1
|
Wang NB, Adewumi HO, Lende-Dorn BA, Beitz AM, O'Shea TM, Galloway KE. Compact transcription factor cassettes generate functional, engraftable motor neurons by direct conversion. Cell Syst 2025; 16:101206. [PMID: 40086435 DOI: 10.1016/j.cels.2025.101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 11/07/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
Direct conversion generates patient-specific, disease-relevant cell types, such as neurons, that are rare, limited, or difficult to isolate from common and easily accessible cells, such as skin cells. However, low rates of direct conversion and complex protocols limit scalability and, thus, the potential of cell-fate conversion for biomedical applications. Here, we optimize the conversion protocol by examining process parameters, including transcript design; delivery via adeno-associated virus (AAV), retrovirus, and lentivirus; cell seeding density; and the impact of media conditions. Thus, we report a compact, portable conversion process that boosts proliferation and increases direct conversion of mouse fibroblasts to induced motor neurons (iMNs) to achieve high conversion rates of above 1,000%, corresponding to more than ten motor neurons yielded per cell seeded, which we achieve through expansion. Our optimized, direct conversion process generates functional motor neurons at scales relevant for cell therapies (>107 cells) that graft with the mouse central nervous system. High-efficiency, compact, direct conversion systems will support scaling to patient-specific, neural cell therapies.
Collapse
Affiliation(s)
- Nathan B Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Honour O Adewumi
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Brittany A Lende-Dorn
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam M Beitz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Lou Z, Post A, Nagoshi N, Hong J, Hejrati N, Chio JCT, Khazaei M, Fehlings MG. Assessment of immune modulation strategies to enhance survival and integration of human neural progenitor cells in rodent models of spinal cord injury. Stem Cells Transl Med 2025; 14:szae090. [PMID: 39931999 PMCID: PMC11811735 DOI: 10.1093/stcltm/szae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 10/30/2024] [Indexed: 02/14/2025] Open
Abstract
Regenerative therapies are currently lacking for spinal cord injury (SCI). Neural progenitor cells (NPCs) have emerged as a promising therapeutic approach. To facilitate translation of NPCs into the clinic, studying human NPCs in rodent models is required. The preclinical study of human NPCs in rodent models of SCI necessitates an optimal selection of immunomodulatory strategies, requiring a balance between modulating the immune system and preserving its functionality.
Collapse
Affiliation(s)
- Zijian Lou
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, CanadaM5T 0S8
- Institute of Medical Sciences, University of Toronto, Toronto, ON, CanadaM5S 1A8
| | - Alex Post
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, CanadaM5T 0S8
- Institute of Medical Sciences, University of Toronto, Toronto, ON, CanadaM5S 1A8
| | - Narihito Nagoshi
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, CanadaM5T 0S8
- Department of Orthopaedics, Keio University, Minatro City, Tokyo, JPXV+H5 Minato City, Japan
| | - James Hong
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, CanadaM5T 0S8
| | - Nader Hejrati
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, CanadaM5T 0S8
| | - Jonathon Chon Teng Chio
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, CanadaM5T 0S8
- Department of Surgery, University of Toronto, Toronto, ON, CanadaM5T 1P5
| | - Mohamad Khazaei
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, CanadaM5T 0S8
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Brain Institute, University Health Network, Toronto, ON, CanadaM5T 0S8
- Institute of Medical Sciences, University of Toronto, Toronto, ON, CanadaM5S 1A8
- Department of Surgery, University of Toronto, Toronto, ON, CanadaM5T 1P5
| |
Collapse
|
3
|
Shen YJ, Huang YC, Cheng YC. Advancements in Antioxidant-Based Therapeutics for Spinal Cord Injury: A Critical Review of Strategies and Combination Approaches. Antioxidants (Basel) 2024; 14:17. [PMID: 39857350 PMCID: PMC11763222 DOI: 10.3390/antiox14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Spinal cord injury (SCI) initiates a cascade of secondary damage driven by oxidative stress, characterized by the excessive production of reactive oxygen species and other reactive molecules, which exacerbate cellular and tissue damage through the activation of deleterious signaling pathways. This review provides a comprehensive and critical evaluation of recent advancements in antioxidant-based therapeutic strategies for SCI, including natural compounds, RNA-based therapies, stem cell interventions, and biomaterial applications. It emphasizes the limitations of single-regimen approaches, particularly their limited efficacy and suboptimal delivery to injured spinal cord tissue, while highlighting the synergistic potential of combination therapies that integrate multiple modalities to address the multifaceted pathophysiology of SCI. By analyzing emerging trends and current limitations, this review identifies key challenges and proposes future directions, including the refinement of antioxidant delivery systems, the development of multi-targeted approaches, and strategies to overcome the structural complexities of the spinal cord. This work underscores the pressing need for innovative and integrative therapeutic approaches to advance the clinical translation of antioxidant-based interventions and improve outcomes for SCI patients.
Collapse
Affiliation(s)
- Yang-Jin Shen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yin-Cheng Huang
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan 333423, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan
| |
Collapse
|
4
|
Adewumi HO, Berniac GI, McCarthy EA, O'Shea TM. Ischemic and hemorrhagic stroke lesion environments differentially alter the glia repair potential of neural progenitor cell and immature astrocyte grafts. Exp Neurol 2024; 374:114692. [PMID: 38244885 DOI: 10.1016/j.expneurol.2024.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Using cell grafting to direct glia-based repair mechanisms in adult CNS injuries represents a potential therapeutic strategy for supporting functional neural parenchymal repair. However, glia repair directed by neural progenitor cell (NPC) grafts is dramatically altered by increasing lesion size, severity, and mode of injury. To address this, we studied the interplay between astrocyte differentiation and cell proliferation of NPC in vitro to generate proliferating immature astrocytes (ImA) using hysteretic conditioning. ImA maintain proliferation rates at comparable levels to NPC but showed robust immature astrocyte marker expression including Gfap and Vimentin. ImA demonstrated enhanced resistance to myofibroblast-like phenotypic transformations upon exposure to serum enriched environments in vitro compared to NPC and were more effective at scratch wound closure in vitro compared to quiescent astrocytes. Glia repair directed by ImA at acute ischemic striatal stroke lesions was equivalent to NPC but better than quiescent astrocyte grafts. While ischemic injury environments supported enhanced survival of grafts compared to healthy striatum, hemorrhagic lesions were hostile towards both NPC and ImA grafts leading to poor survival and ineffective modulation of natural wound repair processes. Our findings demonstrate that lesion environments, rather than transcriptional pre-graft states, determine the survival, cell-fate, and glia repair competency of cell grafts applied to acute CNS injuries.
Collapse
Affiliation(s)
- Honour O Adewumi
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA
| | - Gabriela I Berniac
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA
| | - Emily A McCarthy
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA 02215-2407, USA.
| |
Collapse
|
5
|
Zhang C, Ge L, Xie H, Liu X, Xun C, Chen Y, Chen H, Lu M, Chen P. Retinoic acid induced specific changes in the phosphoproteome of C17.2 neural stem cells. J Cell Mol Med 2024; 28:e18205. [PMID: 38506089 PMCID: PMC10951872 DOI: 10.1111/jcmm.18205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
Retinoic acid (RA), a vitamin A derivative, is an effective cell differentiating factor which plays critical roles in neuronal differentiation induction and the production of neurotransmitters in neurons. However, the specific changes in phosphorylation levels and downstream signalling pathways associated with RA remain unclear. This study employed qualitative and quantitative phosphoproteomics approaches based on mass spectrometry to investigate the phosphorylation changes induced by RA in C17.2 neural stem cells (NSCs). Dimethyl labelling, in conjunction with TiO2 phosphopeptide enrichment, was utilized to profile the phosphoproteome of self-renewing and RA-induced differentiated cells in C17.2 NSCs. The results of our study revealed that, qualitatively, 230 and 14 phosphoproteins were exclusively identified in the self-renewal and RA-induced groups respectively. Quantitatively, we successfully identified and quantified 177 unique phosphoproteins, among which 70 exhibited differential phosphorylation levels. Analysis of conserved phosphorylation motifs demonstrated enrichment of motifs corresponding to cyclin-dependent kinase and MAPK in the RA-induced group. Additionally, through a comprehensive literature and database survey, we found that the differentially expressed proteins were associated with the Wnt/β-catenin and Hippo signalling pathways. This work sheds light on the changes in phosphorylation levels induced by RA in C17.2 NSCs, thereby expanding our understanding of the molecular mechanisms underlying RA-induced neuronal differentiation.
Collapse
Affiliation(s)
- Cheng Zhang
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life ScienceSouth China Normal UniversityGuangzhouPR China
| | - Lite Ge
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Hunan Provincial Key Laboratory of Neurorestoratology, the Second Affiliated HospitalHunan Normal UniversityChangshaPR China
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaPR China
| | - Huali Xie
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Xiaoqian Liu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Chengfeng Xun
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Yan Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Haiyan Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| | - Ming Lu
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
- Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaPR China
| | - Ping Chen
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life SciencesHunan Normal UniversityChangshaPR China
| |
Collapse
|
6
|
Li Q, Liu S, Zheng T, Li M, Qi B, Zhou L, Liu B, Ma D, Zhao C, Chen Z. Grafted human-induced pluripotent stem cells-derived oligodendrocyte progenitor cells combined with human umbilical vein endothelial cells contribute to functional recovery following spinal cord injury. Stem Cell Res Ther 2024; 15:35. [PMID: 38321505 PMCID: PMC10848469 DOI: 10.1186/s13287-024-03651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
BACKGROUND Spinal cord injury (SCI) is a devastating disease that causes extensive damage to oligodendrocytes and neurons leading to demyelination and axonal degeneration. In this study, we co-transplanted cell grafts containing oligodendrocyte progenitor cells (OPCs) derived from human-induced pluripotent stem cells (iPSCs) combined with human umbilical vein endothelial cells (HUVECs), which were reported to promote OPCs survival and migration, into rat contusion models to promote functional recovery after SCI. METHODS OPCs were derived from iPSCs and identified by immunofluorescence at different time points. Functional assays in vitro were performed to evaluate the effect of HUVECs on the proliferation, migration, and survival of OPCs by co-culture and migration assay, as well as on the neuronal axonal growth. A combination of OPCs and HUVECs was transplanted into the rat contusive model. Upon 8 weeks, immunofluorescence staining was performed to test the safety of transplanted cells and to observe the neuronal repairment, myelination, and neural circuit reconstruction at the injured area; also, the functional recovery was assessed by Basso, Beattie, and Bresnahan open-field scale, Ladder climb, SEP, and MEP. Furthermore, the effect of HUVECs on grafts was also determined in vivo. RESULTS Data showed that HUVECs promote the proliferation, migration, and survival of OPCs both in vitro and in vivo. Furthermore, 8 weeks upon engraftment, the rats with OPCs and HUVECs co-transplantation noticeably facilitated remyelination, enhanced functional connection between the grafts and the host and promoted functional recovery. In addition, compared with the OPCs-alone transplantation, the co-transplantation generated more sensory neurons at the lesion border and significantly improved the sensory functional recovery. CONCLUSIONS Our study demonstrates that transplantation of OPCs combined with HUVECs significantly enhances both motor and sensory functional recovery after SCI. No significance was observed between OPCs combined with HUVECs group and OPCs-alone group in motor function recovery, while the sensory function recovery was significantly promoted in OPCs combined with HUVECs groups compared with the other two groups. These findings provide novel insights into the field of SCI research.
Collapse
Affiliation(s)
- Qian Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Sumei Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Tianqi Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Mo Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Boling Qi
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Liping Zhou
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Bochao Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Dan Ma
- Translational Medicine Research Group (TMRG), Aston Medical School, Aston University, Birmingham, B4 7ET, UK
| | - Chao Zhao
- Department of Clinical Neurosciences, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
7
|
Georgelou K, Saridaki EA, Karali K, Papagiannaki A, Charalampopoulos I, Gravanis A, Tzeranis DS. Microneurotrophin BNN27 Reduces Astrogliosis and Increases Density of Neurons and Implanted Neural Stem Cell-Derived Cells after Spinal Cord Injury. Biomedicines 2023; 11:biomedicines11041170. [PMID: 37189788 DOI: 10.3390/biomedicines11041170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Microneurotrophins, small-molecule mimetics of endogenous neurotrophins, have demonstrated significant therapeutic effects on various animal models of neurological diseases. Nevertheless, their effects on central nervous system injuries remain unknown. Herein, we evaluate the effects of microneurotrophin BNN27, an NGF analog, in the mouse dorsal column crush spinal cord injury (SCI) model. BNN27 was delivered systemically either by itself or combined with neural stem cell (NSC)-seeded collagen-based scaffold grafts, demonstrated recently to improve locomotion performance in the same SCI model. Data validate the ability of NSC-seeded grafts to enhance locomotion recovery, neuronal cell integration with surrounding tissues, axonal elongation and angiogenesis. Our findings also show that systemic administration of BNN27 significantly reduced astrogliosis and increased neuron density in mice SCI lesion sites at 12 weeks post injury. Furthermore, when BNN27 administration was combined with NSC-seeded PCS grafts, BNN27 increased the density of survived implanted NSC-derived cells, possibly addressing a major challenge of NSC-based SCI treatments. In conclusion, this study provides evidence that small-molecule mimetics of endogenous neurotrophins can contribute to effective combinatorial treatments for SCI, by simultaneously regulating key events of SCI and supporting grafted cell therapies in the lesion site.
Collapse
Affiliation(s)
- Konstantina Georgelou
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
| | | | - Kanelina Karali
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
| | - Argyri Papagiannaki
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
| | - Achille Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
| | - Dimitrios S Tzeranis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 71003 Heraklion, Greece
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| |
Collapse
|
8
|
Mi S, Chang Z, Wang X, Gao J, Liu Y, Liu W, He W, Qi Z. Bioactive Spinal Cord Scaffold Releasing Neurotrophic Exosomes to Promote In Situ Centralis Neuroplasticity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16355-16368. [PMID: 36958016 DOI: 10.1021/acsami.2c19607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spinal cord injury (SCI), one of the most serious injuries of the central nervous system, causes physical functional dysfunction and even paralysis in millions of patients. As a matter of necessity, redressing the neuroleptic pathologic microenvironment to a neurotrophic microenvironment is essential in order to alleviate this dilemma and facilitate the recovery of the spinal cord. Herein, based on cell-sheet technology, two functional cell types─uninduced and neural-induced stem cells from human exfoliated deciduous teeth─were formed into a composite membrane that subsequently self-assembled to form a bioactive scaffold with a spinal-cord-like structure, called a spinal cord assembly (SCA). In a stable extracellular matrix microenvironment, SCA continuously released SCA-derived exosomes containing various neurotrophic factors, which effectively promoted neuronal regeneration, axonal extension, and angiogenesis and inhibited glial scar generation in a rat model of SCI. Neurotrophic exosomes significantly improved the pathological microenvironment and promoted in situ centralis neuroplasticity, ultimately eliciting a strong repair effect in this model. SCA therapy is a promising strategy for the effective treatment of SCI based on neurotrophic exosome delivery.
Collapse
Affiliation(s)
- Sisi Mi
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Zhuo Chang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xue Wang
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Jiaxin Gao
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| | - Wenjia Liu
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Wangxiao He
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
- Department of Medical Oncology and Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
9
|
Mi S, Wang X, Gao J, Liu Y, Qi Z. Implantation with SHED sheet induced with homogenate protein of spinal cord promotes functional recovery from spinal cord injury in rats. Front Bioeng Biotechnol 2023; 11:1119639. [PMID: 36998812 PMCID: PMC10043224 DOI: 10.3389/fbioe.2023.1119639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Introduction: After spinal cord injury (SCI) occurs, the lesion is in a growth inhibitory microenvironment that severely hinders neural regeneration. In this microenvironment, inhibitory factors are predominant and factors that promote nerve regeneration are few. Improving neurotrophic factors in the microenvironment is the key to treating SCI.Methods: Based on cell sheet technology, we designed a bioactive material with a spinal cord‐like structure –SHED sheet induced with homogenate protein of spinal cord (hp–SHED sheet). Hp–SHED sheet was implanted into the spinal cord lesion for treating SCI rats with SHED suspensions as a control to investigate the effects on nerve regeneration.Results: Hp–SHED sheet revealed a highly porous three–dimensional inner structure, which facilitates nerve cell attachment and migration. Hp-SHED sheet in vivo restored sensory and motor functions in SCI rats by promoting nerve regeneration, axonal remyelination, and inhibiting glial scarring.Discussion: Hp–SHED sheet maximally mimics the microenvironment of the natural spinal cord and facilitate cell survival and differentiation. Hp–SHED sheet could release more neurotrophins and the sustained action of neurotrophins improves the pathological microenvironment, which effectively promotes nerve regeneration, axonal extension, and inhibits glial scarring, thereby promoting the in situ centralis neuroplasticity. Hp–SHED sheet therapy is a promising strategy for effective treatment of SCI based on neurotrophins delivery.
Collapse
|
10
|
Choi DH, Yoo CJ, Kim MJ, Kim YJ, Yoo YM. Morphological and molecular expression patterns of neural precursor cells derived from human fetal spinal cord in two-, three-dimensional, and organoid culture environments. Tissue Cell 2023; 82:102068. [PMID: 36948082 DOI: 10.1016/j.tice.2023.102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/23/2023] [Accepted: 03/10/2023] [Indexed: 03/13/2023]
Abstract
Recently, interest in three-dimensional (3D) cell or tissue organoids that may, in vitro, overcome not only the practical problems associated with fetal tissue transplantation, but also provide a potential source for the regeneration of injured spinal cords, has been increasing steadily. In this study, we showed that human neural precursor cells (hNPCs) derived from the fetal spinal cord could be incubated in serum free medium at two dimensional (2D), three dimensional (3D) and tissue organoid-systems. Additionally, we investigated morphological changes over time along with the expression of proteoglycans, collagen, or myelin in 2D, 3D and tissue-like organoids. 2D cells exhibited a spindle-shaped morphology with classic hill and valley growth patterns, while 3D cells grew as clusters of undifferentiated cells and cell sheets (tissue organoids) that gradually rolled up like a carpet without forming a circular cell mass. Immunostaining was performed to demonstrate the expression of TUJ-1, MAP-2, GAD 65/67 and ChAT in 2D cells or tissue-like organoids, which stained positively for them. In addition, we observed the immunoreactivity of HNu, NG2, TUJ-1, and GFAP in tissue-like organoids. The organoid culture system studied in our work may be used as therapeutic agents for spinal cord injury (SCI), and as raw materials needed for development of new medicines to improve human responses and cure diseases.
Collapse
Affiliation(s)
- Dae Han Choi
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Chan-Jong Yoo
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Myeong Jin Kim
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Yong-Jung Kim
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea
| | - Young-Mi Yoo
- Department of Neurosurgery, Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, Republic of Korea.
| |
Collapse
|
11
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
13
|
O'Shea TM, Ao Y, Wang S, Wollenberg AL, Kim JH, Ramos Espinoza RA, Czechanski A, Reinholdt LG, Deming TJ, Sofroniew MV. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat Commun 2022; 13:5702. [PMID: 36171203 PMCID: PMC9519954 DOI: 10.1038/s41467-022-33382-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023] Open
Abstract
Neural progenitor cells (NPC) represent potential cell transplantation therapies for CNS injuries. To understand how lesion environments influence transplanted NPC fate in vivo, we derived NPC expressing a ribosomal protein-hemagglutinin tag (RiboTag) for transcriptional profiling of transplanted NPC. Here, we show that NPC grafted into uninjured mouse CNS generate cells that are transcriptionally similar to healthy astrocytes and oligodendrocyte lineages. In striking contrast, NPC transplanted into subacute CNS lesions after stroke or spinal cord injury in mice generate cells that share transcriptional, morphological and functional features with newly proliferated host astroglia that restrict inflammation and fibrosis and isolate lesions from adjacent viable neural tissue. Our findings reveal overlapping differentiation potentials of grafted NPC and proliferating host astrocytes; and show that in the absence of other interventions, non-cell autonomous cues in subacute CNS lesions direct the differentiation of grafted NPC towards a naturally occurring wound repair astroglial phenotype.
Collapse
Affiliation(s)
- T M O'Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA.
| | - Y Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - S Wang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - A L Wollenberg
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - J H Kim
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - R A Ramos Espinoza
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - A Czechanski
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | - T J Deming
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - M V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA.
| |
Collapse
|
14
|
Zheng Y, Gallegos CM, Xue H, Li S, Kim DH, Zhou H, Xia X, Liu Y, Cao Q. Transplantation of Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Promotes Forelimb Functional Recovery after Cervical Spinal Cord Injury. Cells 2022; 11:2765. [PMID: 36078173 PMCID: PMC9454923 DOI: 10.3390/cells11172765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Locomotor function after spinal cord injury (SCI) is critical for assessing recovery. Currently, available means to improve locomotor function include surgery, physical therapy rehabilitation and exoskeleton. Stem cell therapy with neural progenitor cells (NPCs) transplantation is a promising reparative strategy. Along this line, patient-specific induced pluripotent stem cells (iPSCs) are a remarkable autologous cell source, which offer many advantages including: great potential to generate isografts avoiding immunosuppression; the availability of a variety of somatic cells without ethical controversy related to embryo use; and vast differentiation. In this current work, to realize the therapeutic potential of iPSC-NPCs for the treatment of SCI, we transplanted purified iPSCs-derived NPCs into a cervical contusion SCI rat model. Our results showed that the iPSC-NPCs were able to survive and differentiate into both neurons and astrocytes and, importantly, improve forelimb locomotor function as assessed by the grooming task and horizontal ladder test. Purified iPSC-NPCs represent a promising cell type that could be further tested and developed into a clinically useful cell source for targeted cell therapy for cervical SCI patients.
Collapse
Affiliation(s)
- Yiyan Zheng
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chrystine M. Gallegos
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haipeng Xue
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shenglan Li
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dong H. Kim
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongxia Zhou
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Xugang Xia
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Ying Liu
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qilin Cao
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
15
|
Hong IS. Enhancing Stem Cell-Based Therapeutic Potential by Combining Various Bioengineering Technologies. Front Cell Dev Biol 2022; 10:901661. [PMID: 35865629 PMCID: PMC9294278 DOI: 10.3389/fcell.2022.901661] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
Stem cell-based therapeutics have gained tremendous attention in recent years due to their wide range of applications in various degenerative diseases, injuries, and other health-related conditions. Therapeutically effective bone marrow stem cells, cord blood- or adipose tissue-derived mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and more recently, induced pluripotent stem cells (iPSCs) have been widely reported in many preclinical and clinical studies with some promising results. However, these stem cell-only transplantation strategies are hindered by the harsh microenvironment, limited cell viability, and poor retention of transplanted cells at the sites of injury. In fact, a number of studies have reported that less than 5% of the transplanted cells are retained at the site of injury on the first day after transplantation, suggesting extremely low (<1%) viability of transplanted cells. In this context, 3D porous or fibrous national polymers (collagen, fibrin, hyaluronic acid, and chitosan)-based scaffold with appropriate mechanical features and biocompatibility can be used to overcome various limitations of stem cell-only transplantation by supporting their adhesion, survival, proliferation, and differentiation as well as providing elegant 3-dimensional (3D) tissue microenvironment. Therefore, stem cell-based tissue engineering using natural or synthetic biomimetics provides novel clinical and therapeutic opportunities for a number of degenerative diseases or tissue injury. Here, we summarized recent studies involving various types of stem cell-based tissue-engineering strategies for different degenerative diseases. We also reviewed recent studies for preclinical and clinical use of stem cell-based scaffolds and various optimization strategies.
Collapse
Affiliation(s)
- In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Seongnam, South Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Seongnam, South Korea
- *Correspondence: In-Sun Hong,
| |
Collapse
|
16
|
Rao Z, Lin Z, Song P, Quan D, Bai Y. Biomaterial-Based Schwann Cell Transplantation and Schwann Cell-Derived Biomaterials for Nerve Regeneration. Front Cell Neurosci 2022; 16:926222. [PMID: 35836742 PMCID: PMC9273721 DOI: 10.3389/fncel.2022.926222] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
Schwann cells (SCs) dominate the regenerative behaviors after peripheral nerve injury by supporting axonal regrowth and remyelination. Previous reports also demonstrated that the existence of SCs is beneficial for nerve regeneration after traumatic injuries in central nervous system. Therefore, the transplantation of SCs/SC-like cells serves as a feasible cell therapy to reconstruct the microenvironment and promote nerve functional recovery for both peripheral and central nerve injury repair. However, direct cell transplantation often leads to low efficacy, due to injection induced cell damage and rapid loss in the circulatory system. In recent years, biomaterials have received great attention as functional carriers for effective cell transplantation. To better mimic the extracellular matrix (ECM), many biodegradable materials have been engineered with compositional and/or topological cues to maintain the biological properties of the SCs/SCs-like cells. In addition, ECM components or factors secreted by SCs also actively contribute to nerve regeneration. Such cell-free transplantation approaches may provide great promise in clinical translation. In this review, we first present the current bio-scaffolds engineered for SC transplantation and their achievement in animal models and clinical applications. To this end, we focus on the physical and biological properties of different biomaterials and highlight how these properties affect the biological behaviors of the SCs/SC-like cells. Second, the SC-derived biomaterials are also reviewed and discussed. Finally, the relationship between SCs and functional biomaterials is summarized, and the trends of their future development are predicted toward clinical applications.
Collapse
Affiliation(s)
- Zilong Rao
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Zudong Lin
- PCFM Lab, GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Panpan Song
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Daping Quan
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Ying Bai
- Guangdong Engineering Technology Research Centre for Functional Biomaterials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Xia Q, Yuan H, Wang T, Xiong L, Xin Z. Application and progress of three-dimensional bioprinting in spinal cord injury. IBRAIN 2021; 7:325-336. [PMID: 37786558 PMCID: PMC10528796 DOI: 10.1002/ibra.12005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/05/2023]
Abstract
Spinal cord injury (SCI) is a central nervous system disorder that can lead to sensory and motor dysfunction, which can seriously increase pressure and economic burden on families and societies. The current SCI treatment is mainly to stabilize the spine, prevent secondary damage, and control inflammation. Drug treatment is limited to early, large-scale use of steroids to reduce the effects of edema after SCI. In short, there is no direct treatment for SCI. Recent 3D bioprinting development provides a new solution for SCI treatment: a series of spinal cord bionic scaffolds are being developed to improve spinal cord function after injury. This paper reviews the pathophysiological characteristics of SCI, current treatment methods, and the progress of 3D bioprinting in SCI. Finally, its challenges and prospects in SCI treatment are summarized.
Collapse
Affiliation(s)
| | - Hao Yuan
- Department of Orthopaedic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Institute of Neuroscience and Animal Zoology DepartmentKunming Medical UniversityKunmingYunnanChina
| | - Ting‐Hua Wang
- Institute of Neuroscience and Animal Zoology DepartmentKunming Medical UniversityKunmingYunnanChina
- Jinzhou Medical UniversityJinzhouLiaoningChina
- Department of Anesthesiology, Translational Neuroscience Center, Institute of Neurological Disease, West China HospitalSichuan UniversityChengduSichuanChina
| | - Liu‐Lin Xiong
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhi‐Jun Xin
- Department of Orthopaedic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
18
|
Lai BQ, Zeng X, Han WT, Che MT, Ding Y, Li G, Zeng YS. Stem cell-derived neuronal relay strategies and functional electrical stimulation for treatment of spinal cord injury. Biomaterials 2021; 279:121211. [PMID: 34710795 DOI: 10.1016/j.biomaterials.2021.121211] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 01/06/2023]
Abstract
The inability of adult mammals to recover function lost after severe spinal cord injury (SCI) has been known for millennia and is mainly attributed to a failure of brain-derived nerve fiber regeneration across the lesion. Potential approaches to re-establishing locomotor function rely on neuronal relays to reconnect the segregated neural networks of the spinal cord. Intense research over the past 30 years has focused on endogenous and exogenous neuronal relays, but progress has been slow and the results often controversial. Treatments with stem cell-derived neuronal relays alone or together with functional electrical stimulation offer the possibility of improved repair of neuronal networks. In this review, we focus on approaches to recovery of motor function in paralyzed patients after severe SCI based on novel therapies such as implantation of stem cell-derived neuronal relays and functional electrical stimulation. Recent research progress offers hope that SCI patients will one day be able to recover motor function and sensory perception.
Collapse
Affiliation(s)
- Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Wei-Tao Han
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan, School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
19
|
A phosphoproteomics study reveals a defined genetic program for neural lineage commitment of neural stem cells induced by olfactory ensheathing cell-conditioned medium. Pharmacol Res 2021; 172:105797. [PMID: 34352399 DOI: 10.1016/j.phrs.2021.105797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 11/23/2022]
Abstract
Since both Olfactory ensheathing cells (OECs) and neural stem cells (NSCs) have shown certain efficacy in the cellular therapy of nerve injury and disease, there have been a series of investigations in recent years looking at the co-culture of NSCs and OECs. Protein phosphorylation forms the basis for identifying a variety of cellular signaling pathways responsible for regulating the self-renewal and differentiation of NSCs induced by OECs. To better understand the signaling cascades in the early phases of OEC-induced NSC differentiation, changes in the NSC proteome and phosphoproteome during the first 24 h were determined using dimethyl labeling and TiO2 phosphorylation enrichment coupled with Liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 565 proteins and 2511 phosphorylation sites were identified. According to quantitative phosphoproteomics analyses of NSC differentiation induced by OECs during the first 12 and 24 h, it was speculated that there were at least two different signal waves: one peaking within 12 h after stimulation and the second upsurge after 24 h. In addition to understanding the dynamics of the proteome and phosphoproteome in the early stages of NSC differentiation, our analyses identified a key role of the TGF-β3 protein secreted by OECs, which may be an initiating factor that promotes differentiation of NSCs into neurons induced by OECs. These findings not only redemonstrated a OECs-based therapeutic strategy in cell therapy, but also added a node to the regulatory network for the neural lineage commitment of NSCs induced by OECs.
Collapse
|
20
|
Gong Z, Xia K, Xu A, Yu C, Wang C, Zhu J, Huang X, Chen Q, Li F, Liang C. Stem Cell Transplantation: A Promising Therapy for Spinal Cord Injury. Curr Stem Cell Res Ther 2021; 15:321-331. [PMID: 31441733 DOI: 10.2174/1574888x14666190823144424] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 07/21/2019] [Indexed: 12/20/2022]
Abstract
Spinal Cord Injury (SCI) causes irreversible functional loss of the affected population. The incidence of SCI keeps increasing, resulting in huge burden on the society. The pathogenesis of SCI involves neuron death and exotic reaction, which could impede neuron regeneration. In clinic, the limited regenerative capacity of endogenous cells after SCI is a major problem. Recent studies have demonstrated that a variety of stem cells such as induced Pluripotent Stem Cells (iPSCs), Embryonic Stem Cells (ESCs), Mesenchymal Stem Cells (MSCs) and Neural Progenitor Cells (NPCs) /Neural Stem Cells (NSCs) have therapeutic potential for SCI. However, the efficacy and safety of these stem cellbased therapy for SCI remain controversial. In this review, we introduce the pathogenesis of SCI, summarize the current status of the application of these stem cells in SCI repair, and discuss possible mechanisms responsible for functional recovery of SCI after stem cell transplantation. Finally, we highlight several areas for further exploitation of stem cells as a promising regenerative therapy of SCI.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Kaishun Xia
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Ankai Xu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chao Yu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chenggui Wang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Jian Zhu
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Xianpeng Huang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - QiXin Chen
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Fangcai Li
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| | - Chengzhen Liang
- Department of Orthopedics, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jie Fang Road, Hangzhou, 310009 Zhejiang, China.,Orthopedics Research Institute of Zhejiang University, No. 88, Jie Fang Road, Hangzhou 310009, China
| |
Collapse
|
21
|
Wei H, Wu X, You Y, Duran RCD, Zheng Y, Narayanan KL, Hai B, Li X, Tallapragada N, Prajapati TJ, Kim DH, Deneen B, Cao QL, Wu JQ. Systematic analysis of purified astrocytes after SCI unveils Zeb2os function during astrogliosis. Cell Rep 2021; 34:108721. [PMID: 33535036 PMCID: PMC7920574 DOI: 10.1016/j.celrep.2021.108721] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/24/2020] [Accepted: 01/12/2021] [Indexed: 10/27/2022] Open
Abstract
Spinal cord injury (SCI) is one of the most devastating neural injuries without effective therapeutic solutions. Astrocytes are the predominant component of the scar. Understanding the complex contributions of reactive astrocytes to SCI pathophysiologies is fundamentally important for developing therapeutic strategies. We have studied the molecular changes in the injury environment and the astrocyte-specific responses by astrocyte purification from injured spinal cords from acute to chronic stages. In addition to protein-coding genes, we have systematically analyzed the expression profiles of long non-coding RNAs (lncRNAs) (>200 bp), which are regulatory RNAs that play important roles in the CNS. We have identified a highly conserved lncRNA, Zeb2os, and demonstrated using functional assays that it plays an important role in reactive astrogliosis through the Zeb2os/Zeb2/Stat3 axis. These studies provide valuable insights into the molecular basis of reactive astrogliosis and fill the knowledge gap regarding the function(s) of lncRNAs in astrogliosis and SCI.
Collapse
Affiliation(s)
- Haichao Wei
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Xizi Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Yanan You
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Raquel Cuevas-Diaz Duran
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA; Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L. 64710, Mexico
| | - Yiyan Zheng
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - K Lakshmi Narayanan
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Bo Hai
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Xu Li
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | | | | | - Dong H Kim
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qi-Lin Cao
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Center for Stem Cell and Regenerative Medicine, UT Brown Foundation Institute of Molecular Medicine, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Khazaei M, Ahuja CS, Nakashima H, Nagoshi N, Li L, Wang J, Chio J, Badner A, Seligman D, Ichise A, Shibata S, Fehlings MG. GDNF rescues the fate of neural progenitor grafts by attenuating Notch signals in the injured spinal cord in rodents. Sci Transl Med 2021; 12:12/525/eaau3538. [PMID: 31915299 DOI: 10.1126/scitranslmed.aau3538] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 04/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
Neural progenitor cell (NPC) transplantation is a promising strategy for the treatment of spinal cord injury (SCI). In this study, we show that injury-induced Notch activation in the spinal cord microenvironment biases the fate of transplanted NPCs toward astrocytes in rodents. In a screen for potential clinically relevant factors to modulate Notch signaling, we identified glial cell-derived neurotrophic factor (GDNF). GDNF attenuates Notch signaling by mediating delta-like 1 homolog (DLK1) expression, which is independent of GDNF's effect on cell survival. When transplanted into a rodent model of cervical SCI, GDNF-expressing human-induced pluripotent stem cell-derived NPCs (hiPSC-NPCs) demonstrated higher differentiation toward a neuronal fate compared to control cells. In addition, expression of GDNF promoted endogenous tissue sparing and enhanced electrical integration of transplanted cells, which collectively resulted in improved neurobehavioral recovery. CRISPR-induced knockouts of the DLK1 gene in GDNF-expressing hiPSC-NPCs attenuated the effect on functional recovery, demonstrating that this effect is partially mediated through DLK1 expression. These results represent a mechanistically driven optimization of hiPSC-NPC therapy to redirect transplanted cells toward a neuronal fate and enhance their integration.
Collapse
Affiliation(s)
- Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Christopher S Ahuja
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hiroaki Nakashima
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Narihito Nagoshi
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Lijun Li
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Jian Wang
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Jonathon Chio
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anna Badner
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - David Seligman
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada
| | - Ayaka Ichise
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON M5T 0S8, Canada. .,Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
23
|
Sabetkish S, Gashti RN, Jobani BM, Alijani M, Farsi M, Mousavi S, Moradzadeh A, Parizad J, Zolbin MM, Kajbafzadeh AM. Management of urinary and bowel dysfunction in rabbit model of spinal cord injury using Schwann cells and muscle progenitors: functional study and evidence for novel mechanism of action. Int Urol Nephrol 2020; 53:893-906. [PMID: 33245534 DOI: 10.1007/s11255-020-02722-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE We tried to investigate the role of Schwann and satellite cells in the treatment of neurogenic bladder and bowel dysfunction; following spinal cord injury in the rabbit model. METHODS Twelve male New Zealand rabbits underwent induction of neurogenic bladder by spinal cord injury. Rabbits underwent the fiber tractography analysis to confirm the induction of spinal cord injury. Then, animals were randomly divided into two groups. In group I (n = 4), Schwann cells were obtained from autologous peroneal nerve. In group II (n = 4), the co-culture of nerve-muscle cells was obtained from autologous peroneal nerve and quadriceps muscle. Animals in the control group (n = 4) did not undergo any rehabilitation therapy. One and 4 months after injection of cells into the external anal sphincter, electromyography, urethral pressure profiles, urodynamic studies, voiding cystourethrogram, and manometry was performed to confirm the efficacy of treatment in short- (1 month) and long-term (4 months) follow-ups. RESULTS The investigations validated that no statistically significant difference was detected between the two experimental groups in a short-term follow-up (p-value > 0.05). However, the functional features were improved in group II in long-term follow-up. In both groups, the external anal sphincter contracted in response to electrical signals delivered to the muscle. However, more signals were detected in group II in electromyography evaluation. The immunohistochemical staining demonstrated that the histological features of the bladder and spinal cord were more satisfactory in group II in all follow-ups compared to group I, in terms of less edema, inflammation, presence of progenitor cells, and expression of muscle and nerve markes. CONCLUSION Our results suggested that the injection of nerve-muscle co-culture cells into the external anal sphincter may be a helpful tactic for ameliorating the urological complications; following spinal cord injury induction in the rabbit model.
Collapse
Affiliation(s)
- Shabnam Sabetkish
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, Iran
| | - Reza Nejad Gashti
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, Iran
| | - Bahareh Mohammadi Jobani
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, Iran
| | - Maryam Alijani
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, Iran
| | - Maryam Farsi
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, Iran
| | - Shaghayegh Mousavi
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, Iran
| | - Alireza Moradzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, Iran
| | - Jaleh Parizad
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Tehran University of Medical Sciences, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, Tehran, Iran.
| |
Collapse
|
24
|
Zou Y, Ma D, Shen H, Zhao Y, Xu B, Fan Y, Sun Z, Chen B, Xue W, Shi Y, Xiao Z, Gu R, Dai J. Aligned collagen scaffold combination with human spinal cord-derived neural stem cells to improve spinal cord injury repair. Biomater Sci 2020; 8:5145-5156. [PMID: 32832944 DOI: 10.1039/d0bm00431f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neural stem/progenitor cell (NSPC)-based spinal cord injury (SCI) therapy is expected to bridge the lesion site by transplanting exogenous NSPCs for replacement of lost cells. The transplanted NSPCs produce a microenvironment conducive to neuronal regeneration, and ultimately, functional recovery. Although both human fetal brain- and spinal cord- derived NSPCs (hbNSPCs and hscNSPCs, respectively) have been used for SCI repair, it remains unclear whether hscNSPCs are a more appropriate stem cell source for transplantation than hbNSPCs. Therefore, in this study, we transplanted hbNSPCs or hscNSPCs into rats with complete transection SCI to monitor their differences in SCI treatment. An aligned collagen sponge scaffold (ACSS) was used here for cell retention. Aligned biomaterial scaffolds provide a support platform and favorable morphology for cell growth and differentiation, and guide axial axonal extension. The ACSS fabricated by our group has been previously reported to improve spinal cord repair by promoting neuronal regeneration and remyelination. Compared with the hbNSPC-ACSS, the hscNSPC-ACSS effectively promoted long-term cell survival and neuronal differentiation and improved the SCI microenvironment by reducing inflammation and glial scar formation. Furthermore, the transplanted hscNSPC-ACSS improved recovery of locomotor functions. Therefore, hscNSPCs appear to be a superior cell source to hbNSPCs for SCI cell therapy with greater potential clinical applications.
Collapse
Affiliation(s)
- Yunlong Zou
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fischer I, Dulin JN, Lane MA. Transplanting neural progenitor cells to restore connectivity after spinal cord injury. Nat Rev Neurosci 2020; 21:366-383. [PMID: 32518349 PMCID: PMC8384139 DOI: 10.1038/s41583-020-0314-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Spinal cord injury remains a scientific and therapeutic challenge with great cost to individuals and society. The goal of research in this field is to find a means of restoring lost function. Recently we have seen considerable progress in understanding the injury process and the capacity of CNS neurons to regenerate, as well as innovations in stem cell biology. This presents an opportunity to develop effective transplantation strategies to provide new neural cells to promote the formation of new neuronal networks and functional connectivity. Past and ongoing clinical studies have demonstrated the safety of cell therapy, and preclinical research has used models of spinal cord injury to better elucidate the underlying mechanisms through which donor cells interact with the host and thus increase long-term efficacy. While a variety of cell therapies have been explored, we focus here on the use of neural progenitor cells obtained or derived from different sources to promote connectivity in sensory, motor and autonomic systems.
Collapse
Affiliation(s)
- Itzhak Fischer
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Jennifer N Dulin
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Michael A Lane
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
26
|
Neural stem cell delivery via porous collagen scaffolds promotes neuronal differentiation and locomotion recovery in spinal cord injury. NPJ Regen Med 2020; 5:12. [PMID: 32566251 PMCID: PMC7295991 DOI: 10.1038/s41536-020-0097-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Neural stem cell (NSC) grafts have demonstrated significant effects in animal models of spinal cord injury (SCI), yet their clinical translation remains challenging. Significant evidence suggests that the supporting matrix of NSC grafts has a crucial role in regulating NSC effects. Here we demonstrate that grafts based on porous collagen-based scaffolds (PCSs), similar to biomaterials utilized clinically in induced regeneration, can deliver and protect embryonic NSCs at SCI sites, leading to significant improvement in locomotion recovery in an experimental mouse SCI model, so that 12 weeks post-injury locomotion performance of implanted animals does not statistically differ from that of uninjured control animals. NSC-seeded PCS grafts can modulate key processes required to induce regeneration in SCI lesions including enhancing NSC neuronal differentiation and functional integration in vivo, enabling robust axonal elongation, and reducing astrogliosis. Our findings suggest that the efficacy and translational potential of emerging NSC-based SCI therapies could be enhanced by delivering NSC via scaffolds derived from well-characterized clinically proven PCS.
Collapse
|
27
|
Mohammed I, Ijaz S, Mokhtari T, Gholaminejhad M, Mahdavipour M, Jameie B, Akbari M, Hassanzadeh G. Subventricular zone-derived extracellular vesicles promote functional recovery in rat model of spinal cord injury by inhibition of NLRP3 inflammasome complex formation. Metab Brain Dis 2020; 35:809-818. [PMID: 32185593 DOI: 10.1007/s11011-020-00563-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is the destruction of spinal cord motor and sensory resulted from an attack on the spinal cord, which can cause significant physiological damage. The inflammasome is a multiprotein oligomer resulting in inflammation; the NLRP3 inflammasome composed of NLRP3, apoptosis-associated speck-like protein (ASC), procaspase-1, and cleavage of procaspase-1 into caspase-1 initiates the inflammatory response. Subventricular Zone (SVZ) is the origin of neural stem/progenitor cells (NS/PCs) in the adult brain. Extracellular vesicles (EVs) are tiny lipid membrane bilayer vesicles secreted by different types of cells playing an important role in cell-cell communications. The aim of this study was to investigate the effect of intrathecal transplantation of EVs on the NLRP3 inflammasome formation in SCI rats. Male wistar rats were divided into three groups as following: laminectotomy group, SCI group, and EVs group. EVs was isolated from SVZ, and characterized by western blot and DLS, and then injected into the SCI rats. Real-time PCR and western blot were carried out for gene expression and protein level of NLRP3, ASC, and Caspase-1. H&E and cresyl violet staining were performed for histological analyses, as well as BBB test for motor function. The results indicated high level in mRNA and protein level in SCI group in comparison with laminectomy (p < 0.001), and injection of EVs showed a significant reduction in the mRNA and protein levels in EVs group compared to SCI (p < 0.001). H&E and cresyl violet staining showed recovery in neural cells of spinal cord tissue in EVs group in comparison with SCI group. BBB test showed the promotion of motor function in EVs group compared to SCI in 14 days (p < 0.05). We concluded that the injection of EVs could recover the motor function in rats with SCI and rescue the neural cells of spinal cord tissue by suppressing the formation of the NLRP3 inflammasome complex.
Collapse
Affiliation(s)
- Ibrahim Mohammed
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Ijaz
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Morteza Gholaminejhad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdavipour
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnamedin Jameie
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Akbari
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Zavvarian MM, Toossi A, Khazaei M, Hong J, Fehlings M. Novel innovations in cell and gene therapies for spinal cord injury. F1000Res 2020; 9. [PMID: 32399196 PMCID: PMC7194487 DOI: 10.12688/f1000research.21989.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Spinal cord injury (SCI) leads to chronic and multifaceted disability, which severely impacts the physical and mental health as well as the socio-economic status of affected individuals. Permanent disabilities following SCI result from the failure of injured neurons to regenerate and rebuild functional connections with their original targets. Inhibitory factors present in the SCI microenvironment and the poor intrinsic regenerative capacity of adult spinal cord neurons are obstacles for regeneration and functional recovery. Considerable progress has been made in recent years in developing cell and molecular approaches to enable the regeneration of damaged spinal cord tissue. In this review, we highlight several potent cell-based approaches and genetic manipulation strategies (gene therapy) that are being investigated to reconstruct damaged or lost spinal neural circuits and explore emerging novel combinatorial approaches for enhancing recovery from SCI.
Collapse
Affiliation(s)
- Mohammad-Masoud Zavvarian
- Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Amirali Toossi
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Mohamad Khazaei
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - James Hong
- Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Michael Fehlings
- Krembil Research Institute, University Health Network, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada.,Department of Surgery, University of Toronto, Toronto, Canada.,Spinal Program, Toronto Western Hospital, University Health Network, Toronto, Canada
| |
Collapse
|
29
|
Lai B, Che M, Feng B, Bai Y, Li G, Ma Y, Wang L, Huang M, Wang Y, Jiang B, Ding Y, Zeng X, Zeng Y. Tissue-Engineered Neural Network Graft Relays Excitatory Signal in the Completely Transected Canine Spinal Cord. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901240. [PMID: 31763143 PMCID: PMC6864506 DOI: 10.1002/advs.201901240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/19/2019] [Indexed: 05/10/2023]
Abstract
Tissue engineering produces constructs with defined functions for the targeted treatment of damaged tissue. A complete spinal cord injury (SCI) model is generated in canines to test whether in vitro constructed neural network (NN) tissues can relay the excitatory signal across the lesion gap to the caudal spinal cord. Established protocols are used to construct neural stem cell (NSC)-derived NN tissue characterized by a predominantly neuronal population with robust trans-synaptic activities and myelination. The NN tissue is implanted into the gap immediately following complete transection SCI of canines at the T10 spinal cord segment. The data show significant motor recovery of paralyzed pelvic limbs, as evaluated by Olby scoring and cortical motor evoked potential (CMEP) detection. The NN tissue survives in the lesion area with neuronal phenotype maintenance, improves descending and ascending nerve fiber regeneration, and synaptic integration with host neural circuits that allow it to serve as a neuronal relay to transmit excitatory electrical signal across the injured area to the caudal spinal cord. These results suggest that tissue-engineered NN grafts can relay the excitatory signal in the completely transected canine spinal cord, providing a promising strategy for SCI treatment in large animals, including humans.
Collapse
Affiliation(s)
- Bi‐Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
| | - Ming‐Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Bo Feng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Yu‐Rong Bai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Yuan‐Huan Ma
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Lai‐Jian Wang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Meng‐Yao Huang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ya‐Qiong Wang
- Department of Electron MicroscopeZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Bin Jiang
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| | - Ying Ding
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
| | - Yuan‐Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat‐sen University)Ministry of EducationGuangzhou510080China
- Department of Histology and EmbryologyZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
- Institute of Spinal Cord InjurySun Yat‐sen UniversityGuangzhou510120China
- Co‐innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseZhongshan School of MedicineSun Yat‐sen UniversityGuangzhou510080China
| |
Collapse
|
30
|
Biswas S, Chung SH, Jiang P, Dehghan S, Deng W. Development of glial restricted human neural stem cells for oligodendrocyte differentiation in vitro and in vivo. Sci Rep 2019; 9:9013. [PMID: 31227736 PMCID: PMC6588721 DOI: 10.1038/s41598-019-45247-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/04/2019] [Indexed: 11/11/2022] Open
Abstract
In this study, we have developed highly expandable neural stem cells (NSCs) from HESCs and iPSCs that artificially express the oligodendrocyte (OL) specific transcription factor gene Zfp488. This is enough to restrict them to an exclusive oligodendrocyte progenitor cell (OPC) fate during differentiation in vitro and in vivo. During CNS development, Zfp488 is induced during the early stages of OL generation, and then again during terminal differentiation of OLs. Interestingly, the human ortholog Znf488, crucial for OL development in human, has been recently identified to function as a dorsoventral pattering regulator in the ventral spinal cord for the generation of P1, P2/pMN, and P2 neural progenitor domains. Forced expression of Zfp488 gene in human NSCs led to the robust generation of OLs and suppression of neuronal and astrocyte fate in vitro and in vivo. Zfp488 expressing NSC derived oligodendrocytes are functional and can myelinate rat dorsal root ganglion neurons in vitro, and form myelin in Shiverer mice brain in vivo. After transplantation near a site of demyelination, Zfp488 expressing hNSCs migrated to the lesion and differentiated into premyelinating OLs. A certain fraction also homed in the subventricular zone (SVZ). Zfp488-ZsGreen1-hNSC derived OLs formed compact myelin in Shiverer mice brain seen under the electron microscope. Transplanted human neural stem cells (NSC) that have the potential to differentiate into functional oligodendrocytes in response to remyelinating signals can be a powerful therapeutic intervention for disorders where oligodendrocyte (OL) replacement is beneficial.
Collapse
Affiliation(s)
- Sangita Biswas
- Department of Biochemistry and Molecular Medicine, School of Medicine, The University of California at Davis, Sacramento, California, 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, 95817, USA.
- Department of Pharmaceutical Sciences, Sun Yat-Sen University, Shenzhen, China.
| | - Seung Hyuk Chung
- Department of Biochemistry and Molecular Medicine, School of Medicine, The University of California at Davis, Sacramento, California, 95817, USA
- Department of Oral Biology, College of Dentistry, The University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Peng Jiang
- Department of Biochemistry and Molecular Medicine, School of Medicine, The University of California at Davis, Sacramento, California, 95817, USA
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, 95817, USA
| | - Samaneh Dehghan
- Department of Biochemistry and Molecular Medicine, School of Medicine, The University of California at Davis, Sacramento, California, 95817, USA
| | - Wenbin Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, The University of California at Davis, Sacramento, California, 95817, USA.
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, 95817, USA.
| |
Collapse
|
31
|
Covacu R, Brundin L. Endogenous spinal cord stem cells in multiple sclerosis and its animal model. J Neuroimmunol 2019; 331:4-10. [PMID: 27884460 DOI: 10.1016/j.jneuroim.2016.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
The adult mammalian spinal cord (SC) harbors neural stem cells (NSCs). The SC-NSCs are mostly quiescent during physiological conditions but are quickly activated in traumatic injury models. The SC-NSCs generate mostly glia, but are able to differentiate into neurons when affected by favourable conditions. An example is the inflammatory milieu in the SC of rat EAE, where the SC-NSCs migrate into demyelinated lesions and give rise to both glia and neurons. In MS, cells with progenitor phenotypes accumulate in inflammatory lesions both in brain and SC, but the extent to which these cells contribute to repair remains to be revealed.
Collapse
Affiliation(s)
- Ruxandra Covacu
- Department of Clinical Neuroscience, Division of Neurology R3:04, Center of Molecular Medicine, L8:04, Karolinska Institutet, Stockholm, Sweden.
| | - Lou Brundin
- Department of Clinical Neuroscience, Division of Neurology R3:04, Center of Molecular Medicine, L8:04, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
32
|
Cofano F, Boido M, Monticelli M, Zenga F, Ducati A, Vercelli A, Garbossa D. Mesenchymal Stem Cells for Spinal Cord Injury: Current Options, Limitations, and Future of Cell Therapy. Int J Mol Sci 2019; 20:ijms20112698. [PMID: 31159345 PMCID: PMC6600381 DOI: 10.3390/ijms20112698] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) constitutes an inestimable public health issue. The most crucial phase in the pathophysiological process of SCI concerns the well-known secondary injury, which is the uncontrolled and destructive cascade occurring later with aberrant molecular signaling, inflammation, vascular changes, and secondary cellular dysfunctions. The use of mesenchymal stem cells (MSCs) represents one of the most important and promising tested strategies. Their appeal, among the other sources and types of stem cells, increased because of their ease of isolation/preservation and their properties. Nevertheless, encouraging promise from preclinical studies was followed by weak and conflicting results in clinical trials. In this review, the therapeutic role of MSCs is discussed, together with their properties, application, limitations, and future perspectives.
Collapse
Affiliation(s)
- Fabio Cofano
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Marina Boido
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Matteo Monticelli
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Francesco Zenga
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Ducati
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| | - Alessandro Vercelli
- Department of Neuroscience "Rita Levi Montalcini", Neuroscience Institute "Cavalieri Ottolenghi", University of Turin, Consorzio Istituto Nazionale di Neuroscienze, 10043 Orbassano, Italy.
| | - Diego Garbossa
- Department of Neuroscience "Rita Levi Montalcini", Neurosurgery Unit, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
33
|
Liu S, Chen Z. Employing Endogenous NSCs to Promote Recovery of Spinal Cord Injury. Stem Cells Int 2019; 2019:1958631. [PMID: 31191666 PMCID: PMC6525819 DOI: 10.1155/2019/1958631] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/07/2019] [Indexed: 12/15/2022] Open
Abstract
Endogenous neural stem cells (NSCs) exist in the central canal of mammalian spinal cords. Under normal conditions, these NSCs remain quiescent and express FoxJ1. After spinal cord injury (SCI), the endogenous NSCs of a heterogeneous nature are activated and proliferate and migrate towards the lesion site and mainly differentiate into astrocytes to repair the injured tissue. In vitro, spinal cord NSCs are multipotent and can differentiate into neurons, astrocytes, and oligodendrocytes. The altered microenvironments after SCI play key roles on the fate determination of activated NSCs, especially on the neuronal specification potential. Studies show that the activated spinal cord NSCs can generate interneurons when transplanted into the adult hippocampus. In addition, the spinal cord NSCs exhibit low immunogenicity in a transplantation context, thus implicating a promising therapeutic potential on SCI recovery. Here, we summarize the characteristics of spinal cord NSCs, especially their properties after injury. With a better understanding of endogenous NSCs under normal and SCI conditions, we may be able to employ endogenous NSCs for SCI repair in the future.
Collapse
Affiliation(s)
- Sumei Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing 100069, China
| |
Collapse
|
34
|
Yu Z, Xu N, Zhang N, Xiong Y, Wang Z, Liang S, Zhao D, Huang F, Zhang C. Repair of Peripheral Nerve Sensory Impairments via the Transplantation of Bone Marrow Neural Tissue-Committed Stem Cell-Derived Sensory Neurons. Cell Mol Neurobiol 2019; 39:341-353. [PMID: 30684112 PMCID: PMC11469867 DOI: 10.1007/s10571-019-00650-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/04/2019] [Indexed: 01/20/2023]
Abstract
The present study aimed to investigate the efficacy of transplantation of bone marrow neural tissue-committed stem cell-derived sensory neuron-like cells for the repair of peripheral nerve sensory impairments in rats. Bone marrow was isolated and cultured to obtain the neural tissue-committed stem cells (NTCSCs), and the differentiation of these cells into sensory neuron-like cells was induced. Bone marrow mesenchymal stem cells (BMSCs), bone marrow NTCSCs, and bone marrow NTCSC-derived sensory neurons (NTCSC-SNs) were transplanted by microinjection into the L4 and L5 dorsal root ganglions (DRGs) in an animal model of sensory defect. On the 2nd, 4th, 8th, and 12th week after the transplantation, the effects of the three types of stem cells on the repair of the sensory functional defect were analyzed via behavioral observation, sensory function evaluation, electrophysiological examination of the sciatic nerve, and morphological observation of the DRGs. The results revealed that the transplanted BMSCs, NTCSCs, and NTCSC-SNs were all able to repair the sensory nerves. In addition, the effect of the NTCSC-SNs was significantly better than that of the other two types of stem cells. The general posture and gait of the animals in the sensory defect model exhibited evident improvement over time. Plantar temperature sensitivity and pain sensitivity gradually recovered, and the sensation latency was reduced, with faster sensory nerve conduction velocity. Transplantation of NTCSC-SNs can improve the repair of peripheral nerve sensory defects in rats.
Collapse
Affiliation(s)
- Zhenhai Yu
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
- Department of Human Anatomy, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ning Xu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People's Republic of China
| | - Naili Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yanlian Xiong
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Zhiqiang Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Shaohua Liang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Dongmei Zhao
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Fei Huang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Chuansen Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China.
- Department of Human Anatomy, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
35
|
Grzeczkowicz A, Gruszczynska-Biegala J, Czeredys M, Kwiatkowska A, Strawski M, Szklarczyk M, Koźbiał M, Kuźnicki J, Granicka LH. Polyelectrolyte membrane scaffold sustains growth of neuronal cells. J Biomed Mater Res A 2019; 107:839-850. [PMID: 30586231 PMCID: PMC6590472 DOI: 10.1002/jbm.a.36599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/18/2018] [Indexed: 01/14/2023]
Abstract
Cell immobilization within nano‐thin polymeric shells can provide an optimal concentration of biological material in a defined space and facilitate its directional growth. Herein, polyelectrolyte membrane scaffolds were constructed using a layer‐by‐layer approach to determine the possibility of promoting improved growth of rat cortical neuronal cells. Membrane presence was confirmed by Fourier transform infrared spectroscopy, Zeta potential, and atomic force and scanning electron microscopy. Scaffold performance toward neuronal cell growth was assessed in vitro during a 14‐day culture. Cell conditions were analyzed immunocytochemically. Furthermore, western blot and real‐time PCR analyses were used to validate the presence of neuronal and glial cells on the scaffolds. We observed that alginate/chitosan, alginate/polylysine, and polyethyleneimine/chitosan scaffolds promote neuronal growth similarly to the control, poly‐d‐lysine/laminin. We conclude that membranes maintaining cell viability, integrity and immobilization in systems supporting neuronal regeneration can be applied in neurological disease or wound healing treatment. © 2018 The Authors. Journal of Biomedical Materials Research Part A published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 839–850, 2019.
Collapse
Affiliation(s)
- A Grzeczkowicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | | | - M Czeredys
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - A Kwiatkowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| | - M Strawski
- Laboratory of Electrochemistry Faculty of Chemistry University of Warsaw, Warsaw, Poland
| | - M Szklarczyk
- Laboratory of Electrochemistry Faculty of Chemistry University of Warsaw, Warsaw, Poland
| | - M Koźbiał
- Institute of Physical Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - J Kuźnicki
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - L H Granicka
- Nalecz Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
36
|
Beyer F, Samper Agrelo I, Küry P. Do Neural Stem Cells Have a Choice? Heterogenic Outcome of Cell Fate Acquisition in Different Injury Models. Int J Mol Sci 2019; 20:ijms20020455. [PMID: 30669690 PMCID: PMC6359747 DOI: 10.3390/ijms20020455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/14/2019] [Accepted: 01/18/2019] [Indexed: 12/19/2022] Open
Abstract
The adult mammalian central nervous system (CNS) is generally considered as repair restricted organ with limited capacities to regenerate lost cells and to successfully integrate them into damaged nerve tracts. Despite the presence of endogenous immature cell types that can be activated upon injury or in disease cell replacement generally remains insufficient, undirected, or lost cell types are not properly generated. This limitation also accounts for the myelin repair capacity that still constitutes the default regenerative activity at least in inflammatory demyelinating conditions. Ever since the discovery of endogenous neural stem cells (NSCs) residing within specific niches of the adult brain, as well as the description of procedures to either isolate and propagate or artificially induce NSCs from various origins ex vivo, the field has been rejuvenated. Various sources of NSCs have been investigated and applied in current neuropathological paradigms aiming at the replacement of lost cells and the restoration of functionality based on successful integration. Whereas directing and supporting stem cells residing in brain niches constitutes one possible approach many investigations addressed their potential upon transplantation. Given the heterogeneity of these studies related to the nature of grafted cells, the local CNS environment, and applied implantation procedures we here set out to review and compare their applied protocols in order to evaluate rate-limiting parameters. Based on our compilation, we conclude that in healthy CNS tissue region specific cues dominate cell fate decisions. However, although increasing evidence points to the capacity of transplanted NSCs to reflect the regenerative need of an injury environment, a still heterogenic picture emerges when analyzing transplantation outcomes in injury or disease models. These are likely due to methodological differences despite preserved injury environments. Based on this meta-analysis, we suggest future NSC transplantation experiments to be conducted in a more comparable way to previous studies and that subsequent analyses must emphasize regional heterogeneity such as accounting for differences in gray versus white matter.
Collapse
Affiliation(s)
- Felix Beyer
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| | - Iria Samper Agrelo
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| | - Patrick Küry
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, D-40225 Düsseldorf, Germany.
| |
Collapse
|
37
|
Artero-Castro A, Popelka S, Jendelova P, Motlik J, Ardan T, Rodriguez Jimenez FJ, Erceg S. The identification of small molecules that stimulate retinal pigment epithelial cells: potential novel therapeutic options for treating retinopathies. Expert Opin Drug Discov 2019; 14:169-177. [PMID: 30616395 DOI: 10.1080/17460441.2019.1559148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Combinatory strategies using pharmacology and stem cell therapy have emerged due to their potential in the treatment of retinal pigment epithelium (RPE) cell related diseases, and a variety of different stem cell sources have been evaluated both in animal models and in humans. RPE cells derived from human embryonic stem cells (hESCs) and human induced pluripotent cells (hiPSCs) are already in clinical trials, holding great promise for the treatment of age-related macular disease (AMD) and hereditary RPE-related retinal dystrophies. Highly efficient protocol for RPE generations have been developed, but they are still time-consuming and laborious. Areas covered: The authors review RPE related diseases, as well as the known functions of RPE cells in retinal homeostasis. The authors also discuss small molecules that target RPE in vivo as well as in vitro to aid RPE differentiation from pluripotent stem cells clinically. The authors base this review on literature searches performed through PubMed. Expert opinion: Using high-throughput systems, technology will provide the possibility of identifying and optimizing molecules/drugs that could lead to faster and simpler protocols for RPE differentiation. This could be crucial in moving forward to create safer and more efficient RPE-based personalized therapies.
Collapse
Affiliation(s)
- Ana Artero-Castro
- a Stem Cell Therapies in Neurodegenerative Diseases Lab , Research Center "Principe Felipe" , Valencia , Spain
| | - Stepan Popelka
- b Institute of Macromolecular Chemistry , Czech Academy of Sciences , Praha 6 , Czech Republic
| | - Pavla Jendelova
- c Institute of Experimental Medicine, Department of Tissue Cultures and Stem Cells , Czech Academy of Sciences , Prague , Czech Republic
| | - Jan Motlik
- d Laboratory of Cell Regeneration and Plasticity, Research Center PIGMOD , Institute of Animal Physiology and Genetics, Czech Academy of Sciences , Libechov , Czech Republic
| | - Taras Ardan
- d Laboratory of Cell Regeneration and Plasticity, Research Center PIGMOD , Institute of Animal Physiology and Genetics, Czech Academy of Sciences , Libechov , Czech Republic
| | | | - Slaven Erceg
- a Stem Cell Therapies in Neurodegenerative Diseases Lab , Research Center "Principe Felipe" , Valencia , Spain.,c Institute of Experimental Medicine, Department of Tissue Cultures and Stem Cells , Czech Academy of Sciences , Prague , Czech Republic.,e National Stem Cell Bank-Valencia Node, Biomolecular and Bioinformatics Resources Platform PRB2,ISCIII , Research Center "Principe Felipe" , Valencia , Spain
| |
Collapse
|
38
|
Li HM, Tong Y, Xia X, Huang J, Song PW, Zhang RJ, Shen CL. Retracted: Bone Mesenchymal Stem Cell-Conditioned Medium Regulates the Differentiation of Neural Stem Cells Via Notch Pathway Activation. Cell Reprogram 2018; 21:e339-e345. [PMID: 30589560 DOI: 10.1089/cell.2018.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The online-ahead-of print e-pub version of the article entitled, Bone Mesenchymal Stem Cell-Conditioned Medium Regulates the Differentiation of Neural Stem Cells Via Notch Pathway Activation, by Li H-M, Tong Y, Xia X, Huang J, Song P-W, Zhang R-J, Shen C-L, utilizing the DOI number 10.1089/cell.2018.0042 is being officially retracted from Cellular Reprogramming. The original version of the paper was submitted to the journal for peer review on July 29, 2018, with the revised version after peer review submitted on October 21, 2018. The paper was accepted for publication on November 20, 2018 and was subsequently published online ahead of print on December 27, 2018. After the e-publication of the article, the editor received an email from the corresponding author on January 14, 2019 requesting "to withdraw the above-mentioned manuscript for further consideration, due to a technical reason (we have done a further experiment and found this article need add more results)." Though it is unclear why the authors were not able to determine these faults with the paper within the six months the manuscript was in review, revision, and production, the editorial leadership of the Journal has determined that the paper requires a full retraction from the literature as Cellular Reprogramming is committed to upholding the strictest standards and best practices of scientific publishing.
Collapse
Affiliation(s)
- Hui-Min Li
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yi Tong
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xiang Xia
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jian Huang
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Pei-Wen Song
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Ren-Jie Zhang
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Cai-Liang Shen
- Department of Orthopedics, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
39
|
Fu H, Hu D, Zhang L, Shen X, Tang P. Efficacy of Oligodendrocyte Progenitor Cell Transplantation in Rat Models with Traumatic Thoracic Spinal Cord Injury: A Systematic Review and Meta-Analysis. J Neurotrauma 2018; 35:2507-2518. [PMID: 29759026 DOI: 10.1089/neu.2017.5606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Affiliation(s)
- Haitao Fu
- School of Medicine, Nankai University, Tianjin, China
- Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Die Hu
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Licheng Zhang
- Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Xuezhen Shen
- School of Medicine, Nankai University, Tianjin, China
- Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Peifu Tang
- School of Medicine, Nankai University, Tianjin, China
- Department of Orthopedics, the General Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
40
|
Jevans B, McCann CJ, Thapar N, Burns AJ. Transplanted enteric neural stem cells integrate within the developing chick spinal cord: implications for spinal cord repair. J Anat 2018; 233:592-606. [PMID: 30191559 DOI: 10.1111/joa.12880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) causes paralysis, multisystem impairment and reduced life expectancy, as yet with no cure. Stem cell therapy can potentially replace lost neurons, promote axonal regeneration and limit scar formation, but an optimal stem cell source has yet to be found. Enteric neural stem cells (ENSC) isolated from the enteric nervous system (ENS) of the gastrointestinal (GI) tract are an attractive source. Here, we used the chick embryo to assess the potential of ENSC to integrate within the developing spinal cord. In vitro, isolated ENSC formed extensive cell connections when co-cultured with spinal cord (SC)-derived cells. Further, qRT-PCR analysis revealed the presence of TuJ1+ neurons, S100+ glia and Sox10+ stem cells within ENSC neurospheres, as well as expression of key neuronal subtype genes, at levels comparable to SC tissue. Following ENSC transplantation to an ablated region of chick embryo SC, donor neurons were found up to 12 days later. These neurons formed bridging connections within the SC injury zone, aligned along the anterior/posterior axis, and were immunopositive for TuJ1. These data provide early proof of principle support for the use of ENSCs for SCI, and encourage further research into their potential for repair.
Collapse
Affiliation(s)
- Benjamin Jevans
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Conor J McCann
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alan J Burns
- Stem Cells and Regenerative Medicine, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.,Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals International, Cambridge, MA, USA
| |
Collapse
|
41
|
Wollenberg AL, O'Shea TM, Kim JH, Czechanski A, Reinholdt LG, Sofroniew MV, Deming TJ. Injectable polypeptide hydrogels via methionine modification for neural stem cell delivery. Biomaterials 2018; 178:527-545. [PMID: 29657091 PMCID: PMC6054810 DOI: 10.1016/j.biomaterials.2018.03.057] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/11/2018] [Accepted: 03/31/2018] [Indexed: 12/21/2022]
Abstract
Injectable hydrogels with tunable physiochemical and biological properties are potential tools for improving neural stem/progenitor cell (NSPC) transplantation to treat central nervous system (CNS) injury and disease. Here, we developed injectable diblock copolypeptide hydrogels (DCH) for NSPC transplantation that contain hydrophilic segments of modified l-methionine (Met). Multiple Met-based DCH were fabricated by post-polymerization modification of Met to various functional derivatives, and incorporation of different amino acid comonomers into hydrophilic segments. Met-based DCH assembled into self-healing hydrogels with concentration and composition dependent mechanical properties. Mechanical properties of non-ionic Met-sulfoxide formulations (DCHMO) were stable across diverse aqueous media while cationic formulations showed salt ion dependent stiffness reduction. Murine NSPC survival in DCHMO was equivalent to that of standard culture conditions, and sulfoxide functionality imparted cell non-fouling character. Within serum rich environments in vitro, DCHMO was superior at preserving NSPC stemness and multipotency compared to cell adhesive materials. NSPC in DCHMO injected into uninjured forebrain remained local and, after 4 weeks, exhibited an immature astroglial phenotype that integrated with host neural tissue and acted as cellular substrates that supported growth of host-derived axons. These findings demonstrate that Met-based DCH are suitable vehicles for further study of NSPC transplantation in CNS injury and disease models.
Collapse
Affiliation(s)
- A L Wollenberg
- Departments of Bioengineering, Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1600, USA
| | - T M O'Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1763, USA
| | - J H Kim
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1763, USA
| | - A Czechanski
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - M V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1763, USA
| | - T J Deming
- Departments of Bioengineering, Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1600, USA.
| |
Collapse
|
42
|
Wu S, FitzGerald KT, Giordano J. On the Viability and Potential Value of Stem Cells for Repair and Treatment of Central Neurotrauma: Overview and Speculations. Front Neurol 2018; 9:602. [PMID: 30150968 PMCID: PMC6099099 DOI: 10.3389/fneur.2018.00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022] Open
Abstract
Central neurotrauma, such as spinal cord injury or traumatic brain injury, can damage critical axonal pathways and neurons and lead to partial to complete loss of neural function that is difficult to address in the mature central nervous system. Improvement and innovation in the development, manufacture, and delivery of stem-cell based therapies, as well as the continued exploration of newer forms of stem cells, have allowed the professional and public spheres to resolve technical and ethical questions that previously hindered stem cell research for central nervous system injury. Recent in vitro and in vivo models have demonstrated the potential that reprogrammed autologous stem cells, in particular, have to restore functionality and induce regeneration-while potentially mitigating technical issues of immunogenicity, rejection, and ethical issues of embryonic derivation. These newer stem-cell based approaches are not, however, without concerns and problems of safety, efficacy, use and distribution. This review is an assessment of the current state of the science, the potential solutions that have been and are currently being explored, and the problems and questions that arise from what appears to be a promising way forward (i.e., autologous stem cell-based therapies)-for the purpose of advancing the research for much-needed therapeutic interventions for central neurotrauma.
Collapse
Affiliation(s)
- Samantha Wu
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
| | - Kevin T. FitzGerald
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| | - James Giordano
- Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC, United States
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
43
|
Fang H, Song P, Shen Y, Shen C, Liu X. Bone mesenchymal stem cell-conditioned medium decreases the generation of astrocytes during the process of neural stem cells differentiation. J Spinal Cord Med 2018; 41. [PMID: 28649933 PMCID: PMC5810792 DOI: 10.1080/10790268.2017.1314880] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate the effect of bone mesenchymal stem cell (BMSC) conditioned medium (CM) and Bone morphogenetic protein-4 (BMP-4) on the generation of astrocytes during the process of NSCs differentiation. DESIGN Neural stem cells (NSCs) were grown under different culture conditions. SETTING The First Affiliated Hospital of Anhui Medical University, Hefei, China. OUTCOME MEASURES The study consisted of four groups: NSCs cultured under control conditions (group 1) or with the addition of BMSC-CM (group 2);(BMP-4) (group 3) or both (group 4).The expression of glial fibrillary acidic protein (GFAP) was detected by immunocytochemical staining and Western blotting. RESULTS The expression of GFAP was higher in Group3 and lower in Group 2 compared to that in Group 1. The expression of GFAP in Group 4 was intermediate between that of Group 2 and Group 3. CONCLUSIONS These results suggest that BMSC-CM can decrease the generation of astrocytes and that the inhibition of the (BMP-4) /Smad1/5/8 signaling pathway may be the underlying mechanism. This phenomenon may be mediated by increasing the expression of Smad6.
Collapse
Affiliation(s)
- Huang Fang
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Peiwen Song
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuening Shen
- Department of Medical Imaging, Bengbu Medical College, Bengbu, China
| | - Cailiang Shen
- Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China,Correspondence to: Cailiang Shen, Department of Spinal Surgery, The First Affiliated Hospital of Anhui Medical University, 210 Ji Xi Road, Hefei 230032, China.
| | - Xiaoying Liu
- School of Life Science, Anhui Medical University, Heifei, China
| |
Collapse
|
44
|
Systemic Neutrophil Depletion Modulates the Migration and Fate of Transplanted Human Neural Stem Cells to Rescue Functional Repair. J Neurosci 2017; 37:9269-9287. [PMID: 28847814 DOI: 10.1523/jneurosci.2785-16.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 06/15/2017] [Accepted: 07/30/2017] [Indexed: 01/19/2023] Open
Abstract
The interaction of transplanted stem cells with local cellular and molecular cues in the host CNS microenvironment may affect the potential for repair by therapeutic cell populations. In this regard, spinal cord injury (SCI), Alzheimer's disease, and other neurological injuries and diseases all exhibit dramatic and dynamic changes to the host microenvironment over time. Previously, we reported that delayed transplantation of human CNS-derived neural stem cells (hCNS-SCns) at 9 or 30 d post-SCI (dpi) resulted in extensive donor cell migration, predominantly neuronal and oligodendrocytic donor cell differentiation, and functional locomotor improvements. Here, we report that acute transplantation of hCNS-SCns at 0 dpi resulted in localized astroglial differentiation of donor cells near the lesion epicenter and failure to produce functional improvement in an all-female immunodeficient mouse model. Critically, specific immunodepletion of neutrophils (polymorphonuclear leukocytes) blocked hCNS-SCns astroglial differentiation near the lesion epicenter and rescued the capacity of these cells to restore function. These data represent novel evidence that a host immune cell population can block the potential for functional repair derived from a therapeutic donor cell population, and support targeting the inflammatory microenvironment in combination with cell transplantation after SCI.SIGNIFICANCE STATEMENT The interaction of transplanted cells with local cellular and molecular cues in the host microenvironment is a key variable that may shape the translation of neurotransplantation research to the clinical spinal cord injury (SCI) human population, and few studies have investigated these events. We show that the specific immunodepletion of polymorphonuclear leukocyte neutrophils using anti-Ly6G inhibits donor cell astrogliosis and rescues the capacity of a donor cell population to promote locomotor improvement after SCI. Critically, our data demonstrate novel evidence that a specific host immune cell population can block the potential for functional repair derived from a therapeutic donor cell population.
Collapse
|
45
|
Tate MC, Shear DA, Hoffman SW, Stein DG, Archer DR, Laplaca MC. Fibronectin Promotes Survival and Migration of Primary Neural Stem Cells Transplanted into the Traumatically Injured Mouse Brain. Cell Transplant 2017. [DOI: 10.3727/096020198389933] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Multipotential stem cells are an attractive choice for cell therapy after traumatic brain injury (TBI), as replacement of multiple cell types may be required for functional recovery. In the present study, neural stem cells (NSCs) derived from the germinal zone of E14.5 GFP-expressing mouse brains were cultured as neurospheres in FGF2-enhanced medium. When FGF2 was removed in vitro, NSCs expressed phenotypic markers for neurons, astrocytes, and oligodendrocytes and exhibited migratory behavior in the presence of adsorbed fibronectin (FN). NSCs (105 cells) were transplanted into mouse brains 1 week after a unilateral, controlled, cortical contusion (depth = 1 mm, velocity = 6 m/s, duration = 150 ms) (n = 19). NSCs were injected either directly into the injury cavity with or without an injectable FN-based scaffold [collagen I (CnI)/ FN gel; n = 14] or into the striatum below the injury cavity (n = 5). At all time points examined (1 week to 3 months posttransplant), GFP+ cells were confined to the ipsilateral host brain tissue. At 1 week, cells injected into the injury cavity lined the injury penumbra while cells inserted directly into the striatum remained in or around the needle track. Striatal transplants had a lower number of surviving GFP+ cells relative to cavity injections at the 1 week time point (p < 0.01). At the longer survival times (3 weeks–3 months), 63–76% of transplanted cells migrated into the fimbria hippocampus regardless of injection site, perhaps due to cues from the degenerating hippocampus. Furthermore, cells injected into the cavity within a FN-containing matrix showed increased survival and migration at 3 weeks (p < 0.05 for both) relative to injections of cells alone. These results suggest that FGF2-responsive NSCs present a promising approach for cellular therapy following trauma and that the transplant location and environment may play an important role in graft survival and integration.
Collapse
Affiliation(s)
- Matthew C. Tate
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| | | | - Stuart W. Hoffman
- Departments of Emergency Medicine, Emory University, Atlanta, GA 30322
| | - Donald G. Stein
- Departments of Neurology, Emory University, Atlanta, GA 30322
- Departments of Emergency Medicine, Emory University, Atlanta, GA 30322
| | - David R. Archer
- Departments of Pediatrics, Emory University, Atlanta, GA 30322
| | - Michelle C. Laplaca
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
| |
Collapse
|
46
|
Castellanos DA, Tsoulfas P, Frydel BR, Gajavelli S, Bes JC, Sagen J. TrkC Overexpression Enhances Survival and Migration of Neural Stem Cell Transplants in the Rat Spinal Cord. Cell Transplant 2017. [DOI: 10.3727/096020198389942] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although CNS axons have the capacity to regenerate after spinal cord injury when provided with a permissive substrate, the lack of appropriate synaptic target sites for regenerating fibers may limit restoration of spinal circuitry. Studies in our laboratory are focused on utilizing neural stem cells to provide new synaptic target sites for regenerating spinal axons following injury. As an initial step, rat neural precursor cells genetically engineered to overexpress the tyrosine kinase C (trkC) neurotrophin receptor were transplanted into the intact rat spinal cord to evaluate their survival and differentiation. Cells were either pretreated in vitro prior to transplantation with trkC ligand neurotrophin-3 (NT-3) to initiate differentiation or exposed to NT-3 in vivo following transplantation via gelfoam or Oxycel©. Both treatments enhanced survival of trkC-overexpressing stem cells to nearly 100%, in comparison with approximately 30–50% when either NT-3 or trkC was omitted. In addition, increased migration of trkC-overexpressing cells throughout the spinal gray matter was noted, particularly following in vivo NT-3 exposure. The combined trkC expression and NT-3 treatment appeared to reduce astrocytic differentiation of transplanted neural precursors. Decreased cavitation and increased β-tubulin fibers were noted in the vicinity of transplanted cells, although the majority of transplanted cells appeared to remain in an undifferentiated state. These findings suggest that genetically engineered neural stem cells in combination with neurotrophin treatment may be a useful addition to strategies for repair of spinal neurocircuitry following injury.
Collapse
Affiliation(s)
- Daniel A. Castellanos
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136
| | - Pantelis Tsoulfas
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136
| | - Beata R. Frydel
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136
| | - Shyam Gajavelli
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136
| | - Jean-Claude Bes
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136
| | - Jacqueline Sagen
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136
| |
Collapse
|
47
|
Schaal SM, Kitay BM, Cho KS, Lo TP, Barakat DJ, Marcillo AE, Sanchez AR, Andrade CM, Pearse DD. Schwann Cell Transplantation Improves Reticulospinal Axon Growth and Forelimb Strength after Severe Cervical Spinal Cord Contusion. Cell Transplant 2017; 16:207-28. [PMID: 17503734 DOI: 10.3727/000000007783464768] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Schwann cell (SC) implantation alone has been shown to promote the growth of propriospinal and sensory axons, but not long-tract descending axons, after thoracic spinal cord injury (SCI). In the current study, we examined if an axotomy close to the cell body of origin (so as to enhance the intrinsic growth response) could permit supraspinal axons to grow onto SC grafts. Adult female Fischer rats received a severe (C5) cervical contusion (1.1 mm displacement, 3 KDyn). At 1 week postinjury, 2 million SCs ex vivo transduced with lentiviral vector encoding enhanced green fluorescent protein (EGFP) were implanted within media into the injury epicenter; injury-only animals served as controls. Animals were tested weekly using the BBB score for 7 weeks postimplantation and received at end point tests for upper body strength: self-supported forelimb hanging, forearm grip force, and the incline plane. Following behavioral assessment, animals were anterogradely traced bilaterally from the reticular formation using BDA-Texas Red. Stereological quantification revealed a twofold increase in the numbers of preserved NeuN+ neurons rostral and caudal to the injury/graft site in SC implanted animals, corroborating previous reports of their neuroprotective efficacy. Examination of labeled reticulospinal axon growth revealed that while rarely an axon was present within the lesion site of injury-only controls, numerous reticulospinal axons had penetrated the SC implant/lesion milieu. This has not been observed following implantation of SCs alone into the injured thoracic spinal cord. Significant behavioral improvements over injury-only controls in upper limb strength, including an enhanced grip strength (a 296% increase) and an increased self-supported forelimb hanging, accompanied SC-mediated neuroprotection and reticulospinal axon growth. The current study further supports the neuroprotective efficacy of SC implants after SCI and demonstrates that SCs alone are capable of supporting modest supraspinal axon growth when the site of axon injury is closer to the cell body of the axotomized neuron.
Collapse
Affiliation(s)
- S M Schaal
- The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33101, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Kim BG, Hwang DH, Lee SI, Kim EJ, Kim SU. Stem Cell-Based Cell Therapy for Spinal Cord Injury. Cell Transplant 2017; 16:355-64. [PMID: 17658126 DOI: 10.3727/000000007783464885] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic injuries to the spinal cord lead to severe and permanent neurological deficits. Although no effective therapeutic option is currently available, recent animal studies have shown that cellular transplantation strategies hold promise to enhance functional recovery after spinal cord injury (SCI). This review is to analyze the experiments where transplantation of stem/progenitor cells produced successful functional outcome in animal models of SCI. There is no consensus yet on what kind of stem/progenitor cells is an ideal source for cellular grafts. Three kinds of stem/progenitor cells have been utilized in cell therapy in animal models of SCI: embryonic stem cells, bone marrow mesenchymal stem cells, and neural stem cells. Neural stem cells or fate-restricted neuronal or glial progenitor cells were preferably used because they have clear capacity to become neurons or glial cells after transplantation into the injured spinal cord. At least a part of functional deficits after SCI is attributable to chronic progressive demyelination. Therefore, several studies transplanted glial-restricted progenitors or oligodendrocyte precursors to target the demyelination process. Directed differentiation of stem/progenitor cells to oligodendrocyte lineage prior to transplantation or modulation of microenvironment in the injured spinal cord to promote oligodendroglial differentiation seems to be an effective strategy to increase the extent of remyelination. Transplanted stem/progenitor cells can also contribute to promoting axonal regeneration by functioning as cellular scaffolds for growing axons. Combinatorial approaches using polymer scaffolds to fill the lesion cavity or introducing regeneration-promoting genes will greatly increase the efficacy of cellular transplantation strategies for SCI.
Collapse
Affiliation(s)
- Byung Gon Kim
- Brain Disease Research Center, Ajou University School of Medicine, Suwon, 443-721, Republic of Korea
| | | | | | | | | |
Collapse
|
49
|
Blits B, Boer GJ, Verhaagen J. Pharmacological, Cell, and Gene Therapy Strategies to Promote Spinal Cord Regeneration. Cell Transplant 2017. [DOI: 10.3727/000000002783985521] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, recent studies using pharmacological treatment, cell transplantation, and gene therapy to promote regeneration of the injured spinal cord in animal models will be summarized. Pharmacological and cell transplantation treatments generally revealed some degree of effect on the regeneration of the injured ascending and descending tracts, but further improvements to achieve a more significant functional recovery are necessary. The use of gene therapy to promote repair of the injured nervous system is a relatively new concept. It is based on the development of methods for delivering therapeutic genes to neurons, glia cells, or nonneural cells. Direct in vivo gene transfer or gene transfer in combination with (neuro)transplantation (ex vivo gene transfer) appeared powerful strategies to promote neuronal survival and axonal regrowth following traumatic injury to the central nervous system. Recent advances in understanding the cellular and molecular mechanisms that govern neuronal survival and neurite outgrowth have enabled the design of experiments aimed at viral vector-mediated transfer of genes encoding neurotrophic factors, growth-associated proteins, cell adhesion molecules, and antiapoptotic genes. Central to the success of these approaches was the development of efficient, nontoxic vectors for gene delivery and the acquirement of the appropriate (genetically modified) cells for neurotransplantation. Direct gene transfer in the nervous system was first achieved with herpes viral and E1-deleted adenoviral vectors. Both vector systems are problematic in that these vectors elicit immunogenic and cytotoxic responses. Adeno-associated viral vectors and lentiviral vectors constitute improved gene delivery systems and are beginning to be applied in neuroregeneration research of the spinal cord. Ex vivo approaches were initially based on the implantation of genetically modified fibroblasts. More recently, transduced Schwann cells, genetically modified pieces of peripheral nerve, and olfactory ensheathing glia have been used as implants into the injured spinal cord.
Collapse
Affiliation(s)
- Bas Blits
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| | - Gerard J. Boer
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| | - Joost Verhaagen
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| |
Collapse
|
50
|
Zhao Y, Xiao Z, Chen B, Dai J. The neuronal differentiation microenvironment is essential for spinal cord injury repair. Organogenesis 2017; 13:63-70. [PMID: 28598297 DOI: 10.1080/15476278.2017.1329789] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Spinal cord injury (SCI) often leads to substantial disability due to loss of motor function and sensation below the lesion. Neural stem cells (NSCs) are a promising strategy for SCI repair. However, NSCs rarely differentiate into neurons; they mostly differentiate into astrocytes because of the adverse microenvironment present after SCI. We have shown that myelin-associated inhibitors (MAIs) inhibited neuronal differentiation of NSCs. Given that MAIs activate epidermal growth factor receptor (EGFR) signaling, we used a collagen scaffold-tethered anti-EGFR antibody to attenuate the inhibitory effects of MAIs and create a neuronal differentiation microenvironment for SCI repair. The collagen scaffold modified with anti-EGFR antibody prevented the inhibition of NSC neuronal differentiation by myelin. After transplantation into completely transected SCI animals, the scaffold-linked antibodies induced production of nascent neurons from endogenous and transplanted NSCs, which rebuilt the neuronal relay by forming connections with each other or host neurons to transmit electrophysiological signals and promote functional recovery. Thus, a scaffold-based strategy for rebuilding the neuronal differentiation microenvironment could be useful for SCI repair.
Collapse
Affiliation(s)
- Yannan Zhao
- a State Key Laboratory of Molecular Developmental Biology , Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Zhifeng Xiao
- a State Key Laboratory of Molecular Developmental Biology , Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Bing Chen
- a State Key Laboratory of Molecular Developmental Biology , Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| | - Jianwu Dai
- a State Key Laboratory of Molecular Developmental Biology , Institute of Genetics and Developmental Biology, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|