1
|
Khambu B, Wang L, Zhang H, Yin XM. The Activation and Function of Autophagy in Alcoholic Liver Disease. Curr Mol Pharmacol 2019; 10:165-171. [PMID: 26278385 DOI: 10.2174/1874467208666150817112654] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/29/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023]
Abstract
Autophagy is an important lysosome-mediated intracellular degradation pathway required for tissue homeostasis. Dysregulation of liver autophagy is closely associated with different liver diseases including alcoholic liver disease. Studies now indicate that autophagy may be induced or suppressed depending on the amount and the duration of ethanol treatment. Autophagy induced by ethanol serves as a protective mechanism, probably by selective degradation of the damaged mitochondria (mitophagy) and excess lipid droplets (lipophagy) and in turn attenuates alcohol-induced steatosis and liver injury. However, the detailed molecular mechanism of selective targeting of mitochondria and lipid is still unclear. Autophagy may possess other functions that protect hepatocytes from ethanol. Understanding these molecular entities would be essential in order to therapeutically module autophagy for treatment of alcoholic liver disease.
Collapse
Affiliation(s)
- Bilon Khambu
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202. United States
| | - Lin Wang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202. United States
| | - Hao Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202. United States
| | - Xiao-Ming Yin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202. United States
| |
Collapse
|
2
|
Chao X, Ding WX. Role and mechanisms of autophagy in alcohol-induced liver injury. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:109-131. [PMID: 31307584 PMCID: PMC7141786 DOI: 10.1016/bs.apha.2019.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholic liver disease (ALD) is one of the major causes of chronic liver disease worldwide. Currently, no successful treatments are available for ALD. The pathogenesis of ALD is characterized as simple steatosis, fibrosis, cirrhosis, alcoholic hepatitis (AH), and eventually hepatocellular carcinoma (HCC). Autophagy is a highly conserved intracellular catabolic process, which aims at recycling cellular components and removing damaged organelles in response to starvation and stresses. Therefore, autophagy is considered as an important cellular adaptive and survival mechanism under various pathophysiological conditions. Recent studies from our lab and others suggest that chronic alcohol consumption may impair autophagy and contribute to the pathogenesis of ALD. In this chapter, we summarize recent progress on the role and mechanisms of autophagy in the development of ALD. Understanding the roles of autophagy in ALD may offer novel therapeutic avenues against ALD by targeting these pathways.
Collapse
Affiliation(s)
- Xiaojuan Chao
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States.
| |
Collapse
|
3
|
Haraguchi CM, Mabuchi T, Hirata S, Shoda T, Hoshi K, Akasaki K, Yokota S. Chromatoid Bodies: Aggresome-like Characteristics and Degradation Sites for Organelles of Spermiogenic Cells. J Histochem Cytochem 2016; 53:455-65. [PMID: 15805420 DOI: 10.1369/jhc.4a6520.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the localization of several markers for lysosomes and aggresomes in the chromatoid bodies (CBs) by immunoelectron microscopy. We found so-called aggresomal markers such as Hsp70 and ubiquitin in the core of the CBs and vimentin and proteasome subunit around the CBs. Ubiquitin-conjugating enzyme (E2) was also found in the CBs. In tubulovesicular structures surrounding the CBs, lysosomal markers were detected but an endoplasmic reticulum retention signal (KDEL) was not. Moreover, proteins located in each subcellular compartment, including the cytosol, mitochondria, and nucleus, were detected in the CBs. Signals for cytochrome oxidase I (COXI) coded on mitochondrial DNA were also found in the CBs. Quantitative analysis of labeling density showed that all proteins examined were concentrated in the CBs to some extent. These results show that the CBs have some aggresomal features, suggesting that they are not a synthetic site as proposed previously but a degradation site where unnecessary DNA, RNA, and proteins are digested.
Collapse
|
4
|
Cheema MU, Poulsen ET, Enghild JJ, Hoorn EJ, Hoorn E, Fenton RA, Praetorius J. Aldosterone and angiotensin II induce protein aggregation in renal proximal tubules. Physiol Rep 2013; 1:e00064. [PMID: 24303148 PMCID: PMC3831891 DOI: 10.1002/phy2.64] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 01/13/2023] Open
Abstract
Renal tubules are highly active transporting epithelia and are at risk of protein aggregation due to high protein turnover and/or oxidative stress. We hypothesized that the risk of aggregation was increased upon hormone stimulation and assessed the state of the intracellular protein degradation systems in the kidney from control rats and rats receiving aldosterone or angiotensin II treatment for 7 days. Control rats formed both aggresomes and autophagosomes specifically in the proximal tubules, indicating a need for these structures even under baseline conditions. Fluorescence sorted aggresomes contained various rat keratins known to be expressed in renal tubules as assessed by protein mass spectrometry. Aldosterone administration increased the abundance of the proximal tubular aggresomal protein keratin 5, the ribosomal protein RPL27, ataxin-3, and the chaperone heat shock protein 70-4 with no apparent change in the aggresome–autophagosome markers. Angiotensin II induced aggregation of RPL27 specifically in proximal tubules, again without apparent change in antiaggregating proteins or the aggresome–autophagosome markers. Albumin endocytosis was unaffected by the hormone administration. Taken together, we find that the renal proximal tubules display aggresome formation and autophagy. Despite an increase in aggregation-prone protein load in these tubules during hormone treatment, renal proximal tubules seem to have sufficient capacity for removing protein aggregates from the cells.
Collapse
Affiliation(s)
- Muhammad U Cheema
- Department of Biomedicine, Membranes & InterPrET, Health, Aarhus University Aarhus, Denmark
| | | | | | | | | | | | | |
Collapse
|
5
|
Ni HM, Williams JA, Yang H, Shi YH, Fan J, Ding WX. Targeting autophagy for the treatment of liver diseases. Pharmacol Res 2012; 66:463-74. [PMID: 22871337 DOI: 10.1016/j.phrs.2012.07.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/18/2012] [Indexed: 12/19/2022]
Abstract
Autophagy is a lysosomal degradation pathway that can degrade bulk cytoplasm and superfluous or damaged organelles, such as mitochondria, to maintain cellular homeostasis. It is now known that dysregulation of autophagy can cause pathogenesis of numerous human diseases. Here, we discuss the critical roles that autophagy plays in the pathogenesis of liver diseases such as non-alcoholic and alcoholic fatty liver, drug-induced liver injury, protein aggregate-related liver diseases, viral hepatitis, fibrosis, aging and liver cancer. In particular, we discuss the emerging therapeutic potential by pharmacological modulation of autophagy for these liver diseases.
Collapse
Affiliation(s)
- Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS 66160, United States
| | | | | | | | | | | |
Collapse
|
6
|
Kwan R, Hanada S, Harada M, Strnad P, Li DH, Omary MB. Keratin 8 phosphorylation regulates its transamidation and hepatocyte Mallory-Denk body formation. FASEB J 2012; 26:2318-26. [PMID: 22362895 DOI: 10.1096/fj.11-198580] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mallory-Denk bodies (MDBs) are hepatocyte inclusions that are associated with poor liver disease prognosis. The intermediate filament protein keratin 8 (K8) and its cross-linking by transglutaminase-2 (TG2) are essential for MDB formation. K8 hyperphosphorylation occurs in association with liver injury and MDB formation, but the link between keratin phosphorylation and MDB formation is unknown. We used a mutational approach to identify K8 Q70 as a residue that is important for K8 cross-linking to itself and other liver proteins. K8 cross-linking is markedly enhanced on treating cells with a phosphatase inhibitor and decreases dramatically on K8 S74A or Q70N mutation in the presence of phosphatase inhibition. K8 Q70 cross-linking, in the context of synthetic peptides or intact proteins transfected into cells, is promoted by phosphorylation at K8 S74 or by an S74D substitution and is inhibited by S74A mutation. Transgenic mice that express K8 S74A or a K8 G62C liver disease variant that inhibits K8 S74 phosphorylation have a markedly reduced ability to form MDBs. Our findings support a model in which the stress-triggered phosphorylation of K8 S74 induces K8 cross-linking by TG2, leading to MDB formation. These findings may extend to neuropathies and myopathies that are characterized by intermediate filament-containing inclusions.
Collapse
Affiliation(s)
- Raymond Kwan
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0622, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Nurminskaya MV, Belkin AM. Cellular functions of tissue transglutaminase. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:1-97. [PMID: 22364871 PMCID: PMC3746560 DOI: 10.1016/b978-0-12-394305-7.00001-x] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transglutaminase 2 (TG2 or tissue transglutaminase) is a highly complex multifunctional protein that acts as transglutaminase, GTPase/ATPase, protein disulfide isomerase, and protein kinase. Moreover, TG2 has many well-documented nonenzymatic functions that are based on its noncovalent interactions with multiple cellular proteins. A vast array of biochemical activities of TG2 accounts for its involvement in a variety of cellular processes, including adhesion, migration, growth, survival, apoptosis, differentiation, and extracellular matrix organization. In turn, the impact of TG2 on these processes implicates this protein in various physiological responses and pathological states, contributing to wound healing, inflammation, autoimmunity, neurodegeneration, vascular remodeling, tumor growth and metastasis, and tissue fibrosis. TG2 is ubiquitously expressed and is particularly abundant in endothelial cells, fibroblasts, osteoblasts, monocytes/macrophages, and smooth muscle cells. The protein is localized in multiple cellular compartments, including the nucleus, cytosol, mitochondria, endolysosomes, plasma membrane, and cell surface and extracellular matrix, where Ca(2+), nucleotides, nitric oxide, reactive oxygen species, membrane lipids, and distinct protein-protein interactions in the local microenvironment jointly regulate its activities. In this review, we discuss the complex biochemical activities and molecular interactions of TG2 in the context of diverse subcellular compartments and evaluate its wide ranging and cell type-specific biological functions and their regulation.
Collapse
Affiliation(s)
- Maria V Nurminskaya
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
8
|
Kim SY. Transglutaminase 2: a new paradigm for NF-kappaB involvement in disease. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:161-95. [PMID: 22220474 DOI: 10.1002/9781118105771.ch4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Soo-Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Kyonggi-do, Republic of Korea
| |
Collapse
|
9
|
Abstract
Erythrocytes must regulate hemoglobin synthesis to limit the toxicities of unstable free globin chain subunits. This regulation is particularly relevant in β-thalassemia, in which β-globin deficiency causes accumulation of free α-globin, which forms intracellular precipitates that destroy erythroid precursors. Experimental evidence accumulated over more than 40 years indicates that erythroid cells can neutralize moderate amounts of free α-globin through generalized protein quality control mechanisms, including molecular chaperones, the ubiquitin-proteasome system, and autophagy. In many ways, β-thalassemia resembles protein aggregation disorders of the nervous system, liver, and other tissues, which occur when levels of unstable proteins overwhelm cellular compensatory mechanisms. Information gained from studies of nonerythroid protein aggregation disorders may be exploited to further understand and perhaps treat β-thalassemia.
Collapse
|
10
|
Bondzi C, Brunner AM, Munyikwa MR, Connor CD, Simmons AN, Stephens SL, Belt PA, Roggero VR, Mavinakere MS, Hinton SD, Allison LA. Recruitment of the oncoprotein v-ErbA to aggresomes. Mol Cell Endocrinol 2011; 332:196-212. [PMID: 21075170 PMCID: PMC4634111 DOI: 10.1016/j.mce.2010.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Accepted: 10/14/2010] [Indexed: 02/01/2023]
Abstract
Aggresome formation, a cellular response to misfolded protein aggregates, is linked to cancer and neurodegenerative disorders. Previously we showed that Gag-v-ErbA (v-ErbA), a retroviral variant of the thyroid hormone receptor (TRα1), accumulates in and sequesters TRα1 into cytoplasmic foci. Here, we show that foci represent v-ErbA targeting to aggresomes. v-ErbA colocalizes with aggresomal markers, proteasomes, hsp70, HDAC6, and mitochondria. Foci have hallmark characteristics of aggresomes: formation is microtubule-dependent, accelerated by proteasome inhibitors, and they disrupt intermediate filaments. Proteasome-mediated degradation is critical for clearance of v-ErbA and T(3)-dependent TRα1 clearance. Our studies highlight v-ErbA's complex mode of action: the oncoprotein is highly mobile and trafficks between the nucleus, cytoplasm, and aggresome, carrying out distinct activities within each compartment. Dynamic trafficking to aggresomes contributes to the dominant negative activity of v-ErbA and may be enhanced by the viral Gag sequence. These studies provide insight into novel modes of oncogenesis across multiple cellular compartments.
Collapse
Affiliation(s)
- Cornelius Bondzi
- Department of Biological Sciences, Hampton University, Hampton, VA 23668
| | - Abigail M. Brunner
- Department of Biology, College of William and Mary, Williamsburg, VA 23187
| | | | - Crystal D. Connor
- Department of Biological Sciences, Hampton University, Hampton, VA 23668
| | - Alicia N. Simmons
- Department of Biological Sciences, Hampton University, Hampton, VA 23668
| | | | - Patricia A. Belt
- Department of Biological Sciences, Hampton University, Hampton, VA 23668
| | - Vincent R. Roggero
- Department of Biology, College of William and Mary, Williamsburg, VA 23187
| | | | - Shantá D. Hinton
- Department of Biology, College of William and Mary, Williamsburg, VA 23187
| | - Lizabeth A. Allison
- Department of Biology, College of William and Mary, Williamsburg, VA 23187
- Corresponding author: Lizabeth A. Allison, Department of Biology, College of William and Mary, Integrated Science Center Room 3035B, 540 Landrum Drive, Williamsburg, VA 23187, Tele: 757-221-2232, Fax: 757-221-6483,
| |
Collapse
|
11
|
McIntosh PB, Laskey P, Sullivan K, Davy C, Wang Q, Jackson DJ, Griffin HM, Doorbar J. E1--E4-mediated keratin phosphorylation and ubiquitylation: a mechanism for keratin depletion in HPV16-infected epithelium. J Cell Sci 2010; 123:2810-22. [PMID: 20663917 PMCID: PMC2915882 DOI: 10.1242/jcs.061978] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2010] [Indexed: 12/13/2022] Open
Abstract
The keratin IF network of epidermal keratinocytes provides a protective barrier against mechanical insult, it is also a major player in absorbing stress in these cells. The human papilloma virus (HPV) type 16 E1--E4 protein accumulates in the upper layers of HPV16-infected epithelium and is known to associate with and reorganise the keratin IF network in cells in culture. Here, we show that this function is conserved amongst a number of HPV alpha-group E1--E4 proteins and that the differentiation-dependent keratins are also targeted. Using time-lapse microscopy, HPV16 E1--E4 was found to effect a dramatic cessation of keratin IF network dynamics by associating with both soluble and insoluble keratin. Network disruption was accompanied by keratin hyperphosphorylation at several sites, including K8 S73, which is typically phosphorylated in response to stress stimuli. Keratin immunoprecipitated from E1--E4-expressing cells was also found to be ubiquitylated, indicating that it is targeted for proteasomal degradation. Interestingly, the accumulation of hyperphosphorylated, ubiquitylated E1--E4-keratin structures was found to result in an impairment of proteasomal function. These observations shed new light on the mechanism of keratin IF network reorganisation mediated by HPV16 E1--E4 and provide an insight into the depletion of keratin co-incident with E1--E4 accumulation observed in HPV-infected epithelium.
Collapse
Affiliation(s)
- Pauline B. McIntosh
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, N10 3UE, UK
| | - Peter Laskey
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, N10 3UE, UK
| | - Kate Sullivan
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, N10 3UE, UK
| | - Clare Davy
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, N10 3UE, UK
| | - Qian Wang
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, N10 3UE, UK
| | - Deborah J. Jackson
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, N10 3UE, UK
| | - Heather M. Griffin
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, N10 3UE, UK
| | - John Doorbar
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, N10 3UE, UK
| |
Collapse
|
12
|
Ding WX. Role of autophagy in liver physiology and pathophysiology. World J Biol Chem 2010; 1:3-12. [PMID: 21540988 PMCID: PMC3083930 DOI: 10.4331/wjbc.v1.i1.3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 01/08/2009] [Accepted: 01/15/2009] [Indexed: 02/05/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway by which bulk cytoplasm and superfluous or damaged organelles are enveloped by double membrane structures termed autophagosomes. The autophagosomes then fuse with lysosomes for degradation of their contents, and the resulting amino acids can then recycle back to the cytosol. Autophagy is normally activated in response to nutrient deprivation and other stressors and occurs in all eukaryotes. In addition to maintaining energy and nutrient balance in the liver, it is now clear that autophagy plays a role in liver protein aggregates related diseases, hepatocyte cell death, steatohepatitis, hepatitis virus infection and hepatocellular carcinoma. In this review, I discuss the recent findings of autophagy with a focus on its role in liver pathophysiology.
Collapse
Affiliation(s)
- Wen-Xing Ding
- Wen-Xing Ding, Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, MS 1018, 3901 Rainbow Blvd, Kansas City, Kansas, KS 66160, United States
| |
Collapse
|
13
|
Oliva J, Bardag-Gorce F, French BA, Li J, French SW. The regulation of non-coding RNA expression in the liver of mice fed DDC. Exp Mol Pathol 2009; 87:12-9. [PMID: 19362547 PMCID: PMC2885145 DOI: 10.1016/j.yexmp.2009.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 03/30/2009] [Indexed: 12/13/2022]
Abstract
Mallory-Denk bodies (MDBs) are found in the liver of patients with alcoholic and chronic nonalcoholic liver disease, and hepatocellular carcinoma (HCC). Diethyl 1,4-dihydro-2,4,6,-trimethyl-3,5-pyridinedicarboxylate (DDC) is used as a model to induce the formation of MDBs in mouse liver. Previous studies in this laboratory showed that DDC induced epigenetic modifications in DNA and histones. The combination of these modifications changes the phenotype of the MDB forming hepatocytes, as indicated by the marker FAT10. These epigenetic modifications are partially prevented by adding to the diet S-adenosylmethionine (SAMe) or betaine, both methyl donors. The expression of three imprinted ncRNA genes was found to change in MDB forming hepatocytes, which is the subject of this report. NcRNA expression was quantitated by real-time PCR and RNA FISH in liver sections. Microarray analysis showed that the expression of three ncRNAs was regulated by DDC: up regulation of H19, antisense Igf2r (AIR), and down regulation of GTL2 (also called MEG3). S-adenosylmethionine (SAMe) feeding prevented these changes. Betaine, another methyl group donor, prevented only H19 and AIR up regulation induced by DDC, on microarrays. The results of the SAMe and betaine groups were confirmed by real-time PCR, except for AIR expression. After 1 month of drug withdrawal, the expression of the three ncRNAs tended toward control levels of expression. Liver tumors that developed also showed up regulation of H19 and AIR. The RNA FISH approach showed that the MDB forming cells' phenotype changed the level of expression of AIR, H19 and GTL2, compared to the surrounding cells. Furthermore, over expression of H19 and AIR was demonstrated in tumors formed in mice withdrawn for 9 months. The dysregulation of ncRNA in MDB forming liver cells has been observed for the first time in drug-primed mice associated with liver preneoplastic foci and tumors.
Collapse
Affiliation(s)
- Joan Oliva
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, USA.
| | | | | | | | | |
Collapse
|
14
|
Hirano K, Guhl B, Roth J, Ziak M. A cell culture system for the induction of Mallory bodies: Mallory bodies and aggresomes represent different types of inclusion bodies. Histochem Cell Biol 2009; 132:293-304. [DOI: 10.1007/s00418-009-0598-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2009] [Indexed: 12/24/2022]
|
15
|
Abstract
Alcohol ingestion causes alteration in several cellular mechanisms, and leads to inflammation, apoptosis, immunological response defects, and fibrosis. These phenomena are associated with significant changes in the epigenetic mechanisms, and subsequently, to liver cell memory. The ubiquitin-proteasome pathway is one of the vital pathways in the cell that becomes dysfunctionial as a result of chronic ethanol consumption. Inhibition of the proteasome activity in the nucleus causes changes in the turnover of transcriptional factors, histone modifying enzymes, and therefore, affects epigenetic mechanisms. Alcohol consumption has been associated with an increase in histone acetylation and a decrease in histone methylation, which leads to gene expression changes. DNA and histone modifications that result from ethanol-induced proteasome inhibition are key players in regulating gene expression, especially genes involved in the cell cycle, immunological responses, and metabolism of ethanol. The present review highlights the consequences of ethanol-induced proteasome inhibition in the nucleus of liver cells that are chronically exposed to ethanol.
Collapse
|
16
|
Wang Y, Meriin AB, Zaarur N, Romanova NV, Chernoff YO, Costello CE, Sherman MY. Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery. FASEB J 2008; 23:451-63. [PMID: 18854435 DOI: 10.1096/fj.08-117614] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In mammalian cells, abnormal proteins that escape proteasome-dependent degradation form small aggregates that can be transported into a centrosome-associated structure, called an aggresome. Here we demonstrate that in yeast a single aggregate formed by the huntingtin exon 1 with an expanded polyglutamine domain (103QP) represents a bona fide aggresome that colocalizes with the spindle pole body (the yeast centrosome) in a microtubule-dependent fashion. Since a polypeptide lacking the proline-rich region (P-region) of huntingtin (103Q) cannot form aggresomes, this domain serves as an aggresome-targeting signal. Coexpression of 103Q with 25QP, a soluble polypeptide that also carries the P-region, led to the recruitment of 103Q to the aggresome via formation of hetero-oligomers, indicating the aggresome targeting in trans. To identify additional factors involved in aggresome formation and targeting, we purified 103QP aggresomes and 103Q aggregates and identified the associated proteins using mass spectrometry. Among the aggresome-associated proteins we identified, Cdc48 (VCP/p97) and its cofactors, Ufd1 and Nlp4, were shown genetically to be essential for aggresome formation. The 14-3-3 protein, Bmh1, was also found to be critical for aggresome targeting. Its interaction with the huntingtin fragment and its role in aggresome formation required the huntingtin N-terminal N17 domain, adjacent to the polyQ domain. Accordingly, the huntingtin N17 domain, along with the P-region, plays a role in aggresome targeting. We also present direct genetic evidence for the protective role of aggresomes by demonstrating genetically that aggresome targeting of polyglutamine polypeptides relieves their toxicity.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Myofibrillar myopathies (MFMs) are clinically and genetically heterogeneous muscle disorders that are defined morphologically by the presence of foci of myofibril dissolution, accumulation of myofibrillar degradation products, and ectopic expression of multiple proteins. MFMs are the paradigm of conformational protein diseases of the skeletal (and cardiac) muscles characterised by intracellular protein accumulation in muscle cells. Understanding of this group of disorders has advanced in recent years through the identification of causative mutations in various genes, most of which encode proteins of the sarcomeric Z-disc, including desmin, alphaB-crystallin, myotilin, ZASP and filamin C. This review focuses on the MFMs arising from defects in these proteins, summarising genetic and clinical features of the disorders and then discussing emerging understanding of the molecular pathogenic mechanisms leading to muscle fibre degeneration. Defective extralysosomal degradation of proteins is now recognised as an important element in this process. Several factors--including mutant proteins, a defective ubiquitin-proteasome system, aggresome formation, mutant ubiquitin, p62, oxidative stress and abnormal regulation of some transcription factors--are thought to participate in the cascade of events occurring in muscle fibres in MFMs.
Collapse
|
18
|
Yokota S. Historical survey on chromatoid body research. Acta Histochem Cytochem 2008; 41:65-82. [PMID: 18787638 PMCID: PMC2532602 DOI: 10.1267/ahc.08010] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Accepted: 05/14/2008] [Indexed: 12/22/2022] Open
Abstract
The chromatoid body (CB) is a male reproductive cell-specific organelle that appears in spermatocytes and spermatids. The cytoplasmic granule corresponding to the CB was first discovered some 130 years ago by von Brunn in 1876. Thirty years later the German term "chromatoide Körper" (chromatoid body) was introduced to describe this granule and is still used today. In this review, first, the results obtained by light microscopic studies on the CB for the first 60 years are examined. Next, many findings revealed by electron microscopic studies are reviewed. Finally, recent molecular cell biological studies concerning the CB are discussed. The conclusion obtained by exploring the papers on CB published during the past 130 years is that many of the modern molecular cell biological studies are undoubtedly based on information accumulated by vast amounts of early studies.
Collapse
Affiliation(s)
- Sadaki Yokota
- Section of Functional Morphology, Faculty of Pharmaceutical Science, Nagasaki International University, Sasebo, Nagasaki 859-3298, Japan.
| |
Collapse
|
19
|
Abstract
A great part of our current understanding of mammalian macroautophagy is derived from studies of the liver. The term "autophagy" was introduced by Christian de Duve in part based on ultrastructural changes in rat liver following glucagon injection. Subsequent morphological, biochemical, and kinetics studies of autophagy in the liver defined the basic process of autophagosome formation, maturation, and degradation and the regulation of autophagy by hormones, phosphoinositide 3-kinases, and mammalian target of rapamycin. It is now clear that macroautophagy in the liver is important for the balance of energy and nutrients for basic cell functions, the removal of misfolded proteins resulting from genetic mutations or pathophysiological stimulations, and the turnover of major subcellular organelles such as mitochondria, endoplasmic reticulum, and peroxisomes under both normal and pathophysiological conditions. Disturbance of autophagy function in the liver could thus have a major impact on liver physiology and liver disease.
Collapse
Affiliation(s)
- Xiao-Ming Yin
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15231, USA.
| | | | | |
Collapse
|
20
|
Strnad P, Stumptner C, Zatloukal K, Denk H. Intermediate filament cytoskeleton of the liver in health and disease. Histochem Cell Biol 2008; 129:735-49. [PMID: 18443813 PMCID: PMC2386529 DOI: 10.1007/s00418-008-0431-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2008] [Indexed: 02/06/2023]
Abstract
Intermediate filaments (IFs) represent the largest cytoskeletal gene family comprising approximately 70 genes expressed in tissue specific manner. In addition to scaffolding function, they form complex signaling platforms and interact with various kinases, adaptor, and apoptotic proteins. IFs are established cytoprotectants and IF variants are associated with >30 human diseases. Furthermore, IF-containing inclusion bodies are characteristic features of several neurodegenerative, muscular, and other disorders. Acidic (type I) and basic keratins (type II) build obligatory type I and type II heteropolymers and are expressed in epithelial cells. Adult hepatocytes contain K8 and K18 as their only cytoplasmic IF pair, whereas cholangiocytes express K7 and K19 in addition. K8/K18-deficient animals exhibit a marked susceptibility to various toxic agents and Fas-induced apoptosis. In humans, K8/K18 variants predispose to development of end-stage liver disease and acute liver failure (ALF). K8/K18 variants also associate with development of liver fibrosis in patients with chronic hepatitis C. Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated K8/K18, chaperones and sequestosome1/p62 (p62) as their major constituents. MDBs are found in various liver diseases including alcoholic and non-alcoholic steatohepatitis and can be formed in mice by feeding hepatotoxic substances griseofulvin and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDBs also arise in cell culture after transfection with K8/K18, ubiquitin, and p62. Major factors that determine MDB formation in vivo are the type of stress (with oxidative stress as a major player), the extent of stress-induced protein misfolding and resulting chaperone, proteasome and autophagy overload, keratin 8 excess, transglutaminase activation with transamidation of keratin 8 and p62 upregulation.
Collapse
Affiliation(s)
- P Strnad
- Department of Internal Medicine I, University of Ulm, Robert-Koch-Strabe 8, 89081, Ulm, Germany.
| | | | | | | |
Collapse
|
21
|
Zatloukal K, French SW, Stumptner C, Strnad P, Harada M, Toivola DM, Cadrin M, Omary MB. From Mallory to Mallory–Denk bodies: What, how and why? Exp Cell Res 2007; 313:2033-49. [PMID: 17531973 DOI: 10.1016/j.yexcr.2007.04.024] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/02/2007] [Accepted: 04/03/2007] [Indexed: 12/16/2022]
Abstract
Frank B. Mallory described cytoplasmic hyaline inclusions in hepatocytes of patients with alcoholic hepatitis in 1911. These inclusions became known as Mallory bodies (MBs) and have since been associated with a variety of other liver diseases including non-alcoholic fatty liver disease. Helmut Denk and colleagues described the first animal model of MBs in 1975 that involves feeding mice griseofulvin. Since then, mouse models have been instrumental in helping understand the pathogenesis of MBs. Given the tremendous contributions made by Denk to the field, we propose renaming MBs as Mallory-Denk bodies (MDBs). The major constituents of MDBs include keratins 8 and 18 (K8/18), ubiquitin, and p62. The relevant proteins and cellular processes that contribute to MDB formation and accumulation include the type of chronic stress, the extent of stress-induced protein misfolding and consequent proteasome overload, a K8-greater-than-K18 ratio, transamidation of K8 and other proteins, presence of p62 and autophagy. Although it remains unclear whether MDBs serve a bystander, protective or injury promoting function, they do serve an important role as histological and potential progression markers in several liver diseases.
Collapse
Affiliation(s)
- Kurt Zatloukal
- Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, A-8036 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Strnad P, Harada M, Siegel M, Terkeltaub RA, Graham RM, Khosla C, Omary MB. Transglutaminase 2 regulates mallory body inclusion formation and injury-associated liver enlargement. Gastroenterology 2007; 132:1515-26. [PMID: 17408647 DOI: 10.1053/j.gastro.2007.02.020] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2006] [Accepted: 12/14/2006] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Mallory body (MB) inclusions are a characteristic feature of several liver disorders and share similarities with cytoplasmic inclusions observed in neural diseases and myopathies. MBs consist primarily of keratins 8 and 18 (K8/K18), require a K8-greater-than-K18 ratio for their formation, and contain glutamine-lysine cross-links generated by transglutaminase (TG). We hypothesized that protein transamidation is essential for MB formation. METHODS Because TG2 is the most abundant hepatocyte TG, we tested our hypothesis using TG2(-/-) and their wild-type counterpart mice fed 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), an established MB inducer. Keratin cross-linking was further examined using recombinant proteins or transgenic mice that overexpress K8 or K18. RESULTS TG2(-/-) livers have markedly reduced TG2 activity as compared with TG2(+/+) livers. The DDC-fed TG2(-/-) mice have dramatic decreases in MB formation and liver hypertrophy response as contrasted with DDC-fed TG2(+/+) mice. Despite similar hepatocellular damage, TG2(-/-) mice had more gallstones, jaundice, and ductal proliferation than wild-type mice. Inhibition of MB formation in TG2(-/-) mice was associated with marked attenuation of ubiquitination and K8-containing protein cross-linking. MB formation and resolution paralleled the generation then disappearance of cross-linked K8, respectively. K8 is a preferential TG2 substrate when compared to K18, as examined in vitro or in DDC-fed transgenic mice that overexpress K8 or K18. CONCLUSIONS We demonstrate an essential role for TG2 in determining injury-mediated liver enlargement and the necessity of K8 and TG2 for generating cross-linked keratins and MBs. The role of TG in inclusion formation might extend to nonkeratin intermediate filament protein-related diseases.
Collapse
Affiliation(s)
- Pavel Strnad
- Department of Medicine, Palo Alto VA Medical Center, Palo Alto, California, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Bardag-Gorce F, French BA, Nan L, Song H, Nguyen SK, Yong H, Dede J, French SW. CYP2E1 induced by ethanol causes oxidative stress, proteasome inhibition and cytokeratin aggresome (Mallory body-like) formation. Exp Mol Pathol 2006; 81:191-201. [PMID: 17034788 DOI: 10.1016/j.yexmp.2006.07.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 07/28/2006] [Indexed: 12/21/2022]
Abstract
The role of oxidative stress in alcoholic liver disease and cytokeratin aggresome formation is the focus of this in vitro study. HepG2 cells transduced to over express CYP2E1 (E47) and control HepG2 cells (C34) were first treated with arachidonic acid, then Fe-NAT, and finally with ethanol. In the E47 ethanol-treated cells, CYP2E1 was induced and a higher level of reactive oxygen species and carbonyl proteins were generated. The proteasome activity decreased significantly in the E47 ethanol-treated cells. This inhibition was prevented when CYP2E1 was inhibited by DAS. Microarray analysis showed gene expression down regulation of the proteasome subunit, as well as ubiquitin pathway proteins in the E47 ethanol-treated cells. 4-Hydroxynonenal (4-HNE) adducts were increased in the E47 cells treated with ethanol. Furthermore, the immunoprecipitated 4-HNE modified proteins from these cells stained positive with antibodies to the proteasome subunit alpha 6. These results indicate that the ethanol induced CYP2E1 generates oxidative stress that is responsible for the decrease in proteasome activity. Cytokeratin 8 and 18 were induced by ethanol treatment of E47 cells and polyubiquitinated forms of these proteins were found in the polyubiquitin smear upon Western blots analysis. Cytokeratin aggresomes and Mallory body-like inclusions formed in the ethanol-treated E47 cells, indicating that the ubiquitinated cytokeratins accumulated as a result of the inhibition of the proteasome by ethanol treatment when oxidation of ethanol induced oxidative stress. This is the first report where ethanol caused Mallory body-like cytokeratin inclusions in transformed human liver cells in vitro.
Collapse
Affiliation(s)
- Fawzia Bardag-Gorce
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 W. Carson St., Torrance, CA 90509, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bloomgarden ZT. Third Annual World Congress on the Insulin Resistance Syndrome: associated conditions. Diabetes Care 2006; 29:2165-74. [PMID: 16936171 DOI: 10.2337/dc06-zb09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Nan L, Dedes J, French BA, Bardag-Gorce F, Li J, Wu Y, French SW. Mallory body (cytokeratin aggresomes) formation is prevented in vitro by p38 inhibitor. Exp Mol Pathol 2006; 80:228-40. [PMID: 16563375 DOI: 10.1016/j.yexmp.2006.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Accepted: 01/10/2006] [Indexed: 01/18/2023]
Abstract
Microarray analysis of livers from mice fed diethyl-1,4-dihydro-2,4,6-trimethyl-3,5-pyridinedicarboxylate (DDC) to induce Mallory body (MB) cytokeratin aggresome formation showed that gene expression for cellular adhesion molecules, cytokeratins, kinases and aggresome forming proteins were upregulated, when MBs were formed in vivo. This response was enhanced when the DDC was refed (mice fed DDC for 10 weeks followed by DDC withdrawal for 1 month, then refed DDC for 7 days). Immunofluorescent antibody staining of the MBs that formed showed that MAPK p38 was colocalized with ubiquitin and p62 in the MBs. To investigate further the mechanisms of MB formation, primary cultures derived from DDC primed mice and their controls were incubated for 6 days. Liver cells cultured for 3 h and 6 days were used for microarray analysis. At 3 h, there were no MBs formed, but MBs were numerous after 6 days of culture. At 3 h, the expression of a large number of genes was different when the control, and the DDC primed hepatocytes were compared, which indicates that the primed hepatocytes were phenotypically changed. The gene expression of many kinases including p38 was upregulated after 6 days where the gene expression of cytokeratins, adhesion molecules and aggresome forming proteins were upregulated when MBs formed. An inhibitor of p38 phosphorylation (SB202190) completely prevented MB formation. Western blot showed that phosphorylated p38 MAPK and total p38 were absent in vitro after the p38 inhibitor treatment. Immunostaining of 6-day DDC-primed hepatocyte cultures stained with antibodies to p62 and phospho-p38 MAPK showed that phosphorylated p38 MAPK was concentrated within the MBs. Antibodies to specific serine phosphorylated sites 73 and 431, located in cytokeratin 8, localized to Mallory bodies in vivo, indicating that cytokeratin 8 was hyperphosphorylated. The data supported the concept that MBs form as the result of hyperphosphorylation of cytokeratin 8 by p38.
Collapse
Affiliation(s)
- Li Nan
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Ubiquitin regulates cell functions by modifying various proteins, and cytokeratin (CK) is one of the targets of ubiquitilation. Accumulation of modified CK in various cancers has been demonstrated, and the modified CK increases the aggressiveness of the cancer by disrupting the cytoplasmic CK network and allows them to move freely. The phenotype of the cancer cells may be altered in such a way as to facilitate invasion and metastasis. Modified CK also deregulates mechanisms of mitosis and apoptosis, and leads to immortalization. Therapeutic targeting of ubiquitin or ubiquitilated proteins may reduce the malignant potential of cancer cells.
Collapse
Affiliation(s)
- Keiichi Iwaya
- Department of Diagnostic Pathology, Tokyo Medical University, Nishi-Shinjuku 6-7-1, Shinjuku-ku, Tokyo 160-0023, Japan
| | | |
Collapse
|
27
|
Bardag-Gorce F, Francis T, Nan L, Li J, He Lue Y, French BA, French SW. Modifications in P62 occur due to proteasome inhibition in alcoholic liver disease. Life Sci 2005; 77:2594-602. [PMID: 15964033 DOI: 10.1016/j.lfs.2005.04.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 04/05/2005] [Accepted: 04/11/2005] [Indexed: 11/30/2022]
Abstract
P62 is capable of binding the polyubiquitin chain that targets proteins for degradation by the proteasome through its ubiquitin associated domain (UBA). Immunostaining of hepatocytes from human liver with alcoholic hepatitis showed colocalization of ubiquitin and P62 in Mallory bodies. Rats fed ethanol chronically and their controls showed that P62 is colocalized with the proteasome in hepatocytes as shown by confocal microscopy. P62 cosedimented with 26S proteasomes isolated from livers of control and alcohol fed rats. P62 was increased in the 26S proteasome fraction when the proteasome chymotrypsin-like (ChT-L) activity decreased in rats fed ethanol. PS-341, a potent proteasome inhibitor was used to compare the inhibition of the proteasome with the inhibition which occurs with ethanol feeding. P62 protein levels were also increased in the purified proteasome fraction of rats given PS-341. This data indicates that modifications in P62 occur due to proteasome inhibition in experimental alcoholic liver disease.
Collapse
|
28
|
Ferrer I, Carmona M, Blanco R, Moreno D, Torrejón-Escribano B, Olivé M. Involvement of clusterin and the aggresome in abnormal protein deposits in myofibrillar myopathies and inclusion body myositis. Brain Pathol 2005; 15:101-8. [PMID: 15912881 PMCID: PMC8095801 DOI: 10.1111/j.1750-3639.2005.tb00504.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Myofibrillar myopathies (MM) are characterized morphologically by the presence of non-hyaline structures corresponding to foci of dissolution of myofibrils, and hyaline lesions composed of aggregates of compacted and degraded myofibrillar elements. Inclusion body myositis (IBM) is characterized by the presence of rimmed vacuoles, eosinophilic inclusions in the cytoplasm, rare intranuclear inclusions, and by the accumulation of several abnormal proteins. Recent studies have demonstrated impaired proteasomal expression and activity in MM and IBM, thus accounting, in part, for the abnormal protein accumulation in these diseases. The present study examines other factors involved in protein aggregation in MM and IBM. Clusterin is a multiple-function protein which participates in Abeta-amyloid, PrP(res) and a-synuclein aggregation in Alzheimer disease, prionopathies and a-synucleinopathies, respectively. gamma-Tubulin is present in the centrosome and is an intracellular marker of the aggresome. Moderate or strong clusterin immunoreactivity has been found in association with abnormal protein deposits, as revealed by immunohistochemistry, single and double-labeling immunofluorescence and confocal microscopy, in MM and IBM, and in target structures in denervation atrophy. Gamma-Tubulin has also been observed in association with abnormal protein deposits in MM, IBM, and in target fibers in denervation atrophy. These morphological findings are accompanied by increased expression of clusterin and gamma-tubulin in muscle homogenates of MM and IBM cases, as revealed by gel electrophoresis and Western blots. Together, these observations demonstrate involvement of clusterin in protein aggregates, and increased expression of aggresome markers in association with abnormal protein inclusions in MM and IBM and in targets, as crucial events related to the pathogenesis of abnormal protein accumulation and degradation in these muscular diseases.
Collapse
Affiliation(s)
- I Ferrer
- Institut Neuropatologia, Servei Anatomia Patològica, IDIBELL-Hospital Universitari de Bellvitge, Spain.
| | | | | | | | | | | |
Collapse
|
29
|
Lowe J, Hand N, Mayer RJ. Application of Ubiquitin Immunohistochemistry to the Diagnosis of Disease. Methods Enzymol 2005; 399:86-119. [PMID: 16338351 DOI: 10.1016/s0076-6879(05)99007-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Ubiquitin immunohistochemistry has changed understanding of the pathophysiology of many diseases, particularly chronic neurodegenerative diseases. Protein aggregates (inclusions) containing ubiquitinated proteins occur in neurones and other cell types in the central nervous system in afflicted cells. The inclusions are present in all the neurological illnesses, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, polyglutamine diseases, and rarer forms of neurodegenerative disease. A new cause of cognitive decline in the elderly, "dementia with Lewy bodies," accounting for some 15-30% of cases, was initially discovered and characterized by ubiquitin immunocytochemistry. The optimal methods for carrying out immunohistochemical analyses of paraffin-embedded tissues are described, and examples of all the types of intracellular inclusions detected by ubiquitin immunohistochemistry in the diseases are illustrated. The role of the ubiquitin proteasome system (UPS) in disease progression is being actively researched globally and increasingly, because it is now realized that the UPS controls most pathways in cellular homeostasis. Many of these regulatory mechanisms will be dysfunctional in diseased cells. The goal is to understand fully the role of the UPS in the disorders and then therapeutically intervene in the ubiquitin pathway to treat these incurable diseases.
Collapse
Affiliation(s)
- James Lowe
- School of Molecular Medical Sciences, University of Nottingham Medical School, Queens Medical Centre, Nottingham, United Kingdom
| | | | | |
Collapse
|
30
|
Bardag-Gorce F, Riley NE, Nan L, Montgomery RO, Li J, French BA, Lue YH, French SW. The proteasome inhibitor, PS-341, causes cytokeratin aggresome formation. Exp Mol Pathol 2004; 76:9-16. [PMID: 14738863 DOI: 10.1016/j.yexmp.2003.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mallory body (MB) experimental induction takes 10 weeks of drug ingestion. Therefore, it is difficult to study the dynamics and mechanisms involved in vivo. Consequently, an in vitro study was done using primary tissue culture of hepatocytes from drug-primed mice livers in which MBs had already formed. The hypothesis to be tested was that MBs are cytokeratin aggresomes, which form when hepatocytes have a defective ubiquitin-proteasome pathway by which turnover of cytokeratin proteins is prevented. To test this hypothesis, primary tissue cultures of the hepatocytes from normal and MB-forming livers were incubated with the proteasome inhibitor PS-341 and then the cytokeratin filaments and the filament connecting proteins, that is, beta-actin, and ZO1, were visualized by immunofluorescence microscopy. PS-341 caused detachment of the cytokeratins from the cell surface plasma membrane. The cytokeratin filaments retracted toward the nucleus and cytokeratin aggresomes formed. In human livers, MBs showed colocalization of cytokeratin-8 (CK-8) with ubiquitin but not with beta-actin or ZO1. Mouse hepatoma cell lines were studied using PS-341 to induce cytokeratin aggresome formation. In these cell lines, the cytokeratin filaments first retracted toward the nucleus then formed cytokeratin-ubiquitin aggresomes polarized at one side of the nucleus. At the same time, the cells became dissociated from each other, however. The results simulated MB formation. MBs differ from cytokeratin aggresomes both morphologically and in ultrastructure.
Collapse
Affiliation(s)
- Fawzia Bardag-Gorce
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kuusisto E, Parkkinen L, Alafuzoff I. Morphogenesis of Lewy bodies: dissimilar incorporation of alpha-synuclein, ubiquitin, and p62. J Neuropathol Exp Neurol 2004; 62:1241-53. [PMID: 14692700 DOI: 10.1093/jnen/62.12.1241] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The formation of Lewy bodies (LBs) and their relationship to other types of nigral inclusions associated with Parkinson disease (PD), such as pale bodies (PBs), remain poorly understood. Known constituents of LBs include alpha-synuclein (alphaS) and ubiquitin (Ub), providing windows to their morphogenesis. Additionally, p62/sequestosome 1 has been identified as a common component of neuropathological and hepatocytic inclusions. To study the formation of PD-associated nigral inclusions, we analyzed the substantia nigra of cases with abundant LBs and PBs in hematoxylin and eosin (H&E) stain, using immunohistochemistry for alphaS, Ub, and p62. We found morphologically diverse alphaS-immunoreactive deposits within neuronal perikarya and neurites. Perikaryal types extended from punctate cytoplasmic staining to variform compact (i.e. PB-type and LB-type) inclusions. Using H&E, only a small subset of the compact deposits could be unambiguously identified. Labeling for p62 was highly similar to alphaS in compact perikaryal inclusions, whereas no punctate staining or intraneuritic inclusions were detected. Ubiquitin antibodies labeled compact deposits both within perikarya and neurites. The data suggest that pathological alphaS is first evident as punctate perikaryal material that, via coalescence and incorporation of p62 and Ub, yields PB-type structures from which LB-type inclusions form in a compaction-like manner. The results also point at dissimilarities in the formation of perikaryal vs intraneuritic inclusions.
Collapse
Affiliation(s)
- Erkki Kuusisto
- Department of Neuroscience and Neurology, University of Kuopio, Kuopio, Finland.
| | | | | |
Collapse
|
32
|
Windoffer R, Leube RE. Imaging of keratin dynamics during the cell cycle and in response to phosphatase inhibition. Methods Cell Biol 2004; 78:321-52. [PMID: 15646624 DOI: 10.1016/s0091-679x(04)78012-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Reinhard Windoffer
- Department of Anatomy, Johannes Gutenberg-University, 55128 Mainz, Germany
| | | |
Collapse
|
33
|
Harada M, Kumemura H, Omary MB, Kawaguchi T, Maeyama N, Hanada S, Taniguchi E, Koga H, Suganuma T, Ueno T, Sata M. Proteasome inhibition induces inclusion bodies associated with intermediate filaments and fragmentation of the Golgi apparatus. Exp Cell Res 2003; 288:60-9. [PMID: 12878159 DOI: 10.1016/s0014-4827(03)00162-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ubiquitin-proteasome system is involved in a variety of biological processes. Inclusion bodies associated with intermediate filaments (IFs) and ubiquitin are observed in various diseases; however, the precise mechanisms of formation and the pathological significance of inclusion bodies have not been fully understood. We examined the effect of proteasome inhibitors on the structure of IF using anti-cytokeratin antibodies or transfection of green fluorescent protein-fused cytokeratin 18 in a hepatoma cell line, Huh7. Intracellular organelles were visualized by immunofluorescent and electron microscopies. Proteasome inhibitors induced IF inclusions associated with ubiquitin. Electron microscopic examination revealed inclusion bodies surrounded by filamentous structures. Autophagic vacuoles and lysosomes were frequently observed, and the organization of the Golgi apparatus was disrupted in these cells. After the removal of the proteasome inhibitors, the IF network and organization of the Golgi apparatus were restored. The IF inclusions could be induced by inhibition of the proteasome function. IF inclusions induced fragmentation of the Golgi apparatus and might inhibit the function of this important station of membrane traffic. The IF inclusions disappeared by restoring proteasome function, and autophagy and lysosomal degradation might be, at least in part, associated with the elimination of inclusion bodies.
Collapse
Affiliation(s)
- Masaru Harada
- Second Department of Medicine and Research Center for Innovative Cancer Therapy, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hope AD, de Silva R, Fischer DF, Hol EM, van Leeuwen FW, Lees AJ. Alzheimer's associated variant ubiquitin causes inhibition of the 26S proteasome and chaperone expression. J Neurochem 2003; 86:394-404. [PMID: 12871580 DOI: 10.1046/j.1471-4159.2003.01844.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intracellular protein inclusions in Alzheimer's disease and progressive supranuclear palsy contain UBB+1, a variant ubiquitin. UBB+1 is able block the 26S proteasome in cell lines. Proteasome inhibition by drug action has previously been shown to induce a heat-shock response and render protection against stress. We investigated UBB+1 by developing a stable, conditional expression model in SH-SY5Y human neuroblastoma cells. Induction of UBB+1 expression caused proteasome inhibition as was confirmed by reduced ability to process misfolded canavanyl proteins, accumulation of GFPu, a proteasome substrate, and reduced cleavage of a fluorogenic substrate. We show that expression of UBB+1 induces expression of heat-shock proteins. This priming of the chaperone system in these cells promotes a subsequent resistance to tert-butyl hydroperoxide-mediated oxidative stress. We conclude that although UBB+1-expressing cells have a compromised ubiquitin-proteasome system, they are protected against oxidative stress conditions.
Collapse
Affiliation(s)
- Andrew D Hope
- Reta Lila Weston Institute of Neurological Studies, University College, London, UK.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Proteasomes are present in the cytoplasm and in the nuclei of all eukaryotic cells, however their relative abundance within those compartments is highly variable. In the cytoplasm, proteasomes associate with the centrosomes, cytoskeletal networks and the outer surface of the endoplasmic reticulum (ER). In the nucleus, proteasomes are present throughout the nucleoplasm but are void from the nucleoli. Sometimes they associate with discrete subnuclear domains called the PML nuclear bodies (POD domains). PML bodies in the nucleus, and the pericentrosomal area of the cytoplasm may function as proteolytic centers of the cell, since they are enriched in components of the proteasome system. Under conditions of impaired proteolysis proteasomes and ubiquitinated proteins further accumulate at these locations, forming organized aggregates. In case of the pericentrosomal area those aggregates have been termed "aggresomes". Once formed, aggresomes can impair the function of the proteasome system, which may promote apoptosis. Under favorable conditions they can be cleared, probably by autophagy.
Collapse
|
36
|
Bardag-Gorce F, Riley N, Nguyen V, Montgomery RO, French BA, Li J, van Leeuwen FW, Lungo W, McPhaul LW, French SW. The mechanism of cytokeratin aggresome formation: the role of mutant ubiquitin (UBB+1). Exp Mol Pathol 2003; 74:160-7. [PMID: 12710947 DOI: 10.1016/s0014-4800(02)00024-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aggresome formation in cells involves the failure of the ubiquitin-proteasome pathway to dispose of proteins destined for degradation by the 26S proteasome. UBB(+1) is present in Mallory bodies in alcoholic liver disease and in aggresomes formed in Alzheimer's desease. The present investigation focuses on the role that UBB(+1) plays in cytokeratin aggresome formation in Mallory bodies (MBs) in vitro. Immunoprecipitation with a monoclonal antibody to cytokeratin-8 (CK-8) was used. The immunoprecipitate was incubated for 24 h in the presence of different constituents involved in aggresome formation including ubiquitin, UBB(+1), the proteasome inhibitor PS341, an ATP generating energy source, a deubiquitinating enzyme inhibitor, a purified proteasome fraction, and an E(1-3) conjugating enzyme fraction. MB-like protein aggregates formed in the presence of ubiquitin, plus UBB(+1) or PS341. These aggregates stained positively for CK-8. UBB(+1), and a proteasome subunit Tbp7, as demonstrated on Western blots. A second approach was used to form MBs in vitro in cultured hepatocytes transfected with UBB(+1) protein using Chariot. The cells were double stained using CK-8 and ubiquitin antibodies. The two proteins colocalized in MB-like aggregates. The results support the possibility that aggresome formation is a complex multifactor process, which is favored by inhibition of the proteasome and by the presence of UBB(+1).
Collapse
Affiliation(s)
- F Bardag-Gorce
- Department of Pathology, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Riley NE, Bardag-Gorce F, Montgomery RO, Li J, Lungo W, Lue YH, French SW. Microtubules are required for cytokeratin aggresome (Mallory body) formation in hepatocytes: an in vitro study. Exp Mol Pathol 2003; 74:173-9. [PMID: 12710949 DOI: 10.1016/s0014-4800(03)00005-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mallory bodies are cytokeratin-ubiquitin aggresomes that form in hepatocytes in many different chronic liver diseases. One of the key components in aggresome formation, not yet investigated in Mallory body formation, is the role of microtubules. An in vitro tissue culture assay is required to test for microtubule involvement in Mallory body formation so that Mallory body formation can be observed in the presence or absence of microtubule-disrupting agents. In this report, a new model of in vitro Mallory body formation was developed, which uses cultured hepatocytes isolated from drug-primed mice. When hepatocytes were incubated in the presence of antimicrotubule agents, they failed to form Mallory bodies. It is concluded that intact microtubules are required for Mallory body formation.
Collapse
Affiliation(s)
- N E Riley
- Department of Pathology, Harbor-UCLA Medical Center, 1000 W. Carson Street, Torrance, CA 90509, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Neurodegenerative disorders such as Parkinson's disease (PD) and 'dementia with Lewy bodies' (DLB) are characterized pathologically by selective neuronal death and the appearance of intracytoplasmic protein aggregates (Lewy bodies). The process by which these inclusions are formed and their role in the neurodegenerative process remain elusive. In this study, we demonstrate a close relationship between Lewy bodies and aggresomes, which are cytoplasmic inclusions formed at the centrosome as a cytoprotective response to sequester and degrade excess levels of potentially toxic abnormal proteins within cells. We show that the centrosome/aggresome-related proteins gamma-tubulin and pericentrin display an aggresome-like distribution in Lewy bodies in PD and DLB. Lewy bodies also sequester the ubiquitin-activating enzyme (E1), the proteasome activators PA700 and PA28, and HSP70, all of which are recruited to aggresomes for enhanced proteolysis. Using novel antibodies that are specific and highly sensitive to ubiquitin-protein conjugates, we revealed the presence of numerous discrete ubiquitinated protein aggregates in neuronal soma and processes in PD and DLB. These aggregates appear to be being transported from peripheral sites to the centrosome where they are sequestered to form Lewy bodies in neurons. Finally, we have shown that inhibition of proteasomal function or generation of misfolded proteins cause the formation of aggresome/Lewy body-like inclusions and cytotoxicity in dopaminergic neurons in culture. These observations suggest that Lewy body formation may be an aggresome-related event in response to increasing levels of abnormal proteins in neurons. This phenomenon is consistent with growing evidence that altered protein handling underlies the etiopathogenesis of PD and related disorders.
Collapse
Affiliation(s)
- Kevin St P McNaught
- Department of Neurology, Mount Sinai School of Medicine, Annenberg 14-73, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
39
|
Yao YQ, Zhang DF, Huang AL, Luo Y, Zhang DZ, Wang B, Zhou WP, Ren H, Guo SH. Effects of electroporation on primary rat hepatocytes in vitro. World J Gastroenterol 2002; 8:893-6. [PMID: 12378637 PMCID: PMC4656582 DOI: 10.3748/wjg.v8.i5.893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2001] [Revised: 05/10/2002] [Accepted: 05/15/2002] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effects of electroporation on primary rat hepatocyte and to optimize the electroporation conditions introducing foreign genes into primary hepatocytes. METHODS A single-pulse procedure was performed at low voltage (220-400 V) but with high capacitance (500-950 microF). Hepatocytes were divided into 4 groups according to the electroporation conditions: group I, 220 V and 500 microF; group II, 220 V and 950 microF; group III, 400 V and 950 microF,and group IV. The control group was freshly isolated hepatocytes and directly cultured under the same conditions as those of electroporation groups. The effects of electroporation on primary rat hepatocytes were detected by trypan blue exclusion (TBE) and MTT analysis. Besides, albumin (Alb), alanine transaminase (ALT) and lactate dehydrogenase (LDH) in the supernatants of cultured hepatocytes were measured by biochemical assay. RESULTS Between day 1 and day 15 after incubation, primary rat hepatocytes of each electroporation group appeared normal, being the same with those of control group. TBE staining showed that slight hepatocyte damage and high survival rate were found in the electroporation groups and the control group. Cultured for 3, 7, 11 and 15 days, hepatocyte viability was approximately 92.6+/-2.5 %, 89.5+/-3.3 %, 82.0+/-3.5 % and 74.3+/-1.2 %, respectively. MTT analysis indicated that the viabilities of hepatocytes had no significant difference between each electroporation group, and those were similar to that of control group. At the 36th hour after electroporation, Alb, ALT and LDH in the supernatants of control group were 5.3+/-0.1 g x L(-1), 183.7+/-8.4 nkat x L(-1) and 896.8+/-58.5 nkat x L(-1); those of group II were 5.7+/-0.1 g x L(-1), 215.4+/-16.7 nkat x L(-1) and 1063.8+/-51.8 nkat x L(-1); and those of group III were 5.8+/-0.2 g x L(-1), 217.1+/-8.4 nkat x L(-1) and 1063.8+/-10.0 nkat x L(-1). Statistically, the proteins of group II and group III were significantly higher than those of control group (P<0.05), whereas the protein production of group I, Alb, ALT and LDH were 5.3+/-0.2 g x L(-1), 205.4+/-3.3 nkat x L(-1) and 1035.4+/-116.9 nkat x L(-1), were similar to those of control group. At the same time, TBE and MTT analysis indicated that there was no significant cell viability difference between electroporation groups and control group. CONCLUSION This single-pulse electroporation procedure performed at low voltage (220-400 V) but with high capacitance (950 microF) is one of the optimal choices to introduce foreign genes into primary rat hepatocyte.
Collapse
Affiliation(s)
- Yun-Qing Yao
- Department of Infectious Diseases of the First Affiliated Hospital, Chongqing University of Medical Sciences, Chongqing 400016, China.
| | | | | | | | | | | | | | | | | |
Collapse
|