1
|
Park SH, Song SJ, Lee JA, Shin JA. Effects of Aging on the Severity of Liver Injury in Mice With Iron Overload. J Gastroenterol Hepatol 2025; 40:1016-1025. [PMID: 39971277 DOI: 10.1111/jgh.16908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/15/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Although iron is a vital component in the body, excessive iron leads to iron toxicity, which affects vital organs. In particular, the liver is considerably affected by iron toxicity because it stores the highest amount of iron in the body. Nonetheless, the relationship between iron overload and aging in the liver has not yet been clearly identified. This study aimed to observe the effects of aging on iron overload in the liver. Female C57BL/6J mice were randomly divided into vehicle control and iron overload groups (n = 7-22 per group). The iron overload group was injected with iron-dextran (Fe-dextran, ferric hydroxide dextran complex) (0.5 g/kg) for 4 weeks. After the experimental period, liver and blood samples were obtained from 2-, 15-, and 22-month-old mice. Liver weight, iron deposition, structural changes, cell death, extracellular matrix deposition, and fenestration of sinusoidal vessels were analyzed and compared between the groups. Additionally, biochemical analyses (aspartate aminotransferase, alanine aminotransferase, and serum total iron levels) were performed. The iron overload group exhibited significant differences compared with the control group with age. In the elderly iron overload model, iron deposition, inflammatory cell infiltration, and cell death were significantly increased (p < 0.0001). Moreover, deposition of the extracellular matrix and defenestration of sinusoidal fenestrae were observed among 22-month-old mice in the iron overload group. These results suggest that aging is a risk factor for iron-induced liver injury. Therefore, caution should be exercised when performing iron-related treatments in the elderly.
Collapse
Affiliation(s)
- So-Hyun Park
- Department of Anatomy, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Soo-Jin Song
- Department of Anatomy, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Jin-A Lee
- Department of Anatomy, Ewha Womans University College of Medicine, Seoul, South Korea
- Department of Urology, Ewha Womans University Seoul Hospital, Seoul, South Korea
| | - Jung-A Shin
- Department of Anatomy, Ewha Womans University College of Medicine, Seoul, South Korea
| |
Collapse
|
2
|
Zhang Y, Li L, Yang X, Wang C. Revealing the contribution of iron overload-brown adipocytes to iron overload cardiomyopathy: Insights from RNA-seq and exosomes coculture technology. J Nutr Biochem 2023; 122:109458. [PMID: 37802370 DOI: 10.1016/j.jnutbio.2023.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
Iron overload has been demonstrated to be associated with insulin resistance, iron overload cardiomyopathy (IOC). Brown adipose tissue (BAT) is emerging as a novel therapeutic target for the treatment of various diseases, not only because of its capacity for dissipating excess energy via non-shivering thermogenesis, but also because of its implication in physiological and pathophysiological processes. However, little attention has been devoted to the precise alterations and impacts of iron overload-BAT. We conducted RNA-Seq analysis on BAT samples obtained from mice subjected to a high iron diet (HID) or a normal chow diet (CON), respectively. The RNA-seq transcriptomic analysis revealed that 1,289 differentially expressed RNAs (DEGs) were identified, with a higher number of the downregulated genes (910 genes) compared to the upregulated genes (379 genes). The results of Gene Ontology (GO) and The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that the downregulated DEGs were primarily involved in hypertrophic cardiomyopathy, dilated cardiomyopathy, which were defined as IOC under the iron overload condition. The association between iron overload-BAT with cardiomyopathy was further investigated using exosome coculture technology. Our results demonstrated that the exosomes derived from ferric citrate treated-mature HIB 1B brown adipocytes, could be internalized by HL-1 cardiomyocytes, and contributed to the dysfunction in these cells. The present study has revealed the alterations and impacts of iron overload-BAT, particularly on the onset of IOC via not only RNA-seq but also exosomes coculture technology. The outputs might shed light on the novel therapeutic strategies for the treatment of IOC.
Collapse
Affiliation(s)
- Yemin Zhang
- Department of Pathology & Pathophysiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Demonstration Center for Experimental Basic Medicine Education of Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China.
| | - Lu Li
- Department of Pathology & Pathophysiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Xinyu Yang
- Department of Pathology & Pathophysiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Changhua Wang
- Department of Pathology & Pathophysiology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Bayır H, Dixon SJ, Tyurina YY, Kellum JA, Kagan VE. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol 2023; 19:315-336. [PMID: 36922653 DOI: 10.1038/s41581-023-00689-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/17/2023]
Abstract
Ferroptosis is a mechanism of regulated necrotic cell death characterized by iron-dependent, lipid peroxidation-driven membrane destruction that can be inhibited by glutathione peroxidase 4. Morphologically, it is characterized by cellular, organelle and cytoplasmic swelling and the loss of plasma membrane integrity, with the release of intracellular components. Ferroptosis is triggered in cells with dysregulated iron and thiol redox metabolism, whereby the initial robust but selective accumulation of hydroperoxy polyunsaturated fatty acid-containing phospholipids is further propagated through enzymatic and non-enzymatic secondary mechanisms, leading to formation of oxidatively truncated electrophilic species and their adducts with proteins. Thus, ferroptosis is dependent on the convergence of iron, thiol and lipid metabolic pathways. The kidney is particularly susceptible to redox imbalance. A growing body of evidence has linked ferroptosis to acute kidney injury in the context of diverse stimuli, such as ischaemia-reperfusion, sepsis or toxins, and to chronic kidney disease, suggesting that ferroptosis may represent a novel therapeutic target for kidney disease. However, further work is needed to address gaps in our understanding of the triggers, execution and spreading mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John A Kellum
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Hassan AT, Kwong RWM. The neurophysiological effects of iron in early life stages of zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115625. [PMID: 33254686 DOI: 10.1016/j.envpol.2020.115625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Trace metal/ion homeostasis, neurophysiological performance, and molecular responses to iron (Fe) exposure were investigated in the model organism zebrafish (Danio rerio). The findings demonstrated that exposure to a sublethal concentration of ferric iron (Fe3+) increased Fe contents in both the whole body and head region of developing zebrafish. Among the various trace metals and major ion examined, a dysregulation in manganese, zinc, nickel, and calcium balance was also observed in Fe-exposed larvae. Further biochemical assay and in-vivo imaging revealed that Fe exposure resulted in possible oxidative stress-induced damage, and an increased generation of reactive oxygen species in specific regions of the larvae. Using a droplet digital PCR (ddPCR) technology, it was found that the expression levels of various oxidative stress-responsive genes were temporally modulated by Fe exposure. Additionally, Fe-exposed larvae exhibited an impairment in escape response and a decrease in swimming activity. These larvae also appeared to exhibit a reduced anxiety-like behaviour. Together, our research suggested that larvae experiencing an increased Fe loading exhibited a dysregulation in metal homeostasis and a decrease in neurophysiological performance. These results suggested that neurophysiological assessments are sensitive methods to evaluate Fe toxicity in developing fish.
Collapse
Affiliation(s)
- Ayaat T Hassan
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
5
|
Iron-Induced Liver Injury: A Critical Reappraisal. Int J Mol Sci 2019; 20:ijms20092132. [PMID: 31052166 PMCID: PMC6539962 DOI: 10.3390/ijms20092132] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/25/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Iron is implicated in the pathogenesis of a number of human liver diseases. Hereditary hemochromatosis is the classical example of a liver disease caused by iron, but iron is commonly believed to contribute to the progression of other forms of chronic liver disease such as hepatitis C infection and nonalcoholic fatty liver disease. In this review, we present data from cell culture experiments, animal models, and clinical studies that address the hepatotoxicity of iron. These data demonstrate that iron overload is only weakly fibrogenic in animal models and rarely causes serious liver damage in humans, calling into question the concept that iron overload is an important cause of hepatotoxicity. In situations where iron is pathogenic, iron-induced liver damage may be potentiated by coexisting inflammation, with the resulting hepatocyte necrosis an important factor driving the fibrogenic response. Based on the foregoing evidence that iron is less hepatotoxic than is generally assumed, claims that assign a causal role to iron in liver injury in either animal models or human liver disease should be carefully evaluated.
Collapse
|
6
|
Stoyanovsky DA, Tyurina YY, Shrivastava I, Bahar I, Tyurin VA, Protchenko O, Jadhav S, Bolevich SB, Kozlov AV, Vladimirov YA, Shvedova AA, Philpott CC, Bayir H, Kagan VE. Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? Free Radic Biol Med 2019; 133:153-161. [PMID: 30217775 PMCID: PMC6555767 DOI: 10.1016/j.freeradbiomed.2018.09.008] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 12/14/2022]
Abstract
Duality of iron as an essential cofactor of many enzymatic metabolic processes and as a catalyst of poorly controlled redox-cycling reactions defines its possible biological beneficial and hazardous role in the body. In this review, we discuss these two "faces" of iron in a newly conceptualized program of regulated cell death, ferroptosis. Ferroptosis is a genetically programmed iron-dependent form of regulated cell death driven by enhanced lipid peroxidation and insufficient capacity of thiol-dependent mechanisms (glutathione peroxidase 4, GPX4) to eliminate hydroperoxy-lipids. We present arguments favoring the enzymatic mechanisms of ferroptotically engaged non-heme iron of 15-lipoxygenases (15-LOX) in complexes with phosphatidylethanolamine binding protein 1 (PEBP1) as a catalyst of highly selective and specific oxidation reactions of arachidonoyl- (AA) and adrenoyl-phosphatidylethanolamines (PE). We discuss possible role of iron chaperons as control mechanisms for guided iron delivery directly to their "protein clients" thus limiting non-enzymatic redox-cycling reactions. We also consider opportunities of loosely-bound iron to contribute to the production of pro-ferroptotic lipid oxidation products. Finally, we propose a two-stage iron-dependent mechanism for iron in ferroptosis by combining its catalytic role in the 15-LOX-driven production of 15-hydroperoxy-AA-PE (HOO-AA-PE) as well as possible involvement of loosely-bound iron in oxidative cleavage of HOO-AA-PE to oxidatively truncated electrophiles capable of attacking nucleophilic targets in yet to be identified proteins leading to cell demise.
Collapse
Affiliation(s)
- D A Stoyanovsky
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA
| | - Y Y Tyurina
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA
| | - I Shrivastava
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA; Department of Computational and Systems Biology, University of Pittsburgh, USA
| | - I Bahar
- Department of Computational and Systems Biology, University of Pittsburgh, USA
| | - V A Tyurin
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA
| | - O Protchenko
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, USA
| | - S Jadhav
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, USA
| | - S B Bolevich
- Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Russian Federation
| | - A V Kozlov
- L Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria; Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Russian Federation
| | - Y A Vladimirov
- Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Russian Federation
| | - A A Shvedova
- Exposure Assessment Branch, NIOSH/CDC, Morgantown, WV, USA
| | - C C Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, NIH, Bethesda, USA
| | - H Bayir
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA; Departments of Critical Care Medicine, University of Pittsburgh, USA
| | - V E Kagan
- Center for Free Radical and Antioxidant Heath, Department of Environmental Health, University of Pittsburgh, USA; Laboratory of Navigational Redox Lipidomics and Department of Human Pathology, IM Sechenov Moscow State Medical University, Russian Federation; Departments of Chemistry, University of Pittsburgh, USA; Departments of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Departments of Radiation Oncology, University of Pittsburgh, USA.
| |
Collapse
|
7
|
Koonyosying P, Kongkarnka S, Uthaipibull C, Svasti S, Fucharoen S, Srichairatanakool S. Green tea extract modulates oxidative tissue injury in beta-thalassemic mice by chelation of redox iron and inhibition of lipid peroxidation. Biomed Pharmacother 2018; 108:1694-1702. [PMID: 30372872 DOI: 10.1016/j.biopha.2018.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/10/2018] [Accepted: 10/03/2018] [Indexed: 02/08/2023] Open
Abstract
Iron overload in patients with β-thalassemia can cause oxidative organ dysfunction. Iron chelation along with antioxidant supplementation can ameliorate such complications and prolong lives. Green tea extract (GTE) rich in epigallocatechin-3-gallate (EGCG) exhibits anti-oxidation and iron chelation properties in β-knockout thalassemic (BKO) mice diagnosed with iron overload. We investigated the effects of GTE and deferiprone (DFP) alone in combination with one another, and upon the levels of redox-active iron, lipid-peroxidation product, insulin and hepcidin in BKO mice. A state of iron overload was induced in the mice via a trimethylhexanoyl-ferrocene supplemented (Fe) diet for 3 months, and the mice were treated daily with either: DFP (50 mg/kg), DFP (50 mg/kg) plus GTE (50 mg EGCG equivalent/kg), or GTE alone for 2 months. Plasma non-transferrin bound iron (NTBI), malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), hepcidin and insulin; tissue iron and MDA were measured. DFP, GTE and GTE + DFP effectively decreased plasma MDA (p < 0.05), NTBI and ALT, and increased plasma hepcidin and insulin. All the treatments also reduced iron accumulation and MDA production in both the pancreas and liver in the mice. However, the combination therapy demonstrated no advantages over monotherapy. The findings suggest GTE improved liver and pancreatic β-cell functions in iron-overloaded β-thalassemia mice by diminishing redox iron and free radicals, while inhibiting lipid peroxidation. Consequently, there are indications that GTE holds significant potential for clinical use.
Collapse
Affiliation(s)
- Pimpisid Koonyosying
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sarawut Kongkarnka
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chairat Uthaipibull
- Protein-Ligand Engineering and Molecular Biology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Bioscience, Mahidol University Salaya Campus, Nakornpathom, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Bioscience, Mahidol University Salaya Campus, Nakornpathom, Thailand
| | | |
Collapse
|
8
|
Kumfu S, Khamseekaew J, Palee S, Srichairatanakool S, Fucharoen S, Chattipakorn SC, Chattipakorn N. Combined iron chelator and T-type calcium channel blocker exerts greater efficacy on cardioprotection than monotherapy in iron-overload thalassemic mice. Eur J Pharmacol 2018; 822:43-50. [DOI: 10.1016/j.ejphar.2018.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/04/2018] [Accepted: 01/15/2018] [Indexed: 12/15/2022]
|
9
|
Combined treatment of 3-hydroxypyridine-4-one derivatives and green tea extract to induce hepcidin expression in iron-overloaded β-thalassemic mice. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
10
|
Lunova M, Goehring C, Kuscuoglu D, Mueller K, Chen Y, Walther P, Deschemin JC, Vaulont S, Haybaeck J, Lackner C, Trautwein C, Strnad P. Hepcidin knockout mice fed with iron-rich diet develop chronic liver injury and liver fibrosis due to lysosomal iron overload. J Hepatol 2014; 61:633-41. [PMID: 24816174 DOI: 10.1016/j.jhep.2014.04.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/25/2014] [Accepted: 04/22/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND & AIMS Hepcidin is the central regulator of iron homeostasis and altered hepcidin signalling results in both hereditary and acquired iron overload. While the association between iron overload and development of end-stage liver disease is well established, the underlying mechanisms are largely unknown. To improve that, we analysed hepcidin knockout (KO) mice as a model of iron overload-associated liver disease. METHODS Hepcidin wild type (WT) and KO mice fed with 3% carbonyl iron-containing diet starting at one month of age were compared to age-matched animals kept on standard chow. Liver histology and serum parameters were used to assess the extent of liver injury and fibrosis. Iron distribution was determined by subcellular fractionation and electron microscopy. RESULTS Among mice kept on iron-rich diet, 6 months old hepcidin KO mice (vs. WT) displayed profound hepatic iron overload (3,186 ± 411 vs. 1,045 ± 159 μg/mg tissue, p<0.005), elevated liver enzymes (ALT: KO 128 ± 6, WT 56 ± 5 IU/L, p<0.05), mild hepatic inflammation and hepatocellular apoptosis. Twelve, but not six months old KO mice fed with iron-rich diet developed moderate liver fibrosis. The liver injury was accompanied by a marked lysosomal iron overload and lysosomal fragility with release of cathepsin B into the cytoplasm. Increased p62 levels and autofluorescent iron complexes suggested impaired protein degradation. As a mechanism leading to lysosomal iron overload, the autophagy (lysosomal influx) was increased. CONCLUSIONS Hepcidin KO mice represent a novel model of iron overload-related liver diseases and implicate lysosomal injury as a crucial event in iron toxicity.
Collapse
Affiliation(s)
- Mariia Lunova
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Claudia Goehring
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Deniz Kuscuoglu
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Katrin Mueller
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Yu Chen
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Paul Walther
- Central Electron Microscopy Facility, Ulm University, Ulm, Germany
| | | | - Sophie Vaulont
- Institut Cochin, INSERM U1016, Université Paris Descartes, Paris, France
| | | | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Christian Trautwein
- Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany
| | - Pavel Strnad
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany; Department of Medicine III and IZKF, University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
11
|
Quantification of the Fat Fraction in the Liver Using Dual-Energy Computed Tomography and Multimaterial Decomposition. J Comput Assist Tomogr 2014; 38:845-52. [DOI: 10.1097/rct.0000000000000142] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Srichairatanakool S, Pangjit K, Phisalaphong C, Fucharoen S. Evaluation of a novel oral iron chelator 1-(N-acetyl-6-aminohexyl)-3-hydroxypyridin-4-one (CM1) for treatment of iron overload in mice. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abb.2013.42023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Abstract
ABSTRACT Iron is an essential transition metal for mammalian cellular and tissue viability. It is critical to supplying oxygen through heme, the mitochondrial respiratory chain, and enzymes such as ribonucleotide reductase. Mammalian organisms have evolved with the means of regulating the metabolism of iron, because if left unregulated, the resulting excess amounts of iron may induce chronic toxicities affecting multiple organ systems. Several homeostatic mechanisms exist to control the amount of intestinal dietary iron uptake, cellular iron uptake, distribution, and export. Within these processes, numerous molecular participants have been identified because of advancements in basic cell biology and efforts in disease-based research of iron storage abnormalities. For example, dietary iron uptake across the intestinal duodenal mucosa is mediated by an intramembrane divalent metal transporter 1 (DMT1), and cellular iron efflux involves ferroportin, the only known iron exporter. In addition to duodenal enterocytes, ferroportin is present in other cell types, and exports iron into plasma. Ferroportin was recently discovered to be regulated by the expression of the circulating hormone hepcidin, a small peptide synthesized in hepatocytes. These recent studies on the role of hepcidin in the regulation of dietary, cellular, and extracellular iron have led to a better understanding of the pathways by which iron balance in humans is influenced, especially its involvement in human genetic diseases of iron overload. Other important molecular pathways include iron binding to transferrin in the bloodstream for cellular delivery through the plasma membrane transferrin receptor (TfR1). In the cytosol, iron regulatory proteins 1 and 2 (IRP1 and IRP2) play a prominent role in sensing the presence of iron in order to posttranscriptionally regulate the expression of TfR1 and ferritin, two important participants in iron metabolism. From a toxicological standpoint, posttranscriptional regulation of these genes aids in the sequestration, control, and hence prevention of cytotoxic effects from free-floating nontransferrin-bound iron. Given the importance of dietary iron in normal physiology, its potential to induce chronic toxicity, and recent discoveries in the regulation of human iron metabolism by hepcidin, this review will address the regulatory mechanisms of normal iron metabolism in mammals with emphasis on dietary exposure. It is the goal of this review that this information may provide in a concise format our current understanding of major pathways and mechanisms involved in mammalian iron metabolism, which is a basis for control of iron toxicity. Such a discussion is intended to facilitate the identification of deficiencies so that future metabolic or toxicological studies may be appropriately focused. A better knowledge of iron metabolism from normal to pathophysiological conditions will ultimately broaden the spectrum of the usefulness of this information in biomedical and toxicological sciences for improving and protecting human health.
Collapse
Affiliation(s)
- Luis G Valerio
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition,Office of Food Additive Safety, Division of Biotechnology and GRAS Notice Review, College Park, MD, 20470, USA
| |
Collapse
|
14
|
Asare GA, Ntombini B, Kew MC, Kahler-Venter CP, Nortey EN. Possible adverse effect of high δ-alpha-tocopherol intake on hepatic iron overload: Enhanced production of vitamin C and the genotoxin, 8-hydroxy-2′- deoxyguanosine. Toxicol Mech Methods 2010; 20:96-104. [DOI: 10.3109/15376510903572888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Tateno C, Carreiro MP, Hixson DC. Endogenous and transplanted small hepatocytes in retrorsine-treated/partially hepatectomized rat liver show differences in growth, phenotype, and proximity to clusters of gamma-glutamyl transpeptidase-positive host hepatocytes. J Histochem Cytochem 2009; 58:61-72. [PMID: 19786612 DOI: 10.1369/jhc.2009.954560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present report, we have compared the phenotype and growth of small hepatocyte progenitors (SHPs) induced by retrorsine/partial hepatectomy (R/PH) and small hepatocytes (SHs) isolated from normal adult liver. SHs were isolated by a combination of differential centrifugation and Percoll isodensity fractionation from a liver cell suspension prepared by collagenase perfusion of a dipeptidyl peptidase IV (DPPIV)-positive Fischer F344 rat liver. Following further purification by flow cytometry, the SH-R3 fraction was transplanted via the portal vein into R/PH-treated, DPPIV-negative Fischer F344 rats. Frozen sections from tissue harvested at 5, 7, and 21 days after transplantation were analyzed by indirect immunofluorescence to compare the phenotypic characteristics of colonies formed by exogenous SH-R3s and endogenous SHPs. Colonies of transplanted SHs and endogenous SHPs displayed similar histologies and phenotypes but were distinguished from surrounding hepatocytes by their elevated expression of transferrin receptor. SH-R3 colonies were frequently located within clusters of gamma-glutamyl transpeptidase-positive host hepatocytes. Although significantly smaller at 5 and 7 days after PH, by day 21, SH-R3 colonies were similar in size to those formed by SHPs. The present results suggest that endogenous SHPs are derived, at least in part, from SHPs.
Collapse
Affiliation(s)
- Chise Tateno
- Department of Medicine, Division of Hematology and Oncology, Rhode Island Hospital and Brown University Medical School, Providence, Rhode Island 02903, USA
| | | | | |
Collapse
|
16
|
Synergistic interaction between excess hepatic iron and alcohol ingestion in hepatic mutagenesis. Toxicology 2008; 254:11-8. [PMID: 18852013 DOI: 10.1016/j.tox.2008.08.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/18/2008] [Accepted: 08/19/2008] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM Hereditary hemochromatosis (HH) and dietary iron overload are the main iron-loading diseases. Fibrosis, cirrhosis and hepatocellular carcinoma (HCC) are complications to HH and dietary iron overload possibly influenced by co-factors. Alcohol may be one such factor. The aim therefore was to determine the extent of synergistic interaction between free hepatic iron and alcohol, complicating dietary iron overload in HCC pathogenesis. METHODS Four groups of 20 Wistar albino rats were used: group 1 (C) was fed the chow diet; group 2 (Fe) was supplemented with 0.75% ferrocene iron; group 3 (Fe+Al), 0.75% iron and 7% ethanol; and group 4, 7% ethanol (Al) for 12 months. Iron profile, superoxide/nitrite free radicals, lipid peroxidation (LPO)/8-isoprostane (8-IP), 8-hydroxydeoxyguanosine (8-OHdG), oxidative lipid/DNA damage immunohistochemistry, transaminases (AST/ALT) and Ames mutagenesis tests were performed. RESULTS Significant differences were observed in the Fe+Al group for LPO, 8-IP, AST and ALT (p<0.001, 0.001, 0.001 and 0.001, respectively) compared to other groups. A three-fold synergistic interaction was observed for the same parameters. Furthermore, significant differences of p<0.05 and 0.001 were observed for 8-OHdG and mutagenesis, respectively, with an additive synergy in the Fe+Al group. ALT/8-OHdG and ALT/mutagenesis correlated positively (p<0.04 and 0.008, respectively). The immunohistochemistry revealed iron/alcohol multiplicative synergism with hydroxyl radical involvement. CONCLUSION Mutagenic effects of iron and alcohol are synergistically multiplicative implicating hydroxyl free radicals in hepatocarcingenesis.
Collapse
|
17
|
Kovacic P. Unifying mechanism for anticancer agents involving electron transfer and oxidative stress: Clinical implications. Med Hypotheses 2007; 69:510-6. [PMID: 17383109 DOI: 10.1016/j.mehy.2006.08.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 08/06/2006] [Indexed: 11/26/2022]
Abstract
Extensive evidence supports involvement of electron transfer (ET), reactive oxygen species (ROS) and oxidative stress (OS) in the mechanism of many anticancer drugs. The common ET functionalities, usually present in the drug metabolites, are quinones (or precursors), metal complexes (or complexors), aromatic nitro compounds (or reduced hydroxylamine and nitroso derivatives), and conjugated imines (or iminium species). The ET agents function catalytically in redox cycling with formation of ROS from oxygen. Electrochemical data add support to the mechanistic viewpoint. The generated metabolites generally possess reduction potentials amenable to ET in vivo, thus giving rise to ROS. The resulting OS is a participant in destruction of the cancer cell. It is important to recognize that drug action is often multipronged. The various modes of action are summarized. Most research has been devoted to development of new and improved chemotherapeutic agents. The need for more attention to measures for cancer prevention is addressed. One of the most promising involves use of antioxidants.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry, San Diego State University, San Diego CA 92182, United States.
| |
Collapse
|
18
|
Asare GA, Mossanda KS, Kew MC, Paterson AC, Kahler-Venter CP, Siziba K. Hepatocellular carcinoma caused by iron overload: a possible mechanism of direct hepatocarcinogenicity. Toxicology 2005; 219:41-52. [PMID: 16337327 DOI: 10.1016/j.tox.2005.11.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/01/2005] [Accepted: 11/01/2005] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Excess hepatic iron may be both directly and indirectly carcinogenic. The aim of this study was to determine if generation of reactive oxygen species and the resulting oxidative damage induced by free hepatic iron is directly hepatocarcinogenic. METHODS Sixty male Wistar albino rats were iron-loaded by ferrocene supplementation of their diet. Biochemical parameters of oxidative damage and lipid peroxidation, DNA unwinding and strand breaks, and the Ames Mutagenesis Test were measured at 4 monthly intervals and correlated with the degree of hepatic iron overload, the presence of iron-free preneoplastic foci in the liver, and the development of hepatocellular carcinoma in comparison with 60 control rats. RESULTS Levels of lipid hydroperoxides, malonaldehyde, 8-isoprostane and 8-hydroxy-2'-deoxyguanosine increased, reaching peak concentrations at 20-24 months, and correlating with an increase in the rate of DNA unwinding, strand breaks, and positive Ames Tests. Iron-free neoplastic foci became evident at 16 months and thereafter increased in number. Preneoplastic foci were present in five of eight rats remaining at 32 months and HCC had developed in one of the five. CONCLUSIONS Our findings are compatible with the hypothesis that the direct hepatocarcinogenic effect of free iron is mediated by the generation of oxygen reactive species and oxidative damage that are mutagenic and carcinogenic.
Collapse
Affiliation(s)
- George A Asare
- MRC/University Molecular Hepatology Research Unit, Department of Medicine, University of the Witwatersrand, 7 York Road, Parktown 2193, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
19
|
Elmegeed GA, Ahmed HH, Hussein JS. Novel synthesized aminosteroidal heterocycles intervention for inhibiting iron-induced oxidative stress. Eur J Med Chem 2005; 40:1283-94. [PMID: 16154236 DOI: 10.1016/j.ejmech.2005.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 07/16/2005] [Accepted: 07/25/2005] [Indexed: 11/20/2022]
Abstract
The objective of this study was to elucidate the potential role of novel synthesized aminosteroidal heterocyclic compounds 2, 5, 9b and 10c against iron-induced oxidative stress with particular insight on erythrocyte ghosts in male rats. Chronic iron supplementation (3000 mg kg(-1) diet) for 6 weeks significantly increased plasma iron and ferritin levels. It also produced significant increase in plasma TNF-alpha and NO levels. Lipid metabolism was also affected by excess iron, so that plasma and erythrocyte membrane total cholesterol, triglycerides, phospholipids and total lipid levels were significantly elevated. In consequence, a significant increase in plasma leptin level was detected. Iron overload clearly induces oxidative stress as indicated by the significant increase in both plasma and erythrocyte membrane lipid peroxidation levels. Noteworthy, excess iron not only decreased the mean value of erythrocyte membrane protein but also caused marked alterations in the membrane protein fractions with concomitant inhibition in erythrocyte membrane ATPases activity. On the other hand, treatment with the aminosteriodal heterocyclic compounds especially compounds 5, 2, and 10c in an oral dose of 5 mg kg(-1) B.W. per day could ameliorate almost all of the changes in plasma and erythrocyte ghosts components induced by iron overload. The efficacious role of these novel synthesized aminosteriods in preventing iron-induced oxidative stress may be mediated through their iron chelating properties, anti-lipid peroxidation activities and membrane stabilizing actions. The encouraging results obtained in the present study lend credence to substantial investigation to assess the use of these compounds as a potent line of therapy to retard the pathogenesis of iron overload diseases.
Collapse
Affiliation(s)
- Gamal A Elmegeed
- Hormones Department, National Research Center, Dokki, Giza, Egypt.
| | | | | |
Collapse
|
20
|
Xu GF, Wang XY, Ge GL, Li PT, Jia X, Tian DL, Jiang LD, Yang JX. Dynamic changes of capillarization and peri-sinusoid fibrosis in alcoholic liver diseases. World J Gastroenterol 2004; 10:238-43. [PMID: 14716831 PMCID: PMC4717012 DOI: 10.3748/wjg.v10.i2.238] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigate the dynamic changes of capillarization and peri-sinusoid fibrosis in an alcoholic liver disease model induced by a new method.
METHODS: Male SD rats were randomly divided into 6 groups, namely normal, 4 d, 2 w, 4 w, 9 w and 11 w groups. The animals were fed with a mixture of alcohol for designated days and then decollated, and their livers were harvested to examine the pathological changes of hepatocytes, hepatic stellate cells, sinusoidal endothelial cells, sinusoid, peri-sinusoid. The generation of three kinds of extra cellular matrix was also observed.
RESULTS: The injury of hepatocytes became severer as modeling going on. Under electronic microscope, fatty vesicles and swollen mitochondria in hepatocytes, activated hepatic stellate cells with fibrils could been seen near or around it. Fenestrae of sinusoidal endothelial cells were decreased or disappeared, sinusoidal basement was formed. Under light microscopy typical peri-sinusoid fibrosis, gridding-like fibrosis, broaden portal areas, hepatocyte’s fatty and balloon denaturation, iron sediment, dot necrosis, congregated lymphatic cells and leukocytes were observed. Type I collagen showed an increasing trend as modeling going on, slightly recovered when modeling stopped for 2 weeks. Meanwhile, type IV collagen decreased rapidly when modeling began and recovered after modeling stopped for 2 weeks. Laminin increased as soon as modeling began and did not recover when modeling stopped for 2 weeks.
CONCLUSION: The pathological changes of the model were similar to that of human ALD, but mild in degree. It had typical peri-sinusoid fibrosis, however, capillarization seemed to be instable. It may be related with the reduction of type IV collagen in the basement of sinusoid during modeling.
Collapse
Affiliation(s)
- Guang-Fu Xu
- Digestive Department of the Affiliated Dongzhimen Hospital, Beijing University of Traditional Chinese Medicine, Beijing 100700, China.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Feng ZQ, Shen ZX, Tan SY, Luo HS, Qi CB, Guo J, Li HX. Improvement of induction method of acute alcoholic fatty liver model in rats. Shijie Huaren Xiaohua Zazhi 2003; 11:1189-1192. [DOI: 10.11569/wcjd.v11.i8.1189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To provide a valuable model for the study on acute alcoholic fatty liver.
METHODS Thirty Wistar male rats were randomized into two groups: model group (group 1, intragastric infusion of spirits, fed with high fat and iron diet), control group (group 2, intragastric infusion of saline, fed with common diet). Some rats were sacrificed after 2 and 3 weeks to evaluate the process of alcoholic fatty liver formation. All rats were sacrificed at the end of the fourth week.
RESULTS Slight fatty deposition was observed at the end of 2nd week after the experiment and moderate fatty deposition at the 3 rd week and severe fatty deposition at the 4 th week. In comparison with control group, the liver mass index was increased in the model group. There was a statistically significant difference between the two groups.
CONCLUSION The lesion of the acute alcoholic fatty liver in model rats is similar to that in humans. The experiment is very simple and the experiment cycle is short and the conclusion is clear.
Collapse
Affiliation(s)
- Zhi-Qiang Feng
- Department of Gastroenterology, the Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Zhi-Xiang Shen
- Department of Gastroenterology, the Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Shi-Yun Tan
- Department of Gastroenterology, the Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - He-Sheng Luo
- Department of Gastroenterology, the Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Chu-Bo Qi
- Department of Pathology, Hubei Tumor Hospital, Wuhan, Hubei Province 430070, China
| | - Jie Guo
- Department of Gastroenterology, the Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| | - Hai-Xia Li
- Department of Gastroenterology, the Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China
| |
Collapse
|
22
|
Abstract
Iron is an essential mineral for normal cellular physiology, but an excess can result in cell injury. Iron in low-molecular-weight forms may play a catalytic role in the initiation of free radical reactions. The resulting oxyradicals have the potential to damage cellular lipids, nucleic acids, proteins, and carbohydrates; the result is wide-ranging impairment in cellular function and integrity. The rate of free radical production must overwhelm the cytoprotective defenses of cells before injury occurs. There is substantial evidence that iron overload in experimental animals can result in oxidative damage to lipids in vivo, once the concentration of iron exceeds a threshold level. In the liver, this lipid peroxidation is associated with impairment of membrane-dependent functions of mitochondria and lysosomes. Iron overload impairs hepatic mitochondrial respiration primarily through a decrease in cytochrome C oxidase activity, and hepatocellular calcium homeostasis may be compromised through damage to mitochondrial and microsomal calcium sequestration. DNA has also been reported to be a target of iron-induced damage, and this may have consequences in regard to malignant transformation. Mitochondrial respiratory enzymes and plasma membrane enzymes such as sodium-potassium-adenosine triphosphatase (Na(+) + K(+)-ATPase) may be key targets of damage by non-transferrin-bound iron in cardiac myocytes. Levels of some antioxidants are decreased during iron overload, a finding suggestive of ongoing oxidative stress. Reduced cellular levels of ATP, lysosomal fragility, impaired cellular calcium homeostasis, and damage to DNA all may contribute to cellular injury in iron overload. Evidence is accumulating that free-radical production is increased in patients with iron overload. Iron-loaded patients have elevated plasma levels of thiobarbituric acid reactants and increased hepatic levels of aldehyde-protein adducts, indicating lipid peroxidation. Hepatic DNA of iron-loaded patients shows evidence of damage, including mutations of the tumor suppressor gene p53. Although phlebotomy therapy is effective in removing excess iron in hereditary hemochromatosis, chelation therapy is required in the treatment of many patients who have combined secondary and transfusional iron overload due to disorders in erythropoiesis. In patients with beta-thalassemia who undergo regular transfusions, deferoxamine treatment has been shown to be effective in preventing iron-induced tissue injury and in prolonging life expectancy. The use of the oral chelator deferiprone remains controversial, and work is continuing on the development of new orally effective iron chelators.
Collapse
|