1
|
Jeschke P. The unique role of halogen substituents in the design of modern agrochemicals. PEST MANAGEMENT SCIENCE 2010; 66:10-27. [PMID: 19701961 DOI: 10.1002/ps.1829] [Citation(s) in RCA: 412] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The past 30 years have witnessed a period of significant expansion in the use of halogenated compounds in the field of agrochemical research and development. The introduction of halogens into active ingredients has become an important concept in the quest for a modern agrochemical with optimal efficacy, environmental safety, user friendliness and economic viability. Outstanding progress has been made, especially in synthetic methods for particular halogen-substituted key intermediates that were previously prohibitively expensive. Interestingly, there has been a rise in the number of commercial products containing 'mixed' halogens, e.g. one or more fluorine, chlorine, bromine or iodine atoms in addition to one or more further halogen atoms. Extrapolation of the current trend indicates that a definite growth is to be expected in fluorine-substituted agrochemicals throughout the twenty-first century. A number of these recently developed agrochemical candidates containing halogen substituents represent novel classes of chemical compounds with new modes of action. However, the complex structure-activity relationships associated with biologically active molecules mean that the introduction of halogens can lead to either an increase or a decrease in the efficacy of a compound, depending on its changed mode of action, physicochemical properties, target interaction or metabolic susceptibility and transformation. In spite of modern design concepts, it is still difficult to predict the sites in a molecule at which halogen substitution will result in optimal desired effects. This review describes comprehensively the successful utilisation of halogens and their unique role in the design of modern agrochemicals, exemplified by various commercial products from Bayer CropScience coming from different agrochemical areas.
Collapse
Affiliation(s)
- Peter Jeschke
- Bayer CropScience AG, Research Insecticides Chemistry Insecticides, Monheim am Rhein, Germany.
| |
Collapse
|
2
|
Cotado-Sampayo M, Ramos PO, Perez RO, Ojha M, Barja F. Specificity of commercial anti-spectrin antibody in the study of fungal and Oomycete spectrin: cross-reaction with proteins other than spectrin. Fungal Genet Biol 2008; 45:1008-15. [PMID: 18378170 DOI: 10.1016/j.fgb.2008.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 10/22/2022]
Abstract
Spectrin was first described in erythrocytes where it forms a filamentous network in the cytoplasmic face of the plasma membrane and participates in the membrane's structural integrity in addition to controlling the lateral mobility of integral membrane proteins. In fungi, spectrin-like proteins have been described in the plasma membrane, concentrated mainly in the region of maximum apical expansion. This localization led to the idea of a spectrin based membrane skeleton in fungi participating in mechanical integrity of the plasma membrane, generating and maintaining cell polarity. The occurrence of spectrin-like proteins in filamentous fungi, yeasts and Oomycetes, however, is questionable since the presence of such proteins has only been demonstrated with immunochemical methods using antibodies whose specificity is unclear. There is no evidence of a gene coding for the high molecular weight alphabeta-spectrin in the genome of these organisms. Mass spectrometric analysis of the anti alphabeta-spectrin immunoreacting peptides from Neurospora crassa and Phytophthora infestans identified them as elongation factor 2 (NCU07700.4) and Hsp70 (PITG_13237.1), respectively. An attempt was made to correlate the reactivity of anti-spectrin antibody to a common feature of these three proteins i.e., spectrin, elongation factor 2 and heat shock protein 70, in that they all have a hydrophobic region implicated in chaperon activity.
Collapse
Affiliation(s)
- Marta Cotado-Sampayo
- Laboratory of Bioenergetics and Microbiology, University of Geneva, ch. des Embrouchis 10, CH 1254 Jussy-Geneva, Switzerland
| | | | | | | | | |
Collapse
|
3
|
Down-regulation of Sclerotinia sclerotiorum gene expression in response to infection with Sclerotinia sclerotiorum debilitation-associated RNA virus. Virus Res 2008; 135:95-106. [PMID: 18384901 DOI: 10.1016/j.virusres.2008.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2007] [Revised: 02/23/2008] [Accepted: 02/23/2008] [Indexed: 12/24/2022]
Abstract
We have previously presented convincing evidence in support of a viral etiology for the debilitation phenotype exhibited by strain Ep-1PN of Sclerotinia sclerotiorum. To explore the possible mechanisms underlying fungal pathogenicity and hyphal growth, potential genes whose expression was down-regulated in Ep-1PN were identified from a cDNA library of the virus-free strain Ep-1PNAa, which is a single ascospore derivative of strain Ep-1PN, using reverse northern blot analysis. A total of 1116 cDNA clones were targeted and, following PCR re-amplification, 210 cDNA clones were selected as candidates, of which 16 cDNA clones were subjected to northern blot analysis for further confirmation. The results showed that 12 clones represented genes that were differentially expressed in the virus-free strain compared to the virus-infected one. Of the 210 clones that were sequenced, 150 had non-redundant sequences and of these 92% (138 clones) had significant homology to fungal genes in the databases examined. The remaining 12 clones did not have any matches. The differentially expressed genes represented a broad spectrum of biological functions including carbon and energy metabolism, protein synthesis and transport, signal transduction and stress response. This study provides the first insight into genes differentially expressed between the virus-free strain Ep-1PNAa and the virus-infected strain Ep-1PN. The possible relationships between mycovirus-mediated changes in cellular gene expression and observed phenotypes are discussed.
Collapse
|
4
|
Suei S, Garrill A. An F-actin-depleted zone is present at the hyphal tip of invasive hyphae of Neurospora crassa. PROTOPLASMA 2008; 232:165-172. [PMID: 18421548 DOI: 10.1007/s00709-008-0289-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Accepted: 08/30/2007] [Indexed: 05/26/2023]
Abstract
The distribution of filamentous actin (F-actin) in invasive and noninvasive hyphae of the ascomycete Neurospora crassa was investigated. Eighty six percent of noninvasive hyphae had F-actin in the tip region compared to only 9% of invasive hyphae. The remaining 91% of the invasive hyphae had no obvious tip high concentration of F-actin staining; instead they had an F-actin-depleted zone in this region, although some F-actin, possibly associated with the Spitzenkörper, remained at the tip. The size of the F-actin-depleted zone in invasive hyphae increased with an increase in agar concentration. The membrane stain FM 4-64 reveals a slightly larger accumulation of vesicles at the tips of invasive hyphae relative to noninvasive hyphae, although this difference is unlikely to be sufficient to account for the exclusion of F-actin from the depleted zone. Antibodies raised against the actin filament-severing protein cofilin from both yeast and human cells localize to the tips of invasive hyphae. The human cofilin antibody shows a more random distribution in noninvasive hyphae locating primarily at the hyphal periphery but with some diffuse cytoplasmic staining. This antibody also identifies a single band at 21 kDa in immunoblots of whole hyphal fractions. These data suggest that a protein with epitopic similarity to cofilin may function in F-actin dynamics that underlie invasive growth. The F-actin-depleted zone may play a role in the regulation of tip yielding to turgor pressure, thus increasing the protrusive force necessary for invasive growth.
Collapse
Affiliation(s)
- S Suei
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
5
|
Cotado-Sampayo M, Ojha M, Ortega-Pérez R, Chappuis ML, Barja F. Proteolytic cleavage of a spectrin-related protein by calcium-dependent protease in Neurospora crassa. Curr Microbiol 2006; 53:311-6. [PMID: 16972126 DOI: 10.1007/s00284-006-0057-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 05/18/2006] [Indexed: 11/27/2022]
Abstract
To investigate the functional significance of a cytoskeletal spectrin-like protein, we studied its localization pattern in Neurospora crassa and sought the answer to whether it is a substrate for another apically localized protein, the calcium-dependent protease (CDP II). Immunoblots of crude extracts from exponentially growing mycelia, separated by one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis using antichicken alpha/beta-spectrin antibodies, revealed a single band of approximately relative mass (Mr) 100 kDa with an isoeletric point (pI) in the range of 6.5 to 7.0. Despite rigorous efforts, we could not confirm the presence of an Mr 240- to 220-kDa spectrin-like protein in N. crassa. The immunofluorescence- and immunogold-labeling Mr 100-kDa protein showed its predominance along the plasma membrane of the conidia during the swelling phase of germination. In contrast, in the germ tubes and the growing hyphae, the localization was polarized and concentrated mainly in the apical region. The in vitro proteolysis experiments showed that indeed this protein is a preferred substrate of CDP II which is, as mentioned previously, also localized in the apical regions of the hyphae. These results indicate a putative functional relationship between these two proteins (spectrin-like protein and CDP II) in the dynamics of tip growth.
Collapse
Affiliation(s)
- M Cotado-Sampayo
- Laboratory of Bioenergetics and Microbiology, University of Geneva, 10 Chemin des Embrouchis, CH-1254, Jussy-Geneva, Switzerland
| | | | | | | | | |
Collapse
|
6
|
Chitcholtan K, Garrill A. A beta4 integrin-like protein co-localises with a phosphotyrosine containing protein in the oomycete Achlya bisexualis: inhibition of tyrosine phosphorylation slows tip growth. Fungal Genet Biol 2005; 42:534-45. [PMID: 15893255 DOI: 10.1016/j.fgb.2005.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/10/2005] [Accepted: 03/16/2005] [Indexed: 11/21/2022]
Abstract
We present immunocytochemical data that indicate the presence of, and a close association between beta4 integrin-like proteins and proteins containing phosphorylated tyrosine residues in the oomycete Achlya bisexualis. When hyphae were plasmolysed, these proteins were present in wall-membrane attachment sites where there was also F-actin. A combination of immunoblots, ELISA, and a coupled enzyme assay suggest that phosphorylation may occur by both autophosphorylation and through the action of a tyrosine kinase. Tyrphostins, which are inhibitors of tyrosine kinases, abolished the anti-phosphotyrosine staining, inhibited the kinase activity, slowed tip growth and affected the organisation of the actin cytoskeleton, in a dose-dependent manner. By analogy with the integrins and associated kinases of the metazoa we suggest that these proteins could contribute to the process of tip growth by providing a means of bidirectional signaling between the cell wall and the cytoplasm.
Collapse
Affiliation(s)
- Kenny Chitcholtan
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand
| | | |
Collapse
|
7
|
Takeshita N, Ohta A, Horiuchi H. CsmA, a class V chitin synthase with a myosin motor-like domain, is localized through direct interaction with the actin cytoskeleton in Aspergillus nidulans. Mol Biol Cell 2005; 16:1961-70. [PMID: 15703213 PMCID: PMC1073675 DOI: 10.1091/mbc.e04-09-0761] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
One of the essential features of fungal morphogenesis is the polarized synthesis of cell wall components such as chitin. The actin cytoskeleton provides the structural basis for cell polarity in Aspergillus nidulans, as well as in most other eukaryotes. A class V chitin synthase, CsmA, which contains a myosin motor-like domain (MMD), is conserved among most filamentous fungi. The DeltacsmA null mutant showed remarkable abnormalities with respect to cell wall integrity and the establishment of polarity. In this study, we demonstrated that CsmA tagged with 9x HA epitopes localized near actin structures at the hyphal tips and septation sites and that its MMD was able to bind to actin. Characterization of mutants bearing a point mutation or deletion in the MMD suggests that the interaction between the MMD and actin is not only necessary for the proper localization of CsmA, but also for CsmA function. Thus, the finding of a direct interaction between the chitin synthase and the actin cytoskeleton provides new insight into the mechanisms of polarized cell wall synthesis and fungal morphogenesis.
Collapse
|
8
|
Zhang X, Yuan M, Wang X. Identification and function analysis of spectrin-like protein in pollen tubes of lily (Lilium davidii Duch). CHINESE SCIENCE BULLETIN-CHINESE 2004. [DOI: 10.1007/bf03184130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Virag A, Griffiths AJF. A mutation in the Neurospora crassa actin gene results in multiple defects in tip growth and branching. Fungal Genet Biol 2004; 41:213-25. [PMID: 14732267 DOI: 10.1016/j.fgb.2003.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Actin has a pivotal function in hyphal morphogenesis in filamentous fungi, but it is not certain whether its function is equivalent to that of a morphogen, or if it is simply part of a mechanism that executes orders given by another regulatory entity. To address this question we selected for cytochalasin A resistance and isolated act1, the first actin mutant in Neurospora crassa. This mutant branches apically and shows an altered distribution of actin at the tip. Based on the properties of this mutant, we propose a model of tip growth and branching in which actin effects tip growth by regulating the rate of vesicle flow from proximal to distal regions of a hypha, thereby controlling the tip-high gradient of cytoplasmic calcium. The actin-controlled calcium gradient at the tip is necessary for maintenance of tip growth as well as the dominance of one polarized site at the hyphal tip. The phenotype of act1 indicates that actin controls the balance between lateral and apical branching.
Collapse
Affiliation(s)
- Aleksandra Virag
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | | |
Collapse
|
10
|
Torralba S, Pisabarro AG, Ramírez L. Immunofluorescence microscopy of the microtubule cytoskeleton during conjugate division in the dikaryon Pleurotus ostreatusN001. Mycologia 2004. [DOI: 10.1080/15572536.2005.11832995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Lucía Ramírez
- Departamento de Producción Agraria, Universidad Pública de Navarra, E-31006 Pamplona, España
| |
Collapse
|
11
|
Czogalla A, Kwolek P, Hryniewicz-Jankowska A, Nietubyć M, Leluk J, Sikorski AF. A protein isolated from Escherichia coli, identified as GroEL, reacts with anti-beta spectrin antibodies. Arch Biochem Biophys 2003; 415:94-100. [PMID: 12801517 DOI: 10.1016/s0003-9861(03)00223-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We found that a protein of molecular weight close to 65kDa, present in Escherichia coli cells, reacts with anti-beta spectrin antibodies. A method of purification of this protein was designed. The method consists of the following: nonionic detergent extraction, gel filtration chromatography, ion-exchange chromatography using DEAE-Servacell, and two FPLC ion-exchange chromatography runs: the first without urea, the second in its presence. This method allowed us to obtain a highly purified protein. The results of mass spectrometry analysis suggest that the investigated protein is GroEL (Hsp60 Class). Using computer programs, by sequence analysis of both proteins we tried to explain why GroEL isolated from E. coli reacts with anti-beta spectrin antibodies. Both proteins may share a single epitope for the antibodies on their surfaces. Additionally, such an assumption is supported by the results of experiments in which antibodies interacting with GroEL were obtained from anti-beta spectrin serum and were shown to react with both GroEL and beta spectrins.
Collapse
Affiliation(s)
- Aleksander Czogalla
- Institute of Biochemistry and Molecular Biology, University of Wrocław, ul. Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
12
|
Slaninová I, Holubárová A, Svoboda A. Immunodetection of spectrin-like proteins in yeasts. Can J Microbiol 2003; 49:189-96. [PMID: 12795405 DOI: 10.1139/w03-026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spectrin, a component of the membrane skeleton in erythrocytes and other animal cells, has also been identified in plant and fungal cells. However, its postulated role, i.e., the maintenance of shape and elasticity of the plasma membrane, is probably not exerted in walled cells. To study spectrin in these cells, we chose yeasts because of a high morphological variability of their life cycle. The localization of spectrin in the cells and protoplasts of Saccharomyces cerevisiae and Schizosaccharomyces japonicus var. versatilis was detected by immunoblotting, indirect immunofluorescence, and immunogold electron microscopy techniques with the use of anti-chicken and anti-human erythrocyte spectrin antibodies. A protein band of 220-240 kDa and some bands of lower relative mass were detected in cell and protoplast extracts of both yeast strains. Spectrin-like proteins were revealed by fluorescence microscopy at cell surfaces and in vacuolar membranes. Immunogold-labelling showed spectrin-like proteins in the plasma membrane, endoplasmic reticulum, vacuoles, nuclei, vesicles, mitochondria, and cell walls. The topology of spectrin was not affected by actin depolymerization with Latrunculin B nor was it changed in either act1-1 or cdc42 mutants, under restrictive conditions. Under osmotic stress, both spectrin and actin were delocalized and appeared in the form of large clusters in the cytoplasm. It is concluded that a protein cross-reacting with spectrin antibodies is present in fission and budding yeasts. Generally, it is located in the proximity of the plasma membrane and other intracellular membranes, probably as a part of the membrane skeleton. No evidence of its relationship to either actin or growth zones of the cell can be provided.
Collapse
Affiliation(s)
- Iva Slaninová
- Department of Biology, Faculty of Medicine, Masaryk University, Jostova 10, 66243 Brno, Czech Republic.
| | | | | |
Collapse
|
13
|
Gupta GD, Brent Heath I. Predicting the distribution, conservation, and functions of SNAREs and related proteins in fungi. Fungal Genet Biol 2002; 36:1-21. [PMID: 12051891 DOI: 10.1016/s1087-1845(02)00017-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hyphal tip growth, the hallmark of the fungi, requires highly polarized and localized exocytosis, but how this requirement is met is unknown. Members of conserved protein families called SNAREs and Rabs mediate vesicle trafficking and fusion at virtually every step of the intracellular pathway in all examined eukaryotes. We have searched the available nearly complete fungal genomes, established the presence or absence of members of the SNARE and Rab families in these genomes, and predicted their evolutionary relationships to one another. Comparisons with the extensively studied Saccharomyces cerevisiae indicate that, in general, most of the members of these families (including those involved in mediating exocytosis) are conserved. The presence of exceptional SNAREs and Rabs in some fungi that are not conserved in S. cerevisiae may be indicative of specialized steps that occur in these fungi. The implications of these findings for current tip growth models are discussed.
Collapse
Affiliation(s)
- Gagan D Gupta
- Biology Department, York University, 4700 Keele Street, Toronto, Ont., Canada M3J 1P3
| | | |
Collapse
|
14
|
Silverman-Gavrila LB, Lew RR. Regulation of the tip-high [Ca2+] gradient in growing hyphae of the fungus Neurospora crassa. Eur J Cell Biol 2001; 80:379-90. [PMID: 11484929 DOI: 10.1078/0171-9335-00175] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous work has shown that hyphal elongation in the fungus Neurospora crassa requires a tip-high cytosolic Ca2+ gradient. The source of the Ca2+ appears to be intracellular stores as there is no net transplasma membrane Ca2+ flux at the elongating hyphal tip and modification of ion fluxes across the plasma membrane using voltage clamp is without effect on tip growth. To decode the internal mechanisms which generate and maintain the tip-high Ca2+ gradient we first identified calcium regulators which affect hyphal growth and morphology, then determined how they modify cytosolic [Ca2+] and the actin cytoskeleton using fluorescent dyes and confocal microscopy. Cyclopiazonic acid (a known inhibitor of the endoplasmic reticulum calcium ATPase) inhibits growth and increases cytoplasmic [Ca2+] in the basal region 10-25 microm behind the hyphal tip. 2-APB (2-aminoethoxydiphenyl borate, an inhibitor of IP3-induced Ca2+ release) inhibits hyphal elongation and dissipates the tip-high Ca2 gradient 0-10 microm from the tip. Microinjections of the IP3 receptor agonists adenophostin A and IP3 (but not control microinjections of the biologically inactive L-IP3) transiently inhibited growth and induced subapical branches. IP3 microinjections, but not L-IP3, lowered tip-localized [Ca2+] and increased basal [Ca2+]. Even though their effect on [Ca2+] gradients was different, both cyclopiazonic acid and 2-APB disrupted similarly the normal actin pattern at the hyphal apex. Conversely, disruption of actin with latrunculin B dissipated tip-localized Ca2+. We conclude that the tip-high Ca2+ gradient is generated internally by Ca2+ sequestration into endoplasmic reticulum behind the tip and Ca2+ release via an IP3 receptor from tip-localized vesicles whose location is maintained by the actin cytoskeleton.
Collapse
|
15
|
Abstract
Hyphal tip growth is a complex process involving finely regulated interactions between the synthesis and expansion of cell wall and plasma membrane, diverse intracellular movements, and turgor regulation. F-actin is a major regulator and integrator of these processes. It directly contributes to (a) tip morphogenesis, most likely by participation in an apical membrane skeleton that reinforces the apical plasma membrane, (b) the transport and exocytosis of vesicles that contribute plasma membrane and cell wall material to the hyphal tips, (c) the localization of plasma membrane proteins in the tips, and (d) cytoplasmic and organelle migration and positioning. The pattern of reorganization of F-actin prior to formation of new tips during branch initiation also indicates a critical role in early stages of assembly of the tip apparatus. One of the universal characteristics of all critically examined tip-growing cells, including fungal hyphae, is the obligatory presence of a tip-high gradient of cytoplasmic Ca2+ that probably regulates both actin and nonactin components of the apparatus, and the formation of which may also initiate new tips. This review discusses the diversity of evidence behind these concepts.
Collapse
Affiliation(s)
- S Torralba
- Biology Department, York University, Toronto, Ontario, M3J 1P3 Canada
| | | |
Collapse
|
16
|
Affiliation(s)
- D D Perkins
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| | | |
Collapse
|
17
|
Heath IB, Gupta G, Bai S. Plasma membrane-adjacent actin filaments, but not microtubules, are essential for both polarization and hyphal tip morphogenesis in Saprolegnia ferax and Neurospora crassa. Fungal Genet Biol 2000; 30:45-62. [PMID: 10955907 DOI: 10.1006/fgbi.2000.1203] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The organization and roles of F-actin and microtubules in the maintenance and initiation of hyphal tip growth have been analyzed in Saprolegnia ferax and Neurospora crassa. In hyphae of both species, the apex is depleted of microtubules relative to subapical regions and near-normal morphogenesis occurs in concentrations of nocodazole or MBC which remove microtubules, slow growth, and disrupt nuclear positioning. In contrast, each species contains characteristic tip-high arrays of plasma membrane-adjacent F-actin, whose organization is largely unaltered by the loss of microtubules but disruption of which by latrunculin B disrupts tip morphology. Hyphal initiation and subsequent normal morphogenesis from protoplasts of both species and spores of S. ferax are independent of microtubules, but at least in S. ferax obligatorily involve the formation of F-actin caps adjacent to the hyphal tip plasma membrane. These observations indicate an obligatory role for F-actin in hyphal polarization and tip morphogenesis and only an indirect role for microtubules.
Collapse
Affiliation(s)
- I B Heath
- Biology Department, York University, Toronto, Ontario, Canada.
| | | | | |
Collapse
|
18
|
Gupta GD, Heath IB. A tip-high gradient of a putative plasma membrane SNARE approximates the exocytotic gradient in hyphal apices of the fungus Neurospora crassa. Fungal Genet Biol 2000; 29:187-99. [PMID: 10882535 DOI: 10.1006/fgbi.2000.1200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Antibodies to the Saccharomyces cereviseae plasma membrane t-SNARE Sso2p identify a putative 39-kDa homologue in Neurospora crassa. The 39-kDa protein is enriched in plasma membrane (PM) and occurred with other membranes. It is extractable by detergent, but not chaotropic or alkali agents, suggesting membrane insertion. Immunoprecipitation with anti-Sso2p coprecipitated a approximately 100-kDa, Mg(+)-ATP-sensitive band with the 39-kDa protein, suggesting a ternary SNARE complex. Affinity-purified anti-Sso2p gave hyphal staining patterns most consistent with protein localization on both the PM and intracellular exocytotic apical wall vesicles. The PM staining in hyphal apices formed a tip-high gradient, not as steep as that predicted by the "hyphoid equation," but closer to published gradients of cell wall matrix deposition. We conclude that the t-SNAREs are transported to the PM on the apical vesicles, but their tip-high gradient alone is insufficient to explain the vesicle fusion gradient in growing tips.
Collapse
Affiliation(s)
- G D Gupta
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | | |
Collapse
|