1
|
Soto-Avellaneda A, Oxford AE, Halla F, Vasquez P, Oe E, Pugel AD, Schoenfeld AM, Tillman MC, Cuevas A, Ortlund EA, Morrison BE. FABP5-binding lipids regulate autophagy in differentiated SH-SY5Y cells. PLoS One 2024; 19:e0300168. [PMID: 38900831 PMCID: PMC11189175 DOI: 10.1371/journal.pone.0300168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 02/22/2024] [Indexed: 06/22/2024] Open
Abstract
The motor features of Parkinson's disease result from loss of dopaminergic neurons in the substantia nigra with autophagy dysfunction being closely linked to this disease. While a large body of work focusing on protein effectors of autophagy has been reported, regulation of autophagy by lipids has garnered far less attention. Therefore, we sought to identify endogenous lipid molecules that act as signaling mediators of autophagy in differentiated SH-SY5Y cells, a commonly used dopaminergic neuron-like cell model. In order to accomplish this goal, we assessed the role of a fatty acid-binding protein (FABP) family member on autophagy due to its function as an intracellular lipid chaperone. We focused specifically upon FABP5 due to its heightened expression in dopaminergic neurons within the substantia nigra and SH-SY5Y cells. Here, we report that knockdown of FABP5 resulted in suppression of autophagy in differentiated SH-SY5Y cells suggesting the possibility of an autophagic role for an interacting lipid. A lipidomic screen of FABP5-interacting lipids uncovered hits that include 5-oxo-eicosatetraenoic acid (5OE) and its precursor metabolite, arachidonic acid (AA). Additionally, other long-chain fatty acids were found to bind FABP5, such as stearic acid (SA), hydroxystearic acid (HSA), and palmitic acid (PA). The addition of 5OE, SA, and HSA but not AA or PA, led to potent inhibition of autophagy in SH-SY5Y cells. To identify potential molecular mechanisms for autophagy inhibition by these lipids, RNA-Seq was performed which revealed both shared and divergent signaling pathways between the lipid-treated groups. These findings suggest a role for these lipids in modulating autophagy through diverse signaling pathways and could represent novel therapeutic targets for Parkinson's disease.
Collapse
Affiliation(s)
| | - Alexandra E. Oxford
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Fabio Halla
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Peyton Vasquez
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Emily Oe
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Anton D. Pugel
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID, United States of America
| | - Alyssa M. Schoenfeld
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| | - Matthew C. Tillman
- Department of Biochemistry, Emory University, Atlanta, GA, United States of America
| | - André Cuevas
- Department of Biochemistry, Emory University, Atlanta, GA, United States of America
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA, United States of America
| | - Brad E. Morrison
- Biomolecular Sciences Ph.D. Program, Boise State University, Boise, ID, United States of America
- Department of Biological Sciences, Boise State University, Boise, ID, United States of America
| |
Collapse
|
2
|
Huang YN, Greig NH, Huang PS, Chiang YH, Hoffer A, Yang CH, Tweedie D, Chen Y, Ou JC, Wang JY. Pomalidomide Improves Motor Behavioral Deficits and Protects Cerebral Cortex and Striatum Against Neurodegeneration Through a Reduction of Oxidative/Nitrosative Damages and Neuroinflammation After Traumatic Brain Injury. Cell Transplant 2024; 33:9636897241237049. [PMID: 38483119 PMCID: PMC10943757 DOI: 10.1177/09636897241237049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 03/18/2024] Open
Abstract
Neuronal damage resulting from traumatic brain injury (TBI) causes disruption of neuronal projections and neurotransmission that contribute to behavioral deficits. Cellular generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) is an early event following TBI. ROS often damage DNA, lipids, proteins, and carbohydrates while RNS attack proteins. The products of lipid peroxidation 4-hydroxynonenal (4-HNE) and protein nitration 3-nitrotyrosine (3-NT) are often used as indicators of oxidative and nitrosative damages, respectively. Increasing evidence has shown that striatum is vulnerable to damage from TBI with a disturbed dopamine neurotransmission. TBI results in neurodegeneration, oxidative stress, neuroinflammation, neuronal apoptosis, and autophagy in the striatum and contribute to motor or behavioral deficits. Pomalidomide (Pom) is a Food and Drug Administration (FDA)-approved immunomodulatory drug clinically used in treating multiple myeloma. We previously showed that Pom reduces neuroinflammation and neuronal death induced by TBI in rat cerebral cortex. Here, we further compared the effects of Pom in cortex and striatum focusing on neurodegeneration, oxidative and nitrosative damages, as well as neuroinflammation following TBI. Sprague-Dawley rats subjected to a controlled cortical impact were used as the animal model of TBI. Systemic administration of Pom (0.5 mg/kg, intravenous [i.v.]) at 5 h post-injury alleviated motor behavioral deficits, contusion volume at 24 h after TBI. Pom alleviated TBI-induced neurodegeneration stained by Fluoro-Jade C in both cortex and striatum. Notably, Pom treatment reduces oxidative and nitrosative damages in cortex and striatum and is more efficacious in striatum (93% reduction in 4-HNE-positive and 84% reduction in 3-NT-positive neurons) than in cerebral cortex (42% reduction in 4-HNE-positive and 55% reduction in 3-NT-positive neurons). In addition, Pom attenuated microgliosis, astrogliosis, and elevations of proinflammatory cytokines in cortical and striatal tissue. We conclude that Pom may contribute to improved motor behavioral outcomes after TBI through targeting oxidative/nitrosative damages and neuroinflammation.
Collapse
Affiliation(s)
- Ya-Ni Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan City
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Pen-Sen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei
| | - Yung-Hsiao Chiang
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei
- Neuroscience Research Center, Taipei Medical University, Taipei
| | - Alan Hoffer
- Department of Neurosurgery, University Hospitals of Cleveland, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Chih-Hao Yang
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ying Chen
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei
| | - Ju-Chi Ou
- Neuroscience Research Center, Taipei Medical University, Taipei
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei
- Neuroscience Research Center, Taipei Medical University, Taipei
| |
Collapse
|
3
|
Wenker SD, Farias MI, Gradaschi V, Garcia C, Beauquis J, Leal MC, Ferrari C, Zeng X, Pitossi FJ. Microglia-secreted TNF-α affects differentiation efficiency and viability of pluripotent stem cell-derived human dopaminergic precursors. PLoS One 2023; 18:e0263021. [PMID: 37751438 PMCID: PMC10521980 DOI: 10.1371/journal.pone.0263021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 08/19/2023] [Indexed: 09/28/2023] Open
Abstract
Disease is a neurodegenerative disorder characterised by the progressive loss of dopaminergic cells of the substantia nigra pars compacta. Even though successful transplantation of dopamine-producing cells into the striatum exhibits favourable effects in animal models and clinical trials; transplanted cell survival is low. Since every transplant elicits an inflammatory response which can affect cell survival and differentiation, we aimed to study in vivo and in vitro the impact of the pro-inflammatory environment on human dopaminergic precursors. We first observed that transplanted human dopaminergic precursors into the striatum of immunosuppressed rats elicited an early and sustained activation of astroglial and microglial cells after 15 days' post-transplant. This long-lasting response was associated with Tumour necrosis factor alpha expression in microglial cells. In vitro, conditioned media from activated BV2 microglial cells increased cell death, decreased Tyrosine hydroxylase-positive cells and induced morphological alterations on human neural stem cells-derived dopaminergic precursors at two differentiation stages: 19 days and 28 days. Those effects were ameliorated by inhibition of Tumour necrosis factor alpha, a cytokine which was previously detected in vivo and in conditioned media from activated BV-2 cells. Our results suggest that a pro-inflammatory environment is sustained after transplantation under immunosuppression, providing a window of opportunity to modify this response to increase transplant survival and differentiation. In addition, our data show that the microglia-derived pro-inflammatory microenvironment has a negative impact on survival and differentiation of dopaminergic precursors. Finally, Tumour necrosis factor alpha plays a key role in these effects, suggesting that this cytokine could be an interesting target to increase the efficacy of human dopaminergic precursors transplantation in Parkinson's Disease.
Collapse
Affiliation(s)
| | | | | | - Corina Garcia
- Fundación Instituto Leloir—IIBBA-CONICET, Buenos Aires, Argentina
| | - Juan Beauquis
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Carina Ferrari
- Fundación Instituto Leloir—IIBBA-CONICET, Buenos Aires, Argentina
| | | | | |
Collapse
|
4
|
Brady LJ, Erickson KR, Lucerne KE, Osman A, Kiraly DD, Calipari ES. Granulocyte colony-stimulating factor (G-CSF) enhances cocaine effects in the nucleus accumbens via a dopamine release-based mechanism. Psychopharmacology (Berl) 2021; 238:3499-3509. [PMID: 34487190 PMCID: PMC9056006 DOI: 10.1007/s00213-021-05967-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Cocaine use disorder is associated with alterations in immune function including altered expression of multiple peripheral cytokines in humans-several of which correlate with drug use. Individuals suffering from cocaine use disorder show altered immune system responses to drug-associated cues, highlighting the interaction between the brain and immune system as a critical factor in the development and expression of cocaine use disorder. We have previously demonstrated in animal models that cocaine use upregulates the expression of granulocyte colony-stimulating factor (G-CSF)-a pleiotropic cytokine-in the serum and the nucleus accumbens (NAc). G-CSF signaling has been causally linked to behavioral responses to cocaine across multiple behavioral domains. The goal of this study was to define whether increases in G-CSF alter the pharmacodynamic effects of cocaine on the dopamine system and whether this occurs via direct mechanisms within local NAc microcircuits. We find that systemic G-CSF injection increases cocaine effects on dopamine terminals. The enhanced dopamine levels in the presence of cocaine occur through a release-based mechanism, rather than through effects on the dopamine transporter-as uptake rates were unchanged following G-CSF treatment. Critically, this effect could be recapitulated by acute bath application of G-CSF to dopamine terminals, an effect that was occluded by prior G-CSF treatment, suggesting a similar mechanistic basis for direct and systemic exposures. This work highlights the critical interaction between the immune system and psychostimulant effects that can alter drug responses and may play a role in vulnerability to cocaine use disorder.
Collapse
Affiliation(s)
- Lillian J Brady
- Department of Pharmacology, Vanderbilt University, TN, 37232, Nashville, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kirsty R Erickson
- Department of Pharmacology, Vanderbilt University, TN, 37232, Nashville, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kelsey E Lucerne
- Nash Family Department of Neuroscience, Icahn School of Medicine At Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine At Mount Sinai, New York, NY, 10029, USA
| | - Aya Osman
- Nash Family Department of Neuroscience, Icahn School of Medicine At Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine At Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine At Mount Sinai, New York, NY, 10029, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine At Mount Sinai, 1 Gustave L Levy Pl - Box 1230, New York, NY, 10029, USA
| | - Drew D Kiraly
- Nash Family Department of Neuroscience, Icahn School of Medicine At Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine At Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine At Mount Sinai, New York, NY, 10029, USA.
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine At Mount Sinai, 1 Gustave L Levy Pl - Box 1230, New York, NY, 10029, USA.
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, TN, 37232, Nashville, USA.
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, 865F Light Hall, 2215 Garland Avenue, Nashville, TN, 37232, USA.
| |
Collapse
|
5
|
Gupta M, Kaur G. Withania somnifera (L.) Dunal ameliorates neurodegeneration and cognitive impairments associated with systemic inflammation. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:217. [PMID: 31416451 PMCID: PMC6694620 DOI: 10.1186/s12906-019-2635-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Systemic inflammation driven neuroinflammation is an event which correlates with pathogenesis of several neurodegenerative diseases. Therefore, targeting peripheral and central inflammation simultaneously could be a promising approach for the management of these diseases. Nowadays, herbal medicines are emerging as potent therapeutics against various brain pathologies. Therefore, in this contemporary study, the neuroprotective activity of Ashwagandha (Withania somnifera) was elucidated against the inflammation associated neurodegeneration and cognitive impairments induced by systemic LPS administration using in vivo rat model system. METHODS To achieve this aim, young adult wistar strain male albino rats were randomized into four groups: (i) Control, (ii) LPS alone, (iii) LPS + ASH-WEX, (iv) ASH-WEX alone. Post regimen, the animals were subjected to Rotarod, Narrow Beam Walking and Novel Object Recognition test to analyze their neuromuscular coordination, working memory and learning functions. The rats were then sacrificed to isolate the brain regions and expression of proteins associated with synaptic plasticity and cell survival was studied using Western blotting and Quantitative real time PCR. Further, neuroprotective potential of ASH-WEX and its active fraction (FIV) against inflammatory neurodegeneration was studied and validated using in vitro model system of microglial conditioned medium-treated neuronal cultures and microglial-neuronal co-cultures. RESULTS Orally administered ASH-WEX significantly suppressed the cognitive and motor-coordination impairments in rats. On the molecular basis, ASH-WEX supplementation also regulated the expression of various proteins involved in synaptic plasticity and neuronal cell survival. Since microglial-neuronal crosstalk is crucial for maintaining CNS homeostasis, the current study was further extended to ascertain whether LPS-mediated microglial activation caused damage to neurons via direct cell to cell contact or through secretion of inflammatory mediators. ASH-WEX and FIV pretreatment was found to restore neurite outgrowth and protect neurons from apoptotic cell death caused by LPS-induced neuroinflammation in both activated microglial conditioned medium-treated neuronal cultures as well as microglial-neuronal co-cultures. CONCLUSION This extensive study using in vivo and in vitro model systems provides first ever pre-clinical evidence that ASH-WEX can be used as a promising natural therapeutic remedial for the prevention of neurodegeneration and cognitive impairments associated with peripheral inflammation and neuroinflammation.
Collapse
Affiliation(s)
- Muskan Gupta
- Department of Biotechnology, Medical Biotechnology Laboratory, Guru Nanak Dev University, Amritsar, Amritsar, Punjab 143005 India
| | - Gurcharan Kaur
- Department of Biotechnology, Medical Biotechnology Laboratory, Guru Nanak Dev University, Amritsar, Amritsar, Punjab 143005 India
| |
Collapse
|
6
|
Cell therapy for Parkinson′s disease is coming of age: current challenges and future prospects with a focus on immunomodulation. Gene Ther 2019; 27:6-14. [DOI: 10.1038/s41434-019-0077-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022]
|
7
|
Ramkumar M, Rajasankar S, Gobi VV, Janakiraman U, Manivasagam T, Thenmozhi AJ, Essa MM, Chidambaram R, Chidambaram SB, Guillemin GJ. Demethoxycurcumin, a Natural Derivative of Curcumin Abrogates Rotenone-induced Dopamine Depletion and Motor Deficits by Its Antioxidative and Anti-inflammatory Properties in Parkinsonian Rats. Pharmacogn Mag 2018; 14:9-16. [PMID: 29576695 PMCID: PMC5858249 DOI: 10.4103/pm.pm_113_17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/27/2017] [Indexed: 12/16/2022] Open
Abstract
Background: Parkinson's disease (PD) is a progressive neurodegenerative disorder (NDD) associated with the loss of dopaminergic neurons in the substantia nigra and subsequently has an effect on motor function and coordination. The pathology of PD is multifactorial, in which neuroinflammation and oxidative damage are the two of the main protagonists. Objectives: The present study aims to assess the potential antioxidant and anti-inflammatory effects of demethoxycurcumin (DMC), a natural derivative of curcumin, against rotenone-induced PD in rats. Materials and Methods: Rats were randomized and divided into six groups: control, rotenone (0.5 mg/kg/day, intraperitoneal in sunflower oil) treated for 7 days, rotenone and DMC (5, 10, and 20 mg/kg b.w) cotreated, and DMC (20 mg/kg b.w) alone treated groups. Results: Based on the dopamine concentration and biochemical estimations, the effective dose of DMC was selected and the chronic study was performed. At the end of the experimental period, behavioral studies and protein expression patterns of inflammatory markers were analyzed. Rotenone treatment led to motor dysfunctions, neurochemical deficits, and oxidative stress and enhanced expressions of inflammatory markers, whereas oral administration of DMC attenuated all the above. Conclusion: Even though further research is needed to prove its efficacy in clinical trial, the results of our study showed that DMC may offer a promising and new therapeutic lead for the treatment of NDDs including PD. SUMMARY Curcumin and their derivatives have been shown to be potent neuroprotective effect Demethoxycurcumin (DMC) amolerated the rotenone induced behavioural alterations DMC abrogated the rotenone induced dopamine deficits DMC attenuated the rotenone induced oxidative stress DMC diminished the rotenone mediated inflammation.
Abbreviations used: COX-2: Cyclooxygenase-2; DA: Dopamine; DMC: Demethoxycurcumin; DMRT: Duncan's multiple range test; GSH: Reduced glutathione; GPx: Glutathione peroxidase; IL-1 β: Interleukin-1 β; IL-6: Interleukin-6; iNOS: Inducible nitric oxide synthase; PD: Parkinson's disease; SN: Substantia nigra; SOD: Superoxide dismutase; TBARS: Thiobarbituric acid reactive substances; TNF-α: Tumor necrosis factor-α.
Collapse
Affiliation(s)
- Muthu Ramkumar
- Department of Anatomy, Bharath University, Selaiyur, Chennai, India
| | | | | | - Udaiyappan Janakiraman
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, Tamil Nadu, India
| | | | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat.,Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman.,Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Ranganathan Chidambaram
- Department of Radiology, Sri Lakshminarayana Institute of Medical Sciences, Puducherry, India
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS University, SS Nagar, Mysore, Karnataka, India
| | - Giles J Guillemin
- Neuroinflammation Group, Department of Biomedical Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
8
|
Hauser LJ, Chandra RK, Li P, Turner JH. Role of tissue eosinophils in chronic rhinosinusitis-associated olfactory loss. Int Forum Allergy Rhinol 2017; 7:957-962. [PMID: 28742240 DOI: 10.1002/alr.21994] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/05/2017] [Accepted: 06/28/2017] [Indexed: 01/05/2023]
Abstract
BACKGROUND Olfactory dysfunction is 1 of the hallmark symptoms of chronic rhinosinusitis (CRS). Eosinophilic inflammation has been implicated as a potential causative factor. However, prior studies have been limited by retrospective study designs, concomitant use of systemic corticosteroids, and other confounding factors. METHODS CRS and healthy non-CRS control subjects undergoing endoscopic sinus or skull-base surgery were prospectively enrolled and completed olfactory testing utilizing the 40-item Smell Identification Test (SIT) immediately prior to surgery. Histopathological evaluation of tissue excised from the ethmoid bulla was performed by a pathologist in a blinded fashion. Disease severity and patient-reported outcomes were measured via the Lund-Mackay computed tomography (CT) grading system and 22-item Sino-Nasal Outcome Test (SNOT-22), respectively. The associations between olfactory function, tissue eosinophilia, and disease severity were analyzed using Spearman rank order correlation and multiple linear regression. RESULTS Twenty-seven (27) subjects with CRS without nasal polyps (CRSsNP), 32 subjects with CRS with nasal polyps (CRSwNP), and 10 healthy non-CRS controls were enrolled. CRSwNP was associated with higher mean tissue eosinophil counts (71.6 vs 28.1 eosinophils/high-power field [HPF], p < 0.05) and lower age/sex-adjusted SIT scores (-17.4 vs -6.2, p < 0.001) when compared to CRSsNP. SIT scores were strongly negatively correlated with tissue eosinophil counts in CRSwNP (r = -0.60, p = 0.0003), but not CRSsNP (r = 0.16, p = 0.42). The correlation between olfactory function and tissue eosinophilia in CRSwNP persisted after adjusting for disease severity. CONCLUSION Tissue eosinophilia is associated with olfactory loss in CRSwNP, independent of disease severity. These results suggest a possible role for eosinophils or eosinophil-associated cytokines in CRS-associated olfactory loss.
Collapse
Affiliation(s)
- Leah J Hauser
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN
| | - Rakesh K Chandra
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN
| | - Ping Li
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN
| | - Justin H Turner
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
9
|
Kajiwara K, Ogata SI, Tanihara M. Promotion of Neurite Outgrowth from Fetal Hippocampal Cells by TNF-α Receptor 1-Derived Peptide. Cell Transplant 2017; 14:665-672. [DOI: 10.3727/000000005783982639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cytokines such as tumor necrosis factor-α (TNF-α), FasL, and TNF-related apoptosis-inducing ligand (TRAIL) induce apoptosis or inflammation through binding to their specific receptors, TNFR1, Fas, and DR5, respectively. We have previously reported ligand-binding and cell death-inhibiting synthetic peptides, which were designed based on the crystal structure of a ligand–receptor complex and the homology of the amino acid sequence among the death receptor family members. Here we show that, among these death receptor-derived peptides, the TNFR1-derived peptide specifically arrested cell proliferation and promoted cell adhesion of fetal rat (E16) hippocampal cells, and promoted neurite outgrowth from hippocampus-derived neurospheres cultured with the addition of the peptide or cultured on a peptide-coated surface. Furthermore, among these death receptor-derived peptides, marked neurite outgrowth was observed only when the neurospheres were cultured on a TNFR1-derived peptide-conjugated covalently cross-linked alginate gel. The neurites from the neurospheres positively immunostained with an antibody against neurofilaments. These results suggest that the TNFR1-derived peptide promotes neuronal differentiation of the hippocampal neural stem cells and the TNFR1-derived peptide-conjugated covalently cross-linked alginate gel may be a useful material for assisting neural stem cell transplantation.
Collapse
Affiliation(s)
- Kazumi Kajiwara
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630–0192, Japan
| | - Shin-Ichi Ogata
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630–0192, Japan
| | - Masao Tanihara
- Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630–0192, Japan
| |
Collapse
|
10
|
Brown GC, Vilalta A. How microglia kill neurons. Brain Res 2015; 1628:288-297. [PMID: 26341532 DOI: 10.1016/j.brainres.2015.08.031] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022]
Abstract
Microglia are resident brain macrophages that become inflammatory activated in most brain pathologies. Microglia normally protect neurons, but may accidentally kill neurons when attempting to limit infections or damage, and this may be more common with degenerative disease as there was no significant selection pressure on the aged brain in the past. A number of mechanisms by which activated microglia kill neurons have been identified, including: (i) stimulation of the phagocyte NADPH oxidase (PHOX) to produce superoxide and derivative oxidants, (ii) expression of inducible nitric oxide synthase (iNOS) producing NO and derivative oxidants, (iii) release of glutamate and glutaminase, (iv) release of TNFα, (v) release of cathepsin B, (vi) phagocytosis of stressed neurons, and (vii) decreased release of nutritive BDNF and IGF-1. PHOX stimulation contributes to microglial activation, but is not directly neurotoxic unless NO is present. NO is normally neuroprotective, but can react with superoxide to produce neurotoxic peroxynitrite, or in the presence of hypoxia inhibit mitochondrial respiration. Glutamate can be released by glia or neurons, but is neurotoxic only if the neurons are depolarised, for example as a result of mitochondrial inhibition. TNFα is normally neuroprotective, but can become toxic if caspase-8 or NF-κB activation are inhibited. If the above mechanisms do not kill neurons, they may still stress the neurons sufficiently to make them susceptible to phagocytosis by activated microglia. We review here whether microglial killing of neurons is an artefact, makes evolutionary sense or contributes in common neuropathologies and by what mechanisms. This article is part of a Special Issue entitled SI: Neuroprotection.
Collapse
Affiliation(s)
- Guy C Brown
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
11
|
Effect and Potential Mechanism of Electroacupuncture Add-On Treatment in Patients with Parkinson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:692795. [PMID: 26351515 PMCID: PMC4550783 DOI: 10.1155/2015/692795] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/28/2015] [Indexed: 11/23/2022]
Abstract
Objectives. To explore effectiveness and mechanisms of electroacupuncture (EA) add-on treatment in Parkinson's disease (PD) patients. Methods. Fifty PD patients were randomly assigned to drug plus EA (D + EA) group and drug alone (D) group. Subjects in D + EA group received stimulation in points of bilateral fengfu, fengchi, hegu, and central dazhui. Participants were evaluated by scales for motor and nonmotor symptoms. Levels of neuroinflammatory factors and neurotransmitters in serum were detected. Results. EA add-on treatment remarkably reduced scores of Unified Parkinson's Disease Rating Scale (UPDRS) III and its subitems of tremor, rigidity, and bradykinesia and conspicuously decreased UPDRS III scores in patients with bradykinesia-rigidity and mixed types and mild severity. Depression and sleep disturbances were eased, which were reflected by decreased scores of Hamilton Depression Rating Scale, Pittsburgh Sleep Quality Index, and elevated noradrenaline level. Effects of EA add-on treatment on motor symptoms and sleep disturbances were superior to drug alone treatment, markedly improving life quality of PD patients. EA add-on treatment decreased nitric oxide level in serum. Conclusions. EA add-on treatment is effective on most motor symptoms and some nonmotor symptoms and is particularly efficacious in PD patients at early stage. Antineuroinflammation may be a mechanism of EA add-on treatment.
Collapse
|
12
|
Cell therapy for Parkinson's disease: Functional role of the host immune response on survival and differentiation of dopaminergic neuroblasts. Brain Res 2015; 1638:15-29. [PMID: 26239914 DOI: 10.1016/j.brainres.2015.06.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 01/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder, whose cardinal pathology is the loss of dopaminergic neurons in the substantia nigra. Current treatments for PD have side effects in the long term and do not halt disease progression or regenerate dopaminergic cell loss. Attempts to compensate neuronal cell loss by transplantation of dopamine-producing cells started more than 30 years ago, leading to several clinical trials. These trials showed safety and variable efficacy among patients. In addition to variability in efficacy, several patients developed graft-induced dyskinesia. Nevertheless, they have provided a proof of concept that motor symptoms could be improved by cell transplantation. Cell transplantation in the brain presents several immunological challenges. The adaptive immune response should be abolished to avoid graft rejection by the host. In addition, the innate immune response will always be present after transplanting cells into the brain. Remarkably, the innate immune response can have dramatic effects on the survival, differentiation and proliferation of the transplanted cells, but has been hardly investigated. In this review, we analyze data on the functional effects of signals from the innate immune system on dopaminergic differentiation, survival and proliferation. Then, we discussed efforts on cell transplantation in animal models and PD patients, highlighting the immune response and the immunomodulatory treatment strategies performed. The analysis of the available data lead us to conclude that the modulation of the innate immune response after transplantation can increase the success of future clinical trials in PD by enhancing cell differentiation and survival. This article is part of a Special Issue entitled SI: PSC and the brain.
Collapse
|
13
|
Babri S, Doosti MH, Salari AA. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice. Behav Brain Res 2014; 261:305-14. [DOI: 10.1016/j.bbr.2013.12.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 12/27/2013] [Accepted: 12/28/2013] [Indexed: 01/09/2023]
|
14
|
McGuire SO, Sortwell CE, Shukitt-Hale B, Joseph JA, Hejna MJ, Collier TJ. Dietary supplementation with blueberry extract improves survival of transplanted dopamine neurons. Nutr Neurosci 2013; 9:251-8. [PMID: 17263092 DOI: 10.1080/10284150601086134] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The exact mechanisms contributing to poor neuronal survival in cell transplantation paradigms for Parkinson's disease (PD) are unknown. However, transplantation-induced host immune response, inflammation, and subsequent oxidative stress are likely contributors to cell death since dopamine (DA) neurons are exquisitely sensitive to oxidative damage. Multiple studies have attempted to improve cell survival by treating transplant material with antioxidant and antiinflammatory compounds, whereas far fewer studies have attempted to modify the host environment to reduce these threats. Flavonoids, phytochemicals found in fruits and vegetables, have antioxidant, antiinflammatory, and immunomodulatory properties. For example, supplementation with dietary blueberry extract (BBE) prevents oxidative stress-associated impairment of striatal motor function during aging and restores lost motor function in aged rats. We hypothesized that dietary supplementation of rodent diets with BBE would improve the survival of embryonic DA neurons transplanted into the unilaterally DA-depleted striatum. Inclusion of 2% BBE in a custom chow diet significantly increased the survival of implanted DA neurons and ameliorated rotational behavior asymmetries as compared to transplanted animals consuming a standard diet. These findings provide support for the potential of dietary phytochemicals as an easily administered and well-tolerated therapy that can be used to improve the effectiveness of DA neuron replacement.
Collapse
Affiliation(s)
- Susan O McGuire
- Department of Pathology, Loyola University Medical School, Loyola University Chicago, Maywood, IL 60153, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Xin J, Feinstein DL, Hejna MJ, Lorens SA, McGuire SO. Beneficial effects of blueberries in experimental autoimmune encephalomyelitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:5743-8. [PMID: 22243431 DOI: 10.1021/jf203611t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of autoimmune disease that presents with pathological and clinical features similar to those of multiple sclerosis (MS) including inflammation and neurodegeneration. This study investigated whether blueberries, which possess immunomodulatory, anti-inflammatory, and neuroprotective properties, could provide protection in EAE. Dietary supplementation with 1% whole, freeze-dried blueberries reduced disease incidence by >50% in a chronic EAE model (p < 0.01). When blueberry-fed mice with EAE were compared with control-fed mice with EAE, blueberry-fed mice had significantly lower motor disability scores (p = 0.03) as well as significantly greater myelin preservation in the lumbar spinal cord (p = 0.04). In a relapsing-remitting EAE model, blueberry-supplemented mice showed improved cumulative and final motor scores compared to control diet-fed mice (p = 0.01 and 0.03, respectively). These data demonstrate that blueberry supplementation is beneficial in multiple EAE models, suggesting that blueberries, which are easily administered orally and well-tolerated, may provide benefit to MS patients.
Collapse
Affiliation(s)
- Junping Xin
- Rehabilitation Research and Development Service, U.S. Veterans Administration , Edward Hines, Jr., VA Hospital, Mail Stop 151, 5000 South Fifth Avenue, Hines, Illinois 60141, United States
| | | | | | | | | |
Collapse
|
16
|
Vidal PM, Lemmens E, Geboes L, Vangansewinkel T, Nelissen S, Hendrix S. Late blocking of peripheral TNF-α is ineffective after spinal cord injury in mice. Immunobiology 2012; 218:281-4. [PMID: 22749984 DOI: 10.1016/j.imbio.2012.05.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/04/2012] [Accepted: 05/16/2012] [Indexed: 01/03/2023]
Abstract
Spinal cord injury (SCI) is characterized by different phases of inflammatory responses. Increasing evidence indicates that the early chronic phase (two to three weeks after SCI) is characterized by a dramatic invasion of immune cells and a peak of pro-inflammatory cytokine levels, such as tumor necrosis factor-α (TNF-α) derived from the injured spinal cord as well as from injured skin, muscles and bones. However, there is substantial controversy whether these inflammatory processes in later phases lead to pro-regenerative or detrimental effects. In the present study, we investigated whether the inhibition of peripheral TNF-α in the early chronic phase after injury promotes functional recovery in a dorsal hemisection model of SCI. Three different approaches were used to continuously block peripheral TNF-α in vivo, starting 14 days after injury. We administered the TNF-α blocker etanercept intraperitoneally (every second day or daily) as well as continuously via osmotic minipumps. None of these administration routes for the TNF-α inhibitor influenced locomotor restoration as assessed by the Basso mouse scale (BMS), nor did they affect coordination and strength as evaluated by the Rotarod test. These data suggest that peripheral TNF-α inhibition may not be an effective therapeutic strategy in the early chronic phase after SCI.
Collapse
Affiliation(s)
- Pía M Vidal
- Department of Morphology & Biomedical Research Institute, Hasselt University, Agoralaan, Diepenbeek, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Bosnjakovic A, Mishra MK, Han HJ, Romero R, Kannan RM. A dendrimer-based immunosensor for improved capture and detection of tumor necrosis factor-α cytokine. Anal Chim Acta 2012; 720:118-25. [PMID: 22365129 PMCID: PMC3548326 DOI: 10.1016/j.aca.2012.01.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 01/03/2012] [Accepted: 01/10/2012] [Indexed: 11/17/2022]
Abstract
A dendrimer-based sandwich type enzyme-linked immunosorbent assay (ELISA) was developed for the improved detection of recombinant human tumor necrosis factor-alpha (TNF-α) for early diagnosis of perinatal diseases. Hydroxyl-terminated generation four poly(amidoamine) dendrimer (G4-OH) was used for the development of a solid phase bio-sensing platform. The surface of the ELISA plate was modified with polyethylene-glycol (PEG) and thiol-functionalized G4-OH was immobilized on the PEG-functionalized plate. A capture antibody was oxidized and covalently immobilized onto the dendrimer-modified ELISA plate, which provides favorable orientation for the antigen binding sites toward the analyte. The dendrimer-modified plate showed enhanced sensitivity, and the detection limit for TNF-α was found to be 0.48 pg mL(-1), which is significantly better than the commercially available ELISA kit. The selectivity of the dendrimer-modified ELISA plate was further evaluated with a mixture of cytokines, which showed results for similar to that of TNF-α alone. The modified plate provides a greater opportunity for the detection of a wide range of cytokines and biomarkers.
Collapse
Affiliation(s)
- Admira Bosnjakovic
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202 (U. S. A.)
| | - Manoj K. Mishra
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202 (U. S. A.)
| | - Hye Jung Han
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202 (U. S. A.)
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD, NIH, DHHS, Detroit, MI 48201 (U. S. A.)
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD, NIH, DHHS, Detroit, MI 48201 (U. S. A.)
| | - Rangaramanujam M. Kannan
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202 (U. S. A.)
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NICHD, NIH, DHHS, Detroit, MI 48201 (U. S. A.)
| |
Collapse
|
18
|
Neuroprotective and neurodegenerative effects of the chronic expression of tumor necrosis factor α in the nigrostriatal dopaminergic circuit of adult mice. Exp Neurol 2010; 227:237-51. [PMID: 21093436 DOI: 10.1016/j.expneurol.2010.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 09/20/2010] [Accepted: 11/09/2010] [Indexed: 12/19/2022]
Abstract
Tumor necrosis factor (TNF)-α, a pro-inflammatory cytokine, has been implicated in both neuronal death and survival in Parkinson's disease (PD). The substantia nigra (SN), a CNS region affected in PD, is particularly susceptible to inflammatory insults and possesses the highest density of microglial cells, but the effects of inflammation and in particular TNF-α on neuronal survival in this region remains controversial. Using adenoviral vectors, the CRE/loxP system and hypomorphic mice, we achieved chronic expression of two levels of TNF-α in the SN of adult mice. Chronic low expression of TNF-α levels reduced the nigrostriatal neurodegeneration mediated by intrastriatal 6-hydroxydopamine administration. Protective effects of low TNF-α level could be mediated by TNF-R1, GDNF, and IGF-1 in the SN and SOD activity in the striatum (ST). On the contrary, chronic expression of high levels of TNF-α induced progressive neuronal loss (63% at 20 days and 75% at 100 days). This effect was accompanied by gliosis and an inflammatory infiltrate composed almost exclusively by monocytes/macrophages. The finding that chronic high TNF-α had a slow and progressive neurodegenerative effect in the SN provides an animal model of PD mediated by the chronic expression of a single cytokine. In addition, it supports the view that cytokines are not detrimental or beneficial by themselves, i.e., their level and time of expression among other factors can determine its final effect on CNS damage or protection. These data support the view that new anti-parkinsonian treatments based on anti-inflammatory therapies should consider these dual effects of cytokines on their design.
Collapse
|
19
|
Ng YP, Lee SMY, Cheung TKW, Nicholls JM, Peiris JSM, Ip NY. Avian influenza H5N1 virus induces cytopathy and proinflammatory cytokine responses in human astrocytic and neuronal cell lines. Neuroscience 2010; 168:613-23. [PMID: 20398740 DOI: 10.1016/j.neuroscience.2010.04.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/07/2010] [Accepted: 04/07/2010] [Indexed: 12/11/2022]
Abstract
It has previously been reported that the avian H5N1 type of influenza A virus can be detected in neurons and astrocytes of human brains in autopsy cases. However, the underlying neuropathogenicity remains unexplored. In this study, we used differentiated human astrocytic and neuronal cell lines as models to examine the effect of H5N1 influenza A viral infection on the viral growth kinetics and immune responses of the infected cells. We found that the influenza virus receptors, sialic acid-alpha2,3-galactose and sialic acid-alpha2,6-galactose, were expressed on differentiated human astrocytic and neuronal cells. Both types of cells could be infected with H5N1 influenza A viruses, but progeny viruses were only produced from infected astrocytic cells but not neuronal cells. Moreover, increased expression of interleukin (IL)-6 and/or tumor necrosis factor alpha (TNF-alpha) mRNA was detected in both astrocytic and neuronal cells at 6 and 24 h post-infection. To examine the biological consequences of such enhanced cytokine expression, differentiated astrocytic and neuronal cells were directly treated with these two cytokines. TNF-alpha treatment induced apoptosis, as well as proinflammatory cytokine, chemokine and inflammatory responses in differentiated astrocytic and neuronal cells. Taken together, our findings reveal that avian influenza H5N1 viruses can infect human astrocytic and neuronal cells, resulting in the induction of direct cellular damage and proinflammatory cytokine cascades. Our observations suggest that avian influenza H5N1 infection can trigger profound CNS injury, which may play an important role in the influenza viral pathogenesis.
Collapse
Affiliation(s)
- Y P Ng
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
| | | | | | | | | | | |
Collapse
|
20
|
Chronic expression of low levels of tumor necrosis factor-α in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation. Neurobiol Dis 2010; 37:630-40. [DOI: 10.1016/j.nbd.2009.11.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 11/24/2009] [Accepted: 11/26/2009] [Indexed: 11/22/2022] Open
|
21
|
McCoy MK, Tansey MG. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 2008; 5:45. [PMID: 18925972 PMCID: PMC2577641 DOI: 10.1186/1742-2094-5-45] [Citation(s) in RCA: 642] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 10/17/2008] [Indexed: 12/31/2022] Open
Abstract
The role of tumor necrosis factor (TNF) as an immune mediator has long been appreciated but its function in the brain is still unclear. TNF receptor 1 (TNFR1) is expressed in most cell types, and can be activated by binding of either soluble TNF (solTNF) or transmembrane TNF (tmTNF), with a preference for solTNF; whereas TNFR2 is expressed primarily by microglia and endothelial cells and is preferentially activated by tmTNF. Elevation of solTNF is a hallmark of acute and chronic neuroinflammation as well as a number of neurodegenerative conditions including ischemic stroke, Alzheimer's (AD), Parkinson's (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). The presence of this potent inflammatory factor at sites of injury implicates it as a mediator of neuronal damage and disease pathogenesis, making TNF an attractive target for therapeutic development to treat acute and chronic neurodegenerative conditions. However, new and old observations from animal models and clinical trials reviewed here suggest solTNF and tmTNF exert different functions under normal and pathological conditions in the CNS. A potential role for TNF in synaptic scaling and hippocampal neurogenesis demonstrated by recent studies suggest additional in-depth mechanistic studies are warranted to delineate the distinct functions of the two TNF ligands in different parts of the brain prior to large-scale development of anti-TNF therapies in the CNS. If inactivation of TNF-dependent inflammation in the brain is warranted by additional pre-clinical studies, selective targeting of TNFR1-mediated signaling while sparing TNFR2 activation may lessen adverse effects of anti-TNF therapies in the CNS.
Collapse
Affiliation(s)
- Melissa K McCoy
- Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040, USA
| | - Malú G Tansey
- Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9040, USA
| |
Collapse
|
22
|
Marschinke F, Strömberg I. Dual effects of TNFalpha on nerve fiber formation from ventral mesencephalic organotypic tissue cultures. Brain Res 2008; 1215:30-9. [PMID: 18482714 PMCID: PMC2586674 DOI: 10.1016/j.brainres.2008.03.070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 02/12/2008] [Accepted: 03/26/2008] [Indexed: 01/03/2023]
Abstract
Tumor necrosis factor alpha (TNFalpha) is toxic to dopamine neurons and increased levels of TNFalpha are observed in Parkinson's disease. Dopamine nerve fiber outgrowth in organotypic cultures of fetal ventral mesencephalon occurs in two waves. The early appearing nerve fibers are formed in the absence of astroglia, while migrating astrocytes guide the late appearing dopamine nerve fibers. TNFalpha (40 ng/ml) was added to the medium of organotypic ventral mesencephalic tissue cultures between days 4-7 and 11-14. The cultures were evaluated at days 7 or 19 to study the effects of TNFalpha on both types of nerve fiber formation. Tyrosine hydroxylase (TH)-immunohistochemistry demonstrated that the number of cultures showing non-glial-guided TH-positive outgrowth was reduced compared to controls, when TNFalpha was added at day 4. By contrast, the glial-guided TH-positive nerve fiber outgrowth and the astrocytic migration reached significantly longer distances by early TNFalpha treatment. Ki67-immunohistochemistry revealed that TNFalpha did not affect proliferation of astrocytes. Treatment with TNFalpha and antibodies against TNFalpha receptor 1 between days 4 and 7 revealed that the non-glial-guided TH-positive outgrowth reappeared. TNFalpha treatment between days 11 and 14 triggered neither the TH-positive glial-guided outgrowth, nor promoted the astrocytic migration to reach longer distances. The number of microglia was significantly increased after the late but not early TNFalpha treatment. In conclusion, TNFalpha is toxic for the non-glial dopaminergic nerve fiber outgrowth but stimulates the glial-guided outgrowth and the migration of astrocytes at an early time point. TNFalpha increased the number of microglia in VM tissue cultures after late but not after early treatment.
Collapse
Affiliation(s)
- Franziska Marschinke
- Department of Integrative Medical Biology, Umeå University, S-901 87 Umeå, Sweden
| | | |
Collapse
|
23
|
Koyanagi M, Takahashi J, Arakawa Y, Doi D, Fukuda H, Hayashi H, Narumiya S, Hashimoto N. Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neural precursors. J Neurosci Res 2008; 86:270-80. [PMID: 17828770 DOI: 10.1002/jnr.21502] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rho-GTPase has been implicated in the apoptosis of many cell types, including neurons, but the mechanism by which it acts is not fully understood. Here, we investigate the roles of Rho and ROCK in apoptosis during transplantation of embryonic stem cell-derived neural precursor cells. We find that dissociation of neural precursors activates Rho and induces apoptosis. Treatment with the Rho inhibitor C3 exoenzyme and/or the ROCK inhibitor Y-27632 decreases the amount of dissociation-induced apoptosis (anoikis) by 20-30%. Membrane blebbing, which is an early morphological sign of apoptosis; cleavage of caspase-3; and release of cytochrome c from the mitochondria are also reduced by ROCK inhibition. These results suggest that dissociation of neural precursor cells elicits an intrinsic pathway of cell death that is at least partially mediated through the Rho/ROCK pathway. Moreover, in an animal transplantation model, inhibition of Rho and/or ROCK suppresses acute apoptosis of grafted cells. After transplantation, tumor necrosis factor-alpha and pro-nerve growth factor are strongly expressed around the graft. ROCK inhibition also suppresses apoptosis enhanced by these inflammatory cytokines. Taken together, these results indicate that inhibition of Rho/ROCK signaling may improve survival of grafted cells in cell replacement therapy.
Collapse
Affiliation(s)
- Masaomi Koyanagi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tran TA, McCoy MK, Sporn MB, Tansey MG. The synthetic triterpenoid CDDO-methyl ester modulates microglial activities, inhibits TNF production, and provides dopaminergic neuroprotection. J Neuroinflammation 2008; 5:14. [PMID: 18474101 PMCID: PMC2396606 DOI: 10.1186/1742-2094-5-14] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Accepted: 05/12/2008] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent animal and human studies implicate chronic activation of microglia in the progressive loss of CNS neurons. The inflammatory mechanisms that have neurotoxic effects and contribute to neurodegeneration need to be elucidated and specifically targeted without interfering with the neuroprotective effects of glial activities. Synthetic triterpenoid analogs of oleanolic acid, such as methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me, RTA 402) have potent anti-proliferative and differentiating effects on tumor cells, and anti-inflammatory activities on activated macrophages. We hypothesized that CDDO-Me may be able to suppress neurotoxic microglial activities while enhancing those that promote neuronal survival. Therefore, the aims of our study were to identify specific microglial activities modulated by CDDO-Me in vitro, and to determine the extent to which this modulation affords neuroprotection against inflammatory stimuli. METHODS We tested the synthetic triterpenoid methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oate (CDDO-Me, RTA 402) in various in vitro assays using the murine BV2 microglia cell line, mouse primary microglia, or mouse primary peritoneal macrophages to investigate its effects on proliferation, inflammatory gene expression, cytokine secretion, and phagocytosis. The antioxidant and neuroprotective effects of CDDO-Me were also investigated in primary neuron/glia cultures from rat basal forebrain or ventral midbrain. RESULTS We found that at low nanomolar concentrations, treatment of rat primary mesencephalon neuron/glia cultures with CDDO-Me resulted in attenuated LPS-, TNF- or fibrillar amyloid beta 1-42 (A beta 1-42) peptide-induced increases in reactive microglia and inflammatory gene expression without an overall effect on cell viability. In functional assays CDDO-Me blocked death in the dopaminergic neuron-like cell line MN9D induced by conditioned media (CM) of LPS-stimulated BV2 microglia, but did not block cell death induced by addition of TNF to MN9D cells, suggesting that dopaminergic neuroprotection by CDDO-Me involved inhibition of microglial-derived cytokine production and not direct inhibition of TNF-dependent pro-apoptotic pathways. Multiplexed immunoassays of CM from LPS-stimulated microglia confirmed that CDDO-Me-treated BV2 cells produced decreased levels of specific subsets of cytokines, in particular TNF. Lastly, CDDO-Me enhanced phagocytic activity of BV2 cells in a stimulus-specific manner but inhibited generation of reactive oxygen species (ROS) in mixed neuron/glia basal forebrain cultures and dopaminergic cells. CONCLUSION The neuroimmune modulatory properties of CDDO-Me indicate that this potent antioxidant and anti-inflammatory compound may have therapeutic potential to modify the course of neurodegenerative diseases characterized by chronic neuroinflammation and amyloid deposition. The extent to which synthetic triterpenoids afford therapeutic benefit in animal models of Parkinson's and Alzheimer's disease deserves further investigation.
Collapse
Affiliation(s)
- Thi A Tran
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Melissa K McCoy
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael B Sporn
- Department of Pharmacology, Dartmouth Medical School, Hanover, New Hampshire, USA
| | - Malú G Tansey
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
25
|
Tansey MG, McCoy MK, Frank-Cannon TC. Neuroinflammatory mechanisms in Parkinson's disease: potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol 2007; 208:1-25. [PMID: 17720159 PMCID: PMC3707134 DOI: 10.1016/j.expneurol.2007.07.004] [Citation(s) in RCA: 438] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 07/02/2007] [Accepted: 07/05/2007] [Indexed: 12/11/2022]
Abstract
Most acute and chronic neurodegenerative conditions are accompanied by neuroinflammation; yet the exact nature of the inflammatory processes and whether they modify disease progression is not well understood. In this review, we discuss the key epidemiological, clinical, and experimental evidence implicating inflammatory processes in the progressive degeneration of the dopaminergic (DA) nigrostriatal pathway and their potential contribution to the pathophysiology of Parkinson's disease (PD). Given that interplay between genetics and environment are likely to contribute to risk for development of idiopathic PD, recent data showing interactions between products of genes linked to heritable PD that function to protect DA neurons against oxidative or proteolytic stress and inflammation pathways will be discussed. Cellular mechanisms activated or enhanced by inflammatory processes that may contribute to mitochondrial dysfunction, oxidative stress, or apoptosis of dopaminergic (DA) neurons will be reviewed, with special emphasis on tumor necrosis factor (TNF) and interleukin-1-beta (IL-1beta) signaling pathways. Epigenetic factors which have the potential to trigger neuroinflammation, including environmental exposures and age-associated chronic inflammatory conditions, will be discussed as possible 'second-hit' triggers that may affect disease onset or progression of idiopathic PD. If inflammatory processes have an active role in nigrostriatal pathway degeneration, then evidence should exist to indicate that such processes begin in the early stages of disease and that they contribute to neuronal dysfunction and/or hasten neurodegeneration of the nigrostriatal pathway. Therapeutically, if anti-inflammatory interventions can be shown to rescue nigral DA neurons from degeneration and lower PD risk, then timely use of anti-inflammatory therapies should be investigated further in well-designed clinical trials for their ability to prevent or delay the progressive loss of nigral DA neurons in genetically susceptible populations.
Collapse
Affiliation(s)
- Malú G Tansey
- Department of Physiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | | | | |
Collapse
|
26
|
Whitton PS. Inflammation as a causative factor in the aetiology of Parkinson's disease. Br J Pharmacol 2007; 150:963-76. [PMID: 17339843 PMCID: PMC2013918 DOI: 10.1038/sj.bjp.0707167] [Citation(s) in RCA: 479] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/12/2006] [Accepted: 01/11/2007] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder affecting mainly the elderly, although a small proportion of PD patients develop the illness at a much younger age. In the former group, idiopathic PD patients, the causes of the illness have been the subject of longstanding debate with environmental toxins, mitochondrial dysfunction, abnormal protein handling and oxidative stress being suggested. One problem has been that the epidemiology of PD has offered few clues to provide evidence for a single major causative factor. Comparatively recently it has been found that in both patients and experimental models of PD in animals neuroinflammation appears to be a ubiquitous finding. These cases present with all of the classical features of inflammation including phagocyte activation, increased synthesis and release of proinflammatory cytokines and complement activation. Although this process is vital for normal function and protection in both the CNS, as in the periphery, it is postulated that in the aetiology of PD this process may spiral out of control with over activation of microglia, over production of cytokines and other proinflammatory mediators as well as the release of destructive molecules such as reactive oxygen species. Given that dopaminergic neurons in the substantia nigra are relatively vulnerable to 'stress' and the region has a large population of microglia in comparison to other CNS structures, these events may easily trigger neurodegeneration. These factors are examined in this review along with a consideration of the possible use of anti-inflammatory drugs in PD.
Collapse
Affiliation(s)
- P S Whitton
- 1Department of Pharmacology, The School of Pharmacy, London, UK.
| |
Collapse
|
27
|
Effects of co-engraftment of Schwann cells with neural stem cells into rats with Parkinson disease. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200606020-00011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
Hald A, Lotharius J. Oxidative stress and inflammation in Parkinson's disease: is there a causal link? Exp Neurol 2005; 193:279-90. [PMID: 15869932 DOI: 10.1016/j.expneurol.2005.01.013] [Citation(s) in RCA: 366] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 01/13/2005] [Accepted: 01/19/2005] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a dramatic loss of dopaminergic neurons in the substantia nigra (SN). Among the many pathogenic mechanisms thought to contribute to the demise of these cells, dopamine-dependent oxidative stress has classically taken center stage due to extensive experimental evidence showing that dopamine-derived reactive oxygen species and oxidized dopamine metabolites are toxic to nigral neurons. In recent years, however, the involvement of neuro-inflammatory processes in nigral degeneration has gained increasing attention. Not only have activated microglia and increased levels of inflammatory mediators been detected in the striatum of deceased PD patients, but a large body of animal studies points to a contributory role of inflammation in dopaminergic cell loss. Recently, postmortem examination of human subjects exposed to the parkinsonism-inducing toxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), revealed the presence of activated microglia decades after drug exposure, suggesting that even a brief pathogenic insult can induce an ongoing inflammatory response. Perhaps not surprisingly, non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to reduce the risk of developing PD. In the past few years, various pathways have come to light that could link dopamine-dependent oxidative stress and microglial activation, finally ascribing a pathogenic trigger to the chronic inflammatory response characteristic of PD.
Collapse
Affiliation(s)
- Andreas Hald
- Department of Pharmacology, Danish University of Pharmaceutical Sciences, Jagtvej 160, 2200 Copenhagen, Denmark
| | | |
Collapse
|
29
|
Ebadi M, Sharma SK, Wanpen S, Amornpan A. Coenzyme Q10 inhibits mitochondrial complex-1 down-regulation and nuclear factor-kappa B activation. J Cell Mol Med 2005; 8:213-22. [PMID: 15256069 PMCID: PMC6740220 DOI: 10.1111/j.1582-4934.2004.tb00276.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have used control-homozygous weaver mutant, and -heterozygous weaver mutant mice in order to explore the basic molecular mechanism of neurodegeneration and the neuroprotective potential of coenzyme Q(10). Homozygous weaver mutant mice exhibited progressive neurodegeneration in the hippocampus, striatum, and cerebellum, and a reduction in the striatal levels of dopamine and coenzyme Qs (Q(9) and Q(10)) without any significant changes in norepinephrine and serotonin. Mitochondrial complex-1 was down regulated; whereas nuclear factor-kappa B was up regulated in homozygous weaver mutant mice. Rotenone inhibited complex-1, enhanced nuclear factor-kappa B, and caused apoptosis in human dopaminergic (SK-N-SH) neurons; whereas nuclear factor-kappa B antibody suppressed rotenone-induced apoptosis, suggesting that enhancing coenzyme Q(10) synthesis and suppressing the induction of NF-kappa B, may provide neuroprotection.
Collapse
Affiliation(s)
- M Ebadi
- Center of Excellence For Neurosciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA.
| | | | | | | |
Collapse
|
30
|
Ballok DA, Earls AM, Krasnik C, Hoffman SA, Sakic B. Autoimmune-induced damage of the midbrain dopaminergic system in lupus-prone mice. J Neuroimmunol 2004; 152:83-97. [PMID: 15223241 DOI: 10.1016/j.jneuroim.2004.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 02/20/2004] [Accepted: 04/07/2004] [Indexed: 01/20/2023]
Abstract
Spontaneous development of lupus-like disease is accompanied by impaired dopamine catabolism and degenerating axon terminals in the mesencephalon of MRL-lpr mice. We presently examine the hypothesis that systemic autoimmunity affects the central dopaminergic system in behaviorally impaired animals. The functional damage of the nigrostriatal pathway was assessed from rotational behavior after a single injection of the D1/D2-receptor agonist apomorphine. Neurodegeneration in the midbrain was estimated by Fluoro Jade B (FJB) staining. The causal role of autoimmunity was tested by comparing asymptomatic and diseased MRL-lpr mice, and by employing the immunosuppressive drug cyclophosphamide. Damage of dopaminergic neurons was assessed by tyrosine-hydroxylase (TH) staining of the midbrain. Apomorphine induced significant asymmetry in limb use, which lead to increased circling in the diseased MRL-lpr group. While FJB-positive somas were not seen in the striatum, increased staining in the substantia nigra (SN) and ventral tegmental area (VTA) were detected in behaviorally impaired MRL-lpr mice, but not in age-matched controls. Reduced brain mass and increased levels of TNF-alpha in their cerebrospinal fluid (CSF) suggested cerebral atrophy and inflammation. In addition, CSF was neurotoxic to a dopaminergic progenitor cell line. Immunosuppression attenuated CSF cytotoxicity, TNF-alpha levels, and midbrain neurodegeneration. Supportive of the notion that dying neurons were dopaminergic, the SN of autoimmune mice showed approximately a 35% reduction in the number of TH-positive cells. A three-fold increase in serum brain-reactive antibodies accompanied this loss. Although the source of toxic mediator(s) remains unknown, present results are consistent with the hypothesis that autoimmunity-induced destruction of mesonigral and mesolimbic dopaminergic pathways contributes to the etiology of aberrant behavior in an animal model of neuropsychiatric lupus.
Collapse
Affiliation(s)
- David A Ballok
- Department of Psychiatry and Behavioral Neurosciences, HSC Room 4N81, McMaster University, 1200 Main Street, West, Hamilton, Ontario, Canada L8N 3Z5.
| | | | | | | | | |
Collapse
|
31
|
Wong G, Goldshmit Y, Turnley AM. Interferon-gamma but not TNF alpha promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells. Exp Neurol 2004; 187:171-7. [PMID: 15081598 DOI: 10.1016/j.expneurol.2004.01.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 01/09/2004] [Accepted: 01/13/2004] [Indexed: 11/26/2022]
Abstract
Neural trauma, such as traumatic brain injury or stroke, results in a vigorous inflammatory response at and near the site of injury, with cytokine production by endogenous glial cells and invading immune cells. Little is known of the effect that these cytokines have on neural stem cell function. Here we examine the effects of two inflammatory cytokines, interferon-gamma (IFN gamma) and tumour necrosis factor-alpha (TNFalpha), on adult neural stem cells. Neural stem cells grown in the presence of either cytokine failed to generate neurospheres. Cytotoxicity assays showed that TNF alpha but not IFN gamma was toxic to the neural stem cells under proliferative conditions. Under differentiating conditions, neither cytokine was toxic; however, IFN gamma enhanced neuronal differentiation, rapidly increasing beta III-tubulin positive cell numbers 3-4 fold and inhibiting astrocyte generation. Furthermore, neurite outgrowth and the number of neurites per neuron was enhanced in cells differentiated in the presence of IFN gamma. Therefore, both inflammatory cytokines examined have substantial, but different effects on neural stem cell function and suggests that regulation of the inflammatory environment following brain injury may influence the ability of neural stem cells to repair the damage.
Collapse
Affiliation(s)
- Galaxy Wong
- Centre for Neuroscience, University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
32
|
Mirza B, Krook H, Andersson P, Larsson LC, Korsgren O, Widner H. Intracerebral cytokine profiles in adult rats grafted with neural tissue of different immunological disparity. Brain Res Bull 2004; 63:105-18. [PMID: 15130699 DOI: 10.1016/j.brainresbull.2004.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 01/23/2004] [Accepted: 01/30/2004] [Indexed: 02/06/2023]
Abstract
To understand graft rejection in cell based therapies for brain repair we have quantified IL-1beta, IL-2, IL-4, IL-10, IL-12p40, IFN-gamma and TNF-alpha mRNA levels using real-time PCR, at days 4, 14, and 42 post-transplantation, in rats engrafted with syngeneic, allogeneic, concordant and discordant xenogeneic neural tissues. In addition, in the discordant xenografts immunohistochemistry and in situ hybridization were applied to detect local expression of IFN-gamma, TNF-alpha, IL-10 and TGF-beta. Allografts remained non-rejected but expressed IL-1beta, TNF-alpha and IL-4 transcripts but not IL-12p40 and IFN-gamma. Xenografts demonstrated distinct cytokine profiles that differed from syngeneic and allogeneic grafts. Non-rejected discordant xenografts contained higher levels of TNF-alpha transcripts and lower levels of IL-2 transcripts than the rejected ones at day 42. Discordant xenografts displayed a stronger and earlier expression of IL-1beta and TNF-alpha, followed by T-helper 1 and T-helper 2 associated cytokine expression. The number of cells expressing mRNA encoding TNF-alpha and TGF-beta was significantly increased over time in the discordant group. In conclusion, the immunological disparity of the implanted tissue explains survival rates and is associated with different cytokine profiles. In allografts, a chronic inflammatory reaction was detected and in xenogeneic grafts a delayed hypersensitivity like reaction may be involved in rejection.
Collapse
Affiliation(s)
- Bilal Mirza
- Section for Neuronal Survival, Department of Physiological Sciences and Neuroscience, Wallenberg Neuroscience Center, Lund University, BMC-A10, 221 84 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
33
|
Koski CL, Hila S, Hoffman GE. Regulation of cytokine-induced neuron death by ovarian hormones: involvement of antiapoptotic protein expression and c-JUN N-terminal kinase-mediated proapoptotic signaling. Endocrinology 2004; 145:95-103. [PMID: 14512437 DOI: 10.1210/en.2003-0803] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mechanisms underlying the divergent effects of ovarian hormones on neuron death induced by TNFalpha were investigated in differentiated PC12 cells (dPC12). dPC12 cells were exposed to 17beta-estradiol (E, 1.0 nm), progesterone (P, 100 nm), or a combination of both hormones for 0-72 h before treatment with TNFalpha (0-150 ng) to induce cell death. Cells undergoing apoptosis were identified by a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling assay and fluorescence-activated cell sorting after 18 h. Cell death induced by TNFalpha was decreased 89% after E treatment and increased 2-fold after P treatment compared with cells treated with TNFalpha alone. Treatment with E for 24 h before TNFalpha exposure was required for maximum neuroprotection, whereas P-enhanced death was maximal after a 30-min P treatment. TNFalpha induced a 3-fold increased activity of c-JUN-N-terminal kinase (JNK) 1 in d PC12 cells within 20 min that could be increased 5- to 8-fold by P together with TNFalpha. A peptide inhibitor of JNK1 abrogated P enhancement of TNFalpha-mediated dPC12 death but had only a minimal effect on cell death by TNFalpha alone. Inhibition of caspase-8 activation reduced death induced by TNFalpha alone but was much less effective for P+TNF. P alone did not activate caspase-8. E increased estrogen receptor alpha (ERalpha) and Bcl-xL expression and all but abolished TNFalpha receptor 1 (TNFR1) expression. P decreased ERalpha and Bcl-xL expression and doubled TNFR1 expression. These data suggest that P regulates apoptosis or survival through augmentation of JNK signaling and altered TNFR1 expression, whereas E mainly affects the expression of BCL-xL, TNFR1, and ERalpha.
Collapse
Affiliation(s)
- Carol Lee Koski
- Department of Neurology, University of Maryland, School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
34
|
Emgård M, Hallin U, Karlsson J, Bahr BA, Brundin P, Blomgren K. Both apoptosis and necrosis occur early after intracerebral grafting of ventral mesencephalic tissue: a role for protease activation. J Neurochem 2003; 86:1223-32. [PMID: 12911630 DOI: 10.1046/j.1471-4159.2003.01931.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural transplantation is an experimental treatment for Parkinson's disease. Widespread clinical application of the grafting technique is hampered by a relatively poor survival (around 10%) of implanted embryonic dopamine neurones. Earlier animal studies have indicated that a large proportion of the grafted cells die during graft tissue preparation and within the first few days after intracerebral implantation. The present study was designed to reveal the prevalence of cell death in rat intrastriatal grafts at 90 min, 1, 3, 6 and 42 days after implantation. We examined apoptotic cell death using semi-thin and paraffin sections stained with methylene blue and an antibody against activated caspase 3, respectively. We identified abundant apoptotic cell death up to 3 days after transplantation. In addition, we studied calpain activation using an antibody specific for calpain-cleaved fodrin. We report a peak in calpain activity 90 min after grafting. Surprisingly, we did not observe any significant difference in the number of dopaminergic neurones over time. The present results imply that grafted cells may be victims of either an early necrotic or a later apoptotic cell death and that there is substantial cell death as early as 90 min after implantation.
Collapse
Affiliation(s)
- M Emgård
- Section for Neuronal Survival, Wallenberg Neuroscience Center, Lund University, Sweden.
| | | | | | | | | | | |
Collapse
|
35
|
Münch G, Gasic-Milenkovic J, Dukic-Stefanovic S, Kuhla B, Heinrich K, Riederer P, Huttunen HJ, Founds H, Sajithlal G. Microglial activation induces cell death, inhibits neurite outgrowth and causes neurite retraction of differentiated neuroblastoma cells. Exp Brain Res 2003; 150:1-8. [PMID: 12698210 DOI: 10.1007/s00221-003-1389-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2002] [Accepted: 12/31/2002] [Indexed: 10/20/2022]
Abstract
Activation of glial cells has been proposed to contribute to neuronal dysfunction and neuronal cell death in Alzheimer's disease. In this study, we attempt to determine some of the effects of secreted factors from activated murine N-11 microglia on viability and morphology of neurons using the differentiated neuroblastoma cell line Neuro2a. Microglia were activated either by lipopolysaccharide (LPS), bacterial cell wall proteoglycans, or advanced glycation endproducts (AGEs), protein-bound sugar oxidation products. At high LPS or AGE concentrations, conditioned medium from microglia caused neuronal cell death in a dose-dependent manner. At sublethal LPS or AGE concentrations, conditioned media inhibited retinoic acid-induced neurite outgrowth and stimulated retraction of already extended neurites. Among the many possible secreted factors, the contribution of NO or NO metabolites in the cytotoxicity of conditioned medium was investigated. Cell death and changes in neurite morphology were partly reduced when NO production was inhibited by nitric oxide synthase inhibitors. The results suggest that even in the absence of significant cell death, inflammatory processes, which are partly transmitted via NO metabolites, may affect intrinsic functions of neurons such as neurite extension that are essential components of neuronal morphology and thus may contribute to degenerative changes in Alzheimer's disease.
Collapse
Affiliation(s)
- Gerald Münch
- Neuroimmunological Cell Biology Unit, Leipzig, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Clarke DJ, Branton RL. IL-1 beta is released from the host brain following transplantation but does not compromise embryonic dopaminergic neuron survival. Brain Res 2002; 952:78-85. [PMID: 12363407 DOI: 10.1016/s0006-8993(02)03199-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poor survival of transplanted dopaminergic (DA) neurons remains a serious obstacle to the success of cell replacement therapy as an alternative to the current treatments for Parkinson's disease. We have examined the temporal release profile of an inflammatory cytokine, interleukin-1 beta (IL-1 beta) following transplantation of fetal mesencephalic tissue into the rat striatum. The amounts of IL-1 beta released in vivo when added to cultures of embryonic DA neurons, did not significantly reduce the survival of DA neurons in vitro, and inclusion of the naturally-occurring IL-1 receptor antagonist, IL-1ra, did not appear to affect the numbers of surviving DA neurons present after 5 days in vitro. Neither did inclusion of IL-1ra in cell suspensions during transplantation increase the survival of transplanted fetal DA neurons. Thus, although IL-1 beta is released following implantation of a neural transplant, we suggest that this pro-inflammatory cytokine does not play an active role in reducing survival of transplanted DA neurons, unlike other cytokines such as tumor necrosis factor alpha. Modulation of IL-1 beta activity, therefore, will not offer significant improvements to neural transplantation as a treatment for PD.
Collapse
Affiliation(s)
- Deborah J Clarke
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, OX1 3QX, Oxford, UK.
| | | |
Collapse
|