/-/A549 spheroids are larger than α11+/+/A549 spheroids, and that A549 cell number, cell migration and cell invasion in a collagen I gel are decreased in α11-/-/A549 spheroids. Gene expression profiling of differentially expressed genes in fibroblast/A549 spheroids identified CXCL5 as one molecule down-regulated in A549 cells in the absence of α11 on the fibroblasts. Blocking CXCL5 function with the CXCR2 inhibitor SB225002 reduced cell proliferation and cell migration of A549 cells within spheroids, demonstrating that the fibroblast integrin α11β1 in a 3D heterospheroid context affects carcinoma cell growth and invasion by stimulating autocrine secretion of CXCL5. We furthermore suggest that fibroblast α11β1 in fibroblast/A549 spheroids regulates interstitial fluid pressure by compacting the collagen matrix, in turn implying a role for stromal collagen receptors in regulating tensional hemostasis in tumors. In summary, blocking stromal α11β1 integrin function might thus be a stroma-targeted therapeutic strategy to increase the efficacy of chemotherapy.
Collapse
|
41
|
Fang C, Man YG, Cuttitta F, Stetler-Stevenson W, Salomon D, Mazar A, Kulesza P, Rosen S, Avital I, Stojadinovic A, Jewett A, Jiang B, Mulshine J. Novel Phenotypic Fluorescent Three-Dimensional Co-Culture Platforms for Recapitulating Tumor in vivo Progression and for Personalized Therapy. J Cancer 2013; 4:755-63. [PMID: 24312145 PMCID: PMC3842444 DOI: 10.7150/jca.7813] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/19/2013] [Indexed: 12/12/2022] Open
Abstract
Because three-dimensional (3D) in vitro models are more accurate than 2D cell culture models and faster and cheaper than animal models, they have become a prospective trend in the biomedical and pharmaceutical fields, especially for personalized and targeted therapies. Because appropriate 3D models can be customized to mimic the in vivo microenvironment wherein various cell populations grow within an intricate but well organized extracellular matrix (ECM), they can accurately recapitulate physiological and pathophysiological progressions. The majority of cancers are carcinomas, which originate from epithelial cells, and dynamically interact with non-malignant cells including stromal cells (fibroblasts), vascular cells (endothelial cells and pericytes), immune cells (macrophages and mast cells), and the ECM. Employing a tumor monoclonal colony, tumor xenograft or patient cancer biopsy into an in vivo-like microenvironment, the native signaling pathways, cell-cell and cell-matrix interactions, and cell phenotypes are preserved and our fluorescent phenotypic 3D co-culture platforms can then accurately recapitulate the tumor in vivo scenario including tumor induced angiogenesis, tumor growth, and metastasis. In this paper, we describe a robust and standardized method to co-culture a tumor colony or biopsy with different cell populations, e.g., endothelial cells, immune cells, pericytes, etc. The procedures for recovering cells from the co-culture for molecular analyses, imaging, and analyzing are also described. We selected ECM solubilized extract derived from Engelbreth-Holm-Swam sarcoma cells. Because the 3D co-culture platforms can provide drug chemosensitivity data within 9 days that is equivalent to the results generated from mouse tumor xenograft models in 50 days, the 3D co-culture platforms are more accurate, efficient, and cost-effective and may replace animal models in the near future to predict drug efficacy, personalize therapies, prevent drug resistance, and improve the quality of life.
Collapse
Affiliation(s)
- Changge Fang
- 1. Advanced Personalized Diagnostics, 6006 Bangor Drive, Alexandria, VA 22303, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li Z, Cui Z. Three-dimensional perfused cell culture. Biotechnol Adv 2013; 32:243-54. [PMID: 24184152 DOI: 10.1016/j.biotechadv.2013.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 02/14/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
Compelling evidence suggests the limitation and shortcomings of the current and well established cell culture method using multi-well plates, flasks and Petri dishes. These are particularly important when cell functions are sensitive to the local microenvironment, cell-cell and cell-extracellular matrix interactions. There is a clear need for advanced cell culture systems which mimic in vivo and more physiological conditions. This review summarises and analyses recent progress in three dimensional (3D) cell culture with perfusion as the next generation cell culture tools, while excluding engineered tissue culture where three dimensional scaffold has to be used for structural support and perfusion for overcoming mass transfer control. Apart from research activities in academic community, product development in industry is also included in this review.
Collapse
Affiliation(s)
- Zhaohui Li
- Institute of Biomedical Engineering, Department of Engineering Science, Oxford University, Oxford, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, Oxford University, Oxford, UK.
| |
Collapse
|
43
|
Horman SR, To J, Orth AP. An HTS-compatible 3D colony formation assay to identify tumor-specific chemotherapeutics. ACTA ACUST UNITED AC 2013; 18:1298-308. [PMID: 23918920 DOI: 10.1177/1087057113499405] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There has been increasing interest in the development of cellular behavior models that take advantage of three-dimensional (3D) cell culture. To enable assessment of differential perturbagen impacts on cell growth in 2D and 3D, we have miniaturized and adapted for high-throughput screening (HTS) the soft agar colony formation assay, employing a laser-scanning cytometer to image and quantify multiple cell types simultaneously. The assay is HTS compatible, providing high-quality, image-based, replicable data for multiple, co-cultured cell types. As proof of concept, we subjected colorectal carcinoma colonies in 3D soft agar to a mini screen of 1528 natural product compounds. Hit compounds from the primary screen were rescreened in an HTS 3D co-culture matrix containing colon stromal cells and cancer cells. By combining tumor cells and normal, nontransformed colon epithelial cells in one primary screening assay, we were able to obtain differential IC50 data, thereby distinguishing tumor-specific compounds from general cytotoxic compounds. Moreover, we were able to identify compounds that antagonized tumor colony formation in 3D only, highlighting the importance of this assay in identifying agents that interfere with 3D tumor structural growth. This screening platform provides a fast, simple, and robust method for identification of tumor-specific agents in a biologically relevant microenvironment.
Collapse
Affiliation(s)
- Shane R Horman
- 1Genomics Department, Genomics Institute of the Novartis Research Foundation (GNF), San Diego, CA, USA
| | | | | |
Collapse
|
44
|
Yoon S, Kim JA, Lee SH, Kim M, Park TH. Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles. LAB ON A CHIP 2013; 13:1522-8. [PMID: 23426090 DOI: 10.1039/c3lc41322e] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The importance of creating a three-dimensional (3-D) multicellular spheroid has recently been gaining attention due to the limitations of monolayer cell culture to precisely mimic in vivo structure and cellular interactions. Due to this emerging interest, researchers have utilized new tools, such as microfluidic devices, that allow high-throughput and precise size control to produce multicellular spheroids. We have developed a droplet-based microfluidic system that can encapsulate both cells and magnetic nanoparticles within alginate beads to mimic the function of a multicellular tumor spheroid. Cells were entrapped within the alginate beads along with magnetic nanoparticles, and the beads of a relatively uniform size (diameters of 85% of the beads were 170-190 μm) were formed in the oil phase. These beads were passed through parallel streamlines of oil and culture medium, where the beads were magnetically transferred into the medium phase from the oil phase using an external magnetic force. This microfluidic chip eliminates additional steps for collecting the spheroids from the oil phase and transferring them to culture medium. Ultimately, the overall spheroid formation process can be achieved on a single microchip.
Collapse
Affiliation(s)
- Sungjun Yoon
- Interdisciplinary Program of Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea
| | | | | | | | | |
Collapse
|
45
|
Hawinkels LJAC, Paauwe M, Verspaget HW, Wiercinska E, van der Zon JM, van der Ploeg K, Koelink PJ, Lindeman JHN, Mesker W, ten Dijke P, Sier CFM. Interaction with colon cancer cells hyperactivates TGF-β signaling in cancer-associated fibroblasts. Oncogene 2012. [PMID: 23208491 DOI: 10.1038/onc.2012.536] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The interaction between epithelial cancer cells and cancer-associated fibroblasts (CAFs) has a major role in cancer progression and eventually in metastasis. In colorectal cancer (CRC), CAFs are present in high abundance, but their origin and functional interaction with epithelial tumor cells has not been elucidated. In this study we observed strong activation of the transforming growth factor-β (TGF-β)/Smad signaling pathway in CRC CAFs, accompanied by decreased signaling in epithelial tumor cells. We evaluated the TGF-β1 response and the expression of target genes including matrix metalloproteinases (MMPs) and plasminogen activator inhibitor (PAI)-1 of various epithelial CRC cell lines and primary CAFs in vitro. TGF-β1 stimulation caused high upregulation of MMPs, PAI-1 and TGF-β1 itself. Next we showed that incubation of CAFs with conditioned medium (CM) from epithelial cancer cells led to hyperactivation of the TGF-β signaling pathway, enhanced expression of target genes like PAI-1, and the expression of α-smooth muscle actin (α-SMA). We propose that the interaction of tumor cells with resident fibroblasts results in hyperactivated TGF-β1 signaling and subsequent transdifferentiation of the fibroblasts into α-SMA-positive CAFs. In turn this leads to cumulative production of TGF-β and proteinases within the tumor microenvironment, creating a cancer-promoting feedback loop.
Collapse
Affiliation(s)
- L J A C Hawinkels
- 1] Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, The Netherlands [2] Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - M Paauwe
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - H W Verspaget
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - E Wiercinska
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - J M van der Zon
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - K van der Ploeg
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands
| | - P J Koelink
- Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - J H N Lindeman
- Department of Vascular Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - W Mesker
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - P ten Dijke
- 1] Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Centre, Leiden, The Netherlands [2] Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden
| | - C F M Sier
- 1] Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, The Netherlands [2] Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
46
|
Hazama K, Asayama S, Kawakami H. Up-Regulation of Gene Expression by Transfection to Hepatocyte Spheroids. Mol Pharm 2012; 9:3602-5. [DOI: 10.1021/mp300519x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kennichi Hazama
- Department of Applied
Chemistry, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo
192-0397, Japan
| | - Shoichiro Asayama
- Department of Applied
Chemistry, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo
192-0397, Japan
| | - Hiroyoshi Kawakami
- Department of Applied
Chemistry, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo
192-0397, Japan
| |
Collapse
|
47
|
Kramer N, Walzl A, Unger C, Rosner M, Krupitza G, Hengstschläger M, Dolznig H. In vitro cell migration and invasion assays. Mutat Res 2012; 752:10-24. [PMID: 22940039 DOI: 10.1016/j.mrrev.2012.08.001] [Citation(s) in RCA: 541] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 08/14/2012] [Accepted: 08/16/2012] [Indexed: 12/14/2022]
Abstract
Determining the migratory and invasive capacity of tumor and stromal cells and clarifying the underlying mechanisms is most relevant for novel strategies in cancer diagnosis, prognosis, drug development and treatment. Here we shortly summarize the different modes of cell travelling and review in vitro methods, which can be used to evaluate migration and invasion. We provide a concise summary of established migration/invasion assays described in the literature, list advantages, limitations and drawbacks, give a tabular overview for convenience and depict the basic principles of the assays graphically. In many cases particular research problems and specific cell types do not leave a choice for a broad variety of usable assays. However, for most standard applications using adherent cells, based on our experience we suggest to use exclusion zone assays to evaluate migration/invasion. We substantiate our choice by demonstrating that the advantages outbalance the drawbacks e.g. the simple setup, the easy readout, the kinetic analysis, the evaluation of cell morphology and the feasibility to perform the assay with standard laboratory equipment. Finally, innovative 3D migration and invasion models including heterotypic cell interactions are discussed. These methods recapitulate the in vivo situation most closely. Results obtained with these assays have already shed new light on cancer cell spreading and potentially will uncover unknown mechanisms.
Collapse
Affiliation(s)
- Nina Kramer
- Institute of Medical Genetics, Medical University of Vienna, A-1090 Vienna, Währinger Strasse 10, Austria
| | - Angelika Walzl
- Institute of Medical Genetics, Medical University of Vienna, A-1090 Vienna, Währinger Strasse 10, Austria
| | - Christine Unger
- Institute of Medical Genetics, Medical University of Vienna, A-1090 Vienna, Währinger Strasse 10, Austria
| | - Margit Rosner
- Institute of Medical Genetics, Medical University of Vienna, A-1090 Vienna, Währinger Strasse 10, Austria
| | - Georg Krupitza
- Institute of Pathology, Medical University of Vienna, A-1090 Vienna, Währinger Gürtel, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, A-1090 Vienna, Währinger Strasse 10, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, A-1090 Vienna, Währinger Strasse 10, Austria.
| |
Collapse
|
48
|
Erkan M, Hausmann S, Michalski CW, Fingerle AA, Dobritz M, Kleeff J, Friess H. The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol 2012; 9:454-67. [PMID: 22710569 DOI: 10.1038/nrgastro.2012.115] [Citation(s) in RCA: 486] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the five most lethal malignancies worldwide and survival has not improved substantially in the past 30 years. Desmoplasia (abundant fibrotic stroma) is a typical feature of PDAC in humans, and stromal activation commonly starts around precancerous lesions. It is becoming clear that this stromal tissue is not a bystander in disease progression. Cancer-stroma interactions effect tumorigenesis, angiogenesis, therapy resistance and possibly the metastatic spread of tumour cells. Therefore, targeting the tumour stroma, in combination with chemotherapy, is a promising new option for the treatment of PDAC. In this Review, we focus on four issues. First, how can stromal activity be used to detect early steps of pancreatic carcinogenesis? Second, what is the effect of perpetual pancreatic stellate cell activity on angiogenesis and tissue perfusion? Third, what are the (experimental) antifibrotic therapy options in PDAC? Fourth, what lessons can be learned from Langton's Ant (a simple mathematical model) regarding the unpredictability of genetically engineered mouse models?
Collapse
Affiliation(s)
- Mert Erkan
- Department of General Surgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstrasse 12, 81675 Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Xu K, Buchsbaum RJ. Isolation of mammary epithelial cells from three-dimensional mixed-cell spheroid co-culture. J Vis Exp 2012:3760. [PMID: 22566026 DOI: 10.3791/3760] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
While enormous efforts have gone into identifying signaling pathways and molecules involved in normal and malignant cell behaviors(1-2), much of this work has been done using classical two-dimensional cell culture models, which allow for easy cell manipulation. It has become clear that intracellular signaling pathways are affected by extracellular forces, including dimensionality and cell surface tension(3-4). Multiple approaches have been taken to develop three-dimensional models that more accurately represent biologic tissue architecture(3). While these models incorporate multi-dimensionality and architectural stresses, study of the consequent effects on cells is less facile than in two-dimensional tissue culture due to the limitations of the models and the difficulty in extracting cells for subsequent analysis. The important role of the microenvironment around tumors in tumorigenesis and tumor behavior is becoming increasingly recognized(4). Tumor stroma is composed of multiple cell types and extracellular molecules. During tumor development there are bidirectional signals between tumor cells and stromal cells(5). Although some factors participating in tumor-stroma co-evolution have been identified, there is still a need to develop simple techniques to systematically identify and study the full array of these signals(6). Fibroblasts are the most abundant cell type in normal or tumor-associated stromal tissues, and contribute to deposition and maintenance of basement membrane and paracrine growth factors(7). Many groups have used three dimensional culture systems to study the role of fibroblasts on various cellular functions, including tumor response to therapies, recruitment of immune cells, signaling molecules, proliferation, apoptosis, angiogenesis, and invasion(8-15). We have optimized a simple method for assessing the effects of mammary fibroblasts on mammary epithelial cells using a commercially available extracellular matrix model to create three-dimensional cultures of mixed cell populations (co-cultures)(16-22). With continued co-culture the cells form spheroids with the fibroblasts clustering in the interior and the epithelial cells largely on the exterior of the spheroids and forming multi-cellular projections into the matrix. Manipulation of the fibroblasts that leads to altered epithelial cell invasiveness can be readily quantified by changes in numbers and length of epithelial projections(23). Furthermore, we have devised a method for isolating epithelial cells out of three-dimensional co-culture that facilitates analysis of the effects of fibroblast exposure on epithelial behavior. We have found that the effects of co-culture persist for weeks after epithelial cell isolation, permitting ample time to perform multiple assays. This method is adaptable to cells of varying malignant potential and requires no specialized equipment. This technique allows for rapid evaluation of in vitro cell models under multiple conditions, and the corresponding results can be compared to in vivo animal tissue models as well as human tissue samples.
Collapse
Affiliation(s)
- Kun Xu
- Molecular Oncology Research Institute, Department of Medicine, Tufts Medical Center
| | | |
Collapse
|
50
|
Mishra DK, Thrall MJ, Baird BN, Ott HC, Blackmon SH, Kurie JM, Kim MP. Human lung cancer cells grown on acellular rat lung matrix create perfusable tumor nodules. Ann Thorac Surg 2012; 93:1075-81. [PMID: 22385822 PMCID: PMC4512949 DOI: 10.1016/j.athoracsur.2012.01.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/03/2012] [Accepted: 01/06/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Extracellular matrix allows lung cancer to form its shape and grow. Recent studies on organ reengineering for orthotopic transplantation have provided a new avenue for isolating purified native matrix to use for growing cells. Whether human lung cancer cells grown in a decellularized rat lung matrix would create perfusable human lung cancer nodules was tested. METHODS Rat lungs were harvested and native cells were removed using sodium dodecyl sulfate and Triton X-100 in a decellularization chamber to create a decellularized rat lung matrix. Human A549, H460, or H1299 lung cancer cells were placed into the decellularized rat lung matrix and grown in a customized bioreactor with perfusion of oxygenated media for 7 to 14 days. RESULTS Decellularized rat lung matrix showed preservation of matrix architecture devoid of all rat cells. All three human lung cancer cell lines grown in the bioreactor developed tumor nodules with intact vasculature. Moreover, the lung cancer cells developed a pattern of growth similar to the original human lung cancer. CONCLUSIONS Overall, this study shows that human lung cancer cells form perfusable tumor nodules in a customized bioreactor on a decellularized rat lung matrix created by a customized decellularization chamber. The lung cancer cells grown in the matrix had features similar to the original human lung cancer. This ex vivo model can be used potentially to gain a deeper understanding of the biologic processes involved in human lung cancer.
Collapse
Affiliation(s)
- Dhruva K Mishra
- Department of Surgery, The Methodist Hospital Research Institute, Houston, Texas, USA
| | | | | | | | | | | | | |
Collapse
|