1
|
Verma N, Chouhan D, Meghana A, Tiwari V. Heat shock proteins in chronic pain: From molecular chaperones to pain modulators. Neuropharmacology 2025; 266:110263. [PMID: 39667433 DOI: 10.1016/j.neuropharm.2024.110263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/25/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Chronic pain is the most prevalent and complex clinical disorder,affecting approximately 30% of people globally. Various intricate alterations in nociceptive pathways responsible for chronic pain are linked to long-term tissue damage or injury to the peripheral or central nervous systems. These include remolding in the phenotype of cells and fluctuations in the expression of proteins such as ion channels, neurotransmitters, and receptors. Heat shock proteins are important molecular chaperone proteins in cell responses to stress, including inflammation, neurodegeneration, and pain signaling. They play a key role in activating glial and endothelial cells and in the production of inflammatory mediators and excitatory amino acids in both peripheral and central nervous systems. In particular, they contribute to central sensitization and hyperactivation within the dorsal horn of the spinal cord. The expression of some HSPs plays a remarkable role in upregulating pain response by acting as scavengers of ROS, controlling inflammatory cytokines. Different HSPs act by different mechanisms and several important pathways have been implicated in targeting HSPs for the treatment of neuropathic pain including p38-mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases (ERKs), brain-derived neurotrophic factors (BDNF). We summarize the role of HSPs in various preclinical and clinical studies and the crosstalk of HSPs with various nociceptors and other pain models. We also highlighted some artificial intelligence tools and machine learning-assisted drug discovery methods for rapid screening of HSPs in various diseases. Focusing on HSPs could lead to the development of new therapeutics that modulate pain responses and enhance our understanding of pain in various pathological conditions and neurological disorders.
Collapse
Affiliation(s)
- Nivedita Verma
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Allani Meghana
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
2
|
Ousman SS, Frederick A, Lim EMF. Chaperone Proteins in the Central Nervous System and Peripheral Nervous System after Nerve Injury. Front Neurosci 2017; 11:79. [PMID: 28270745 PMCID: PMC5318438 DOI: 10.3389/fnins.2017.00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/03/2017] [Indexed: 12/20/2022] Open
Abstract
Injury to axons of the central nervous system (CNS) and the peripheral nervous system (PNS) is accompanied by the upregulation and downregulation of numerous molecules that are involved in mediating nerve repair, or in augmentation of the original damage. Promoting the functions of beneficial factors while reducing the properties of injurious agents determines whether regeneration and functional recovery ensues. A number of chaperone proteins display reduced or increased expression following CNS and PNS damage (crush, transection, contusion) where their roles have generally been found to be protective. For example, chaperones are involved in mediating survival of damaged neurons, promoting axon regeneration and remyelination and, improving behavioral outcomes. We review here the various chaperone proteins that are involved after nervous system axonal damage, the functions that they impact in the CNS and PNS, and the possible mechanisms by which they act.
Collapse
Affiliation(s)
- Shalina S Ousman
- Departments of Clinical Neurosciences and Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Ariana Frederick
- Departments of Clinical Neurosciences and Cell Biology & Anatomy, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Erin-Mai F Lim
- Department of Neuroscience, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| |
Collapse
|
3
|
Chidlow G, Wood JPM, Casson RJ. Expression of inducible heat shock proteins Hsp27 and Hsp70 in the visual pathway of rats subjected to various models of retinal ganglion cell injury. PLoS One 2014; 9:e114838. [PMID: 25535743 PMCID: PMC4275305 DOI: 10.1371/journal.pone.0114838] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 11/14/2014] [Indexed: 01/09/2023] Open
Abstract
Inducible heat shock proteins (Hsps) are upregulated in the central nervous system in response to a wide variety of injuries. Surprisingly, however, no coherent picture has emerged regarding the magnitude, duration and cellular distribution of inducible Hsps in the visual system following injury to retinal ganglion cells (RGCs). The current study sought, therefore, to achieve the following two objectives. The first aim of this study was to systematically characterise the patterns of Hsp27 and −70 expression in the retina and optic nerve in four discrete models of retinal ganglion cell (RGC) degeneration: axonal injury (ON crush), somato-dendritic injury (NMDA-induced excitotoxicity), chronic hypoperfusion (bilateral occlusion of the carotid arteris) and experimental glaucoma. The second aim was to document Hsp27 and −70 expression in the optic tract, the subcortical retinorecipient areas of the brain, and the visual cortex during Wallerian degeneration of RGC axons. Hsp27 was robustly upregulated in the retina in each injury paradigm, with the chronic models, 2VO and experimental glaucoma, displaying a more persistent Hsp27 transcriptional response than the acute models. Hsp27 expression was always associated with astrocytes and with a subset of RGCs in each of the models excluding NMDA. Hsp27 was present within astrocytes of the optic nerve/optic tract in control rats. During Wallerian degeneration, Hsp27 was upregulated in the optic nerve/optic tract and expressed de novo by astrocytes in the lateral geniculate nucleus and the stratum opticum of the superior colliculus. Conversely, the results of our study indicate Hsp70 was minimally induced in any of the models of injury, either in the retina, or in the optic nerve/optic tract, or in the subcortical, retinorecipient areas of the brain. The findings of the present study augment our understanding of the involvement of Hsp27 and Hsp70 in the response of the visual system to RGC degeneration.
Collapse
Affiliation(s)
- Glyn Chidlow
- Ophthalmic Research Laboratories, South Australian Institute of Ophthalmology, Hanson Institute Centre for Neurological Diseases, Frome Road, Adelaide SA-5000, Australia
- Department of Ophthalmology and Visual Sciences, University of Adelaide, Frome Road, Adelaide SA-5000, Australia
- * E-mail:
| | - John P. M. Wood
- Ophthalmic Research Laboratories, South Australian Institute of Ophthalmology, Hanson Institute Centre for Neurological Diseases, Frome Road, Adelaide SA-5000, Australia
- Department of Ophthalmology and Visual Sciences, University of Adelaide, Frome Road, Adelaide SA-5000, Australia
| | - Robert J. Casson
- Ophthalmic Research Laboratories, South Australian Institute of Ophthalmology, Hanson Institute Centre for Neurological Diseases, Frome Road, Adelaide SA-5000, Australia
- Department of Ophthalmology and Visual Sciences, University of Adelaide, Frome Road, Adelaide SA-5000, Australia
| |
Collapse
|
4
|
Effects of ischemic preconditioning on myocardium Caspase-3, SOCS-1, SOCS-3, TNF-α and IL-6 mRNA expression levels in myocardium IR rats. Mol Biol Rep 2013; 40:5741-8. [DOI: 10.1007/s11033-013-2677-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 09/14/2013] [Indexed: 01/03/2023]
|
5
|
Wang Y, Pan L, Fan W, Zhou Z, Zhu L, Wang Y, Hu R. Influence of vagal injury on acute traumatic reaction after blast injury. Eur J Trauma Emerg Surg 2013; 39:385-92. [PMID: 26815399 DOI: 10.1007/s00068-013-0277-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
|
6
|
Rat vagus nerve stimulation model of seizure suppression: nNOS and ΔFos B changes in the brainstem. J Chem Neuroanat 2012; 46:1-9. [PMID: 23022956 DOI: 10.1016/j.jchemneu.2012.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 11/20/2022]
Abstract
Vagus nerve stimulation (VNS) is a moderately effective treatment for intractable epilepsy. However, the mechanism of action is poorly understood. The effect of left VNS in amygdala kindled rats was investigated by studying changes in nNOS and ΔFos B expression in primary and secondary vagus nerve projection nuclei: the nucleus of the solitary tract (NTS), dorsal motor nucleus of the vagus nerve (DMV), parabrachial nucleus (PBN) and locus coeruleus (LC). Rats were fully kindled by stimulation of the amygdala. Subsequently, when the fully kindled state was reached and then maintained for ten days, rats received a single 3-min train of VNS starting 1min prior to the kindling stimulus and lasting for 2min afterwards. In control animals the vagus nerve was not stimulated. Animals were sacrificed 48h later. The brainstems were stained for neuronal nitric oxide synthase (nNOS) and ΔFos B. VNS decreased seizure duration with more than 25% in 21% of rats. No VNS associated changes in nNOS immunoreactivity were observed in the NTS and no changes in ΔFos B were observed in the NTS, PBN, or LC. High nNOS immunopositive cell densities of >300cells/mm(2) were significantly more frequent in the left DMV than in the right (χ(2)(1)=26.2, p<0.01), independent of whether the vagus nerve was stimulated. We conclude that the observed nNOS immunoreactivity in the DMV suggests surgery-induced axonal damage. A 3-min train of VNS in fully kindled rats does not affect ΔFos B expression in primary and secondary projection nuclei of the vagus nerve.
Collapse
|
7
|
Abisambra JF, Jinwal UK, Jones JR, Blair LJ, Koren J, Dickey CA. Exploiting the diversity of the heat-shock protein family for primary and secondary tauopathy therapeutics. Curr Neuropharmacol 2012; 9:623-31. [PMID: 22654720 PMCID: PMC3263456 DOI: 10.2174/157015911798376226] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 11/01/2010] [Accepted: 12/06/2010] [Indexed: 12/17/2022] Open
Abstract
The heat shock protein (Hsp) family is an evolutionarily conserved system that is charged with preventing unfolded or misfolded proteins in the cell from aggregating. In Alzheimer’s disease, extracellular accumulation of the amyloid β peptide (Aβ) and intracellular aggregation of the microtubule associated protein tau may result from mechanisms involving chaperone proteins like the Hsps. Due to the ability of Hsps to regulate aberrantly accumulating proteins like Aβ and tau, therapeutic strategies are emerging that target this family of chaperones to modulate their pathobiology. This article focuses on the use of Hsp-based therapeutics for treating primary and secondary tauopathies like Alzheimer’s disease. It will particularly focus on the pharmacological targeting of the Hsp70/90 system and the value of manipulating Hsp27 for treating Alzheimer’s disease.
Collapse
Affiliation(s)
- Jose F Abisambra
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Tampa, FL 33613, USA
| | | | | | | | | | | |
Collapse
|
8
|
Ma J, Jiang L, Zhong Y, Li Z, Xie J, Zhao C, Dong F. Neuroprotective effect on retinal ganglion cells by transpupillary laser irradiation of the optic nerve head. Neurosci Lett 2010; 476:3-8. [DOI: 10.1016/j.neulet.2010.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 12/30/2009] [Accepted: 01/04/2010] [Indexed: 11/29/2022]
|
9
|
Rijkers K, Aalbers M, Hoogland G, van Winden L, Vles J, Steinbusch H, Majoie M. Acute seizure-suppressing effect of vagus nerve stimulation in the amygdala kindled rat. Brain Res 2010; 1319:155-63. [DOI: 10.1016/j.brainres.2010.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/03/2010] [Accepted: 01/06/2010] [Indexed: 10/20/2022]
|
10
|
Seki Y, Suzuki SO, Nakamura S, Iwaki T. Degenerative and protective reactions of the rat trigeminal motor nucleus after removal of the masseter and temporal muscles. J Oral Pathol Med 2009; 38:777-84. [PMID: 19317850 DOI: 10.1111/j.1600-0714.2009.00772.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Microsurgical reconstruction techniques have allowed treatment of advanced head and neck carcinomas; however, it remains difficult to achieve long-term, functional reconstruction of the faciocervical muscles. To address this issue, in this we developed a rat trigeminal nerve denervation model that closely simulates the effects of oral surgery. METHODS The rat trigeminal nerve denervation model was developed by removing the masseter and temporal muscles, and degeneration process of the trigeminal motor nucleus was investigated by immunohistochemistry with particular focus on microglial/astrocytic reactions and motoneuron degeneration. RESULTS Atrophy of the trigeminal motor nucleus was observed at 8 weeks after denervation. A microglial reaction peaked at 3 days post-operation, while an astrocytic reaction was evident within 2 weeks, and peaked around 4 weeks post-operation. Expression of the stress protein HSP27 and an autophagy marker Rab24 was also upregulated in the injured trigeminal motor nucleus. CONCLUSIONS The results from this study suggest that this model is a practical and useful tool help to develop a further understanding of the pathology of the trigeminal motor nucleus after surgical denervation.
Collapse
Affiliation(s)
- Yoshihiro Seki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
11
|
Read DE, Gorman AM. Heat shock protein 27 in neuronal survival and neurite outgrowth. Biochem Biophys Res Commun 2009; 382:6-8. [PMID: 19249290 DOI: 10.1016/j.bbrc.2009.02.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 02/20/2009] [Indexed: 11/25/2022]
Abstract
The small heat shock protein 27 (Hsp27) is well documented to promote neuronal survival in neurodegenerative diseases and following nerve injury. It can directly inhibit apoptotic pathways, and as a chaperone it can ameliorate the toxic effects of misfolded proteins. More recently, Hsp27 has been implicated to also play a role in neurite outgrowth. Thus, Hsp27 is situated at the intersection of neuronal survival and differentiation and, as such, it has dual potential as a key therapeutic target for neuroregeneration.
Collapse
Affiliation(s)
- Danielle E Read
- Cell Death and Survival Group, Department of Biochemistry, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
12
|
Pituitary adenylate cyclase-activating polypeptide 38-mediated Rin activation requires Src and contributes to the regulation of HSP27 signaling during neuronal differentiation. Mol Cell Biol 2008; 28:4940-51. [PMID: 18541665 DOI: 10.1128/mcb.02193-07] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38) is a potent neuropeptide that acts through G-protein-coupled receptors. While it is well established that PACAP mediates both neurotrophic and neurodevelopmental effects, the signaling cascades that underlie these diverse actions remain incompletely characterized. Here we show that the Ras-related Rin GTP-binding protein, a GTPase that is expressed predominantly in neurons, is regulated by PACAP38 signaling, and loss-of-function analysis demonstrates that Rin makes an essential contribution to PACAP38-mediated pheochromocytoma cell differentiation. Rin is activated following stimulation of both Gsalpha and Gialpha cascades but does not rely upon cyclic AMP (cAMP)-, Ca(2+)-, or Epac-dependent signaling pathways. Instead, Rin is activated in a Src kinase-dependent manner. Surprisingly, Rin knockdown significantly inhibits PACAP38-mediated neurite outgrowth, without affecting mitogen-activated protein kinase signaling cascades. Instead, Rin loss attenuates PACAP38-mediated HSP27 activation by disrupting a cAMP-protein kinase A cascade. RNA interference-mediated HSP27 silencing suppresses both PACAP38- and Rin-mediated neurite outgrowth, while expression of a constitutively active Rin mutant increases both HSP27 protein and phospho-HSP27 levels, supporting a role for Rin-HSP27 signaling in neuronal differentiation. Together, these observations identify an unsuspected role for Rin in neuronal PACAP signaling and establish a novel Galpha-Src-Rin-HSP27 signal transduction pathway as a critical element in PACAP38-mediated neuronal differentiation signaling.
Collapse
|
13
|
Ding Q, Wu Z, Guo Y, Zhao C, Jia Y, Kong F, Chen B, Wang H, Xiong S, Que H, Jing S, Liu S. Proteome analysis of up-regulated proteins in the rat spinal cord induced by transection injury. Proteomics 2006; 6:505-18. [PMID: 16372269 DOI: 10.1002/pmic.200500296] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The inability of the CNS to regenerate in adult mammals propels us to reveal associated proteins involved in the injured CNS. In this paper, either thoracic laminectomy (as sham control) or thoracic spinal cord transection was performed on male adult rats. Five days after surgery, the whole spinal cord tissue was dissected and fractionated into water-soluble (dissolved in Tris buffer) and water-insoluble (dissolved in a solution containing chaotropes and surfactants) portions for 2-DE. Protein identification was performed by MS and further confirmed by Western blot. As a result, over 30 protein spots in the injured spinal cord were shown to be up-regulated no less than 1.5-fold. These identified proteins possibly play various roles during the injury and repair process and may be functionally categorized as several different groups, such as stress-responsive and metabolic changes, lipid and protein degeneration, neural survival and regeneration. In particular, over-expression of 11-zinc finger protein and glypican may be responsible for the inhibition of axonal growth and regeneration. Moreover, three unknown proteins with novel sequences were found to be up-regulated by spinal cord injury. Further characterization of these molecules may help us come closer to understanding the mechanisms that underlie the inability of the adult CNS to regenerate.
Collapse
Affiliation(s)
- Qinxue Ding
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Small heat shock proteins (sHSPs) function as molecular chaperones, preventing stress induced aggregation of partially denatured proteins and promoting their return to native conformations when favorable conditions pertain. Sequence similarity between sHSPs resides predominately in an internal stretch of residues termed the alpha-crystallin domain, a region usually flanked by two extensions. The poorly conserved N-terminal extension influences oligomer construction and chaperone activity, whereas the flexible C-terminal extension stabilizes quaternary structure and enhances protein/substrate complex solubility. sHSP polypeptides assemble into dynamic oligomers which undergo subunit exchange and they bind a wide range of cellular substrates. As molecular chaperones, the sHSPs protect protein structure and activity, thereby preventing disease, but they may contribute to cell malfunction when perturbed. For example, sHSPs prevent cataract in the mammalian lens and guard against ischemic and reperfusion injury due to heart attack and stroke. On the other hand, mutated sHSPs are implicated in diseases such as desmin-related myopathy and they have an uncertain relationship to neurological disorders including Parkinson's and Alzheimer's disease. This review explores the involvement of sHSPs in disease and their potential for therapeutic intervention.
Collapse
Affiliation(s)
- Yu Sun
- Department of Biology, Dalhousie University, Halifax, Canada
| | | |
Collapse
|
15
|
Kosik KS, Shimura H. Phosphorylated tau and the neurodegenerative foldopathies. Biochim Biophys Acta Mol Basis Dis 2005; 1739:298-310. [PMID: 15615647 DOI: 10.1016/j.bbadis.2004.10.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 10/26/2004] [Accepted: 10/29/2004] [Indexed: 01/12/2023]
Abstract
Many studies have implicated phosphorylated tau in the Alzheimer disease process. However, the cellular fate of phosphorylated tau has only recently been described. Recent work has shown that tau phosphorylation at substrate sites for the kinases Cdk5 and GSK3-beta can trigger the binding of tau to the chaperones Hsc70 and Hsp27. The binding of phosphorylated tau to Hsc70 implied that the complex may be a substrate for the E3 ligase CHIP and this possibility was experimentally verified. The presence of this system in cells suggests that phosphorylated tau may hold toxic dangers for cell viability, and the response of the cell is to harness a variety of protective mechanisms. These include binding to chaperones, which may prevent more toxic conformations of the protein, ubiquitination which will direct the protein to the proteasome, segregation of tau aggregates from the cellular machinery, and recruitment of Hsp27 which will confer anti-apoptotic properties to the cell.
Collapse
Affiliation(s)
- Kenneth S Kosik
- Department of Neurology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | | |
Collapse
|
16
|
Ikeda N, Nozawa-Inoue K, Takagi R, Maeda T. Development of the synovial membrane in the rat temporomandibular joint as demonstrated by immunocytochemistry for heat shock protein 25. ACTA ACUST UNITED AC 2004; 279:623-35. [PMID: 15224404 DOI: 10.1002/ar.a.20043] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The synovial lining layer of the temporomandibular joint (TMJ) consists of macrophage-like type A cells and fibroblast-like type B cells. Until now, little information has been available on the development of the synovial membrane in TMJ. In the present study we examined the development of the synovial lining layer in the rat TMJ by light- and electron-microscopic immunocytochemistry for heat shock protein (Hsp) 25, which is a useful marker for type B cells. At embryonic day 19 (E19), a few Hsp25-positive cells first appeared in the upper portion of the developing condyle. During the formation of the upper articular cavity (E21 to postnatal day 1 (P1)), a few positive cells were arranged on its surface. Immunoelectron microscopy demonstrated that these cells had ultrastructural features of fibroblast-like type B cells. In addition, some Hsp25-positive cells moved to the deep portion by extending their cytoplasmic processes toward the articular cavity at P3. At that time, the presence of typical macrophage-like type A cells in the lining layer was confirmed by immunoelectron microscopy. The slender processes of Hsp25-positive cells showed a continuous covering with the synovial surface at P7, followed by a drastic increase in the Hsp25-positive cells at P15 and later, when active jaw movement occurred. These findings suggested that the arrangement and morphological maturation of type B cells are closely related to the formation of the articular cavity in the embryonic period and the commencement of active jaw movement after birth, respectively.
Collapse
Affiliation(s)
- Nobuyuki Ikeda
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | |
Collapse
|
17
|
Shimura H, Miura-Shimura Y, Kosik KS. Binding of Tau to Heat Shock Protein 27 Leads to Decreased Concentration of Hyperphosphorylated Tau and Enhanced Cell Survival. J Biol Chem 2004; 279:17957-62. [PMID: 14963027 DOI: 10.1074/jbc.m400351200] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathological hyperphosphorylated tau is the principal component of paired helical filaments, a pathological hallmark of Alzheimer disease (AD) and a strong candidate for a neurotoxic role in AD and other neurodegenerative disorders. Here we show that heat shock protein 27 (Hsp27) preferentially binds pathological hyperphosphorylated tau and paired helical filaments tau directly but not non-phosphorylated tau. The formation of this complex altered the conformation of pathological hyperphosphorylated tau and reduced its concentration by facilitating its degradation and dephosphorylation. Moreover, Hsp27 rescues pathological hyperphosphorylated tau-mediated cell death. Therefore, Hsp27 is likely to provide a neuroprotective effect in AD and other tauopathies.
Collapse
Affiliation(s)
- Hideki Shimura
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
18
|
Yamada K, Nozawa-Inoue K, Kawano Y, Kohno S, Amizuka N, Iwanaga T, Maeda T. Expression of estrogen receptor alpha (ER alpha) in the rat temporomandibular joint. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 274:934-41. [PMID: 12973717 DOI: 10.1002/ar.a.10107] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Numerous epidemiological studies have pointed out a higher frequency of temporomandibular disorder (TMD) in women than in men, which indicates the involvement of a sex hormone, such as estrogen, in the pathogenesis of TMD. Although estrogen is known to play pivotal roles in osteoarthrosis or rheumatoid arthritis in systemic joints, there have been few reports about the role of estrogen in the temporomandibular joint (TMJ). The effect of estrogen is generally mediated by the estrogen receptors (ERs) ER alpha (the predominant type) and ER beta. In this study we examined the expression of ER alpha protein and mRNA in the TMJ of adult male rats by immunocytochemistry and in situ hybridization histochemistry. Intense ER alpha immunoreactivity was localized in the synovial lining cells, stromal cells in the articular disc, and chondrocytes in the TMJ. These ER alpha-immunopositive synovial lining cells are characteristic of cytoplasmic processes identified with confocal and immunoelectron microscopy, which indicates that they are synovial type B cells. In situ hybridization histochemistry confirmed intense signals for ER alpha in the synovial lining cells and the sublining fibroblasts at mRNA levels. The nuclei of chondrocytes showed an intense immunoreaction for ER alpha in the maturative and hypertrophic layers of the articular cartilage. In addition to the nuclear localization of ER alpha, a weak immunoreaction appeared in the cytoplasm of some ER alpha-positive cells. These findings support the hypothesis that TMJ tissue-at least in the male rat-has the potential to be an estrogen target tissue.
Collapse
Affiliation(s)
- Kazuho Yamada
- Division of Removable Prosthodontics, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Fu X, Liu C, Liu Y, Feng X, Gu L, Chen X, Chang Z. Small heat shock protein Hsp16.3 modulates its chaperone activity by adjusting the rate of oligomeric dissociation. Biochem Biophys Res Commun 2003; 310:412-20. [PMID: 14521926 DOI: 10.1016/j.bbrc.2003.09.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Small heat shock proteins usually exist as oligomers and appear to undergo dynamic dissociation/reassociation, with oligomeric dissociation being a prerequisite for their chaperone activities. However, contradictory cases were also reported that chaperone activities could be enhanced with no change or even increase in oligomeric sizes. Using Hsp16.3 as a model system, our studies show the following: (1) Although a preheat (over 60 degrees C) treatment or the presence of low concentrations of urea (around 0.8M) hardly caused any change in the oligomeric size of Hsp16.3 proteins when examined by size exclusion chromatography, its chaperone activities were increased significantly. (2) Further analysis using the unique pore-gradient polyacrylamide gel electrophoresis revealed a dramatic increase in the tendency of oligomeric dissociation for both the preheated and urea-containing Hsp16.3. (3) Meanwhile, for both cases, an apparent increase in the rate constants of oligomeric dissociation was also observed, as determined by utilizing conjugated fluorescence probes whose quantum yield increases accompanying oligomeric dissociation. (4) Moreover, the fluorescence anisotropy analysis also demonstrated that the oligomeric structures for the preheated or urea-containing Hsp16.3 proteins seem to be more dynamic and variable. In light of these observations, we propose that the small heat shock proteins like Hsp16.3 can modulate their chaperone activities by adjusting the rate of oligomeric dissociation in responding to environmental changes. Results obtained here also suggest that small heat shock proteins might be able to "remember" their stress experiences via certain structural alterations which will allow them to act as better chaperones when the stress conditions reappear.
Collapse
Affiliation(s)
- Xinmiao Fu
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
Iijima K, Harada F, Hanada K, Nozawa-Inoue K, Aita M, Atsumi Y, Wakisaka S, Maeda T. Temporal expression of immunoreactivity for heat shock protein 25 (Hsp25) in the rat periodontal ligament following transection of the inferior alveolar nerve. Brain Res 2003; 979:146-52. [PMID: 12850581 DOI: 10.1016/s0006-8993(03)02889-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present study examined the immunohistochemical localization of heat shock protein 25 (Hsp25) during the regeneration of nerve fibers and Schwann cells in the periodontal ligament of the rat lower incisor following transection of the inferior alveolar nerve. In the untreated control group, the periodontal ligament of rat incisor did not contain any Hsp25-immunoreaction. On postoperative day 3 (PO 3d), a small number of Schwann cells with slender cytoplasmic processes exhibited Hsp25-immunoreactivity. From PO 5d to PO 21d, Hsp25-positive nerve fibers and Schwann cells drastically increased in number in the alveolar half of the ligament. Although the axons of some regenerating Ruffini-like endings also showed Hsp25-immunoreactions, the migrated Schwann cells were devoid of Hsp25-immunoreaction. Thereafter, Hsp25-positive structures decreased in number gradually to disappear from the periodontal ligament by PO 56d. This temporal expression of Hsp25 in the periodontal ligament well-reflected the regeneration process of the nerve fibers. Hsp25 in the regenerating nerve fibers and denervated Schwann cells most likely serves in modulating actin dynamics and as a cellular inhibitor of apoptosis, respectively.
Collapse
Affiliation(s)
- Kenji Iijima
- Division of Oral Anatomy, Department of Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, 951-8514, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Krueger-Naug AMR, Emsley JG, Myers TL, Currie RW, Clarke DB. Administration of brain-derived neurotrophic factor suppresses the expression of heat shock protein 27 in rat retinal ganglion cells following axotomy. Neuroscience 2003; 116:49-58. [PMID: 12535937 DOI: 10.1016/s0306-4522(02)00582-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Optic nerve transection results in the apoptotic cell death of the majority of retinal ganglion cells by 14 days. The neurotrophin brain-derived neurotrophic factor (BDNF) enhances survival of retinal ganglion cells. In addition, the small heat shock protein Hsp27, with its anti-apoptotic effects, may be important for neuron survival following axotomy or trophic factor withdrawal. We recently reported the induction and expression of Hsp27 in a subset of retinal ganglion cells following axotomy. Here we have examined the effect of BDNF administration on the expression of Hsp27 in axotomized adult rodent retinal ganglion cells. Retinal ganglion cells were pre-labeled with Fluorogold prior to optic nerve transection and concomitant intraocular injection of BDNF or vehicle. Hsp27 immunofluorescence was examined in retinal sections from 4 to 28 days following injury. Consistent with previous survival studies, the number of Fluorogold-labeled retinal ganglion cells declined from 100% at 4 days to approximately 15% by 14 days following axotomy and vehicle injection. In contrast, with BDNF administration, retinal ganglion cell survival was maintained at 100% to 7 days following axotomy. We report that the number of Hsp27-positive injured retinal ganglion cells, as detected by immunohistochemical staining, was decreased by 50% in BDNF-treated retinas, when compared with vehicle-treated controls. This decreased expression of Hsp27 in response to BDNF treatment was seen both at early (4 days) and delayed (14 days) times. BDNF following optic nerve transection significantly reduced the expression of Hsp27 in retinal ganglion cells. These results indicate that BDNF may down-regulate alternate cell survival pathways, including the stress-induced expression of Hsp27, and may help to explain the failure of chronic neurotrophin treatment to maintain long-term retinal ganglion cell survival.
Collapse
Affiliation(s)
- A M R Krueger-Naug
- Laboratory of Molecular Neurobiology, Dalhousie University, Halifax, NS, Canada B3H 4H7
| | | | | | | | | |
Collapse
|
22
|
Mearow KM, Dodge ME, Rahimtula M, Yegappan C. Stress-mediated signaling in PC12 cells - the role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal. J Neurochem 2002; 83:452-62. [PMID: 12423255 DOI: 10.1046/j.1471-4159.2002.01151.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have investigated the role of stress-activated signaling pathways and the small heat shock protein, Hsp27, in protecting PC12 cells from heat shock and nerve growth factor (NGF) withdrawal-induced apoptosis. PC12 cells and a stable cell line overexpressing Hsp27 (HSPC cells) were subjected to heat shock. This resulted in the rapid activation of Akt followed by p38 mitogen-activated protein kinase (MAPK) signaling, with phosphorylation and intracellular translocation of Hsp27 also detectable. Hsp27 was found to form an immunoprecipitable complex with Akt and p38 MAPK in both non-stimulated and heat shocked cells, although after heat shock there was a gradual dissociation of Akt and p38 from the Hsp27. Cells were differentiated with NGF and then subjected to NGF withdrawal, a treatment which results in substantial cell death over 24-72 h. Hsp27 was shown to be protective against this treatment, since HSPC cells which overexpress Hsp27 showed significantly less cell death than the parental PC12 cells. In addition, we observed that phosphorylation of Akt was maintained in HSPC cells subjected to heat shock and NGF withdrawal compared with the parental cells. Taken together, our results suggest that Hsp27 may protect Akt from dephosphorylation and may also act in stabilizing Akt.
Collapse
Affiliation(s)
- K M Mearow
- Division of Basic Medical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, Newfoundland, Canada.
| | | | | | | |
Collapse
|
23
|
Krueger-Naug AMR, Plumier JCL, Hopkins DA, Currie RW. Hsp27 in the nervous system: expression in pathophysiology and in the aging brain. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 28:235-51. [PMID: 11908063 DOI: 10.1007/978-3-642-56348-5_13] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- A M R Krueger-Naug
- Laboratory of Molecular Neurobiology, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | | | |
Collapse
|
24
|
Krueger-Naug AMR, Emsley JG, Myers TL, Currie RW, Clarke DB. Injury to retinal ganglion cells induces expression of the small heat shock protein Hsp27 in the rat visual system. Neuroscience 2002; 110:653-65. [PMID: 11934473 DOI: 10.1016/s0306-4522(01)00453-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Optic nerve transection results in apoptotic cell death of most adult rat retinal ganglion cells that begins at 4 days and leaves few surviving neurons at 14 days post-injury [Berkelaar et al. (1994) J. Neurosci. 14, 4368-4374]. The small heat shock protein Hsp27 has recently been shown to play a role in sensory neuron survival following peripheral nerve axotomy [Lewis et al. (1999) J. Neurosci. 19, 8945-8953]. To investigate the role of Hsp27 in injured CNS sensory neurons, we have studied the induction and cell-specific expression of Hsp27 in rat retinal ganglion cells 1-28 days after optic nerve transection. Immunohistochemical results indicate that Hsp27 is not present at detectable levels in the ganglion cell layer of control (uninjured) or sham-operated control rats. In contrast, Hsp27 is detected in retinal ganglion cells from 4 to 28 days following axotomy. Furthermore, the percentage of surviving retinal ganglion cells that are Hsp27-positive increased over the same time period. Hsp27 is also detected in glial fibrillary acidic protein-positive astrocytes in the optic layer of the superior colliculus from 4 to 28 days after optic nerve transection. These experiments demonstrate that transection of the optic nerve results in the expression of Hsp27 in three distinct regions of the rat visual system: sensory retinal ganglion cells in the eye, glial cells of the optic tract, and astrocytes in the optic layer of the superior colliculus. Hsp27 may be associated with enhanced survival of a subset of retinal ganglion cells, providing evidence of a protective role for Hsp27 in CNS neuronal injury.
Collapse
Affiliation(s)
- A M R Krueger-Naug
- Molecular Neurobiology Laboratory, Dalhousie University, Halifax, Canada
| | | | | | | | | |
Collapse
|
25
|
Kalmár B, Burnstock G, Vrbová G, Greensmith L. The effect of neonatal nerve injury on the expression of heat shock proteins in developing rat motoneurones. J Neurotrauma 2002; 19:667-79. [PMID: 12042100 DOI: 10.1089/089771502753754127] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The expression of the heat shock proteins hsp27 and hsp70 was examined in the spinal cord and sciatic nerves of developing rats. Using immunohistochemistry, we found that hsp27 is present in many motoneurones at birth. With development, the intensity of staining increases, reaching adult levels by 21 days, when all sciatic motoneurones express hsp27. In the sciatic nerve, hsp27 is strongly expressed throughout postnatal development. In contrast, hsp70 immunoreactivity in motoneurones and the sciatic nerve is weak at birth and does not change with development. The expression of heat shock proteins has been shown to increase in cells under conditions of stress, where they have beneficial effects on cell survival. The effect of neonatal nerve injury on hsp27 and hsp70 expression was also examined in this study. Four days after injury, staining for hsp27 increases in motoneurones, whereas hsp70 does not change. However, there is a significant increase in hsp70 staining in glial cells surrounding the injured motor pool, predominantly in astrocytes. Since neonatal nerve injury induces apoptotic motoneurone death, we also studied the co-expression of hsp27 with markers of apoptosis. No hsp27-positive motoneurones were found to be apoptotic, as assessed by both TUNEL and caspase-3 immunoreactivity. Therefore, it is possible that the upregulation of hsp27 observed in injured motoneurones may play a role in protecting motoneurones from apoptotic cell death following nerve injury.
Collapse
Affiliation(s)
- Bernadett Kalmár
- Sobell Department of Neurophysiology, Institute of Neurology, London, United Kingdom
| | | | | | | |
Collapse
|
26
|
Sanz O, Acarin L, González B, Castellano B. Expression of 27 kDa heat shock protein (Hsp27) in immature rat brain after a cortical aspiration lesion. Glia 2001; 36:259-70. [PMID: 11746764 DOI: 10.1002/glia.1114] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The 27 kDa heat shock protein (Hsp27) is a well-known member of the astroglial response to injury, playing a protective role against oxidative stress, apoptosis, and cytoskeletal destruction. Although several studies have been focused on the damaged adult brain, little is known about Hsp27 expression in the immature brain. In this work, we have examined the spatiotemporal pattern of Hsp27 expression in the normal postnatal rat brain following a cortical aspiration lesion at postnatal day 9. In the immature brain, Hsp27 is mainly observed in the internal capsule, although some scattered cells are also found in the ependyma, the corpus callosum, the septum, and hypothalamic glia limitans. In the internal capsule, Hsp27 expression is developmentally regulated, being significantly decreased from postnatal day 14. After a cortical aspiration lesion, de novo expression of Hsp27 is observed in cortical injured areas as well as in the secondary affected thalamus. In the cortex, expression of Hsp27 is first seen at day 1 postlesion (PL) surrounding the neurodegenerative area, becoming restricted to the glial scar at longer survival times. Although a pulse-like expression of Hsp27 is observed in some microglial cells at day 1 PL, most Hsp27-labeled cells are reactive astrocytes, which show GFAP overexpression and coexpress vimentin from day 3 PL. In the thalamus, astroglial Hsp27 expression is delayed, being first observed at day 5 PL. Thalamic Hsp27-labeled astrocytes do not show vimentin expression. Our observations demonstrate astroglial expression of Hsp27 in areas of tissue damage following postnatal traumatic injury, suggesting an involvement of this cytoskeleton-stabilizing protein in the remodeling processes following postnatal brain damage.
Collapse
Affiliation(s)
- O Sanz
- Department of Cell Biology, Physiology and Immunology, Unit of Histology, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
27
|
Andoh E, Kawano Y, Ajima H, Nozawa-Inoue K, Kohno S, Maeda T. Expression of 25 kDa heat shock protein by synovial type B cells of the mouse temporomandibular joint. Arch Oral Biol 2001; 46:947-54. [PMID: 11451409 DOI: 10.1016/s0003-9969(01)00052-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Earlier studies have demonstrated immunoreactivity for heat shock protein 25 (Hsp25) in type B synovial lining cells of the rat temporomandibular joint, and also the presence of characteristic cytoplasmic processes in these cells, but it is unclear whether or not the type B cells in other animals possess such elaborate cytoplasmic projections and as there is as yet no evidence for the synthesis of this protein by these cells. For these reasons, the expression of Hsp25 was investigated in the synovial membrane of the mouse temporomandibular joint by immunocytochemistry and by in situ hybridization using a specific cRNA probe. Intense immunoreaction for Hsp25 was found in the cytoplasm of certain synovial lining cells that were identified as type B by immunoelectron-microscopy. These Hsp25-positive cells had slender cytoplasmic processes, either projecting towards or covering the synovial surface. Morphological differences between cytoplasmic processes seemed to depend on the location of the type B cell bodies. In situ hybridization showed intense signals for Hsp25 mRNA in the synovial lining cells, suggesting that the type B cells produce, rather than resorb, Hsp25. These findings indicate that Hsp25 is a useful marker for the identification of the synovial type B cells in the temporomandibular joint. It is further hypothesized that Hsp25 in type B cells is involved in maintaining their specific profile and epithelial-like arrangement, and in protecting against mechanical stress.
Collapse
Affiliation(s)
- E Andoh
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Niigata 951-8514, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Murashov AK, Haq IU, Hill C, Park E, Smith M, Wang X, Wang X, Goldberg DJ, Wolgemuth DJ. Crosstalk between p38, Hsp25 and Akt in spinal motor neurons after sciatic nerve injury. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 93:199-208. [PMID: 11589997 DOI: 10.1016/s0169-328x(01)00212-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The p38 stress-activated protein kinase pathway is involved in regulation of phosphorylation of Hsp25, which in turn regulates actin filament dynamic in non-neuronal cells. We report that p38, Hsp25 and Akt signaling pathways were specifically activated in spinal motor neurons after sciatic nerve axotomy. The activation of the p38 kinase was required for induction of Hsp25 expression. Furthermore, Hsp25 formed a complex with Akt, a member of PI-3 kinase pathway that prevents neuronal cell death. Together, our observations implicate Hsp25 as a central player in a complex system of signaling that may both promote regeneration of nerve fibers and prevent neuronal cell death in the injured spinal cord.
Collapse
Affiliation(s)
- A K Murashov
- Department of Physiology, The Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Pieri I, Cifuentes-Diaz C, Oudinet JP, Blondet B, Rieger F, Gonin S, Arrigo AP, Thomas Y. Modulation of HSP25 expression during anterior horn motor neuron degeneration in the paralysé mouse mutant. J Neurosci Res 2001; 65:247-53. [PMID: 11494359 DOI: 10.1002/jnr.1148] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The paralysé spontaneous mutation in mice involves degeneration and death of anterior horn motor neurons. Mutant mice are not viable past postnatal day 16. At present, the mechanisms involved in motor neuron death are unknown. Here, we investigate the expression of the small heat shock protein Hsp25, in the spinal cord of paralysé at two different stages during postnatal development, i.e., day 11 and day 14. Western blot analysis reveals that the level of Hsp25 was strikingly different in paralysé as compared to control littermates. Hsp25 expression level in paralysé at day 11 was much lower than in control mice. At day 14, an opposite pattern was observed. Such pattern seems to be restricted to spinal cord, since level of Hsp25 in other tissues (lung, brain, liver, and heart) was quite similar. Immunofluorescence examination of the lumbar spinal cord sections reveals that in control mice, Hsp25 was expressed at high level in motor neurons located in the ventral horn at both day 11 and day 14. By contrast, in paralysé mice, Hsp25 staining within the motor neurons was barely detectable except as a spot in the nucleolus (day 11). At the end stage of the disease (day 14), not only was Hsp25 staining even less intense in motor neurons, but also a strong Hsp25 staining was observed in reactive astrocytes within the gray matter. Taken together, these data suggest that Hsp25 expression is differently modulated in neuronal and glial cells during neurodegenerative processes leading to motor neuron death.
Collapse
Affiliation(s)
- I Pieri
- CNRS UMR 8505/ENS-LSH, Le Parc, 92211 Saint Cloud Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of heat shock protein HSP25 in the central nervous system of the developing and adult mouse. J Comp Neurol 2001; 434:262-74. [PMID: 11331528 DOI: 10.1002/cne.1176] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Immunohistochemistry and in situ hybridization have been used to survey constitutive heat shock protein (HSP)25 expression in the brain and spinal cord of the developing and adult mouse. The data reveal both transient and sustained patterns of expression and demonstrate robust differences between mice and rats. During development, HSP25 is transiently expressed in neurons of the inferior colliculus, various thalamic subnuclei, and the majority of Purkinje cells in the cerebellum. Sustained expression into adulthood is seen in neurons of the cranial nerve nuclei, spinal cord motoneurons, median preoptic nucleus, and a subset of Purkinje cells. Differences in HSP25 expression between adult rats and mice include the somatic motor nuclei innervating the extraocular muscles, which are HSP25 immunoreactive only in the rat. Similar differences in HSP25 expression are seen during the development of the inferior colliculus, thalamus, and cerebellum, where expression is restricted to mice.
Collapse
Affiliation(s)
- C L Armstrong
- Department of Cell Biology & Anatomy, and Genes and Development Research Group, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
31
|
Nomura H, Furuta A, Suzuki SO, Iwaki T. Dorsal horn lesion resulting from spinal root avulsion leads to the accumulation of stress-responsive proteins. Brain Res 2001; 893:84-94. [PMID: 11222996 DOI: 10.1016/s0006-8993(00)03291-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to demonstrate acute to subacute molecular episodes in the dorsal horn following root avulsion using immunohistochemical methods with the markers for synapses, astrocytes and such stress-responsive molecules as heat shock proteins (Hsps) and p38 MAP kinase (p38). Among them, Hsp27 was accumulated selectively in the injured substantia gelatinosa 24 h after avulsion injury. The localization of Hsp27 in astrocytes within the substantia gelatinosa was confirmed by the double immunofluorescence method using anti-Hsp27 antibody and either anti-synaptophysin antibody or anti-glutamine synthetase antibody and by immunoelectron microscopy for Hsp27. The pattern of Hsp27 expression subsequently changed from glial pattern to punctate pattern by 7 days. Immunoelectron microscopy revealed that the punctate pattern in the subacute stage corresponded to distal parts of the astrocytic processes. Hsp27 immunoreaction was decreased 21 days after root avulsion. In the distal axotomy model, Hsp27 was accumulated later in the ipsilateral dorsal horn in a punctate pattern from 7 days after the axotomy. Phosphorylation of p38 was detected in microglia in the dorsal horn following both avulsion and axotomy. Substance P was slightly decreased in the injured substantia gelatinosa in both the avulsion and axotomy models around 14-21 days. We conclude that Hsp27 is a useful marker for demonstrating dorsal horn lesions following avulsion injury and that avulsion injury may induce Hsp27 in the dorsal horn more rapidly than distal axotomy.
Collapse
Affiliation(s)
- H Nomura
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
32
|
Yamamoto M, Fan L, Wakayama T, Amano O, Iseki S. Constitutive expression of the 27-kDa heat-shock protein in neurons and satellite cells in the peripheral nervous system of the rat. THE ANATOMICAL RECORD 2001; 262:213-20. [PMID: 11169916 DOI: 10.1002/1097-0185(20010201)262:2<213::aid-ar1031>3.0.co;2-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
By use of reverse transcriptase-polymerase chain reaction, abundant expression of the mRNA of 27 kDa heat shock protein (Hsp27) was revealed in the sympathetic and parasympathetic ganglia as well as in the sensory ganglia of unstressed adult rats. In situ hybridization and immunohistochemistry further localized Hsp27 mRNA and protein to both neurons and satellite cells in all types of ganglia examined. Schwann cells in the ganglia and peripheral nerve fibers were devoid of Hsp27 signal. These results suggested that Hsp27 is constitutively expressed in neurons and satellite cells in the entire peripheral nervous system of the rat.
Collapse
Affiliation(s)
- M Yamamoto
- Department of Anatomy, School of Medicine, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | |
Collapse
|
33
|
Krueger-Naug AM, Hopkins DA, Armstrong JN, Plumier JC, Currie RW. Hyperthermic induction of the 27-kDa heat shock protein (Hsp27) in neuroglia and neurons of the rat central nervous system. J Comp Neurol 2000; 428:495-510. [PMID: 11074447 DOI: 10.1002/1096-9861(20001218)428:3<495::aid-cne7>3.0.co;2-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The 27-kDa heat shock protein (Hsp27) is constitutively expressed in many neurons of the brainstem and spinal cord, is strongly induced in glial cells in response to ischemia, seizures, or spreading depression, and is selectively induced in neurons after axotomy. Here, the expression of Hsp27 was examined in brains of adult rats from 1.5 hours to 6 days after brief hyperthermic stress (core body temperature of 42 degrees C for 15 minutes). Twenty-four hours following hyperthermia, Western blot analysis showed that Hsp27 was elevated in the cerebral cortex, hippocampus, cerebellum, and brainstem. Immunohistochemistry for Hsp27 revealed a time-dependent, but transient, increase in the level of Hsp27 immunoreactivity (Hsp27 IR) in neuroglia and neurons. Hsp27 IR was detected in astrocytes throughout the brain and in Bergmann glia of the cerebellum from 3 hours to 6 days following heat shock. Peak levels were apparent at 24 hours, gradually declining thereafter. In addition, increases in Hsp27 IR were detected in the ependyma and choroid plexus. Hyperthermia induced Hsp27 IR in neurons of the subfornical organ and the area postrema within 3 hours and reached a maximum by 24 hours with a return to control levels 4-6 days after hyperthermia. Specific populations of hypothalamic neurons also showed Hsp27 IR after hyperthermia. These results demonstrate that hyperthermia induces transient expression of Hsp27 in several types of neuroglia and specific populations of neurons. The pattern of induced Hsp27 IR suggests that some of the activated cells are involved in physiological responses related to body fluid homeostasis and temperature regulation.
Collapse
Affiliation(s)
- A M Krueger-Naug
- Laboratory of Molecular Neurobiology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | | | |
Collapse
|
34
|
Leger JP, Smith FM, Currie RW. Confocal microscopic localization of constitutive and heat shock-induced proteins HSP70 and HSP27 in the rat heart. Circulation 2000; 102:1703-9. [PMID: 11015351 DOI: 10.1161/01.cir.102.14.1703] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heat-shock treatment of rats elevates expression of heat-shock proteins, which play a role in improving the contractile recovery and reducing infarct size in hearts after ischemic injury. However, the location of these proteins in the heart is unknown. METHODS AND RESULTS Anesthetized rats were heat-shocked by elevation of body temperature to 42 degrees C to 42.5 degrees C for 15 minutes, followed by 24 hours of recovery. Control and heat-shocked hearts were extirpated and perfused briefly with saline followed by 2% paraformaldehyde in PBS. Confocal immunofluorescence microscopy of control hearts revealed that HSP27 was localized in cardiomyocytes in a pattern reminiscent of Z bands and was colocalized with neuronal markers in somata and axons. No obvious change in HSP27 content or distribution occurred after heat shock. Confocal microscopy revealed little or no HSP70 in control hearts. After heat shock, HSP70 was detected neither in cardiomyocytes nor in neuronal elements within the heart, but HSP70 was abundant in small blood vessels found between the ventricular cardiomyocytes. CONCLUSIONS Heat shock induces a cell type-specific expression of HSP70 in blood vessels but not myocytes or intrinsic cardiac neurons, suggesting that blood vessels play a primary role in myocardial protection.
Collapse
Affiliation(s)
- J P Leger
- Department of Anatomy and Neurobiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
35
|
Anguelova E, Smirnova T. Differential expression of small heat shock protein 27 in the rat hippocampus and septum after fimbria-fornix lesion. Neurosci Lett 2000; 280:99-102. [PMID: 10686387 DOI: 10.1016/s0304-3940(00)00762-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
mRNA, Western analysis and immunohistochemistry were used to study the expression of the small heat shock protein (HSP) 27 in the rat septum and hippocampus following fimbria-fornix lesions, a model of neurodegeneration and regeneration. (HSP) 27 mRNA level was increased 2.5-fold in the medial septum 3 days after lesion and this increase persisted for 10 days. In the hippocampus, after an initial 15-fold increase at 3 days post-injury, HSP27 mRNA returned to basal levels 10 days after the lesion. Three and 10 days after lesion, HSP27 protein levels were increased in the septum (4.5 and 5-fold, respectively) and hippocampus (65 and 10-fold, respectively). The morphology of the HSP27 positive cells was indistinguishable from that of GFAP-immunoreactive cells. In addition, in the septum of injured rats, occasional neurons were heavily labelled with anti-HSP27 antibodies. Thus, up-regulation of HSP27, particularly in glial cells, may be a component of glial input in the processes on degeneration/regeneration which occur in this model.
Collapse
Affiliation(s)
- E Anguelova
- Sanofi-Synthélabo, CNS Research Departement, 31, Avenue Paul - Vaillant Couturier, BP 110 92225 Bagneux, Cedex, France.
| | | |
Collapse
|
36
|
Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of the 25-kDa heat shock protein Hsp25 reveals novel parasagittal bands of purkinje cells in the adult mouse cerebellar cortex. J Comp Neurol 2000; 416:383-97. [PMID: 10602096 DOI: 10.1002/(sici)1096-9861(20000117)416:3<383::aid-cne9>3.0.co;2-m] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite the reported absence of the 25-kDa heat shock protein Hsp25 in the rodent cerebellum, we have determined that Hsp25 is constitutively expressed in a subset of Purkinje cells in the adult cerebellum of the mouse. No other cerebellar neurons are Hsp25 immunoreactive, but there is weak staining associated with blood vessels. In the vermis, Hsp25-immunoreactive Purkinje cells are confined to two regions: one in lobules VI/VII, the other in lobules IX/X. In each region, only a subset of the Purkinje cells is immunoreactive. These cells are grouped in five parasagittal bands arranged symmetrically about the midline. The boundaries of these expression domains correspond to transverse zones previously inferred from other expression patterns. A third Hsp25-immunopositive domain is seen in the paraflocculus and flocculus. Again, only a subset of Purkinje cells within the paraflocculus and flocculus express Hsp25, revealing three distinct bands. Previous descriptions of compartmentation antigens have not differentiated between adult populations of Purkinje cells in these regions, suggesting that Hsp25 is a novel compartmentation antigen in the adult cerebellum.
Collapse
Affiliation(s)
- C L Armstrong
- Department of Cell Biology and Anatomy, and Genes and Development Research Group, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
37
|
Nozawa-Inoue K, Ohshima H, Kawano Y, Yamamoto H, Takagi R, Maeda T. Immunocytochemical demonstration of heat shock protein 25 in the rat temporomandibular joint. ARCHIVES OF HISTOLOGY AND CYTOLOGY 1999; 62:483-91. [PMID: 10678577 DOI: 10.1679/aohc.62.483] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The expression of heat shock protein 25 (Hsp 25) was investigated in the rat temporomandibular joint by immunocytochemistry combined with confocal and electron microscopy. Immunostaining with an antibody to Hsp25 was able to demonstrate various cellular elements in the synovial membrane of the joint. Intense immunoreaction for Hsp25 was recognized in certain cells comprising the synovial lining layer. Confocal microscopic observation revealed two characteristic profiles of the Hsp25-positive cells with cytoplasmic processes: one extended thick and long processes towards the articular cavity, and the other prejected horizontally slender processes which covered the synovial membrane. Under the electron microscope, the immunoreactive synovial lining cells were characterized by a well-developed rough endoplasmic reticulum and secretory granules, suggesting that they can be categorized as fibroblastic type B cells. The covering by the cytoplasmic extensions was confirmed by immuno-electron microscopic observations. This cytoplasmic covering presumably performs a barrier function and expedites the effective secretion/resorption of synovial fluids. Since it has been proposed that Hsp 25 is associated with an estrogen receptor, the immunopositive synovial lining cells were considered estrogen-target cells. Immunoreactivity for Hsp25 was also observed in the chondrocytes of the maturative and hypertrophic cell layers as well as in the cells of the articular disk. A suggestion was made that Hsp25 might be involved in the inhibition of apoptosis of those cells.
Collapse
Affiliation(s)
- K Nozawa-Inoue
- Department of Oral Anatomy, Faculty of Dentistry, Niigata University, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Peripheral nerve injury in neonatal rats results in the death of the majority of the axotomized sensory neurons by 7 d after injury. In adult animals, however, all sensory neurons survive for at least 4 months after axotomy. How sensory neurons acquire the capacity to survive axonal injury is not known. Here we describe how the expression of the small heat shock protein 27 (HSP27) is correlated with neuronal survival after axotomy in vivo and after NGF withdrawal in vitro. The number of HSP27-immunoreactive neurons in the L4 DRG is low at birth and does not change significantly for 21 d after postnatal day 0 (P0) sciatic nerve axotomy. In contrast, in the adult all axotomized neurons begin to express HSP27. One week after P0 sciatic nerve section the total number of neurons in the L4 DRG is dramatically reduced, but all surviving axotomized neurons, as identified by c-jun immunoreactivity, are immunoreactive for HSP27. In addition, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling reveals that very few HSP27-expressing neurons are dying 48 hr after neonatal axotomy. In vitro, a similar correlation exists between HSP27 expression and survival; in P0 DRG cultures, neurons that express HSP27 preferentially survive NGF withdrawal. Finally, overexpression of human HSP27 in neonatal rat sensory and sympathetic neurons significantly increases survival after NGF withdrawal, with nearly twice as many neurons surviving at 48 hr. Together these results suggest that HSP27 in sensory neurons plays a role in promoting survival after axotomy or neurotrophin withdrawal.
Collapse
|
39
|
Krueger AM, Armstrong JN, Plumier J, Robertson HA, Currie RW. Cell specific expression of Hsp70 in neurons and glia of the rat hippocampus after hyperthermia and kainic acid-induced seizure activity. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 71:265-78. [PMID: 10521581 DOI: 10.1016/s0169-328x(99)00198-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this study we investigated the time course, cell-type and stress-specific expression of hsp70 mRNA and Hsp70 protein in glial cells and neurons in the rat brain following heat shock treatment and kainic acid-induced status epilepticus. Transcripts for hsp70 were detected in hippocampal homogenates from 1.5 to 6 h following hyperthermia and from 3 to 24 h following kainic acid-induced seizures. In situ hybridization revealed hsp70 mRNA to be region specific and time-dependent following hyperthermia and kainic acid-induced seizures. Western analysis indicated that Hsp70 reached maximal levels at 3 h after hyperthermia and 12 h after kainic acid-induced seizures. Immunohistochemistry revealed low level expression of Hsp70 protein in dentate granule cells at 1.5 and 3 h after hyperthermia. No Hsp70 protein was detected in neurons of the pyramidal cell layer or dentate hilus at any time following hyperthermia. Small Hsp70-immunoreactive cells were detected throughout the hippocampus following hyperthermia that, based on cell size, distribution, and double-labeling with vimentin, were considered to be glia. In contrast, high levels of Hsp70 protein were detected in neurons of the pyramidal cell layer and dentate hilus at 24 h after seizure-inducing kainic acid injection. These results suggest that expression of Hsp70 protein is cell-specific depending on the stressor. In addition, finding high levels of Hsp70 mRNA in the dentate granule cells after hyperthermia, but little or no Hsp70 protein, suggests that the synthesis of the protein is also regulated at the post-transcriptional level following hyperthermia.
Collapse
Affiliation(s)
- A M Krueger
- Laboratory of Molecular Neurobiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | |
Collapse
|