1
|
Zhan X, Wang S, Bèchet N, Gouras G, Wen G. Perivascular macrophages in the central nervous system: insights into their roles in health and disease. Cell Death Dis 2025; 16:350. [PMID: 40295513 PMCID: PMC12037809 DOI: 10.1038/s41419-025-07592-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/08/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Perivascular macrophages (PVMs) are a specialized subset of macrophages situated near blood vessels in the brain. Their strategic positioning around these vessels enables them to perform key functions in immune surveillance and response to inflammation and injury. These cells are crucial for modulating the immune response within the brain, contributing to normal central nervous system (CNS) processes. In pathological conditions, the role of PVMs becomes more complex. Depending on the specific disease or injury, they may contribute to inflammation, blood-brain barrier (BBB) dysfunction, and the clearance of abnormal materials. PVMs are implicated in degenerative diseases, cerebrovascular impairment, and microhemorrhages associated with amyloid-β immunotherapy. Despite their important roles in the CNS, research on PVMs remains limited, and the mechanisms underlying their involvement in both physiological and pathological processes within the brain are not yet fully elucidated. Therefore, this review will focus on the current advancements in PVM research, including their origin, classification, roles in neuroinflammation and neuroprotection, and their potential roles as therapeutic targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoni Zhan
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, China
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Shuying Wang
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, China
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Nicholas Bèchet
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
- Department of Clinical Science, Lund University, Lund, Sweden
- Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Gunnar Gouras
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gehua Wen
- School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, China.
- Experimental Dementia Research Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Martins-Ferreira R, Calafell-Segura J, Leal B, Rodríguez-Ubreva J, Martínez-Saez E, Mereu E, Pinho E Costa P, Laguna A, Ballestar E. The Human Microglia Atlas (HuMicA) unravels changes in disease-associated microglia subsets across neurodegenerative conditions. Nat Commun 2025; 16:739. [PMID: 39820004 PMCID: PMC11739505 DOI: 10.1038/s41467-025-56124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
Dysregulated microglia activation, leading to neuroinflammation, is crucial in neurodegenerative disease development and progression. We constructed an atlas of human brain immune cells by integrating nineteen single-nucleus RNA-seq and single-cell RNA-seq datasets from multiple neurodegenerative conditions, comprising 241 samples from patients with Alzheimer's disease, autism spectrum disorder, epilepsy, multiple sclerosis, Lewy body diseases, COVID-19, and healthy controls. The integrated Human Microglia Atlas (HuMicA) included 90,716 nuclei/cells and revealed nine populations distributed across all conditions. We identified four subtypes of disease-associated microglia and disease-inflammatory macrophages, recently described in mice, and shown here to be prevalent in human tissue. The high versatility of microglia is evident through changes in subset distribution across various pathologies, suggesting their contribution in shaping pathological phenotypes. A GPNMB-high subpopulation was expanded in AD and MS. In situ hybridization corroborated this increase in AD, opening the question on the relevance of this population in other pathologies.
Collapse
Affiliation(s)
- Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UPorto), 4050-313, Porto, Portugal
- Autoimmunity and Neuroscience Group. UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Josep Calafell-Segura
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Bárbara Leal
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UPorto), 4050-313, Porto, Portugal
- Autoimmunity and Neuroscience Group. UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Javier Rodríguez-Ubreva
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Elena Martínez-Saez
- Pathology Department, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elisabetta Mereu
- Cellular Systems Genomics Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain
| | - Paulo Pinho E Costa
- Immunogenetics Laboratory, Molecular Pathology and Immunology Department, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto (ICBAS-UPorto), 4050-313, Porto, Portugal
- Autoimmunity and Neuroscience Group. UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Department of Human Genetics, Instituto Nacional de Saúde Dr. Ricardo Jorge, 4000-055, Porto, Portugal
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
- Institut de Neurociències-Autonomous University of Barcelona (INc-UAB), Cerdanyola del Vallès, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Barcelona, Spain.
- Epigenetics in Inflammatory and Metabolic Diseases Laboratory, Health Science Center (HSC), East China Normal University (ECNU), Shanghai, China.
| |
Collapse
|
3
|
Hu Y, Lin Y, Cheng L, Xu Y, Zhang J, Zheng Z, Wang H, Yan M, Chen H. Hypothesis on the outflow of optic nerve cerebrospinal fluid in spaceflight associated neuro ocular syndrome. NPJ Microgravity 2024; 10:112. [PMID: 39702371 DOI: 10.1038/s41526-024-00449-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Spaceflight-associated neuro-ocular syndrome (SANS) has been well documented in astronauts. However, its pathogenesis is not fully understood. New findings indicate the impaired outflow of the optic nerve cerebrospinal fluid may participate or contribute to some changes in SANS. In this perspective, we generated a hypothesis that the outflow of cerebrospinal fluid through the optic nerve sheath may be impaired under micro-gravity and then may potentially lead to SANS-related alterations.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
- Key laboratory of transfusion adverse reactions, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yuanxi Lin
- University of Shanghai for Science and Technology, Shanghai, China
| | - Lu Cheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Xu
- Department of Ophthalmology, The Third People's Hospital of Zhangjiagang, Zhangjiagang, China
| | - Jian Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Wang
- Eastern Hospital, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan Province, China
| | - Min Yan
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hui Chen
- University of Shanghai for Science and Technology, Shanghai, China.
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
- University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Wen W, Cheng J, Tang Y. Brain perivascular macrophages: current understanding and future prospects. Brain 2024; 147:39-55. [PMID: 37691438 PMCID: PMC10766266 DOI: 10.1093/brain/awad304] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/28/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Brain perivascular macrophages are specialized populations of macrophages that reside in the space around cerebral vessels, such as penetrating arteries and venules. With the help of cutting-edge technologies, such as cell fate mapping and single-cell multi-omics, their multifaceted, pivotal roles in phagocytosis, antigen presentation, vascular integrity maintenance and metabolic regulation have more recently been further revealed under physiological conditions. Accumulating evidence also implies that perivascular macrophages are involved in the pathogenesis of neurodegenerative disease, cerebrovascular dysfunction, autoimmune disease, traumatic brain injury and epilepsy. They can act in either protective or detrimental ways depending on the disease course and stage. However, the underlying mechanisms of perivascular macrophages remain largely unknown. Therefore, we highlight potential future directions in research on perivascular macrophages, including the utilization of genetic mice and novel therapeutic strategies that target these unique immune cells for neuroprotective purposes. In conclusion, this review provides a comprehensive update on the current knowledge of brain perivascular macrophages, shedding light on their pivotal roles in central nervous system health and disease.
Collapse
Affiliation(s)
- Wenjie Wen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, China
| |
Collapse
|
5
|
Dermitzakis I, Theotokis P, Evangelidis P, Delilampou E, Evangelidis N, Chatzisavvidou A, Avramidou E, Manthou ME. CNS Border-Associated Macrophages: Ontogeny and Potential Implication in Disease. Curr Issues Mol Biol 2023; 45:4285-4300. [PMID: 37232741 PMCID: PMC10217436 DOI: 10.3390/cimb45050272] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Being immune privileged, the central nervous system (CNS) is constituted by unique parenchymal and non-parenchymal tissue-resident macrophages, namely, microglia and border-associated macrophages (BAMs), respectively. BAMs are found in the choroid plexus, meningeal and perivascular spaces, playing critical roles in maintaining CNS homeostasis while being phenotypically and functionally distinct from microglial cells. Although the ontogeny of microglia has been largely determined, BAMs need comparable scrutiny as they have been recently discovered and have not been thoroughly explored. Newly developed techniques have transformed our understanding of BAMs, revealing their cellular heterogeneity and diversity. Recent data showed that BAMs also originate from yolk sac progenitors instead of bone marrow-derived monocytes, highlighting the absolute need to further investigate their repopulation pattern in adult CNS. Shedding light on the molecular cues and drivers orchestrating BAM generation is essential for delineating their cellular identity. BAMs are receiving more attention since they are gradually incorporated into neurodegenerative and neuroinflammatory disease evaluations. The present review provides insights towards the current understanding regarding the ontogeny of BAMs and their involvement in CNS diseases, paving their way into targeted therapeutic strategies and precision medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (P.T.); (P.E.); (E.D.); (N.E.); (A.C.); (E.A.)
| |
Collapse
|
6
|
Xie L, Zheng L, Chen W, Zhai X, Guo Y, Zhang Y, Li Y, Yu W, Lai Z, Zhu Z, Li P. Trends in perivascular macrophages research from 1997 to 2021: A bibliometric analysis. CNS Neurosci Ther 2022; 29:816-830. [PMID: 36514189 PMCID: PMC9928555 DOI: 10.1111/cns.14034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Perivascular macrophages (PVMs) play pivotal roles in maintaining the physiological function of the brain. Dysfunction of PVMs is emerging as an important mechanism in various disease conditions in the brain. METHODS In this work, we analyzed recent research advances in PVMs, especially in the brain, from the Web of Science (WoS) core database using bibliometric analysis based on the search terms "perivascular macrophages" and "perivascular macrophage" on October 27, 2021. Visualization and collaboration analysis were performed by Citespace (5.8 R3 mac). RESULTS We found 2384 articles published between 1997 and 2021 in the field of PVMs, which were selected for analysis. PVMs were involved in several physio-pathological fields, in which Neurosciences and Neurology, Neuroscience, Immunology, Pathology, and Cardiovascular System and Cardiology were most reported. The research focuses on PVMs mainly in the central nervous system (CNS), inflammation, macrophage or T-cell, and disease, and highlights the related basic research regarding its activation, oxidative stress, angiotensin II, and insulin resistance. Tumor-associated macrophage, obesity, myeloid cell, and inflammation were relatively recent highlight keywords that attracted increasing attention in recent years. Harvard Univ, Vrije Univ Amsterdam, occupied important positions in the research field of PVMs. Meanwhile, PVM research in China (Peking Univ, Sun Yat Sen Univ, Shanghai Jiao Tong Univ, and Shandong Univ) is on the rise. Cluster co-citation analysis revealed that the mechanisms of CNS PVMs and related brain diseases are major specialties associated with PVMs, while PVMs in perivascular adipose tissue and vascular diseases or obesity are another big category of PVMs hotspots. CONCLUSION In conclusion, the research on PVMs continues to deepen, and the hotspots are constantly changing. Future studies of PVMs could have multiple disciplines intersecting.
Collapse
Affiliation(s)
- Lv Xie
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Zheng
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weijie Chen
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaozhu Zhai
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yunlu Guo
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yueman Zhang
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yan Li
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Weifeng Yu
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhongmeng Lai
- Department of AnesthesiologyFujian Medical University Union HospitalFuzhouFujianChina
| | - Ziyu Zhu
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Peiying Li
- Department of AnesthesiologyClinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
7
|
Leibrand CR, Paris JJ, Jones AM, Ohene-Nyako M, Rademeyer KM, Nass SR, Kim WK, Knapp PE, Hauser KF, McRae M. Independent actions by HIV-1 Tat and morphine to increase recruitment of monocyte-derived macrophages into the brain in a region-specific manner. Neurosci Lett 2022; 788:136852. [PMID: 36028004 PMCID: PMC9845733 DOI: 10.1016/j.neulet.2022.136852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/07/2022] [Accepted: 08/18/2022] [Indexed: 01/21/2023]
Abstract
Despite advances in the treatment of human immunodeficiency virus (HIV), approximately one-half of people infected with HIV (PWH) experience neurocognitive impairment. Opioid use disorder (OUD) can exacerbate the cognitive and pathological changes seen in PWH. HIV increases inflammation and immune cell trafficking into the brain; however, less is known about how opioid use disorder affects the recruitment of immune cells. Accordingly, we examined the temporal consequences of HIV-1 Tat and/or morphine on the recruitment of endocytic cells (predominantly perivascular macrophages and microglia) in the dorsal striatum and hippocampus by infusing multi-colored, fluorescently labeled dextrans before and after exposure. To address this question, transgenic mice that conditionally expressed HIV-1 Tat (Tat+), or their control counterparts (Tat-), received three sequential intracerebroventricular (i.c.v.) infusions of Cascade Blue-, Alexa Fluor 488-, and Alexa Fluor 594-labeled dextrans, respectively infused 1 day before, 1-day after, or 13-days after morphine and/or Tat exposure. At the end of the study, the number of cells labeled with each fluorescent dextran were counted. The data demonstrated a significantly higher influx of newly-labeled cells into the perivascular space than into the parenchyma. In the striatum, Tat or morphine exposure increased the number of endocytic cells in the perivascular space, while only morphine increased the recruitment of endocytic cells into the parenchyma. In the hippocampus, morphine (but not Tat) increased the influx of dextran-labeled cells into the perivascular space, but there were too few labeled cells within the hippocampal parenchyma to analyze. Collectively, these data suggest that HIV-1 Tat and morphine act independently to increase the recruitment of endocytic cells into the brain in a region-specific manner.
Collapse
Affiliation(s)
- Crystal R Leibrand
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, United States
| | - Austin M Jones
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Kara M Rademeyer
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Sara R Nass
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Woong-Ki Kim
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23507, United States
| | - Pamela E Knapp
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Department of Anatomy and Neurobiology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States; Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
8
|
Sheng J, Li Q, Liu T, Wang X. Cerebrospinal fluid dynamics along the optic nerve. Front Neurol 2022; 13:931523. [PMID: 36046631 PMCID: PMC9420993 DOI: 10.3389/fneur.2022.931523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/21/2022] [Indexed: 11/23/2022] Open
Abstract
The cerebrospinal fluid (CSF) plays an important role in delivering nutrients and eliminating the metabolic wastes of the central nervous system. An interrupted CSF flow could cause disorders of the brain and eyes such as Alzheimer's disease and glaucoma. This review provides an overview of the anatomy and flow pathways of the CSF system with an emphasis on the optic nerve. Imaging technologies used for visualizing the CSF dynamics and the anatomic structures associated with CSF circulation have been highlighted. Recent advances in the use of computational models to predict CSF flow patterns have been introduced. Open questions and potential mechanisms underlying CSF circulation at the optic nerves have also been discussed.
Collapse
Affiliation(s)
- Jinqiao Sheng
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- School of General Engineering, Beihang University, Beijing, China
| | - Qi Li
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tingting Liu
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaofei Wang
- Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
9
|
Abstract
The microbiota-gut-brain-axis (MGBA) is a bidirectional communication network between gut microbes and their host. Many environmental and host-related factors affect the gut microbiota. Dysbiosis is defined as compositional and functional alterations of the gut microbiota that contribute to the pathogenesis, progression and treatment responses to disease. Dysbiosis occurs when perturbations of microbiota composition and function exceed the ability of microbiota and its host to restore a symbiotic state. Dysbiosis leads to dysfunctional signaling of the MGBA, which regulates the development and the function of the host's immune, metabolic, and nervous systems. Dysbiosis-induced dysfunction of the MGBA is seen with aging and stroke, and is linked to the development of common stroke risk factors such as obesity, diabetes, and atherosclerosis. Changes in the gut microbiota are also seen in response to stroke, and may impair recovery after injury. This review will begin with an overview of the tools used to study the MGBA with a discussion on limitations and potential experimental confounders. Relevant MGBA components are introduced and summarized for a better understanding of age-related changes in MGBA signaling and its dysfunction after stroke. We will then focus on the relationship between the MGBA and aging, highlighting that all components of the MGBA undergo age-related alterations that can be influenced by or even driven by the gut microbiota. In the final section, the current clinical and preclinical evidence for the role of MGBA signaling in the development of stroke risk factors such as obesity, diabetes, hypertension, and frailty are summarized, as well as microbiota changes with stroke in experimental and clinical populations. We conclude by describing the current understanding of microbiota-based therapies for stroke including the use of pre-/pro-biotics and supplementations with bacterial metabolites. Ongoing progress in this new frontier of biomedical sciences will lead to an improved understanding of the MGBA's impact on human health and disease.
Collapse
Affiliation(s)
- Pedram Honarpisheh
- Department of Neurology, University of Texas McGovern Medical School, Houston (P.H., L.D.M.)
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX (R.M.B.)
| | - Louise D McCullough
- Department of Neurology, University of Texas McGovern Medical School, Houston (P.H., L.D.M.)
| |
Collapse
|
10
|
The Pivotal Immunoregulatory Functions of Microglia and Macrophages in Glioma Pathogenesis and Therapy. JOURNAL OF ONCOLOGY 2022; 2022:8903482. [PMID: 35419058 PMCID: PMC9001141 DOI: 10.1155/2022/8903482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
Gliomas are mixed solid tumors composed of both neoplastic and nonneoplastic cells. In glioma microenvironment, the most common nonneoplastic and infiltrating cells are macrophages and microglia. Microglia are the exact phagocytes of the central nervous system, whereas macrophages are myeloid immune cells that are depicted with ardent phagocytosis. Microglia are heterogeneously located in almost all nonoverlapping sections of the brain as well as the spinal cord, while macrophages are derived from circulating monocytes. Microglia and macrophages utilize a variety of receptors for the detection of molecules, particles, and cells that they engulf. Both microglia and peripheral macrophages interact directly with vessels both in the periphery of and within the tumor. In glioma milieu, normal human astrocytes, glioma cells, and microglia all exhibited the ability of phagocytosing glioma cells and precisely apoptotic tumor cells. Also, microglia and macrophages are robustly triggered by the glioma via the expression of chemoattractants such as monocyte chemoattractant protein, stromal-derived factor-1, and macrophage-colony stimulating factor. Glioma-associated microglia and/or macrophages positively correlated with glioma invasiveness, immunosuppression, and patients' poor outcome, making these cells a suitable target for immunotherapeutic schemes.
Collapse
|
11
|
Spiteri AG, Wishart CL, Pamphlett R, Locatelli G, King NJC. Microglia and monocytes in inflammatory CNS disease: integrating phenotype and function. Acta Neuropathol 2022; 143:179-224. [PMID: 34853891 PMCID: PMC8742818 DOI: 10.1007/s00401-021-02384-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
In neurological diseases, the actions of microglia, the resident myeloid cells of the CNS parenchyma, may diverge from, or intersect with, those of recruited monocytes to drive immune-mediated pathology. However, defining the precise roles of each cell type has historically been impeded by the lack of discriminating markers and experimental systems capable of accurately identifying them. Our ability to distinguish microglia from monocytes in neuroinflammation has advanced with single-cell technologies, new markers and drugs that identify and deplete them, respectively. Nevertheless, the focus of individual studies on particular cell types, diseases or experimental approaches has limited our ability to connect phenotype and function more widely and across diverse CNS pathologies. Here, we critically review, tabulate and integrate the disease-specific functions and immune profiles of microglia and monocytes to provide a comprehensive atlas of myeloid responses in viral encephalitis, demyelination, neurodegeneration and ischemic injury. In emphasizing the differential roles of microglia and monocytes in the severe neuroinflammatory disease of viral encephalitis, we connect inflammatory pathways common to equally incapacitating diseases with less severe inflammation. We examine these findings in the context of human studies and highlight the benefits and inherent limitations of animal models that may impede or facilitate clinical translation. This enables us to highlight common and contrasting, non-redundant and often opposing roles of microglia and monocytes in disease that could be targeted therapeutically.
Collapse
|
12
|
Oliveira-Giacomelli Á, Petiz LL, Andrejew R, Turrini N, Silva JB, Sack U, Ulrich H. Role of P2X7 Receptors in Immune Responses During Neurodegeneration. Front Cell Neurosci 2021; 15:662935. [PMID: 34122013 PMCID: PMC8187565 DOI: 10.3389/fncel.2021.662935] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 01/16/2023] Open
Abstract
P2X7 receptors are ion-gated channels activated by ATP. Under pathological conditions, the extensive release of ATP induces sustained P2X7 receptor activation, culminating in induction of proinflammatory pathways with inflammasome assembly and cytokine release. These inflammatory conditions, whether occurring peripherally or in the central nervous system (CNS), increase blood-brain-barrier (BBB) permeability. Besides its well-known involvement in neurodegeneration and neuroinflammation, the P2X7 receptor may induce BBB disruption and chemotaxis of peripheral immune cells to the CNS, resulting in brain parenchyma infiltration. For instance, despite common effects on cytokine release, P2X7 receptor signaling is also associated with metalloproteinase secretion and activation, as well as migration and differentiation of T lymphocytes, monocytes and dendritic cells. Here we highlight that peripheral immune cells mediate the pathogenesis of Multiple Sclerosis and Parkinson's and Alzheimer's disease, mainly through T lymphocyte, neutrophil and monocyte infiltration. We propose that P2X7 receptor activation contributes to neurodegenerative disease progression beyond its known effects on the CNS. This review discusses how P2X7 receptor activation mediates responses of peripheral immune cells within the inflamed CNS, as occurring in the aforementioned diseases.
Collapse
Affiliation(s)
| | - Lyvia Lintzmaier Petiz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Natalia Turrini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jean Bezerra Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
13
|
Inagaki T, Fujiwara K, Shinohara Y, Azuma M, Yamazaki R, Mashima K, Sakamoto A, Yashiro T, Ohno N. Perivascular macrophages produce type I collagen around cerebral small vessels under prolonged hypertension in rats. Histochem Cell Biol 2021; 155:503-512. [PMID: 33398434 DOI: 10.1007/s00418-020-01948-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/15/2022]
Abstract
Hypertension leads to structural remodeling of cerebral blood vessels, which has been implicated in the pathophysiology of cerebrovascular diseases. The remodeling and progression of arteriolosclerosis under hypertension involve fibrosis along with the production of type I collagen around cerebral arterioles. However, the source and regulatory mechanisms of this collagen production remain elusive. In this study, we examined if perivascular macrophages (PVMs) are involved in collagen production around cerebral small vessels in hypertensive SHRSP/Izm rats. Immunoreactivity for type I collagen around cerebral small vessels in 12-week-old hypertensive rats tended to higher than those in 4-week-old hypertensive and 12-week-old control rats. In ultrastructural analyses using transmission electron microscopy, the substantial deposition of collagen fibers could be observed in the intercellular spaces around PVMs near the arterioles of rats with prolonged hypertension. In situ hybridization analyses revealed that cells positive for mRNA of Col1a1, which comprises type I collagen, were observed near cerebral small vessels. The Col1a1-positive cells around cerebral small vessels were colocalized with immunoreactivity for CD206, a marker for PVMs, but not with those for glial fibrillary acidic protein or desmin, markers for other perivascular cells such as astrocytes and vascular smooth muscle cells. These results demonstrated that enhanced production of type I collagen is observed around cerebral small vessels in rats with prolonged hypertension and Col1a1 is expressed by PVMs, and support the concept that PVMs are involved in collagen production and vascular fibrosis under hypertensive conditions.
Collapse
Affiliation(s)
- Takeshi Inagaki
- Department of Anatomy, Division of Forensic Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Ken Fujiwara
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.,Department of Biological Sciences, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
| | - Yoshiaki Shinohara
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Morio Azuma
- Department of Pharmacology, Division of Molecular Pharmacology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Kiyomi Mashima
- Department of Medicine, Division of Hematology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Atsushi Sakamoto
- Department of Anatomy, Division of Forensic Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takashi Yashiro
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
14
|
Mesquida-Veny F, Del Río JA, Hervera A. Macrophagic and microglial complexity after neuronal injury. Prog Neurobiol 2020; 200:101970. [PMID: 33358752 DOI: 10.1016/j.pneurobio.2020.101970] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) injuries do not heal properly in contrast to normal tissue repair, in which functional recovery typically occurs. The reason for this dichotomy in wound repair is explained in part by macrophage and microglial malfunction, affecting both the extrinsic and intrinsic barriers to appropriate axonal regeneration. In normal healing tissue, macrophages promote the repair of injured tissue by regulating transitions through different phases of the healing response. In contrast, inflammation dominates the outcome of CNS injury, often leading to secondary damage. Therefore, an understanding of the molecular mechanisms underlying this dichotomy is critical to advance in neuronal repair therapies. Recent studies highlight the plasticity and complexity of macrophages and microglia beyond the classical view of the M1/M2 polarization paradigm. This plasticity represents an in vivo continuous spectrum of phenotypes with overlapping functions and markers. Moreover, macrophage and microglial plasticity affect many events essential for neuronal regeneration after injury, such as myelin and cell debris clearance, inflammation, release of cytokines, and trophic factors, affecting both intrinsic neuronal properties and extracellular matrix deposition. Until recently, this complexity was overlooked in the translation of therapies modulating these responses for the treatment of neuronal injuries. However, recent studies have shed important light on the underlying molecular mechanisms of this complexity and its transitions and effects on regenerative events. Here we review the complexity of macrophages and microglia after neuronal injury and their roles in regeneration, as well as the underlying molecular mechanisms, and we discuss current challenges and future opportunities for treatment.
Collapse
Affiliation(s)
- Francina Mesquida-Veny
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - José Antonio Del Río
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Arnau Hervera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.
| |
Collapse
|
15
|
Spiteri AG, Wishart CL, King NJC. Immovable Object Meets Unstoppable Force? Dialogue Between Resident and Peripheral Myeloid Cells in the Inflamed Brain. Front Immunol 2020; 11:600822. [PMID: 33363542 PMCID: PMC7752943 DOI: 10.3389/fimmu.2020.600822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation of the brain parenchyma is characteristic of neurodegenerative, autoimmune, and neuroinflammatory diseases. During this process, microglia, which populate the embryonic brain and become a permanent sentinel myeloid population, are inexorably joined by peripherally derived monocytes, recruited by the central nervous system. These cells can quickly adopt a morphology and immunophenotype similar to microglia. Both microglia and monocytes have been implicated in inducing, enhancing, and/or maintaining immune-mediated pathology and thus disease progression in a number of neuropathologies. For many years, experimental and analytical systems have failed to differentiate resident microglia from peripherally derived myeloid cells accurately. This has impeded our understanding of their precise functions in, and contributions to, these diseases, and hampered the development of novel treatments that could target specific cell subsets. Over the past decade, microglia have been investigated more intensively in the context of neuroimmunological research, fostering the development of more precise experimental systems. In light of our rapidly growing understanding of these cells, we discuss the differential origins of microglia and peripherally derived myeloid cells in the inflamed brain, with an analysis of the problems resolving these cell types phenotypically and morphologically, and highlight recent developments enabling more precise identification.
Collapse
Affiliation(s)
- Alanna G. Spiteri
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Claire L. Wishart
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas J. C. King
- Discipline of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Cytometry Facility, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
- Ramaciotti Facility for Human Systems Biology, The University of Sydney and Centenary Institute, Sydney, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity (MBI), Faculty of Medicine and Health, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
- Nano Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Chen HR, Sun YY, Chen CW, Kuo YM, Kuan IS, Tiger Li ZR, Short-Miller JC, Smucker MR, Kuan CY. Fate mapping via CCR2-CreER mice reveals monocyte-to-microglia transition in development and neonatal stroke. SCIENCE ADVANCES 2020; 6:eabb2119. [PMID: 32923636 PMCID: PMC7449686 DOI: 10.1126/sciadv.abb2119] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/13/2020] [Indexed: 05/12/2023]
Abstract
Whether monocytes contribute to the brain microglial pool in development or after brain injury remains contentious. To address this issue, we generated CCR2-CreER mice to track monocyte derivatives in a tamoxifen-inducible manner. This method labeled Ly6Chi and Ly6Clo monocytes after tamoxifen dosing and detected a surge of perivascular macrophages before blood-brain barrier breakdown in adult stroke. When dosed by tamoxifen at embryonic day 17 (E17), this method captured fetal hematopoietic cells at E18, subdural Ki67+ ameboid cells at postnatal day 2 (P2), and perivascular microglia, leptomeningeal macrophages, and Iba1+Tmem119+P2RY12+ parenchymal microglia in selective brain regions at P24. Furthermore, this fate mapping strategy revealed an acute influx of monocytes after neonatal stroke, which gradually transformed into a ramified morphology and expressed microglial marker genes (Sall1, Tmem119, and P2RY12) for at least 62 days after injury. These results suggest an underappreciated level of monocyte-to-microglia transition in development and after neonatal stroke.
Collapse
Affiliation(s)
- Hong-Ru Chen
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yu-Yo Sun
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ching-Wen Chen
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Yi-Min Kuo
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Irena S. Kuan
- Department of Biology, Emory University, Atlanta, GA 30329, USA
| | | | - Jonah C. Short-Miller
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Marchelle R. Smucker
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Chia-Yi Kuan
- Department of Neuroscience, Center for Brain Immunology and Glia (BIG), University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
17
|
Negi N, Das BK. Decoding intrathecal immunoglobulins and B cells in the CNS: their synthesis, function, and regulation. Int Rev Immunol 2020; 39:67-79. [PMID: 31928379 DOI: 10.1080/08830185.2019.1711073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The discovery of an active lymphatic system in the meninges (dura mater) has opened up a wide range of possibilities for the role of CNS immunoglobulins in brain development in early fetal life or during infancy. The antibody-dependent and -independent functions of B cells in the immunopathogenesis of multiple sclerosis are not new to immunologists, yet their role in other neurodegenerative disorders such as Alzheimer's and Parkinson's disease is incompletely understood. Deep cervical lymph nodes have emerged as a candidate site for autosensitization against CNS antigens and have been shown to provide the right kind of milieu for the dynamic interaction of antigen-presenting cells, B cells, and T cells. The presence of different B cells in the lymph nodes and the production of natural autoantibodies by B-1 cells have definitely unlocked another piece of the puzzle. At a time when CD19 and CD20 monoclonal antibodies have shown remarkable results in ameliorating the relapse and progression of multiple sclerosis, it is imperative to dissect out the diversity in B cell populations inside the CNS to identify new targets to improve current treatment regimens for neurodegenerative diseases. This review highlights the origin, migration, function, and regulation of B cells and the production of intrathecal immunoglobulins considering the previous and current findings and taking into account the differences between a healthy state and the changes that occur during an inflammatory or autoimmune response.
Collapse
Affiliation(s)
- Neema Negi
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland, Galway, Ireland
| | - Bimal K Das
- HIV Immunology Section, Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
18
|
Schaffenrath J, Keller A. New Insights in the Complexity and Functionality of the Neurovascular Unit. Handb Exp Pharmacol 2020; 273:33-57. [PMID: 33582883 DOI: 10.1007/164_2020_424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The neurovascular unit (NVU) encompasses all brain cells and underlines that neurons, glia and brain vasculature are in intimate physical and functional association. Brain function is dependent on blood flow and local increases in blood flow in response to neural activity - functional hyperaemia takes place at the NVU. Although this is a vital function of the NVU, many studies have demonstrated that the NVU also performs other tasks. Blood vessels in the brain, which are composed of multiple cell types, are essential for correct brain development. They constitute the niche for brain stem cells, sense the environment and communicate changes to neural tissue, and control the immune quiescence of the CNS. In this brief chapter we will discuss new insights into the biology of NVU, which have further revealed the heterogeneity and complexity of the vascular tree and its neurovascular associations.
Collapse
Affiliation(s)
- Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, Zurich Neuroscience Center, Zurich University Hospital, Zurich University, Zurich, Switzerland.
| |
Collapse
|
19
|
Kierdorf K, Masuda T, Jordão MJC, Prinz M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat Rev Neurosci 2019; 20:547-562. [PMID: 31358892 DOI: 10.1038/s41583-019-0201-x] [Citation(s) in RCA: 256] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Abstract
The segregation and limited regenerative capacity of the CNS necessitate a specialized and tightly regulated resident immune system that continuously guards the CNS against invading pathogens and injury. Immunity in the CNS has generally been attributed to neuron-associated microglia in the parenchyma, whose origin and functions have recently been elucidated. However, there are several other specialized macrophage populations at the CNS borders, including dural, leptomeningeal, perivascular and choroid plexus macrophages (collectively known as CNS-associated macrophages (CAMs)), whose origins and roles in health and disease have remained largely uncharted. CAMs are thought to be involved in regulating the fine balance between the proper segregation of the CNS, on the one hand, and the essential exchange between the CNS parenchyma and the periphery, on the other. Recent studies that have been empowered by major technological advances have shed new light on these cells and suggest central roles for CAMs in CNS physiology and in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany. .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
20
|
Joost E, Jordão MJC, Mages B, Prinz M, Bechmann I, Krueger M. Microglia contribute to the glia limitans around arteries, capillaries and veins under physiological conditions, in a model of neuroinflammation and in human brain tissue. Brain Struct Funct 2019; 224:1301-1314. [PMID: 30706162 DOI: 10.1007/s00429-019-01834-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/12/2019] [Indexed: 12/23/2022]
Abstract
Microglia represent resident immune cells of the central nervous system (CNS), which have been shown to be involved in the pathophysiology of practically every neuropathology. As microglia were described to participate in the formation of the astroglial glia limitans around CNS vessels, they are part of the neurovascular unit (NVU). Since the NVU is a highly specialized structure, being functionally and morphologically adapted to differing demands in the arterial, capillary, and venous segments, the present study was aimed to systematically investigate the microglial contribution to the glia limitans along the vascular tree. Thereby, the microglial participation in the glia limitans was demonstrated for arteries, capillaries, and veins by immunoelectron microscopy in wild-type mice. Furthermore, analysis by confocal laser scanning microscopy revealed the highest density of microglial endfeet contacting the glial basement membrane around capillaries, with significantly lower densities around arteries and veins. Importantly, this pattern appeared to be unaltered in the setting of experimental autoimmune encephalomyelitis (EAE) in CX3CR1CreERT2:R26-Tomato reporter mice, although perivascular infiltrates of blood-borne leukocytes predominantly occur at the level of post-capillary venules. However, EAE animals exhibited significantly increased contact sizes of individual microglial endfeet around arteries and veins. Noteworthy, under EAE conditions, the upregulation of MHC-II was not limited to microglia of the glia limitans of veins showing infiltrates of leukocytes, but also appeared at the capillary level. As a microglial contribution to the glia limitans was also observed in human brain tissue, these findings may help characterizing microglial alterations within the NVU in various neuropathologies.
Collapse
Affiliation(s)
- Emely Joost
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103, Leipzig, Germany
| | - Marta J C Jordão
- Institute of Neuropathology, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Bianca Mages
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103, Leipzig, Germany
| | - Marco Prinz
- Institute of Neuropathology, University of Freiburg, Breisacher Straße 64, 79106, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103, Leipzig, Germany.
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103, Leipzig, Germany.
| |
Collapse
|
21
|
Mrdjen D, Pavlovic A, Hartmann FJ, Schreiner B, Utz SG, Leung BP, Lelios I, Heppner FL, Kipnis J, Merkler D, Greter M, Becher B. High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease. Immunity 2018; 48:380-395.e6. [DOI: 10.1016/j.immuni.2018.01.011] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/05/2017] [Accepted: 01/14/2018] [Indexed: 12/14/2022]
|
22
|
Takagi S, Furube E, Nakano Y, Morita M, Miyata S. Microglia are continuously activated in the circumventricular organs of mouse brain. J Neuroimmunol 2017; 331:74-86. [PMID: 29107327 DOI: 10.1016/j.jneuroim.2017.10.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Microglia are the primary resident immune cells of the brain parenchyma and transform into the amoeboid form in the "activated state" under pathological conditions from the ramified form in the "resting state" under physiologically healthy conditions. In the present study, we found that microglia in the circumventricular organs (CVOs) of adult mice displayed the amoeboid form with fewer branched cellular processes even under normal conditions; however, those in other brain regions showed the ramified form, which is characterized by well-branched and dendritic cellular processes. Moreover, microglia in the CVOs showed the strong protein expression of the M1 markers CD16/32 and CD86 and M2 markers CD206 and Ym1 without any pathological stimulation. Thus, the present results indicate that microglia in the CVOs of adult mice are morphologically and functionally activated under normal conditions, possibly due to the specialized features of the CVOs, namely, the entry of blood-derived molecules into parenchyma through fenestrated capillaries and the presence of neural stem cells.
Collapse
Affiliation(s)
- Shohei Takagi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eriko Furube
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yousuke Nakano
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Department of Anatomy and Brain Science, Kansai Medical University, Hirakata, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
23
|
Menzel F, Kaiser N, Haehnel S, Rapp F, Patties I, Schöneberg N, Haimon Z, Immig K, Bechmann I. Impact of X-irradiation on microglia. Glia 2017; 66:15-33. [DOI: 10.1002/glia.23239] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
| | - Nicole Kaiser
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Susann Haehnel
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Felicitas Rapp
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Ina Patties
- Department of Radiation Therapy; Leipzig University; Leipzig Germany
| | | | - Zhana Haimon
- Department of Immunology; Weizmann Institute of Science; Rehovot Israel
| | - Kerstin Immig
- Institute of Anatomy, Leipzig University; Leipzig Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University; Leipzig Germany
| |
Collapse
|
24
|
Chan P, Meerdink DJ, Uchizono JA. Potential role of the Virchow Robin space in the pathogenesis of bacterial meningitis. Med Hypotheses 2017; 109:114-118. [PMID: 29150269 DOI: 10.1016/j.mehy.2017.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/24/2022]
Abstract
Meningitis is an infectious disease commonly arising from a bacterial etiology. The rapid progression of morbidity and mortality due to bacterial meningitis requires critical and imminent time-dependent clinical intervention. Although it is unambiguously clear that bacteria must infiltrate the cerebrospinal fluid, the sequence of events in the pathogenesis of bacterial meningitis has not been fully elucidated. Most reviews of the pathogenesis of bacterial meningitis do not specify the anatomical location of bacteria following BBB traversal. We propose an additional hypothesis focusing on the Virchow-Robin space (VRS). The VRS consists of a small, but identifiable perivascular space formed by a sheath of cells derived from the pia mater. The VRS has been described as an immunological space and possibly having a role in several neuropathological diseases. Solute exchange between cerebrospinal fluid and extracellular fluid occurs at the VRS, with subsequent drainage into the subarachnoid space. Because the VRS is continuous with the subpial space, a more direct route to the meninges is facilitated. The involvement of the VRS may have profound implications on the pathogenesis and therapeutic strategies: (1) nasopharyngeal colonization; (2) penetration into the blood stream after crossing the mucosal and epithelial membranes; (3) proliferation in the bloodstream; (4) extravasations through the endothelium of the post-capillary venules to the perivascular VRS; (5) migration from VRS to subpial space; (6) traversal through pia mater, entering the CSF in the subarachnoid space; (7) invasion of the meninges. The implication of the VRS in the pathogenesis of bacterial meningitis would be twofold. First, the VRS could provide an additional route of entry of bacteria into the brain. Second, the VRS could provide an area for bacterial proliferation, and thereby serve as a bacterial reservoir in relatively close proximity to the meninges. The clinical consequences of this hypothesis are: 1) clinical interpretation of laboratory findings, and 2) effective antibiotic delivery into the VRS. If the role of the VRS is established as part of bacterial meningitis pathogenesis, antibiotic pharmacokinetics and pharmacodynamics in the VRS need to be determined. This may result in developing novel antibiotic delivery and clinical strategies to improve morbidity and mortality.
Collapse
Affiliation(s)
- Patrick Chan
- Western University of Health Sciences, Department of Pharmacy Practice and Administration, 309 E 2nd St, Pomona, CA 91766, USA.
| | - Denis J Meerdink
- University of the Pacific, Department of Physiology and Pharmacology, 3601 Pacific Ave, Stockton, CA 95211, USA
| | - James A Uchizono
- University of the Pacific, Department of Pharmaceutics and Medicinal Chemistry, 3601 Pacific Ave, Stockton, CA 95211, USA
| |
Collapse
|
25
|
Faraco G, Park L, Anrather J, Iadecola C. Brain perivascular macrophages: characterization and functional roles in health and disease. J Mol Med (Berl) 2017; 95:1143-1152. [PMID: 28782084 DOI: 10.1007/s00109-017-1573-x] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
Perivascular macrophages (PVM) are a distinct population of resident brain macrophages characterized by a close association with the cerebral vasculature. PVM migrate from the yolk sac into the brain early in development and, like microglia, are likely to be a self-renewing cell population that, in the normal state, is not replenished by circulating monocytes. Increasing evidence implicates PVM in several disease processes, ranging from brain infections and immune activation to regulation of the hypothalamic-adrenal axis and neurovascular-neurocognitive dysfunction in the setting of hypertension, Alzheimer disease pathology, or obesity. These effects involve crosstalk between PVM and cerebral endothelial cells, interaction with circulating immune cells, and/or production of reactive oxygen species. Overall, the available evidence supports the idea that PVM are a key component of the brain-resident immune system with broad implications for the pathogenesis of major brain diseases. A better understanding of the biology and pathobiology of PVM may lead to new insights and therapeutic strategies for a wide variety of brain diseases.
Collapse
Affiliation(s)
- Giuseppe Faraco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E61st Street, New York, NY, USA.
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E61st Street, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E61st Street, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 E61st Street, New York, NY, USA.
| |
Collapse
|
26
|
Harrison-Brown M, Liu GJ, Banati R. Checkpoints to the Brain: Directing Myeloid Cell Migration to the Central Nervous System. Int J Mol Sci 2016; 17:E2030. [PMID: 27918464 PMCID: PMC5187830 DOI: 10.3390/ijms17122030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 12/13/2022] Open
Abstract
Myeloid cells are a unique subset of leukocytes with a diverse array of functions within the central nervous system during health and disease. Advances in understanding of the unique properties of these cells have inspired interest in their use as delivery vehicles for therapeutic genes, proteins, and drugs, or as "assistants" in the clean-up of aggregated proteins and other molecules when existing drainage systems are no longer adequate. The trafficking of myeloid cells from the periphery to the central nervous system is subject to complex cellular and molecular controls with several 'checkpoints' from the blood to their destination in the brain parenchyma. As important components of the neurovascular unit, the functional state changes associated with lineage heterogeneity of myeloid cells are increasingly recognized as important for disease progression. In this review, we discuss some of the cellular elements associated with formation and function of the neurovascular unit, and present an update on the impact of myeloid cells on central nervous system (CNS) diseases in the laboratory and the clinic. We then discuss emerging strategies for harnessing the potential of site-directed myeloid cell homing to the CNS, and identify promising avenues for future research, with particular emphasis on the importance of untangling the functional heterogeneity within existing myeloid subsets.
Collapse
Affiliation(s)
- Meredith Harrison-Brown
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
| | - Guo-Jun Liu
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
| | - Richard Banati
- Discipline of Medical Imaging & Radiation Sciences, Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2141, Australia.
- Australian Nuclear Science and Technology Organisation, Sydney, NSW 2234, Australia.
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
27
|
Faraco G, Sugiyama Y, Lane D, Garcia-Bonilla L, Chang H, Santisteban MM, Racchumi G, Murphy M, Van Rooijen N, Anrather J, Iadecola C. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest 2016; 126:4674-4689. [PMID: 27841763 DOI: 10.1172/jci86950] [Citation(s) in RCA: 259] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/30/2016] [Indexed: 01/05/2023] Open
Abstract
Hypertension is a leading risk factor for dementia, but the mechanisms underlying its damaging effects on the brain are poorly understood. Due to a lack of energy reserves, the brain relies on continuous delivery of blood flow to its active regions in accordance with their dynamic metabolic needs. Hypertension disrupts these vital regulatory mechanisms, leading to the neuronal dysfunction and damage underlying cognitive impairment. Elucidating the cellular bases of these impairments is essential for developing new therapies. Perivascular macrophages (PVMs) represent a distinct population of resident brain macrophages that serves key homeostatic roles but also has the potential to generate large amounts of reactive oxygen species (ROS). Here, we report that PVMs are critical in driving the alterations in neurovascular regulation and attendant cognitive impairment in mouse models of hypertension. This effect was mediated by an increase in blood-brain barrier permeability that allowed angiotensin II to enter the perivascular space and activate angiotensin type 1 receptors in PVMs, leading to production of ROS through the superoxide-producing enzyme NOX2. These findings unveil a pathogenic role of PVMs in the neurovascular and cognitive dysfunction associated with hypertension and identify these cells as a putative therapeutic target for diseases associated with cerebrovascular oxidative stress.
Collapse
|
28
|
Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat Immunol 2016; 17:797-805. [PMID: 27135602 DOI: 10.1038/ni.3423] [Citation(s) in RCA: 849] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/01/2016] [Indexed: 12/12/2022]
Abstract
Perivascular, subdural meningeal and choroid plexus macrophages are non-parenchymal macrophages that mediate immune responses at brain boundaries. Although the origin of parenchymal microglia has recently been elucidated, much less is known about the precursors, the underlying transcriptional program and the dynamics of the other macrophages in the central nervous system (CNS). It was assumed that they have a high turnover from blood-borne monocytes. However, using parabiosis and fate-mapping approaches in mice, we found that CNS macrophages arose from hematopoietic precursors during embryonic development and established stable populations, with the notable exception of choroid plexus macrophages, which had dual origins and a shorter life span. The generation of CNS macrophages relied on the transcription factor PU.1, whereas the MYB, BATF3 and NR4A1 transcription factors were not required.
Collapse
|
29
|
Corliss BA, Azimi MS, Munson J, Peirce SM, Murfee WL. Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis. Microcirculation 2016; 23:95-121. [PMID: 26614117 PMCID: PMC4744134 DOI: 10.1111/micc.12259] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Angiogenesis and lymphangiogenesis often occur in response to tissue injury or in the presence of pathology (e.g., cancer), and it is these types of environments in which macrophages are activated and increased in number. Moreover, the blood vascular microcirculation and the lymphatic circulation serve as the conduits for entry and exit for monocyte-derived macrophages in nearly every tissue and organ. Macrophages both affect and are affected by the vessels through which they travel. Therefore, it is not surprising that examination of macrophage behaviors in both angiogenesis and lymphangiogenesis has yielded interesting observations that suggest macrophages may be key regulators of these complex growth and remodeling processes. In this review, we will take a closer look at macrophages through the lens of angiogenesis and lymphangiogenesis, examining how their dynamic behaviors may regulate vessel sprouting and function. We present macrophages as a cellular link that spatially and temporally connects angiogenesis with lymphangiogenesis, in both physiological growth and in pathological adaptations, such as tumorigenesis. As such, attempts to therapeutically target macrophages in order to affect these processes may be particularly effective, and studying macrophages in both settings will accelerate the field's understanding of this important cell type in health and disease.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Mohammad S. Azimi
- Department of Biomedical Engineering, 500 Lindy Boggs Energy Center, Tulane University, New Orleans, LA 70118
| | - Jenny Munson
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Shayn M. Peirce
- Department of Biomedical Engineering, 415 Lane Road, University of Virginia, Charlottesville, VA 22908
| | - Walter Lee Murfee
- Department of Biomedical Engineering, 500 Lindy Boggs Energy Center, Tulane University, New Orleans, LA 70118
| |
Collapse
|
30
|
Böttcher C, Priller J. Myeloid cell-based therapies in neurological disorders: How far have we come? Biochim Biophys Acta Mol Basis Dis 2015; 1862:323-8. [PMID: 26455341 DOI: 10.1016/j.bbadis.2015.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/01/2015] [Indexed: 02/08/2023]
Abstract
The pathogenesis of neurological disorders such as multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD) is multifactorial and incompletely understood. The development of therapies for these disorders of the central nervous system (CNS) is thus far very challenging. Neuroinflammation is one of the processes that contribute to the pathogenesis of CNS diseases, and therefore represents an important therapeutic target. Myeloid cells derived from the bone marrow are ideal candidates for cell therapy in the CNS as they are capable of targeting the brain and providing neuroprotective and anti-inflammatory effects. In this review, experimental and clinical evidence for the therapeutic potential of myeloid cells in neurological disorders will be discussed. This article is part of a Special Issue entitled: Neuro Inflammation edited by Helga E. de Vries and Markus Schwaninger.
Collapse
Affiliation(s)
- Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, Germany.
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité - Universitätsmedizin Berlin, Germany; Cluster of Excellence NeuroCure, DZNE and BIH, Berlin, Germany
| |
Collapse
|
31
|
Nowlin BT, Burdo TH, Midkiff CC, Salemi M, Alvarez X, Williams KC. SIV encephalitis lesions are composed of CD163(+) macrophages present in the central nervous system during early SIV infection and SIV-positive macrophages recruited terminally with AIDS. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1649-65. [PMID: 25963554 DOI: 10.1016/j.ajpath.2015.01.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 01/30/2015] [Indexed: 10/23/2022]
Abstract
Macrophage recruitment to the central nervous system (CNS) during AIDS pathogenesis is poorly understood. We measured the accumulation of brain perivascular (CD163(+)) and inflammatory (MAC387(+)) macrophages in SIV-infected monkeys. Monocyte progenitors were 5-bromo-2'-deoxyuridine (BrdU) labeled in bone marrow, and CNS macrophages were labeled serially with fluorescent dextrans injected into the cisterna magna. MAC387(+) macrophages accumulated in the meninges and choroid plexus in early inflammation and in the perivascular space and SIV encephalitis (SIVE) lesions late. CD163(+) macrophages accumulated in the perivascular space and SIVE lesions with late inflammation. Most of the BrdU(+) cells were MAC387(+); however, CD163(+)BrdU(+) macrophages were present in the meninges and choroid plexus with AIDS. Most (81.6% ± 1.8%) of macrophages in SIVE lesions were present in the CNS before SIVE lesion formation. There was a 2.9-fold increase in SIVp28(+) macrophages entering the CNS late compared with those entering early (P < 0.05). The rate of CD163(+) macrophage recruitment to the CNS inversely correlated with time to death (P < 0.03) and increased with SIVE. In SIVE animals, soluble CD163 correlated with CD163(+) macrophage recruitment (P = 0.02). Most perivascular macrophages that comprise SIVE lesions and multinucleated giant cells are present in the CNS early, before SIVE lesions are formed. Most SIV-infected macrophages traffic to the CNS terminally with AIDS.
Collapse
Affiliation(s)
- Brian T Nowlin
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Tricia H Burdo
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Cecily C Midkiff
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University Health Science Center, Covington, Louisiana
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, Gainesville, Florida
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University Health Science Center, Covington, Louisiana
| | | |
Collapse
|
32
|
Brain APCs including microglia are only differential and positional polymorphs. Ann Neurosci 2014; 17:191-9. [PMID: 25205905 PMCID: PMC4117011 DOI: 10.5214/ans.0972.7531.1017410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/22/2010] [Accepted: 10/04/2010] [Indexed: 12/23/2022] Open
Abstract
The antigen presentation to lymphocytes in brain occurs in two steps. Initially it happens at perivascular spaces by perivascular microglia/macrophage population and finally at the site of inflammation deep into brain parenchyma by the resident microglia. But recent evidence challanges the existing notion of involvement of distinct and different cells at these sites. Studies have shown that many of these microglial cells show dendritic cell phenotype in pathogenic and cytokine driven environment. Different subsets of the cell show wide range of myeloid lineage functions indicating a pre-differentiated status of the cell. Monocytic CD34(+)/B220(+) precursor cells have been transformed to microglial cells in vitro and transplantation of these cells show Iba-1 or F4/80 positivity with microglial phenotypes in vivo in adults. Even they can be converted into dendritic cell like forms. The interconvertability among macrophage-microglia-dendritic cells and final effector maturation according to the microenvironmental cues indicates existence of a pre-mature myeloid cell population concerned with antigen presentation and related functions in brain. With the substantial recent observation this article sketches the idea that brain APCs appearing as macrophage/microglia/DC like forms are derivatives of the same stock in response to their position and microenvironment. And also microglia is never any distinct cells, both in neonatal stage and adults.
Collapse
|
33
|
Hussain RZ, Hayardeny L, Cravens PC, Yarovinsky F, Eagar TN, Arellano B, Deason K, Castro-Rojas C, Stüve O. Immune surveillance of the central nervous system in multiple sclerosis--relevance for therapy and experimental models. J Neuroimmunol 2014; 276:9-17. [PMID: 25282087 PMCID: PMC4301841 DOI: 10.1016/j.jneuroim.2014.08.622] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/15/2014] [Accepted: 08/20/2014] [Indexed: 12/25/2022]
Abstract
Treatment of central nervous system (CNS) autoimmune disorders frequently involves the reduction, or depletion of immune-competent cells. Alternatively, immune cells are being sequestered away from the target organ by interfering with their movement from secondary lymphoid organs, or their migration into tissues. These therapeutic strategies have been successful in multiple sclerosis (MS), the most prevalent autoimmune inflammatory disorder of the CNS. However, many of the agents that are currently approved or in clinical development also have severe potential adverse effects that stem from the very mechanisms that mediate their beneficial effects by interfering with CNS immune surveillance. This review will outline the main cellular components of the innate and adaptive immune system that participate in host defense and maintain immune surveillance of the CNS. Their pathogenic role in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also discussed. Furthermore, an experimental model is introduced that may assist in evaluating the effect of therapeutic interventions on leukocyte homeostasis and function within the CNS. This model or similar models may become a useful tool in the repertoire of pre-clinical tests of pharmacological agents to better explore their potential for adverse events.
Collapse
Affiliation(s)
- Rehana Z Hussain
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | | | - Petra C Cravens
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - Felix Yarovinsky
- Department of Immunology, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - Todd N Eagar
- Histocompatibility and Transplant Immunology, Department of Pathology and Genomic Medicine, The Methodist Hospital Physician Organization, Houston, TX, USA
| | - Benjamine Arellano
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - Krystin Deason
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - Cyd Castro-Rojas
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - Olaf Stüve
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center at Dallas, TX, USA; Neurology Section, VA North Texas Health Care System, Medical Service, Dallas, TX, USA; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany.
| |
Collapse
|
34
|
Famakin BM. The Immune Response to Acute Focal Cerebral Ischemia and Associated Post-stroke Immunodepression: A Focused Review. Aging Dis 2014; 5:307-26. [PMID: 25276490 DOI: 10.14336/ad.2014.0500307] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke.
Collapse
Affiliation(s)
- Bolanle M Famakin
- National Institutes of Health, National Institute of Neurological Diseases and Stroke, Stroke Branch, Branch, Bethesda, MD, 20892, USA
| |
Collapse
|
35
|
El-Amouri SS, Dai M, Han JF, Brady RO, Pan D. Normalization and improvement of CNS deficits in mice with Hurler syndrome after long-term peripheral delivery of BBB-targeted iduronidase. Mol Ther 2014; 22:2028-2037. [PMID: 25088464 DOI: 10.1038/mt.2014.152] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/29/2014] [Indexed: 12/11/2022] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is a progressive lysosomal storage disorder with systemic and central nervous system (CNS) involvement due to deficiency of α-L-iduronidase (IDUA). We previously identified a receptor-binding peptide from apolipoprotein E (e) that facilitated a widespread delivery of IDUAe fusion protein into CNS. In this study, we evaluated the long-term CNS biodistribution, dose-correlation, and therapeutic benefits of IDUAe after systemic, sustained delivery via hematopoietic stem cell (HSC)-mediated gene therapy with expression restricted to erythroid/megakaryocyte lineages. Compared to the highest dosage group treated by nontargeted control IDUAc (165 U/ml), physiological levels of IDUAe in the circulation (12 U/ml) led to better CNS benefits in MPS I mice as demonstrated in glycosaminoglycan accumulation, histopathology analysis, and neurological behavior. Long-term brain metabolic correction and normalization of exploratory behavior deficits in MPS I mice were observed by peripheral enzyme therapy with physiological levels of IDUAe derived from clinically attainable levels of HSC transduction efficiency (0.1). Importantly, these levels of IDUAe proved to be more beneficial on correction of cerebrum pathology and behavioral deficits in MPS I mice than wild-type HSCs fully engrafted in MPS I chimeras. These results provide compelling evidence for CNS efficacy of IDUAe and its prospective translation to clinical application.
Collapse
Affiliation(s)
- Salim S El-Amouri
- Molecular and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mei Dai
- Molecular and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jing-Fen Han
- Molecular and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Roscoe O Brady
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Dao Pan
- Molecular and Cell Therapy Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
36
|
Brinker T, Stopa E, Morrison J, Klinge P. A new look at cerebrospinal fluid circulation. Fluids Barriers CNS 2014; 11:10. [PMID: 24817998 PMCID: PMC4016637 DOI: 10.1186/2045-8118-11-10] [Citation(s) in RCA: 522] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/18/2014] [Indexed: 12/11/2022] Open
Abstract
According to the traditional understanding of cerebrospinal fluid (CSF) physiology, the majority of CSF is produced by the choroid plexus, circulates through the ventricles, the cisterns, and the subarachnoid space to be absorbed into the blood by the arachnoid villi. This review surveys key developments leading to the traditional concept. Challenging this concept are novel insights utilizing molecular and cellular biology as well as neuroimaging, which indicate that CSF physiology may be much more complex than previously believed. The CSF circulation comprises not only a directed flow of CSF, but in addition a pulsatile to and fro movement throughout the entire brain with local fluid exchange between blood, interstitial fluid, and CSF. Astrocytes, aquaporins, and other membrane transporters are key elements in brain water and CSF homeostasis. A continuous bidirectional fluid exchange at the blood brain barrier produces flow rates, which exceed the choroidal CSF production rate by far. The CSF circulation around blood vessels penetrating from the subarachnoid space into the Virchow Robin spaces provides both a drainage pathway for the clearance of waste molecules from the brain and a site for the interaction of the systemic immune system with that of the brain. Important physiological functions, for example the regeneration of the brain during sleep, may depend on CSF circulation.
Collapse
Affiliation(s)
- Thomas Brinker
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Edward Stopa
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - John Morrison
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Petra Klinge
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
37
|
Onore CE, Schwartzer JJ, Careaga M, Berman RF, Ashwood P. Maternal immune activation leads to activated inflammatory macrophages in offspring. Brain Behav Immun 2014; 38:220-6. [PMID: 24566386 PMCID: PMC4321784 DOI: 10.1016/j.bbi.2014.02.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/24/2014] [Accepted: 02/10/2014] [Indexed: 02/07/2023] Open
Abstract
Several epidemiological studies have shown an association between infection or inflammation during pregnancy and increased risk of autism in the child. In addition, animal models have illustrated that maternal inflammation during gestation can cause autism-relevant behaviors in the offspring; so called maternal immune activation (MIA) models. More recently, permanent changes in T cell cytokine responses were reported in children with autism and in offspring of MIA mice; however, the cytokine responses of other immune cell populations have not been thoroughly investigated in these MIA models. Similar to changes in T cell function, we hypothesized that following MIA, offspring will have long-term changes in macrophage function. To test this theory, we utilized the poly (I:C) MIA mouse model in C57BL/6J mice and examined macrophage cytokine production in adult offspring. Pregnant dams were given either a single injection of 20mg/kg polyinosinic-polycytidylic acid, poly (I:C), or saline delivered intraperitoneally on gestational day 12.5. When offspring of poly (I:C) treated dams reached 10weeks of age, femurs were collected and bone marrow-derived macrophages were generated. Cytokine production was measured in bone marrow-derived macrophages incubated for 24h in either growth media alone, LPS, IL-4/LPS, or IFN-γ/LPS. Following stimulation with LPS alone, or the combination of IFN-γ/LPS, macrophages from offspring of poly (I:C) treated dams produced higher levels of IL-12(p40) (p<0.04) suggesting an increased M1 polarization. In addition, even without the presence of a polarizing cytokine or LPS stimulus, macrophages from offspring of poly (I:C) treated dams exhibited a higher production of CCL3 (p=0.05). Moreover, CCL3 levels were further increased when stimulated with LPS, or polarized with either IL-4/LPS or IFN-γ/LPS (p<0.05) suggesting a general increase in production of this chemokine. Collectively, these data suggest that MIA can produce lasting changes in macrophage function that are sustained into adulthood.
Collapse
Affiliation(s)
- Charity E Onore
- Department of Medical Microbiology and Immunology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States; The M.I.N.D. Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Jared J Schwartzer
- The M.I.N.D. Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States; Department of Psychiatry and Behavioral Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States; Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, United States
| | - Milo Careaga
- Department of Medical Microbiology and Immunology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States; The M.I.N.D. Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Robert F Berman
- The M.I.N.D. Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States; Department of Psychiatry and Behavioral Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States; Department of Neurological Surgery, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States; The M.I.N.D. Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States.
| |
Collapse
|
38
|
Non-neuronal cell responses differ between normal and Down syndrome developing brains. Int J Dev Neurosci 2013; 31:796-803. [PMID: 24113258 DOI: 10.1016/j.ijdevneu.2013.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/27/2013] [Accepted: 09/28/2013] [Indexed: 11/23/2022] Open
Abstract
Down syndrome (DS), the most common genetic cause of mental retardation, is characterized by reduced number of neurons and delayed myelination. Though non-neuronal cells in the brain are vital for the development, survival, and function of neurons, there is a paucity of comparative studies of normal development and DS, in particular in the temporal lobe, a region of interest for cognitive decline. We evaluated immunoreactivity for CD68 (macrophage), HLA-DR (microglia), Olig2 and TPPP/p25 (oligodendroglia), and GFAP (astroglia) in the germinal matrix (GM), temporal lobe white matter (TeWM) and hippocampus from 14 weeks of gestations to newborn in 28 DS patients and 30 age-matched controls. The rate of increase of CD68 positive cells in the GM, CA1 hippocampal subregion and subiculum was significantly higher in DS. The density of Olig2 positive cells in the GM was lower in DS brains at early stages, then showed a transient increase contrasting controls. Olig2 expression increased more in the TeWM in DS, suggesting an altered pattern of oligodendrocyte progenitor generation. GFAP-immunoreactivity in DS was significantly lower in the middle pregnancy period in the TeWM and did not increase between early and middle periods in the GM compared to controls, likely reflecting a defect in astrocyte production. The altered expression of non-neuronal cell markers during normal development and DS may play a role in, or reflect, defective neurogenesis, leading to reduced number of neurons and delayed myelination in the developing DS brain. This has implications for the understanding of the mental retardation in DS patients.
Collapse
|
39
|
Szabo M, Gulya K. Development of the microglial phenotype in culture. Neuroscience 2013; 241:280-95. [PMID: 23535251 DOI: 10.1016/j.neuroscience.2013.03.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 01/01/2023]
Abstract
Selected morphological, molecular and functional aspects of various microglial cell populations were characterized in cell cultures established from the forebrains of E18 rat embryos. The mixed primary cortical cultures were maintained for up to 28days using routine culturing techniques when the microglial cells in the culture were not stimulated or immunologically challenged. During culturing, expansion of the microglial cell populations was observed, as evidenced by quantitative assessment of selected monocyte/macrophage/microglial cell-specific markers (human leukocyte antigen (HLA) DP, DQ, DR, CD11b/c and Iba1) via immunocyto- and histochemistry and Western blot analysis. The Iba1 immunoreactivity in Western blots steadily increased about 750-fold, and the number of Iba1-immunoreactive cells rose at least 67-fold between one day in vitro (DIV1) and DIV28. Morphometric analysis on binary (digital) silhouettes of the microglia revealed their evolving morphology during culturing. Microglial cells were mainly ameboid in the early stages of in vitro differentiation, while mixed populations of ameboid and ramified cell morphologies were characteristic of older cultures as the average transformation index (TI) increased from 1.96 (DIV1) to 15.17 (DIV28). Multiple immunofluorescence labeling of selected biomarkers revealed different microglial phenotypes during culturing. For example, while HLA DP, DQ, DR immunoreactivity was present exclusively in ameboid microglia (TI<3) between DIV1 and DIV10, CD11b/c- and Iba1-positive microglial cells were moderately (TI<13) and progressively (TI<81) more ramified, respectively, and always present throughout culturing. Regardless of the age of the cultures, proliferating microglia were Ki67-positive and characterized by low TI values (TI<3). The microglial function was assessed by an in vitro phagocytosis assay. Unstimulated microglia with low TI values were significantly more active in phagocytosing fluorescent microspheres than the ramified forms. In vitro studies on microglial population dynamics combined with phenotypic characterization can be of importance when different in vivo pathophysiological situations are modeled in vitro.
Collapse
Affiliation(s)
- M Szabo
- Department of Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
40
|
Induction of vascular endothelial growth factor receptor-3 expression in perivascular cells of the ischemic core following focal cerebral ischemia in rats. Acta Histochem 2013; 115:170-7. [PMID: 22771250 DOI: 10.1016/j.acthis.2012.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 06/16/2012] [Accepted: 06/18/2012] [Indexed: 01/02/2023]
Abstract
Vascular endothelial growth factor receptor (VEGFR)-3, a receptor for VEGF-C and VEGF-D, has recently been reported to be induced within vessel-like structures in the ischemic brain. The purpose of the present study was to characterize and define further the cellular phenotypes of vascular-associated cells that manifest induced VEGFR-3 expression in a rat model of ischemic stroke. Vessel-associated cells expressing VEGFR-3 were found to be perivascular astrocytes in the peri-infarct region, whereas in the ischemic core, where astrocytes had virtually disappeared, induction of VEGFR-3 mRNA and protein was still prominent in vascular structures 3-7 days after reperfusion. VEGFR-3 and nestin expression were colocated in almost all cells associated with the vasculature in the ischemic core, and most (~82%) of the VEGFR-3/nestin double-labeled cells were proliferative. A subpopulation of these VEGFR-3-expressing cells appeared to be included in two immunophenotypically distinct perivascular cells: NG2-positive pericytes and ED2- or OX6-perivascular macrophages. However, most of these cells did not show markers for vasculature-associated cell types such as endothelial cells, microglia/macrophages, and smooth muscle cells. Thus, our data indicated that vasculature-associated VEGFR-3-expressing cells in the ischemic core may represent a heterogeneous population of cells with functional diversity, rather than a uniform cell type.
Collapse
|
41
|
Characterization of nestin expression and vessel association in the ischemic core following focal cerebral ischemia in rats. Cell Tissue Res 2012; 351:383-95. [DOI: 10.1007/s00441-012-1538-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/23/2012] [Indexed: 12/23/2022]
|
42
|
D’Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K. Brain dendritic cells: biology and pathology. Acta Neuropathol 2012; 124:599-614. [PMID: 22825593 PMCID: PMC3700359 DOI: 10.1007/s00401-012-1018-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DC) are the professional antigen-presenting cells of the immune system. In their quiescent and mature form, the presentation of self-antigens by DC leads to tolerance; whereas, antigen presentation by mature DC, after stimulation by pathogen-associated molecular patterns, leads to the onset of antigen-specific immunity. DC have been found in many of the major organs in mammals (e.g. skin, heart, lungs, intestines and spleen); while the brain has long been considered devoid of DC in the absence of neuroinflammation. Consequently, microglia, the resident immune cell of the brain, have been charged with many functional attributes commonly ascribed to DC. Recent evidence has challenged the notion that DC are either absent or minimal players in brain immune surveillance. This review will discuss the recent literature examining DC involvement within both the young and aged steady-state brain. We will also examine DC contributions during various forms of neuroinflammation resulting from neurodegenerative autoimmune disease, injury, and CNS infections. This review also touches upon DC trafficking between the central nervous system and peripheral immune compartments during viral infections, the new molecular technologies that could be employed to enhance our current understanding of brain DC ontogeny, and some potential therapeutic uses of DC within the CNS.
Collapse
Affiliation(s)
- Paul M. D’Agostino
- The Laboratories of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA
| | | | - Niroshana Anandasabapathy
- The Laboratories of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Karen Bulloch
- The Laboratories of Neuroendocrinology, The Rockefeller University, New York, NY 10065, USA. The Laboratories of Cellular Physiology and Immunology, The Rockefeller University, New York, NY 10065, USA. The Laboratories of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Neuroimmunology and Inflammation Program, The Rockefeller University, 1230 York Avenue, Box 165, New York, NY 10065, USA
| |
Collapse
|
43
|
Abstract
The CNS, which consists of the brain and spinal cord, is continuously monitored by resident microglia and blood-borne immune cells such as macrophages, dendritic cells and T cells to detect for damaging agents that would disrupt homeostasis and optimal functioning of these vital organs. Further, the CNS must balance between vigilantly detecting for potentially harmful factors and resolving any immunological responses that in themselves can create damage if left unabated. We discuss the physiological roles of the immune sentinels that patrol the CNS, the molecular markers that underlie their surveillance duties, and the consequences of interrupting their functions following injury and infection by viruses such as JC virus, human immunodeficiency virus, herpes simplex virus and West Nile virus.
Collapse
|
44
|
Coureuil M, Join-Lambert O, Lécuyer H, Bourdoulous S, Marullo S, Nassif X. Mechanism of meningeal invasion by Neisseria meningitidis. Virulence 2012; 3:164-72. [PMID: 22366962 PMCID: PMC3396695 DOI: 10.4161/viru.18639] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The blood-cerebrospinal fluid barrier physiologically protects the meningeal spaces from blood-borne bacterial pathogens, due to the existence of specialized junctional interendothelial complexes. Few bacterial pathogens are able to reach the subarachnoidal space and among those, Neisseria meningitidis is the one that achieves this task the most constantly when present in the bloodstream. Meningeal invasion is a consequence of a tight interaction of meningococci with brain endothelial cells. This interaction, mediated by the type IV pili, is responsible for the formation of microcolonies on the apical surface of the cells. This interaction is followed by the activation of signaling pathways in the host cells leading to the formation of endothelial docking structures resembling those elicited by the interaction of leukocytes with endothelial cells during extravasation. The consequence of these bacterial-induced signaling events is the recruitment of intercellular junction components in the docking structure and the subsequent opening of the intercellular junctions.
Collapse
|
45
|
Salgado C, Vilson F, Miller NR, Bernstein SL. Cellular inflammation in nonarteritic anterior ischemic optic neuropathy and its primate model. ACTA ACUST UNITED AC 2012; 129:1583-91. [PMID: 22159678 DOI: 10.1001/archophthalmol.2011.351] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVE To correlate potential inflammatory responses in nonarteritic anterior ischemic optic neuropathy (NAION) with a lesion possessing many physiologic and histologic similarities from a model of nonhuman primate NAION (pNAION). METHODS Using immunohistochemistry and confocal microscopic analysis, we evaluated the relative numbers of inflammatory cell types in the single available clinical specimen of early NAION (21 days after event). We correlated this with the temporal inflammatory response occurring in optic nerve tissue at different times following pNAION induction. RESULTS In pNAION, there is a previously unsuspected infiltration of polymorphonuclear leukocytes occurring almost immediately after infarct induction, followed by invasion of ED1+ extrinsic macrophages, which peaks 5 weeks after infarct. Intrinsic microglia accumulate up to 70 days after induction in the area of primary axonal loss. The analyzed human NAION specimen was similar to 21-day pNAION tissue, with extrinsic macrophages and intrinsic microglial cells in the region of focal axon loss. CONCLUSIONS Cellular inflammation plays a major early role following white-matter (optic nerve) infarct, with both polymorphonuclear leukocyte and macrophage function involved in debris elimination and tissue remodeling. The optic nerve in NAION and its primate model are associated with early cellular inflammation, previously unsuspected, that may contribute to postinfarct optic nerve damage.
Collapse
Affiliation(s)
- Cristian Salgado
- Division of Neuro-Ophthalmology, Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
46
|
Barua NU, Bienemann AS, Hesketh S, Wyatt MJ, Castrique E, Love S, Gill SS. Intrastriatal convection-enhanced delivery results in widespread perivascular distribution in a pre-clinical model. Fluids Barriers CNS 2012; 9:2. [PMID: 22264361 PMCID: PMC3274474 DOI: 10.1186/2045-8118-9-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/20/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Convection-enhanced delivery (CED), a direct method for drug delivery to the brain through intraparenchymal microcatheters, is a promising strategy for intracerebral pharmacological therapy. By establishing a pressure gradient at the tip of the catheter, drugs can be delivered in uniform concentration throughout a large volume of interstitial fluid. However, the variables affecting perivascular distribution of drugs delivered by CED are not fully understood. The aim of this study was to determine whether the perivascular distribution of solutes delivered by CED into the striatum of rats is affected by the molecular weight of the infused agent, by co-infusion of vasodilator, alteration of infusion rates or use of a ramping regime. We also wanted to make a preliminary comparison of the distribution of solutes with that of nanoparticles. METHODS We analysed the perivascular distribution of 4, 10, 20, 70, 150 kDa fluorescein-labelled dextran and fluorescent nanoparticles at 10 min and 3 h following CED into rat striatum. We investigated the effect of local vasodilatation, slow infusion rates and ramping on the perivascular distribution of solutes. Co-localisation with perivascular basement membranes and vascular endothelial cells was identified by immunohistochemistry. The uptake of infusates by perivascular macrophages was quantified using stereological methods. RESULTS Widespread perivascular distribution and macrophage uptake of fluorescein-labelled dextran was visible 10 min after cessation of CED irrespective of molecular weight. However, a significantly higher proportion of perivascular macrophages had taken up 4, 10 and 20 kDa fluorescein-labelled dextran than 150 kDa dextran (p < 0.05, ANOVA). Co-infusion with vasodilator, slow infusion rates and use of a ramping regime did not alter the perivascular distribution. CED of fluorescent nanoparticles indicated that particles co-localise with perivascular basement membranes throughout the striatum but, unlike soluble dextrans, are not taken up by perivascular macrophages after 3 h. CONCLUSIONS This study suggests that widespread perivascular distribution and interaction with perivascular macrophages is likely to be an inevitable consequence of CED of solutes. The potential consequences of perivascular distribution of therapeutic agents, and in particular cytotoxic chemotherapies, delivered by CED must be carefully considered to ensure safe and effective translation to clinical trials.
Collapse
Affiliation(s)
- Neil U Barua
- Department of Neurosurgery, Frenchay Hospital, Bristol, BS16 1LE, UK.
| | | | | | | | | | | | | |
Collapse
|
47
|
Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease. J Neurosci 2011; 31:11159-71. [PMID: 21813677 DOI: 10.1523/jneurosci.6209-10.2011] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mononuclear phagocytes are important modulators of Alzheimer's disease (AD), but the specific functions of resident microglia, bone marrow-derived mononuclear cells, and perivascular macrophages have not been resolved. To elucidate the spatiotemporal roles of mononuclear phagocytes during disease, we targeted myeloid cell subsets from different compartments and examined disease pathogenesis in three different mouse models of AD (APP(swe/PS1), APP(swe), and APP23 mice). We identified chemokine receptor 2 (CCR2)-expressing myeloid cells as the population that was preferentially recruited to β-amyloid (Aβ) deposits. Unexpectedly, AD brains with dysfunctional microglia and devoid of parenchymal bone marrow-derived phagocytes did not show overt changes in plaque pathology and Aβ load. In contrast, restriction of CCR2 deficiency to perivascular myeloid cells drastically impaired β-amyloid clearance and amplified vascular Aβ deposition, while parenchymal plaque deposition remained unaffected. Together, our data advocate selective functions of CCR2-expressing myeloid subsets, which could be targeted specifically to modify disease burden in AD.
Collapse
|
48
|
Prinz M, Priller J, Sisodia SS, Ransohoff RM. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat Neurosci 2011; 14:1227-35. [DOI: 10.1038/nn.2923] [Citation(s) in RCA: 514] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Thompson KA, Cherry CL, Bell JE, McLean CA. Brain cell reservoirs of latent virus in presymptomatic HIV-infected individuals. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1623-9. [PMID: 21871429 DOI: 10.1016/j.ajpath.2011.06.039] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/13/2011] [Accepted: 06/28/2011] [Indexed: 10/17/2022]
Abstract
We detected HIV-1 DNA in pure populations of perivascular macrophages, parenchymal microglia, and astrocytes, isolated using laser microdissection from brain tissue of five untreated individuals who died in the presymptomatic stage of infection from non-HIV causes. HIV-1 DNA was detected in the three cell populations, most consistently in perivascular macrophages, without evidence of productive infection. The percentage of PCR reactions detecting HIV-1 DNA in perivascular macrophages correlated inversely with peripheral blood CD4 counts. These findings demonstrate that brain cell reservoirs of latent HIV-1 exist before pathological HIV encephalitis and suggest that perivascular macrophage trafficking of latent virus into the brain increases with immunosuppression.
Collapse
Affiliation(s)
- Katherine A Thompson
- Pathology Research Laboratory, Anatomical Pathology Unit, The Alfred Hospital, Department of Medicine, Monash University, Melbourne, Australia
| | | | | | | |
Collapse
|
50
|
Müller M, Leonhard C, Krauthausen M, Wacker K, Kiefer R. On the longevity of resident endoneurial macrophages in the peripheral nervous system: a study of physiological macrophage turnover in bone marrow chimeric mice. J Peripher Nerv Syst 2010; 15:357-65. [DOI: 10.1111/j.1529-8027.2010.00295.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|