1
|
Sasaki S, Hideyama T, Kwak S. Unique nuclear vacuoles in the motor neurons of conditional ADAR2-knockout mice. Brain Res 2014; 1550:36-46. [PMID: 24440630 DOI: 10.1016/j.brainres.2014.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/17/2022]
Abstract
A reduction in adenosine deaminase acting on RNA 2 (ADAR2) activity causes the death of spinal motor neurons specifically via the GluA2 Q/R site-RNA editing failure in sporadic amyotrophic lateral sclerosis (ALS). We studied, over time, the spinal cords of ADAR2-knockout mice, which are the mechanistic model mice for sporadic ALS, using homozygous ADAR2(flox/flox)/VAChT-Cre.Fast (AR2), homozygous ADAR2(flox/flox)/VAChT-Cre.Slow (AR2Slow), and heterozygous ADAR2(flox/+)/VAChT-Cre.Fast (AR2H) mice. The conditional ADAR2-knockout mice were divided into 3 groups by stage: presymptomatic (AR2H mice), early symptomatic (AR2 mice, AR2H mice) and late symptomatic (AR2Slow mice). Light-microscopically, some motor neurons in AR2 and AR2H mice (presymptomatic) showed simple neuronal atrophy and astrogliosis, and AR2H (early symptomatic) and AR2Slow mice often showed vacuoles predominantly in motor neurons. The number of vacuole-bearing anterior horn neurons decreased with the loss of anterior horn neurons in AR2H mice after 40 weeks of age. Electron-microscopically, in AR2 mice, while the cytoplasm of normal-looking motor neurons was almost always normal-appearing, the interior of dendrites was frequently loose and disorganized. In AR2H and AR2Slow mice, large vacuoles without a limiting membrane were observed in the anterior horns, preferentially in the nuclei of motor neurons, astrocytes and oligodendrocytes. Nuclear vacuoles were not observed in AR2res (ADAR2(flox/flox)/VAChT-Cre.Fast/GluR-B(R/R)) mice, in which motor neurons express edited GluA2 in the absence of ADAR2. These findings suggest that ADAR2-reduction is associated with progressive deterioration of nuclear architecture, resulting in vacuolated nuclei due to a Ca(2+)-permeable AMPA receptor-mediated mechanism.
Collapse
Affiliation(s)
- Shoichi Sasaki
- Department of Neurology, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan.
| | - Takuto Hideyama
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Japan
| | - Shin Kwak
- Department of Neurology, Graduate School of Medicine, University of Tokyo, Japan; Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, Japan; Clinical Research Center for Medicine, International University of Health and Welfare, Japan
| |
Collapse
|
2
|
Fakira AK, Gaspers LD, Thomas AP, Li H, Jain MR, Elkabes S. Purkinje cell dysfunction and delayed death in plasma membrane calcium ATPase 2-heterozygous mice. Mol Cell Neurosci 2012; 51:22-31. [PMID: 22789621 DOI: 10.1016/j.mcn.2012.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/07/2012] [Accepted: 07/02/2012] [Indexed: 12/19/2022] Open
Abstract
Purkinje cell (PC) dysfunction or death has been implicated in a number of disorders including ataxia, autism and multiple sclerosis. Plasma membrane calcium ATPase 2 (PMCA2), an important calcium (Ca(2+)) extrusion pump that interacts with synaptic signaling complexes, is most abundantly expressed in PCs compared to other neurons. Using the PMCA2 heterozygous mouse as a model, we investigated whether a reduction in PMCA2 levels affects PC function. We focused on Ca(2+) signaling and the expression of glutamate receptors which play a key role in PC function including synaptic plasticity. We found that the amplitude of depolarization and 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid receptor (AMPAR)-mediated Ca(2+) transients are significantly higher in cultured PMCA2(+/-) PCs than in PMCA2(+/+) PCs. This is due to increased Ca(2+) influx, since P/Q type voltage-gated Ca(2+) channel (VGCC) expression was more pronounced in PCs and cerebella of PMCA2(+/-) mice and VGCC blockade prevented the elevation in amplitude. Neuronal nitric oxide synthase (nNOS) activity was higher in PMCA2(+/-) cerebella and inhibition of nNOS or the soluble guanylate cyclase (sGC)-cyclic guanosine monophosphate (cGMP) pathway, which mediates nitric oxide (NO) signaling, reduced the amplitude of Ca(2+) transients in PMCA2(+/-) PCs, in vitro. In addition, there was an age-dependent decrease in metabotropic glutamate receptor 1 (mGluR1) and AMPA receptor subunit GluR2/3 transcript and protein levels at 8 weeks of age. These changes were followed by PC loss in the 20-week-old PMCA2(+/-) mice. Our studies highlight the importance of PMCA2 in Ca(2+) signaling, glutamate receptor expression and survival of Purkinje cells.
Collapse
Affiliation(s)
- Amanda K Fakira
- Department of Neurological Surgery, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ, USA
| | | | | | | | | | | |
Collapse
|
3
|
Had-Aissouni L. Toward a new role for plasma membrane sodium-dependent glutamate transporters of astrocytes: maintenance of antioxidant defenses beyond extracellular glutamate clearance. Amino Acids 2011; 42:181-97. [DOI: 10.1007/s00726-011-0863-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/17/2011] [Indexed: 01/17/2023]
|
4
|
Moreira TJTP, Pierre K, Maekawa F, Repond C, Cebere A, Liljequist S, Pellerin L. Enhanced cerebral expression of MCT1 and MCT2 in a rat ischemia model occurs in activated microglial cells. J Cereb Blood Flow Metab 2009; 29:1273-83. [PMID: 19401710 DOI: 10.1038/jcbfm.2009.50] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monocarboxylate transporters (MCTs) are essential for the use of lactate, an energy substrate known to be overproduced in brain during an ischemic episode. The expression of MCT1 and MCT2 was investigated at 48 h of reperfusion from focal ischemia induced by unilateral extradural compression in Wistar rats. Increased MCT1 mRNA expression was detected in the injured cortex and hippocampus of compressed animals compared to sham controls. In the contralateral, uncompressed hemisphere, increases in MCT1 mRNA level in the cortex and MCT2 mRNA level in the hippocampus were noted. Interestingly, strong MCT1 and MCT2 protein expression was found in peri-lesional macrophages/microglia and in an isolectin B4+/S100beta+ cell population in the corpus callosum. In vitro, MCT1 and MCT2 protein expression was observed in the N11 microglial cell line, whereas an enhancement of MCT1 expression by tumor necrosis factor-alpha (TNF-alpha) was shown in these cells. Modulation of MCT expression in microglia suggests that these transporters may help sustain microglial functions during recovery from focal brain ischemia. Overall, our study indicates that changes in MCT expression around and also away from the ischemic area, both at the mRNA and protein levels, are a part of the metabolic adaptations taking place in the brain after ischemia.
Collapse
|
5
|
Newcombe J, Uddin A, Dove R, Patel B, Turski L, Nishizawa Y, Smith T. Glutamate receptor expression in multiple sclerosis lesions. Brain Pathol 2007; 18:52-61. [PMID: 17924980 DOI: 10.1111/j.1750-3639.2007.00101.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Blockade of receptors for the excitatory neurotransmitter glutamate ameliorates neurological clinical signs in models of the CNS inflammatory demyelinating disease multiple sclerosis (MS). To investigate whether glutamate excitoxicity may play a role in MS pathogenesis, the cellular localization of glutamate and its receptors, transporters and enzymes was examined. Expression of glutamate receptor (GluR) 1, a Ca(++)-permeable ionotropic AMPA receptor subunit, was up-regulated on oligodendrocytes in active MS lesion borders, but Ca(++)-impermeable AMPA GluR2 subunit levels were not increased. Reactive astrocytes in active plaques expressed AMPA GluR3 and metabotropic mGluR1, 2/3 and 5 receptors and the GLT-1 transporter, and a subpopulation was immunostained with glutamate antibodies. Activated microglia and macrophages were immunopositive for GluR2, GluR4 and NMDA receptor subunit 1. Kainate receptor GluR5-7 immunostaining showed endothelial cells and dystrophic axons. Astrocyte and macrophage populations expressed glutamate metabolizing enzymes and unexpectedly the EAAC1 transporter, which may play a role in glutamate uptake in lesions. Thus, reactive astrocytes in MS white matter lesions are equipped for a protective role in sequestering and metabolizing extracellular glutamate. However, they may be unable to maintain glutamate at levels low enough to protect oligodendrocytes rendered vulnerable to excitotoxic damage because of GluR1 up-regulation.
Collapse
Affiliation(s)
- Jia Newcombe
- Department of Neuroinflammation, Institute of Neurology, University College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
6
|
Joshi SG, Kovács AD. Rickettsia rickettsii infection causes apoptotic death of cultured cerebellar granule neurons. J Med Microbiol 2007; 56:138-141. [PMID: 17172530 DOI: 10.1099/jmm.0.46826-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Suresh G Joshi
- Hematology and Oncology Unit, Department of Medicine, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Attila D Kovács
- Department of Microbiology and Immunology, University of Rochester Medical Center, School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Pickering C, Gustafsson L, Cebere A, Nylander I, Liljequist S. Repeated maternal separation of male Wistar rats alters glutamate receptor expression in the hippocampus but not the prefrontal cortex. Brain Res 2006; 1099:101-8. [PMID: 16784730 DOI: 10.1016/j.brainres.2006.04.136] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/19/2006] [Accepted: 04/20/2006] [Indexed: 11/20/2022]
Abstract
Stress early in life puts the individual at a greater risk for developing mental disorders in adulthood. The animal model of maternal separation involves daily removal of pups from their mother over the early postnatal period and leads to several behavioral deficits in adults. Since this period corresponds to a time of extensive developmental changes in the glutamatergic system, glutamate receptor mRNA expression was studied in the hippocampus and prefrontal cortex. Male Wistar rats were either separated from their mother for 15 min (MS15 or 'handling') or 360 min (MS360) once a day from pnd 1-21 and glutamate receptor expression levels were measured at 25 weeks of age using real-time RT-PCR analysis. A third group of animal facility reared (AFR) rats was included as a control for the handling group. In the hippocampus, mRNA expression of NMDA NR2B and AMPA GluR1 and GluR2 receptors was significantly lower in MS360 rats relative to MS15. In addition, expression of the glutamate transporter GLAST was increased in MS360 relative to MS15. No differences were observed for AFR rats relative to MS15, which indicates that the hippocampal effects were not a result of handling or maternal care. For the prefrontal cortex, no difference in mRNA expression was observed for NMDA NR2A and NR2B or AMPA GluR1 and GluR2. These findings suggest that prolonged maternal separation produces neuroadaptive changes in the hippocampus that may, at least partially, account for the behavioral deficits previously observed in this animal model.
Collapse
Affiliation(s)
- Chris Pickering
- Department of Clinical Neuroscience, Division of Drug Dependence Research, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
8
|
Sui Z, Kovács AD, Maggirwar SB. Recruitment of active glycogen synthase kinase-3 into neuronal lipid rafts. Biochem Biophys Res Commun 2006; 345:1643-8. [PMID: 16735023 DOI: 10.1016/j.bbrc.2006.05.087] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 05/13/2006] [Indexed: 01/19/2023]
Abstract
Glycogen synthase kinase (GSK)-3beta has emerged as a key molecule that regulates neuronal apoptosis. To examine the molecular mechanism(s) through which GSK-3beta regulates this process, we studied the subcellular localization of GSK-3beta following exposure of the cells to well-characterized apoptotic stimuli. Here, we report that the induction of apoptosis by withdrawal of serum and potassium triggers dephosphorylation of GSK-3beta at serine 9 and subsequent translocation of these molecules into neuronal lipid raft microdomains. Inhibition of GSK-3beta by small molecule inhibitors blocks specific phosphorylation of lipid raft associated protein Tau. Consistent with the notion that the lipid raft domains may serve as a platform for the cellular signaling complexes, disruption of lipid rafts protected neurons from apoptosis induced by withdrawal of serum and potassium as well as by HIV-1 Tat. Our observations reveal novel interaction of GSK-3beta and raft domains, and suggest that such interaction could contribute to neuronal apoptosis.
Collapse
Affiliation(s)
- Ziye Sui
- Interdepartmental Program in Neuroscience, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | |
Collapse
|
9
|
Jin N, Kovács AD, Sui Z, Dewhurst S, Maggirwar SB. Opposite effects of lithium and valproic acid on trophic factor deprivation-induced glycogen synthase kinase-3 activation, c-Jun expression and neuronal cell death. Neuropharmacology 2005; 48:576-83. [PMID: 15755485 DOI: 10.1016/j.neuropharm.2004.11.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 10/18/2004] [Accepted: 11/27/2004] [Indexed: 12/25/2022]
Abstract
Recent studies demonstrate that lithium and valproic acid (VPA), two commonly used mood-stabilizing drugs, have neuroprotective effects against a variety of insults. Inhibition of the proapoptotic enzyme, glycogen synthase kinase-3 (GSK-3), has been suggested to be the mechanism of action of neuroprotection for both drugs. In this study, we tested if lithium and VPA could protect cultured cerebellar granule neurons (CGNs) from GSK-3-mediated apoptosis induced by trophic factor withdrawal (serum/potassium deprivation). Both lithium and indirubin, a specific GSK-3 inhibitor, protected CGNs in a dose-dependent manner. In contrast, VPA did not provide any neuroprotection and even potentiated cell death. Immunoblot analysis revealed that lithium inhibited the trophic factor deprivation-induced activation of GSK-3 as well as the in vivo phosphorylation of the microtubule-associated protein Tau on Ser199, a specific target site for GSK-3. Under these same experimental conditions, however, VPA neither inhibited GSK-3 activation nor hindered GSK-3 mediated Tau phosphorylation. Furthermore, in accordance with their effects on neuronal survival, lithium prevented the induction of c-Jun expression in trophic factor-deprived CGNs, whereas VPA potentiated it. Collectively, these results show that VPA is not a universal inhibitor of neuronal GSK-3, and that instead of being neuroprotective, VPA can even exacerbate neuronal death under some conditions.
Collapse
Affiliation(s)
- Ning Jin
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
10
|
Kovács AD, Chakraborty-Sett S, Ramirez SH, Sniderhan LF, Williamson AL, Maggirwar SB. Mechanism of NF-kappaB inactivation induced by survival signal withdrawal in cerebellar granule neurons. Eur J Neurosci 2004; 20:345-52. [PMID: 15233744 DOI: 10.1111/j.1460-9568.2004.03493.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activity of the transcription factor nuclear factor-kappaB (NF-kappaB) has been shown to be necessary for maintaining neuronal viability. In cultured rat cerebellar granule neurons, trophic factor withdrawal induces NF-kappaB inactivation, resulting in cell death. The exact mechanism of this inactivation, however, has not been revealed. Here we report that trophic factor deprivation in cultured cerebellar granule neurons leads to a rapid and sustained increase in the level of IkappaBalpha and IkappaBbeta, the inhibitory proteins of NF-kappaB, causing prolonged NF-kappaB inactivation. Transient NF-kappaB activation resulting in new IkappaBalpha mRNA and protein synthesis gives rise to the rapid increase of IkappaBalpha level. The importance of elevated IkappaB level in neuronal apoptosis was confirmed in transfection experiments. Ectopic expression of a stabilized form of IkappaBalpha protein promoted neuronal death. Our findings suggest a novel mode of initiation of neuronal apoptosis wherein survival signal withdrawal induces NF-kappaB to lethally turn itself off.
Collapse
Affiliation(s)
- Attila D Kovács
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
11
|
Kundrotiene J, Cebers G, Wägner A, Liljequist S. Antagonist, CP-101,606, Enhances the Functional Recovery The NMDA NR2B Subunit-Selective Receptor and Reduces Brain Damage after Cortical Compression-Induced Brain Ischemia. J Neurotrauma 2004; 21:83-93. [PMID: 14987468 DOI: 10.1089/089771504772695977] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Using a novel in vivo model for cerebral ischemia produced by short-lasting compression of a well-defined brain area of sensorimotor cortex we studied neuroprotective effects of the NMDA NR2B subunit selective antagonist, CP-101,606, in Sprague-Dawley rats. Cortical compression for 30 min produced a consistent and highly reproducible functional impairment, that is paresis of contralateral hind and fore limbs. The neurological deficit was accompanied by marked brain damage in cerebral cortex, hippocampus and thalamus as identified by Fluoro-Jade, a marker of general neuronal cell death. Using a daily performed beam walking test it was shown that untreated animals recovered from their functional impairment within 5-7 days following surgery. Intravenous administration of increasing doses (1, 5, 10, 20 mg/kg) of the NMDA NR2B subunit receptor specific antagonist, CP-101,606, dose-dependently improved the rate of functional recovery and protected against the ischemic brain damage in cerebral cortex, hippocampus, and thalamus as identified 2 days after the ischemic insult. Based upon these results, we conclude that NMDA NR2B receptor subunits represent potential targets to reduce not only the functional deficits, but also neuronal death in cortex and several midbrain regions produced by moderate, transient, cerebral ischemia.
Collapse
Affiliation(s)
- Jurgita Kundrotiene
- Department of Clinical Neuroscience, Division of Drug Dependence, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
12
|
Ré DB, Boucraut J, Samuel D, Birman S, Kerkerian-Le Goff L, Had-Aissouni L. Glutamate transport alteration triggers differentiation-state selective oxidative death of cultured astrocytes: a mechanism different from excitotoxicity depending on intracellular GSH contents. J Neurochem 2003; 85:1159-70. [PMID: 12753075 DOI: 10.1046/j.1471-4159.2003.01752.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent evidence has been provided for astrocyte degeneration in experimental models of neurodegenerative insults associated with glutamate transport alteration. To determine whether astrocyte death can directly result from altered glutamate transport, we here investigated the effects of L-trans-pyrrolidine-2,4-dicarboxylate (PDC) on undifferentiated or differentiated cultured rat striatal astrocytes. PDC induced death of differentiated astrocytes without affecting undifferentiated astrocyte viability. Death of differentiated astrocytes was also triggered by another substrate inhibitor but not by blockers of glutamate transporters. The PDC-induced death was delayed and apoptotic, and death rate was dose and treatment duration-dependent. Although preceded by extracellular glutamate increase, this death was not mediated through glutamate receptor stimulation, as antagonists did not provide protection. It involves oxidative stress, as a decrease in glutathione contents and a dramatic raise in reactive oxygen species preceded cell loss, and as protection was provided by antioxidants. PDC induced a similar percentage of GSH depletion in the undifferentiated astrocytes, but only a slight increase in reactive oxygen species. Interestingly, undifferentiated astrocytes exhibited twofold higher basal GSH content compared with the differentiated ones, and depleting their GSH content was found to render them susceptible to PDC. Altogether, these data demonstrate that basal GSH content is a critical factor of astrocyte vulnerability to glutamate transport alteration with possible insights onto concurrent death of astrocytes and gliosis in neurodegenerative insults.
Collapse
Affiliation(s)
- Diane B Ré
- Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, CNRS FRE2131, Marseille, France
| | | | | | | | | | | |
Collapse
|
13
|
Pang ST, Dillner K, Wu X, Pousette A, Norstedt G, Flores-Morales A. Gene expression profiling of androgen deficiency predicts a pathway of prostate apoptosis that involves genes related to oxidative stress. Endocrinology 2002; 143:4897-906. [PMID: 12446617 DOI: 10.1210/en.2002-220327] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Androgens are critical for prostate development, growth, and functions. In general, they support proliferation and prevent cell death of prostatic epithelial cells. Here, we studied changes of gene expression after castration and testosterone replacement therapy in the rat ventral prostate using cDNA microarrays analysis. We could identify 230 genes that were regulated in either experimental condition. Using hierarchical clustering analysis, different groups of genes could be detected according to their expression pattern. This enabled us to distinguish the putative androgen-responsive genes from the secondary-responsive ones. Among genes that altered during castration and testosterone replacement, a set of oxidative stress-related genes, including thioredoxin, peroxiredoxin 5, superoxide dismutase 2, glutathione peroxidase 1, selenoprotein 15 kDa, microsomal glutathione-S-transferase, glutathione reductase, and epoxide hydrolase, were changed by castration. We hypothesize that modulation of redox status can be a factor of relevance in androgen withdrawal-induced prostate apoptosis. In selective cases, quantitative RT-PCR was used to confirm changes in gene expression. Immunohistochemistry was performed to detect thioredoxin and ezrin. Both of these were detected in the prostate and seem to be regulated in a similar manner as shown by gene expression analysis. In conclusion, gene expression profiling provides a unique opportunity for understanding the molecular mechanisms of androgen actions in prostate gland.
Collapse
Affiliation(s)
- See-Tong Pang
- Department of Molecular Medicine, Karolinska Hospital, Karolinska Institute, 171 76 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
14
|
Holmlund U, Cebers G, Dahlfors AR, Sandstedt B, Bremme K, Ekström ES, Scheynius A. Expression and regulation of the pattern recognition receptors Toll-like receptor-2 and Toll-like receptor-4 in the human placenta. Immunology 2002; 107:145-51. [PMID: 12225373 PMCID: PMC1782774 DOI: 10.1046/j.1365-2567.2002.01491.x] [Citation(s) in RCA: 176] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The placenta constitutes a physical and immunological barrier against invading infectious agents and has been suggested to be a pregnancy-specific component of the innate immune system. The aim of this study was to investigate the presence and regulation of Toll-like receptors-2 and -4 (TLR2 and TLR4) in the human placenta, because these receptors are believed to be important for immune responses against pathogens. Twenty-eight placentas from normal term pregnancies were analysed with immunohistochemistry, which showed a strong immunoreactivity for TLR2 and TLR4 in the villous and the intermediate trophoblasts. The regulation of TLR2 and TLR4 by microbial stimulus was assessed by incubating explants of term chorionic villi with zymosan or lipopolysaccharide (LPS) and analysed with real-time reverse transcriptase-polymerase chain reaction. Stimulation with zymosan and LPS readily induced interleukin (IL)-6 and IL-8 cytokine production in the placenta cultures, whereas TLR2 and TLR4 mRNA and protein expression remained at the same high level as in unstimulated explants. These data suggests a novel mechanism for the fetoplacental unit to interact with micro-organisms.
Collapse
Affiliation(s)
- Ulrika Holmlund
- Department of Medicine, Karolinska Hospital and Insitutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|