1
|
Priya PS, Pratiksha Nandhini P, Vaishnavi S, Pavithra V, Almutairi MH, Almutairi BO, Arokiyaraj S, Pachaiappan R, Arockiaraj J. Rhodamine B, an organic environmental pollutant induces reproductive toxicity in parental and teratogenicity in F1 generation in vivo. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109898. [PMID: 38508353 DOI: 10.1016/j.cbpc.2024.109898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
This study investigated the reproductive toxicity of rhodamine B in zebrafish and its transgenerational effects on the F1 generation. In silico toxicity predictions revealed high toxicity of rhodamine B, mainly targeting pathways associated with the reproductive and endocrine systems. In vivo experiments on zebrafish demonstrated that rhodamine B exposure at a concentration of 1.5 mg/L led to significant impairments in fecundity parameters, particularly affecting females. Histopathological analysis revealed distinct changes in reproductive organs, further confirming the reproductive toxicity of rhodamine B, with females being more susceptible than males. Gene expression studies indicated significant suppression of genes crucial for ovulation in rhodamine B-treated female fish, highlighting hormonal imbalance as a potential mechanism of reproductive toxicity. Furthermore, bioaccumulation studies showed the presence of rhodamine B in both adult fish gonads and F1 generation samples, suggesting transgenerational transfer of the dye. Embryotoxicity studies on F1 generation larvae demonstrated reduced survival rates, lower hatching rates, and increased malformations in groups exposed to rhodamine B. Moreover, rhodamine B induced oxidative stress in F1 generation larvae, as evidenced by elevated levels of reactive oxygen species and altered antioxidant enzyme activity. Neurotoxicity assessments revealed reduced acetylcholinesterase activity, indicating potential neurological impairments in F1 generation larvae. Additionally, locomotory defects and skeletal abnormalities were observed in F1 generation larvae exposed to rhodamine B. This study provides comprehensive evidence of the reproductive toxicity of rhodamine B in adult zebrafish and its transgenerational effects on the F1 generation.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - P Pratiksha Nandhini
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - S Vaishnavi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - V Pavithra
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Raman Pachaiappan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
2
|
Riesco MF, Valcarce DG, Sellés-Egea A, Esteve-Codina A, Herráez MP, Robles V. miR-29a Is Downregulated in Progenies Derived from Chronically Stressed Males. Int J Mol Sci 2023; 24:14107. [PMID: 37762407 PMCID: PMC10531283 DOI: 10.3390/ijms241814107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Recent research has provided compelling evidence demonstrating that paternal exposure to different stressors can influence their offspring's phenotypes. We hypothesized that paternal stress can negatively impact the progeny, altering different miRs and triggering different physiological alterations that could compromise offspring development. To investigate this, we exposed zebrafish male siblings to a chronic stress protocol for 21 days. We performed RNA-sequencing (RNA-seq) analyses to identify differentially expressed small noncoding RNAs in 7-day postfertilization (dpf) larvae derived from paternally stressed males crossed with control females compared with the control progeny. We found a single miRNA differentially expressed-miR-29a-which was validated in larva and was also tested in the sperm, testicles, and brain of the stressed progenitors. We observed a vertical transmission of chronic stress to the unexposed larvae, reporting novel consequences of paternally inherited chronic stress at a molecular level. The deregulation of mi-R29a in those larvae could affect relevant biological processes affecting development, morphogenesis, or neurogenesis, among others. Additionally, these disruptions were associated with reduced rates of survival and hatching in the affected offspring.
Collapse
Affiliation(s)
- Marta F. Riesco
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - David G. Valcarce
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Alba Sellés-Egea
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Medicine and Health Sciences, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - María Paz Herráez
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vanesa Robles
- INDEGSAL, Cell Biology Area, Molecular Biology Department, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
3
|
Wnt/β-Catenin Signaling Pathway Is Strongly Implicated in Cadmium-Induced Developmental Neurotoxicity and Neuroinflammation: Clues from Zebrafish Neurobehavior and In Vivo Neuroimaging. Int J Mol Sci 2022; 23:ijms231911434. [PMID: 36232737 PMCID: PMC9570071 DOI: 10.3390/ijms231911434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal and worldwide environmental pollutant which seriously threatens human health and ecosystems. It is easy to be adsorbed and deposited in organisms, exerting adverse effects on various organs including the brain. In a very recent study, making full use of a zebrafish model in both high-throughput behavioral tracking and live neuroimaging, we explored the potential developmental neurotoxicity of Cd2+ at environmentally relevant levels and identified multiple connections between Cd2+ exposure and neurodevelopmental disorders as well as microglia-mediated neuroinflammation, whereas the underlying neurotoxic mechanisms remained unclear. The canonical Wnt/β-catenin signaling pathway plays crucial roles in many biological processes including neurodevelopment, cell survival, and cell cycle regulation, as well as microglial activation, thereby potentially presenting one of the key targets of Cd2+ neurotoxicity. Therefore, in this follow-up study, we investigated the implication of the Wnt/β-catenin signaling pathway in Cd2+-induced developmental disorders and neuroinflammation and revealed that environmental Cd2+ exposure significantly affected the expression of key factors in the zebrafish Wnt/β-catenin signaling pathway. In addition, pharmacological intervention of this pathway via TWS119, which can increase the protein level of β-catenin and act as a classical activator of the Wnt signaling pathway, could significantly repress the Cd2+-induced cell cycle arrest and apoptosis, thereby attenuating the inhibitory effects of Cd2+ on the early development, behavior, and activity, as well as neurodevelopment of zebrafish larvae to a certain degree. Furthermore, activation and proliferation of microglia, as well as the altered expression profiles of genes associated with neuroimmune homeostasis triggered by Cd2+ exposure could also be significantly alleviated by the activation of the Wnt/β-catenin signaling pathway. Thus, this study provided novel insights into the cellular and molecular mechanisms of Cd2+ toxicity on the vertebrate central nervous system (CNS), which might be helpful in developing pharmacotherapies to mitigate the neurological disorders resulting from exposure to Cd2+ and many other environmental heavy metals.
Collapse
|
4
|
Liu Y, Kossack ME, McFaul ME, Christensen LN, Siebert S, Wyatt SR, Kamei CN, Horst S, Arroyo N, Drummond IA, Juliano CE, Draper BW. Single-cell transcriptome reveals insights into the development and function of the zebrafish ovary. eLife 2022; 11:e76014. [PMID: 35588359 PMCID: PMC9191896 DOI: 10.7554/elife.76014] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Zebrafish are an established research organism that has made many contributions to our understanding of vertebrate tissue and organ development, yet there are still significant gaps in our understanding of the genes that regulate gonad development, sex, and reproduction. Unlike the development of many organs, such as the brain and heart that form during the first few days of development, zebrafish gonads do not begin to form until the larval stage (≥5 days post-fertilization). Thus, forward genetic screens have identified very few genes required for gonad development. In addition, bulk RNA-sequencing studies that identify genes expressed in the gonads do not have the resolution necessary to define minor cell populations that may play significant roles in the development and function of these organs. To overcome these limitations, we have used single-cell RNA sequencing to determine the transcriptomes of cells isolated from juvenile zebrafish ovaries. This resulted in the profiles of 10,658 germ cells and 14,431 somatic cells. Our germ cell data represents all developmental stages from germline stem cells to early meiotic oocytes. Our somatic cell data represents all known somatic cell types, including follicle cells, theca cells, and ovarian stromal cells. Further analysis revealed an unexpected number of cell subpopulations within these broadly defined cell types. To further define their functional significance, we determined the location of these cell subpopulations within the ovary. Finally, we used gene knockout experiments to determine the roles of foxl2l and wnt9b for oocyte development and sex determination and/or differentiation, respectively. Our results reveal novel insights into zebrafish ovarian development and function, and the transcriptome profiles will provide a valuable resource for future studies.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Michelle E Kossack
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Matthew E McFaul
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Lana N Christensen
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Stefan Siebert
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Sydney R Wyatt
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Caramai N Kamei
- Mount Desert Island Biological LaboratoryBar HarborUnited States
| | - Samuel Horst
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Nayeli Arroyo
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Iain A Drummond
- Mount Desert Island Biological LaboratoryBar HarborUnited States
| | - Celina E Juliano
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Bruce W Draper
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| |
Collapse
|
5
|
Sudhakaran G, Guru A, Hari Deva Muthu B, Murugan R, Arshad A, Arockiaraj J. Evidence-based hormonal, mutational, and endocrine-disrupting chemical-induced zebrafish as an alternative model to study PCOS condition similar to mammalian PCOS model. Life Sci 2022; 291:120276. [PMID: 34990650 DOI: 10.1016/j.lfs.2021.120276] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022]
Abstract
Polycystic ovarian syndrome (PCOS) causes swollen ovaries in women at reproductive age due to hormonal disorder with small cysts on the outer edges. The cause of the disorder is still yet to be found. Multiple factors have increased PCOS prevalence, hyperandrogenism, oxidative stress, inflammation, and insulin resistance. Various animal PCOS models have been developed to imitate the pathophysiology of PCOS in humans. Zebrafish is one of the most versatile animal experimental models because of the transparency of the embryos, small size, and rapid growth. The zebrafish similarity to higher vertebrates made it a useful non-mammalian model for PCOS drug testing and screening. This review provides an insight into the usage of zebrafish, a non-mammalian model for PCOS, as an opportunity for evaluating future initiatives in such a research domain.
Collapse
Affiliation(s)
- Gokul Sudhakaran
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - B Hari Deva Muthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai 603 203, Tamil Nadu, India; Foundation for Aquaculture Innovations and Technology Transfer (FAITT), Thoraipakkam, Chennai 600 097, Tamil Nadu, India.
| |
Collapse
|
6
|
You HH, Song G. Review of endocrine disruptors on male and female reproductive systems. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109002. [PMID: 33610819 DOI: 10.1016/j.cbpc.2021.109002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022]
Abstract
Endocrine disruptors (EDs) interfere with different hormonal and metabolic processes and disrupt the development of organs and tissues, as well as the reproductive system. In toxicology research, various animal models have been utilized to compare and characterize the effects of EDs. We reviewed studies assessing the effect of ED exposure in humans, zebrafish, and mouse models and the adverse effects of EDs on male and female reproductive systems. This review outlines the distinctive morphological characteristics, as well as gene expression, factors, and mechanisms that are known to occur in response to EDs. In each animal model, disturbances in the reproductive system were associated with certain factors of apoptosis, the hypothalamic-pituitary-gonadal axis, estrogen receptor pathway-induced meiotic disruption, and steroidogenesis. The effects of bisphenol A, phthalate, and 17α-ethinylestradiol have been investigated in animal models, each providing supporting outcomes and elaborating the key regulators of male and female reproductive systems.
Collapse
Affiliation(s)
- Hyekyoung Hannah You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Long Exposure to a Diet Supplemented with Antioxidant and Anti-Inflammatory Probiotics Improves Sperm Quality and Progeny Survival in the Zebrafish Model. Biomolecules 2019; 9:biom9080338. [PMID: 31382562 PMCID: PMC6724062 DOI: 10.3390/biom9080338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022] Open
Abstract
The aim of the present experiment is to study the effects of oral ingestion of a mixture of two probiotic bacteria on sperm quality and progenies. Three homogeneous groups of juvenile zebrafish were created. Once having reached adulthood (3 months postfertilization; mpf), each group received different feeding regimens: a standard diet (control), a maltodextrin-supplemented diet (vehicle control), or a probiotic-supplemented diet (a mixture (1:1) of Lactobacillus rhamnosus CECT8361 and Bifidobacterium longum CECT7347). The feeding regime lasted 4.5 months. Growth parameters (weight and length) were determined at 3, 5, and 7.5 mpf. Sperm motility was evaluated using computer-assisted sperm analysis at 5 and 7.5 mpf. Progeny survival, hatching rate, and malformation rate were also evaluated. Results showed that probiotic-supplemented diet improved growth parameters compared with the standard diet. The highest percentage of motile spermatozoa was reported in the probiotic-fed group. Concomitantly, the percentage of fast sperm subpopulation was significantly lower in samples derived from control males. Furthermore, there was a significant difference in progeny survival between the probiotic-fed group and the control group at three developmental times (24 hours postfertilization (hpf), 5 days postfertilization (dpf) and 7 dpf). In conclusion, in zebrafish, prolonged ingestion of a mixture of Lactobacillus rhamnosus CECT8361 and Bifidobacterium longum CECT7347 has positive effects on growth, sperm quality, and progeny survival.
Collapse
|
8
|
Pradhan A, Nayak M, Samanta M, Panda RP, Rath SC, Giri SS, Saha A. Gonadotropin receptors of Labeo rohita: Cloning and characterization of full-length cDNAs and their expression analysis during annual reproductive cycle. Gen Comp Endocrinol 2018; 263:21-31. [PMID: 29660307 DOI: 10.1016/j.ygcen.2018.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 12/22/2022]
Abstract
Follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), secreted from pituitary, stimulate gonadal function by binding to their cognate receptors FSH receptor (FSHR), and LH/choriogonadotropin receptor (LHCGR). Rohu (Labeo rohita) is a commercially important seasonal breeder freshwater fish species, but till date, the regulation of expression of gonadotropins and their receptors gene during different phases of annual reproductive cycle has not been investigated. We envisaged the critical role of these molecules during seasonal gonadal development in this carp species. We cloned full- length cDNAs of fshra and lhcgrba from rohu testis using RACE (Rapid amplification of cDNA ends) and analyzed their expression along with fsh and lh by quantitative real time PCR (qRT-PCR) assay at various gonadal developmental stages of the annual reproductive cycle. Full-length rohu fshra and lhcgrba cDNA encodes 670 and 716 amino acids respectively, and in adult fish, they were widely expressed in brain, pituitary, gonad, liver, kidney, head kidney, heart, muscle, gill, fin, eye and intestine. In male, both fsh and fshra transcripts showed high level of expression during spermatogenesis, however, in female, expression level was found to be higher in the fully grown oocyte stages. The expression of rohu lh and lhcgrba mRNA increased with increment of gonadosomatic index and showed highest level during spermiation stage in male and fully matured oocyte stage in female. These results together may suggest the involvement of fshra and lhcgrba in regulating function of seasonal gonadal development in rohu.
Collapse
MESH Headings
- Animals
- Cloning, Molecular
- Cyprinidae/genetics
- Cyprinidae/metabolism
- DNA, Complementary/isolation & purification
- DNA, Complementary/metabolism
- Female
- Gene Expression Profiling/veterinary
- Gonads/metabolism
- Male
- Pituitary Gland/metabolism
- Receptors, FSH/metabolism
- Receptors, Gonadotropin/genetics
- Receptors, Gonadotropin/isolation & purification
- Receptors, Gonadotropin/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Reproduction/genetics
- Sequence Analysis, DNA/veterinary
- Transcriptome
Collapse
Affiliation(s)
- Avinash Pradhan
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Madhusmita Nayak
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Mrinal Samanta
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Rudra Prasanna Panda
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Suresh Chandra Rath
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Shiba Shankar Giri
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India
| | - Ashis Saha
- ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, Odisha, India.
| |
Collapse
|
9
|
Hurem S, Gomes T, Brede DA, Mayer I, Lobert VH, Mutoloki S, Gutzkow KB, Teien HC, Oughton D, Aleström P, Lyche JL. Gamma irradiation during gametogenesis in young adult zebrafish causes persistent genotoxicity and adverse reproductive effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 154:19-26. [PMID: 29453161 DOI: 10.1016/j.ecoenv.2018.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 01/10/2018] [Accepted: 02/07/2018] [Indexed: 06/08/2023]
Abstract
The biological effects of gamma radiation may exert damage beyond that of the individual through its deleterious effects on reproductive function. Impaired reproductive performance can result in reduced population size over consecutive generations. In a continued effort to investigate reproductive and heritable effects of ionizing radiation, we recently demonstrated adverse effects and genomic instability in progeny of parents exposed to gamma radiation. In the present study, genotoxicity and effects on the reproduction following subchronic exposure during a gametogenesis cycle to 60Co gamma radiation (27 days, 8.7 and 53 mGy/h, total doses 5.2 and 31 Gy) were investigated in the adult wild-type zebrafish (Danio rerio). A significant reduction in embryo production was observed one month after exposure in the 53 mGy/h exposure group compared to control and 8.7 mGy/h. One year later, embryo production was significantly lower in the 53 mGy/h group compared only to control, with observed sterility, accompanied by a regression of reproductive organs in 100% of the fish 1.5 years after exposure. Histopathological examinations revealed no significant changes in the testis in the 8.7 mGy/h group, while in 62.5% of females exposed to this dose rate the oogenesis was found to be only at the early previtellogenic stage. The DNA damage determined in whole blood, 1.5 years after irradiation, using a high throughput Comet assay, was significantly higher in the exposed groups (1.2 and 3-fold increase in 8.7 and 53 mGy/h females respectively; 3-fold and 2-fold increase in 8.7 and 53 mGy/h males respectively) compared to controls. A significantly higher number of micronuclei (4-5%) was found in erythrocytes of both the 8.7 and 53 mGy/h fish compared to controls. This study shows that gamma radiation at a dose rate of ≥ 8.7 mGy/h during gametogenesis causes adverse reproductive effects and persistent genotoxicity (DNA damage and increased micronuclei) in adult zebrafish.
Collapse
Affiliation(s)
- Selma Hurem
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | - Tânia Gomes
- Norwegian Institute for Water research (NIVA), Gaustadalléen 21, NO-0349, Oslo, Norway
| | - Dag A Brede
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Ian Mayer
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Viola H Lobert
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway; Oslo University Hospital, Institute for Cancer Research Dept. of Molecular Cell Biology, Montebello, Oslo, Norway
| | - Stephen Mutoloki
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Kristine B Gutzkow
- Norwegian Institute of Public Health, PO Box 4404 Nydalen 0403 Oslo, Norway
| | - Hans-Christian Teien
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Deborah Oughton
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, 1433 Ås, Norway
| | - Peter Aleström
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Jan L Lyche
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| |
Collapse
|
10
|
Yumnamcha T, Khan ZA, Rajiv C, Devi SD, Mondal G, Sanjita Devi H, Bharali R, Chattoraj A. Interaction of melatonin and gonadotropin-inhibitory hormone on the zebrafish brain-pituitary-reproductive axis. Mol Reprod Dev 2017; 84:389-400. [PMID: 28295807 DOI: 10.1002/mrd.22795] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/07/2017] [Accepted: 03/04/2017] [Indexed: 11/07/2022]
Abstract
Circadian cycles and photoperiod are known to influence reproductive physiology in several animals. Neuropeptides, such as gonadotropin-inhibitory hormone (GNIH) and gonadotropin-releasing hormone (GNRH), are influenced by melatonin in birds and mammals. The present study demonstrates the role of melatonin in oocyte maturation in the zebrafish (Danio rerio), via the brain-pituitary-reproductive axis, under different photic conditions. Melatonin was significantly higher both in the whole brain and ovary under continuous dark (DD) compared to continuous light (LL) conditions. Transcription of gnih in the brain was high in LL, but low in DD; similarly, melatonin exogenous treatment reduced gnih in cultured brain in a dose-dependent manner. Expression of gnrh3, however, was high in both continuous photic conditions (DD and LL), whereas fshb and lhb were high only during DD. kiss2, another neuropeptide, was high in LL, but kiss1 remain unchanged among the conditions. At the gonad level, expression of fshr, lhcgr, mtnr1aa, and mtnr1ab tracked with the expression of their respective ligand in DD and LL. The expression of mprb is high in DD ovary, although intra-ovarian growth factors (tgfb1a and bmp15) were low. The measured increased percentages of germinal vesicle breakdown, expression of Cyclin B1, and reduced Cdc2p34 phosphorylation are consistent with increased maturation in the dark. Our study thus links melatonin to the inhibition of gnih in the brain-pituitary-reproductive axis of zebrafish in response to photic conditions.
Collapse
Affiliation(s)
- Thangal Yumnamcha
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Imphal, Manipur, India
| | - Zeeshan A Khan
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Imphal, Manipur, India
| | - Chongtham Rajiv
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Imphal, Manipur, India
| | - Sijagurumayum D Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Imphal, Manipur, India
| | - Gopinath Mondal
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Imphal, Manipur, India
| | - Haobijam Sanjita Devi
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Imphal, Manipur, India
| | - Rupjyoti Bharali
- Department of Biotechnology, Gauhati University, Guwahati, Assam, India
| | - Asamanja Chattoraj
- Biological Rhythm Laboratory, Animal Resources Programme, Institute of Bioresources and Sustainable Development, Government of India, Imphal, Manipur, India
| |
Collapse
|
11
|
Hoo JY, Kumari Y, Shaikh MF, Hue SM, Goh BH. Zebrafish: A Versatile Animal Model for Fertility Research. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9732780. [PMID: 27556045 PMCID: PMC4983327 DOI: 10.1155/2016/9732780] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
The utilization of zebrafish in biomedical research is very common in the research world nowadays. Today, it has emerged as a favored vertebrate organism for the research in science of reproduction. There is a significant growth in amount numbers of scientific literature pertaining to research discoveries in reproductive sciences in zebrafish. It has implied the importance of zebrafish in this particular field of research. In essence, the current available literature has covered from the very specific brain region or neurons of zebrafish, which are responsible for reproductive regulation, until the gonadal level of the animal. The discoveries and findings have proven that this small animal is sharing a very close/similar reproductive system with mammals. More interestingly, the behavioral characteristics and along with the establishment of animal courtship behavior categorization in zebrafish have laid an even stronger foundation and firmer reason on the suitability of zebrafish utilization in research of reproductive sciences. In view of the immense importance of this small animal for the development of reproductive sciences, this review aimed at compiling and describing the proximate close similarity of reproductive regulation on zebrafish and human along with factors contributing to the infertility, showing its versatility and its potential usage for fertility research.
Collapse
Affiliation(s)
- Jing Ying Hoo
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Sunway College, Jalan Universiti, Bandar Sunway, 46150 Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Yatinesh Kumari
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Seow Mun Hue
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey Hing Goh
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
12
|
HU X, LIU X, ZHANG Y, LI S, CHEN H, LIN H. Expression profiles of gonadotropin receptors during ovary development in the orange-spotted grouper (Epinephelus coioides). ACTA ACUST UNITED AC 2013. [DOI: 10.3724/sp.j.1118.2012.00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
King-Heiden TC, Mehta V, Xiong KM, Lanham KA, Antkiewicz DS, Ganser A, Heideman W, Peterson RE. Reproductive and developmental toxicity of dioxin in fish. Mol Cell Endocrinol 2012; 354:121-38. [PMID: 21958697 PMCID: PMC3306500 DOI: 10.1016/j.mce.2011.09.027] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/12/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD or dioxin) is a global environmental contaminant and the prototypical ligand for investigating aryl hydrocarbon receptor (AHR)-mediated toxicity. Environmental exposure to TCDD results in developmental and reproductive toxicity in fish, birds and mammals. To resolve the ecotoxicological relevance and human health risks posed by exposure to dioxin-like AHR agonists, a vertebrate model is needed that allows for toxicity studies at various levels of biological organization, assesses adverse reproductive and developmental effects and establishes appropriate integrative correlations between different levels of effects. Here we describe the reproductive and developmental toxicity of TCDD in feral fish species and summarize how using the zebrafish model to investigate TCDD toxicity has enabled us to characterize the AHR signaling in fish and to better understand how dioxin-like chemicals induce toxicity. We propose that such studies can be used to predict the risks that AHR ligands pose to feral fish populations and provide a platform for integrating risk assessments for both ecologically relevant organisms and humans.
Collapse
Affiliation(s)
- Tisha C. King-Heiden
- Department of Biology and River Studies Center, University of Wisconsin, La Crosse, WI
| | - Vatsal Mehta
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| | - Kong M. Xiong
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI
| | - Kevin A. Lanham
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI
| | | | - Alissa Ganser
- Department of Biology and River Studies Center, University of Wisconsin, La Crosse, WI
| | - Warren Heideman
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| | - Richard E. Peterson
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, WI
| |
Collapse
|
14
|
Li CW, Zhou R, Ge W. Differential regulation of gonadotropin receptors by bone morphogenetic proteins in the zebrafish ovary. Gen Comp Endocrinol 2012; 176:420-5. [PMID: 22240277 DOI: 10.1016/j.ygcen.2011.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 12/22/2011] [Indexed: 01/05/2023]
Abstract
Follicle-stimulating hormone receptor (fshr) and luteinizing hormone/choriogonadotropin receptor (lhcgr) exhibit differential temporal expression patterns during zebrafish folliculogenesis with fshr being dominant during vitellogenic growth and lhcgr increasing its expression dramatically before maturation. The dynamic and distinct expression patterns of fshr and lhcgr suggest that they are under tight regulatory control. However, the underlying mechanisms for the differential expression of the two receptors remain unknown. We have recently demonstrated that members of bone morphogenetic protein (BMP) family are largely expressed in the oocyte, while their receptors are exclusively localized on the follicle cells, suggesting a potential paracrine signaling from the oocyte to the follicle cells by BMPs. In this study, we investigated the effects of zebrafish BMP2b (zfBmp2b) and BMP4 (zfBmp4) on the expression of fshr and lhcgr using a novel co-culture approach. The recombinant zfBmp2b or zfBmp4-producing CHO cells were co-cultured with the zebrafish follicle cells followed by real-time qPCR analysis of fshr and lhcgr expression. Our results showed that zfBmp2b and zfBmp4 both down-regulated fshr, while up-regulated lhcgr expression at 24 h of co-culturing. This finding, together with the high expression level of BMP receptors in the follicle cells prior to oocyte maturation, strongly suggests a potential role for BMPs in the differential expression of fshr and lhcgr, especially in the full-grown follicles before maturation. As BMPs are largely expressed in the oocyte, this also implies an important role for the oocyte in orchestrating the differentiation and function of the follicle cells.
Collapse
Affiliation(s)
- Cheuk Wun Li
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
15
|
Liu KC, Lin SW, Ge W. Differential regulation of gonadotropin receptors (fshr and lhcgr) by estradiol in the zebrafish ovary involves nuclear estrogen receptors that are likely located on the plasma membrane. Endocrinology 2011; 152:4418-30. [PMID: 21878512 DOI: 10.1210/en.2011-1065] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
FSH and LH are gonadotropins (GTH) that control all major events of gonadal function. FSH and LH signal through their cognate receptors, FSH receptor and LH/choriogonadotropin receptor, respectively, across vertebrates. Compared with the information in mammals, very little is known about these receptors in fish, especially the regulation of their expression. In female zebrafish, fshr and lhcgr exhibit significant temporal difference in expression, with fshr increasing first when the follicles are activated to enter the vitellogenic growth phase and lhcgr lagging behind. This raises an interesting question on the differential regulation of these two GTH receptors (GTHR) during folliculogenesis. Using a primary follicle cell culture, the present study demonstrated that 17β-estradiol (E2), but not testosterone, was a potent endocrine hormone that differentially regulated the expression of fshr and lhcgr. Although E2 stimulated both receptors, its effect on the steady-state level of lhcgr mRNA was much higher (>8-fold up-regulation) than that of fshr (∼0.5-fold increase). E2 likely acted at the transcription level via its nuclear estrogen receptors (ERα and ERβ), because ICI 182,780 could abolish its effects. However, our evidence suggested that these receptors might be localized on the plasma membrane, because β-estradiol 6-(O-carboxy methyl)oxime:BSA could fully mimic the effects of E2. Demonstrating that E2 is likely one of the differentiating factors for the distinct expression of the two GTHR in the zebrafish ovary, this study sheds important light on the functions of the two GTH and their receptors in fish as well as the conservation and diverse aspects of GTHR regulation across vertebrates.
Collapse
MESH Headings
- Animals
- Estradiol/pharmacology
- Female
- Ovary/drug effects
- Ovary/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Testosterone/pharmacology
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Ka-Cheuk Liu
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
16
|
Wang X, Zhao T, Wei H, Zhou H. Regulation of dopamine D2 receptor expression in grass carp pituitary cells: a possible mechanism for dopaminergic modification of luteinizing hormone synthesis. Gen Comp Endocrinol 2011; 173:48-55. [PMID: 21570980 DOI: 10.1016/j.ygcen.2011.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/28/2011] [Accepted: 04/22/2011] [Indexed: 01/28/2023]
Abstract
In many fishes, dopamine (DA) strongly inhibits luteinizing hormone (LH) release by direct action at the pituitary level. In this study, the effect of DA on LH synthesis was examined by detecting its β-subunit mRNA level in immature grass carp pituitary cells. Results showed that DA inhibited LHβ mRNA expression and its inhibition was antagonized by a DA D2 receptor (DRD2) antagonist, sulpiride, suggesting that DA inhibited LH synthesis via DRD2. This notion was further supported by the finding that the grass carp DRD2 (gcDRD2) immunoreactivity was observed in the proximal pars distalis of the pituitary in which gonadotrophs are distributed. Accordingly, a full-length cDNA for DRD2 was cloned from grass carp pituitary and it showed closer phylogenetic relationships to the DA D2 receptors compared with the D3 and D4 or D1-like receptors in other vertebrates. Besides brain, the expression of this receptor in pituitary was revealed by tissue distribution assay, implying the pituitary function of gcDRD2 in immature grass carp. In grass carp pituitary cells, gcDRD2 transcript level was stimulated by DA and this stimulation was blocked by sulpiride. However, hCG, a functional homolog of grass carp LH, was found to inhibit gcDRD2 mRNA expression, indicating an intrapituitary negative feedback of LH on gcDRD2 expression. In view of our observation that the DRD2 mediated the dopaminergic inhibition of LH synthesis, we speculate that the DA stimulation and LH suppression on gcDRD2 may reinforce or attenuate the DA inhibition on LH synthesis, respectively and this regulation of gcDRD2 may at least partially contribute to the steady state levels of LH mRNA in prepubertal grass carp.
Collapse
Affiliation(s)
- Xinyan Wang
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Hu X, Liu X, Zhang H, Zhang Y, Li S, Sang Q, Wang Q, Luo W, Liu Q, Lu D, Meng Z, Lin H. Expression profiles of gonadotropins and their receptors during 17α-methyltestosterone implantation-induced sex change in the orange-spotted grouper (Epinephelus coioides
). Mol Reprod Dev 2011; 78:376-90. [DOI: 10.1002/mrd.21319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 03/17/2011] [Indexed: 11/07/2022]
|
18
|
Shinoda T, Miranda LA, Okuma K, Hattori RS, Fernandino JI, Yoshizaki G, Somoza GM, Strüssmann CA. Molecular cloning and expression analysis ofFshrandLhrin relation toFshbandLhbsubunits during the period of temperature-dependent sex determination in pejerreyOdontesthes bonariensis. Mol Reprod Dev 2010; 77:521-32. [DOI: 10.1002/mrd.21179] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Yu X, Lin SW, Kobayashi M, Ge W. Expression of recombinant zebrafish follicle-stimulating hormone (FSH) in methylotropic yeast Pichia pastoris. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:273-281. [PMID: 20467863 DOI: 10.1007/s10695-008-9244-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Accepted: 06/13/2008] [Indexed: 05/29/2023]
Abstract
Pituitary gonadotropin follicle-stimulating hormone (FSH) was identified in fish two decades ago, but its functional importance in fish reproduction remains poorly defined, especially in non-salmonid species. This gap in our knowledge is partially due to the lack of the hormone in pure form in most of the species studied. We describe here the production of two different forms of biologically active recombinant zebrafish FSH (zfFSH and zfFSH(HIS)) using methylotrophic yeast, Pichia pastoris, as the bioreactor. One form (zfFSH) was produced as the molecule closer to the native form, with the two subunits (Cga and Fshb) expressed separately under different promoters. The other form (zfFSH(HIS)) was produced as a single polypeptide, with the cDNAs for the two subunits joined to form a fusion gene that contained a 6X His tag as part of the linker between the two subunits. The culture conditions were optimized for pH and incubation time for maximal production of the proteins. Using a zebrafish FSH receptor (Fshr)-based reporter gene assay, we tested and compared the biological activities of the two forms of recombinant zebrafish FSH. Our results provide useful information for the future production of recombinant gonadotropins in other fish species.
Collapse
Affiliation(s)
- Xiaobin Yu
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | |
Collapse
|
20
|
Chauvigné F, Tingaud-Sequeira A, Agulleiro MJ, Calusinska M, Gómez A, Finn RN, Cerdà J. Functional and Evolutionary Analysis of Flatfish Gonadotropin Receptors Reveals Cladal- and Lineage-Level Divergence of the Teleost Glycoprotein Receptor Family1. Biol Reprod 2010; 82:1088-102. [DOI: 10.1095/biolreprod.109.082289] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
21
|
Alam MA, Kobayashi Y, Hirai T, Nakamura M. Isolation, characterization and expression analyses of FSH receptor in protogynous grouper. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:364-71. [PMID: 20227511 DOI: 10.1016/j.cbpa.2010.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/01/2010] [Accepted: 03/02/2010] [Indexed: 11/25/2022]
Abstract
Follicle-stimulating hormone (FSH) and its receptor (FSHR) play important roles in spermatogenesis. We cloned and characterized the honeycomb grouper Epinephelus merra FSHR (EmFSHR) to elucidate its role in the protogynous sex change in groupers. Reverse transcription-polymerase chain reaction (RT-PCR) analysis suggested that EmFSHR was expressed exclusively in the gonads. In situ hybridization showed the distribution of EmFSHR in the granulosa cells of previtellogenic oocytes and Leydig cells in the testis. Quantitative reverse transcription PCR (RT-qPCR) analysis of gonadal EmFSHR transcripts during the process of sex change indicated that the lowest levels were found in the female phase before sex change. EmFSHR transcripts increased during the early transitional phase, when oocytes began to degenerate in parallel with the initiation of gonial germ cell differentiation into spermatogonia. A dramatic increase in EmFSHR transcription occurred during the late transitional phase, when the gonad contained numerous proliferating male germ cells and many degenerated oocytes. EmFSHR expression remained high until the transformation from ovary to testis was complete. The data reveal that female to male sex change is associated with the upregulation of EmFSHR transcripts, and that this upregulation may be responsible for the development of testicular tissue and the progression of spermatogenesis. Furthermore, how the upregulation of EmFSHR is controlled in the initiation of sex change remains to be elucidated.
Collapse
Affiliation(s)
- Mohammad Ashraful Alam
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Sesoko 3422, Motobu, Okinawa 905-0227, Japan.
| | | | | | | |
Collapse
|
22
|
Taranger GL, Carrillo M, Schulz RW, Fontaine P, Zanuy S, Felip A, Weltzien FA, Dufour S, Karlsen O, Norberg B, Andersson E, Hansen T. Control of puberty in farmed fish. Gen Comp Endocrinol 2010; 165:483-515. [PMID: 19442666 DOI: 10.1016/j.ygcen.2009.05.004] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 04/17/2009] [Accepted: 05/06/2009] [Indexed: 11/30/2022]
Abstract
Puberty comprises the transition from an immature juvenile to a mature adult state of the reproductive system, i.e. the individual becomes capable of reproducing sexually for the first time, which implies functional competence of the brain-pituitary-gonad (BPG) axis. Early puberty is a major problem in many farmed fish species due to negative effects on growth performance, flesh composition, external appearance, behaviour, health, welfare and survival, as well as possible genetic impact on wild populations. Late puberty can also be a problem for broodstock management in some species, while some species completely fail to enter puberty under farming conditions. Age and size at puberty varies between and within species and strains, and are modulated by genetic and environmental factors. Puberty onset is controlled by activation of the BPG axis, and a range of internal and external factors are hypothesised to stimulate and/or modulate this activation such as growth, adiposity, feed intake, photoperiod, temperature and social factors. For example, there is a positive correlation between rapid growth and early puberty in fish. Age at puberty can be controlled by selective breeding or control of photoperiod, feeding or temperature. Monosex stocks can exploit sex dimorphic growth patterns and sterility can be achieved by triploidisation. However, all these techniques have limitations under commercial farming conditions. Further knowledge is needed on both basic and applied aspects of puberty control to refine existing methods and to develop new methods that are efficient in terms of production and acceptable in terms of fish welfare and sustainability.
Collapse
|
23
|
|
24
|
Wang Q, Zhang P, Gao HB. Luteinizing hormone induces expression of 11beta-hydroxysteroid dehydrogenase type 2 in rat Leydig cells. Reprod Biol Endocrinol 2009; 7:39. [PMID: 19409113 PMCID: PMC2686704 DOI: 10.1186/1477-7827-7-39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 05/04/2009] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Leydig cells are the primary source of testosterone in male vertebrates. The biosynthesis of testosterone in Leydig cells is strictly dependent on luteinizing hormone (LH). On the other hand, it can be directly inhibited by excessive glucocorticoid (Corticosterone, CORT, in rats) which is beyond the protective capability of 11beta-Hydroxysteroid dehydrogenase type 1 (11beta-HSD1) and type 2 (11beta-HSD2; encoded by gene Hsd11b2 in rats) in Leydig cells. Our previous study found that LH increases 11beta-HSD1 expression in rat Leydig cells, but the effect of LH on the expression and activity of 11beta-HSD2 is not investigated yet. METHODS The Leydig cells were isolated from male Sprague-Dawley rats (90 days of age). After Leydig cells were incubated either for 24 h with various concentrations of LH (2.5, 5, 10 and 20 ng/mL) or for different time periods (2, 8, 12 and 24 h) with 20 ng/mL LH, the mRNA expression of 11beta-HSD2 was measured by real-time PCR. 11beta-HSD2 protein levels in Leydig cells were assayed by Western Blot and 11beta-HSD2 enzyme activity was determined by calculating the ratio of conversion of [3H]CORT to [3H]11-dehydrocorticosterone by 24 h after stimulation with 20 ng/ml LH. Four reporter gene plasmids containing various lengths of Hsd11b2 promoter region were constructed and transfected into mouse Leydig tumor cells to investigate the effect of LH on Hsd11b2 transcription. A glucocorticoid-responsive reporter gene plasmid, GRE-Luc, was constructed. To evaluate influence of LH on intracellular glucocorticoid level, rat Leydig cells were transfected with GRE-Luc, and luciferase activities were measured after incubation with CORT alone or CORT plus LH. RESULTS We observed dose- and temporal-dependent induction of rat 11beta-HSD2 mRNA expression in Leydig cells subject to LH stimulation. The protein and enzyme activity of 11beta-HSD2 and the luciferase activity of reporter gene driven by promoter regions of Hsd11b2 were increased by LH treatment. LH decreased the glucocorticoid-induced luciferase activity of GRE-Luc reporter gene. CONCLUSION The results of the present study suggest that LH increases the expression and enzyme activity of 11beta-HSD2, and therefore enhances capacity for oxidative inactivation of glucocorticoid in rat Leydig cells in vitro.
Collapse
Affiliation(s)
- Qian Wang
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chong Qing Road, Shanghai 200025, PR China
| | - Ping Zhang
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chong Qing Road, Shanghai 200025, PR China
- Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chong Qing Road, Shanghai 200025, PR China
| | - Hui-Bao Gao
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chong Qing Road, Shanghai 200025, PR China
| |
Collapse
|
25
|
Kobayashi Y, Nakamura M, Sunobe T, Usami T, Kobayashi T, Manabe H, Paul-Prasanth B, Suzuki N, Nagahama Y. Sex change in the Gobiid fish is mediated through rapid switching of gonadotropin receptors from ovarian to testicular portion or vice versa. Endocrinology 2009; 150:1503-11. [PMID: 18948407 DOI: 10.1210/en.2008-0569] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sex-changing fish Trimma okinawae can change its sex back and forth from male to female and then to male serially, depending on the social status in the harem. T. okinawae is well equipped to respond to its social status by possessing both ovarian and testicular tissues even though only one gonad remains active at one time. Here we investigated the involvement of gonadotropins in sex change by determining the changes in gonadotropin receptor (GtHR) gene expression during the onset of sex change from female to male and male to female. The expression of the GtHR was found to be confined to the active gonad of the corresponding sexual phase. During the sex-change from female to male, initially the ovary had high levels of FSHR and LHR, which eventually went up in the testicular tissue if the fish was bigger. Changing of the gonads started with switching of GtHR expression discernible within 8-12 h of the visual cue. Further in vitro culture of the transitional gonads with a supply of exogenous gonadotropin (human chorionic gonadotropin) revealed that the to-be-active gonad acquired the ability to produce the corresponding sex hormone within 1 d of the activation of GtHR. Conversely, the to-be-regressed gonad did not respond to the exogenous gonadotropin. Our findings show that the gonads of successive sex-changing fish possess the intrinsic mechanism to respond to the social cue differentially. Additionally, this location switching of GtHR expression also could substantiate the importance of the hypothalamo-pituitary-gonadotropic axis.
Collapse
Affiliation(s)
- Yasuhisa Kobayashi
- Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Segner H. Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comp Biochem Physiol C Toxicol Pharmacol 2009; 149:187-95. [PMID: 18955160 DOI: 10.1016/j.cbpc.2008.10.099] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/02/2008] [Accepted: 10/02/2008] [Indexed: 01/05/2023]
Abstract
Endocrine-disrupting compounds (EDCs) are widespread in the aquatic environment and can cause alterations in development, physiological homeostasis and health of vertebrates. Zebrafish, Danio rerio, has been suggested as a model species to identify targets as well as modes of EDC action. In fact, zebrafish has been found useful in EDC screening, in EDC effects assessment and in studying targets and mechanisms of EDC action. Since many of the environmental EDCs interfere with the sex steroid system of vertebrates, most EDC studies with zebrafish addressed disruption of sexual differentiation and reproduction. However, other targets of EDCs action must not be overlooked. For using a species as a toxicological model, a good knowledge of the biological traits of this species is a pre-requisite for the rational design of test protocols and endpoints as well as for the interpretation and extrapolation of the toxicological findings. Due to the genomic resources available for zebrafish and the long experience with zebrafish in toxicity testing, it is easily possible to establish molecular endpoints for EDC effects assessment. Additionally, the zebrafish model offers a number of technical advantages including ease and cost of maintenance, rapid development, high fecundity, optical transparency of embryos supporting phenotypic screening, existence of many mutant strains, or amenability for both forward and reverse genetics. To date, the zebrafish has been mainly used to identify molecular targets of EDC action and to determine effect thresholds, while the potential of this model species to study immediate and delayed physiological consequences of molecular interactions has been instrumentalized only partly. One factor that may limit the exploitation of this potential is the still rather fragmentary knowledge of basic biological and endocrine traits of zebrafish. Information on species-specific features in endocrine processes and biological properties, however, need to be considered in establishing EDC test protocols using zebrafish, in extrapolating findings from zebrafish to other vertebrate species, and in understanding how EDC-induced gene expression changes translate into disease.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, University of Berne, P.O. Box 8466, CH-3001 Bern, Switzerland.
| |
Collapse
|
27
|
Lin SW, Ge W. Differential regulation of gonadotropins (FSH and LH) and growth hormone (GH) by neuroendocrine, endocrine, and paracrine factors in the zebrafish--an in vitro approach. Gen Comp Endocrinol 2009; 160:183-93. [PMID: 19063890 DOI: 10.1016/j.ygcen.2008.11.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 11/18/2008] [Accepted: 11/20/2008] [Indexed: 10/21/2022]
Abstract
Recently, zebrafish has quickly risen as a model species for functional analysis of the brain-pituitary-gonad axis. However, one of the hurdles for such work in this popular model organism is the small size of its pituitary gland, which makes it difficult to investigate the regulation of pituitary hormone expression and secretion in vitro. To provide a solution to this problem and demonstrate the value of zebrafish in reproductive endocrinology, the present study was undertaken to establish a primary pituitary cell culture followed by investigating the regulation of FSHbeta (fshb), LHbeta (lhb), and GH (gh) expression by a variety of neuroendocrine, endocrine, and paracrine factors. All the factors examined influenced the expression of fshb, lhb, and ghin vitro except epidermal growth factor (EGF) despite the expression of its receptor egfr in the pituitary. Acting in a similar manner, gonadal steroids (estradiol and testosterone) stimulated both fshb and lhb, but had no effect on gh. In contrast, all other factors tested (gonadotropin-releasing hormone, GnRH; pituitary adenylate cyclase-activating polypeptide, PACAP; activin/follistatin, and insulin-like growth factor I, IGF-I) exhibited distinct effects on the expression of the three target genes studied, suggesting roles for these factors in the differential regulation of two gonadotropins and growth hormone and therefore the gonadotrophic and somatotrophic axes.
Collapse
Affiliation(s)
- Sze-Wah Lin
- Department of Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | |
Collapse
|
28
|
Mittelholzer C, Andersson E, Taranger GL, Consten D, Hirai T, Senthilkumaran B, Nagahama Y, Norberg B. Molecular characterization and quantification of the gonadotropin receptors FSH-R and LH-R from Atlantic cod (Gadus morhua). Gen Comp Endocrinol 2009; 160:47-58. [PMID: 18992749 DOI: 10.1016/j.ygcen.2008.10.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Revised: 09/29/2008] [Accepted: 10/15/2008] [Indexed: 10/21/2022]
Abstract
In order to elucidate regulatory mechanisms during puberty final oocyte maturation and spawning, full-length sequences coding for the receptors for follicle-stimulating hormone (FSH-R) and luteinizing hormone (LH-R) were isolated from female Atlantic cod (Gadus morhua) by a RACE-PCR based strategy. The nucleotide and amino acid sequences showed high homologies with the corresponding sequences of other fish species but contained some distinct differences. Conserved features important for functionality, such as a long N-terminal extracellular domain (ECD), seven transmembrane domains and a short C-terminal intracellular domain, were identified in both predicted proteins. Partial genomic sequences for these genes were also determined, allowing the design of mRNA-specific quantitative PCR assays. Due to suspected alternative splicing during expression of these genes, additional real-time PCR assays detecting variants containing the membrane-anchoring domain were established. Besides the expected expression of FSH-R and LH-R mRNA in the gonads similarly strong signals for LH-R were also obtained in male gill, and in female and male brain. When relative expression was analysed at different stages of sexual maturation, levels for FSH-R increased moderately during gonadal growth whereas those of LH-R showed a high peak at spawning.
Collapse
Affiliation(s)
- C Mittelholzer
- Institute of Marine Research Austevoll, Storebø, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bobe J, Nguyen T, Fostier A. Ovarian function of the trout preovulatory ovary: new insights from recent gene expression studies. Comp Biochem Physiol A Mol Integr Physiol 2008; 153:63-8. [PMID: 19027867 DOI: 10.1016/j.cbpa.2008.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 10/24/2008] [Accepted: 10/25/2008] [Indexed: 10/21/2022]
Abstract
During the preovulatory period the follicle-enclosed oocyte progressively acquires maturational and developmental competence. In addition, the follicle is also preparing for the release of the oocyte from the follicle at ovulation. Using real-time PCR and cDNA microarrays we have investigated the molecular mechanisms of oocyte competence acquisition and ovulation in rainbow trout (Oncorhynchus mykiss) by monitoring gene expression in the preovulatory ovary. These studies have demonstrated that many molecular events related to maturational competence and developmental competence acquisition, and ovulation occur concomitantly in the preovulatory ovarian follicle. Oocyte maturational competence acquisition is associated with a decrease of estrogen synthesis and signaling capacities. We also observed a differential expression of genes encoding for igfs and related binding protein, members of the TGF beta superfamily, proteins involved in ion and water transport, bone morphogenetic proteins, and cathepsins. In addition, our observation of a strong up-regulation, prior to ovulation, of genes encoding for proteins putatively involved in proteolysis, inflammation, coagulation, vasodilatation, and angiogenesis further supports the hypothesis comparing ovulation with an inflammatory-like reaction. Together, our results suggest that a finely tuned cross-talk exists between oocyte and follicular layers and between the ovulatory process and the oocyte maturational and developmental competence acquisition processes.
Collapse
Affiliation(s)
- Julien Bobe
- Institut National de la Recherche Agronomique, UR1037 SCRIBE, IFR140, Genopole Ouest, Rennes, France.
| | | | | |
Collapse
|
30
|
Kobayashi T, Andersen Ø. The gonadotropin receptors FSH-R and LH-R of Atlantic halibut (Hippoglossus hippoglossus), 1: isolation of multiple transcripts encoding full-length and truncated variants of FSH-R. Gen Comp Endocrinol 2008; 156:584-94. [PMID: 18359484 DOI: 10.1016/j.ygcen.2008.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 12/12/2007] [Accepted: 02/12/2008] [Indexed: 11/29/2022]
Abstract
As a first step towards understanding the regulatory mechanisms underlying the asynchronous oogenesis in repetitive spawning fish, full-length cDNAs encoding the receptors for follicle stimulating hormone (FSH-R) and luteinizing hormone (LH-R) were isolated from the gonads of the flatfish Atlantic halibut (Hippoglossus hippoglossus). The predicted halibut FSH-R and LH-R of 664 and 698 amino acids, respectively, both contain the characteristic features of a large extracellular (EC) domain, a hepta-helical transmembrane (TM) domain, and a short cytoplasmic C-terminal tail. Halibut FSH-R and LH-R share only 42% overall sequence identity mostly due to low homology in the ligand-binding EC domain. Both receptors show high sequence identity to their orthologs of Nile tilapia, but seem to be more remotely related to the receptors in catfish, zebrafish and salmonids. In contrast to the intron-less TM domain of almost all vertebrate gonadotropin receptors, three introns were identified in this domain of halibut FSH-R, thus resembling the gene structure of Drosophila glycoprotein hormone receptor type I. The FSH-R pre-mRNA was shown to be processed in alternative ways by isolating two different transcripts encoding the complete receptor and four alternative spliced transcripts encoding different truncated receptor variants. Based on the DNA sequence variation and chromosomal organization of the gonadotropin receptors in several teleosts, we propose that the encoding genes have been duplicated in the fish lineage.
Collapse
Affiliation(s)
- Tamae Kobayashi
- Institute of Aquaculture Research, AKVAFORSK, P.O. Box 5010, 1430 Aas, Norway
| | | |
Collapse
|
31
|
Wong AC, Van Eenennaam AL. Gonadotropin hormone and receptor sequences from model teleost species. Zebrafish 2008; 1:203-21. [PMID: 18248232 DOI: 10.1089/zeb.2004.1.203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fish offer some advantages for the study of vertebrate reproductive physiology. Only a few of the genes encoding the components of the hypothalamic-pituitary-gonadal axis have been identified from model teleosts. This study describes a combination of database searching and molecular approaches to identify the FSH and LH gonadotropin beta-subunits (fshb and lhb, respectively), and the LH receptor (lhr) from two model teleost species: zebrafish (Danio rerio) and Fugu (Takifugu rubripes). Sequence and phylogenetic analyses were used to examine the relationships that exist between gonadotropins and their receptors from species representing several piscine orders. The gonadotropin alpha-subunit (Cga) is highly conserved among teleosts and tetrapods. The presence of a genomic pseudogene (cgap) was also noted in zebrafish. Generally, teleostean FSHbeta protein sequences share less identity with each other than do LHbeta protein sequences, supporting the hypothesis that FSHbeta diverged more rapidly during teleost evolution. Interestingly, and uniquely, zebrafish Fshb lacked two highly conserved cysteine residues in the "determinant loop" which is thought to contribute towards receptor binding and specificity. Teleost gonadotropin receptor sequences clearly diverged into two distinct groups, FSHR and LHR. As has been seen with mammalian gonadotropin receptor transcripts, splice variants of zebrafish lhr were also observed.
Collapse
Affiliation(s)
- Andrew C Wong
- Department of Animal Science, University of California, Davis, California 95616, USA
| | | |
Collapse
|
32
|
Maugars G, Schmitz M. Molecular cloning and characterization of FSH and LH receptors in Atlantic salmon (Salmo salar L.). Gen Comp Endocrinol 2006; 149:108-17. [PMID: 16764877 DOI: 10.1016/j.ygcen.2006.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 03/28/2006] [Accepted: 04/26/2006] [Indexed: 11/16/2022]
Abstract
Two cDNAs encoding the FSH receptor (FSHR) and the LH receptor (LHR) from Atlantic salmon (Salmo salar) were cloned and characterized. The predicted protein sequence for FSHR comprises a mature protein of 635 amino acids (aa) and a signal peptide of 23aa, and for LHR a mature protein of 701aa and a signal peptide of 27aa. Multiple sequence alignment of Atlantic salmon FSHR and LHR with gonadotropin receptor sequences of available teleosts and representative vertebrates revealed high sequence homology with other salmonids (97-98% for both receptors); amino acid identities ranged from 59 to 67% for FSHR and 47-79% for LHR compared with other teleosts, and between 50 and 52% compared with other vertebrates. The salmon FSHR and LHR showed the typical characteristics of glycoprotein receptors, including a long N-terminal extracellular domain (ECD), seven transmembrane domains and a short C-terminal intracellular domain. The ECD of the Atlantic salmon FSHR and LHR were composed of nine imperfect leucine-rich repeats forming the potential recognition sites for the corresponding hormone. The comparative analysis of the recognition sites in the Atlantic salmon gonadotropin receptors with the corresponding sites in the human receptors showed that the nature of the residues involved in the key contacts with the glycoprotein alpha-subunit were highly conserved. In contrast the recognition sites for the specific beta-subunits showed clear differences between the two salmon gonadotropin receptors and the human receptors. In the salmon LHR the recognition sites for the LH beta-subunit were relatively conserved, while the recognition sites for the FSH beta-subunit in the salmon FSHR showed a higher divergence, suggesting different evolution rates for the two teleost gonadotropin receptors. Both FSHR and LHR were mainly expressed in the ovary and testis, but were also detected at low abundance in extra-gonadal tissues such as gills, brain, liver and heart.
Collapse
Affiliation(s)
- Gersende Maugars
- Department of Aquaculture, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | | |
Collapse
|
33
|
Kamei H, Kawazoe I, Kaneko T, Aida K. Purification of follicle-stimulating hormone from immature Japanese eel, Anguilla japonica, and its biochemical properties and steroidogenic activities. Gen Comp Endocrinol 2005; 143:257-66. [PMID: 15894317 DOI: 10.1016/j.ygcen.2005.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 02/21/2005] [Accepted: 03/21/2005] [Indexed: 11/15/2022]
Abstract
Follicle-stimulating hormone (FSH) was purified, for the first time, from immature Japanese eel, Anguilla japonica, and its biochemical properties were investigated. FSH was extracted from immature eel pituitaries and purified by gel-filtration on Sephadex G-100, and two step anion-exchange chromatography: stepwise elution on DE-52, followed by gradient elution on TSK-gel Super-Q using HPLC. Purification was performed using its molecular mass and the positive reaction with anti-Japanese eel (je) FSHbeta antiserum. Purified eel FSH was detected as a single band after separation by SDS-PAGE under a non-reducing condition, showing positive reaction with both anti-je glycoprotein (GP) alpha and anti-jeFSHbeta antisera. The molecular mass of purified eel FSH was estimated to be approximately 33 kDa. After separation by SDS-PAGE under reducing condition, the intact molecule was detected as distinct proteins, whose N-terminus amino acid sequences coincided with those predicted from cDNA sequences for jeGPalpha and jeFSHbeta mature peptides. Deglycosylation of these subunits led to a decrease in their molecular mass. These results suggest that eel FSH is a heterodimeric molecule which consists of distinct glycoprotein subunits, GPalpha and FSHbeta. Cells reacting with anti-jeFSHbeta antiserum were observed in the proximal pars distalis of an immature eel pituitary, while jeLHbeta-immunoreactive cells were not detected. Gonadotropic activities of eel FSH were demonstrated in vitro by stimulating testosterone and 11-ketotestosterone secretions in immature eel testes. Purified eel FSH stimulated the secretion of both androgens from the immature eel testis in a dose-dependent manner, similar to immature eel pituitary homogenate and recombinant eel FSH produced by yeast. These results show that endogenous and recombinant FSH in this species possess similar activities, presumably stimulating the gametogenesis through the sex steroid secretion during the early stages of gonadal development.
Collapse
Affiliation(s)
- Hiroyasu Kamei
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | | | | | | |
Collapse
|
34
|
Bogerd J, Granneman JCM, Schulz RW, Vischer HF. Fish FSH receptors bind LH: how to make the human FSH receptor to be more fishy? Gen Comp Endocrinol 2005; 142:34-43. [PMID: 15862546 DOI: 10.1016/j.ygcen.2004.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 12/16/2004] [Indexed: 11/25/2022]
Abstract
In mammals, the interactions between glycoprotein hormones and their cognate receptors are highly specific; unintended cross-reactivity under normal physiological conditions has not been observed. The interactions between fish gonadotropins and their receptors, on the other hand, appeared to be less discriminatory. For example, the catfish follicle-stimulating hormone (FSH) receptor was highly responsive to both catfish luteinizing hormone (LH) and catfish FSH. Similarly, the FSH receptor of coho salmon bound both salmon FSH and LH. In contrast, LH receptors of both species were found to be rather specific for their cognate LH. This paper intends to summarize the current situation with special emphasis to our comparative structure-function studies that aim at elucidating the molecular basis of ligand selectivity (in mammals) and ligand promiscuity (in fish).
Collapse
Affiliation(s)
- Jan Bogerd
- Department of Endocrinology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Park JI, Semyonov J, Chang CL, Hsu SYT. Conservation of the heterodimeric glycoprotein hormone subunit family proteins and the LGR signaling system from nematodes to humans. Endocrine 2005; 26:267-76. [PMID: 16034181 DOI: 10.1385/endo:26:3:267] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glycoprotein hormones, follicle-stimulating hormones (FSHs), luteinizing hormones (LHs), thyroid-stimulating hormones (TSHs), and chorionic gonadotropin (CG) are key endocrine hormones secreted from the pituitary gonadotrophs and thyrotrophs and the placenta in primates. These hormones, consisting of a common alpha subunit and a specific beta subunit, act through the FSH receptor (FSHR), the LH receptor (LHR), and the TSH receptor (TSHR) that are highly specific for their cognate hormones. These glycoprotein hormones are structurally and functionally conserved in various vertebrates and have been identified in most lineages of actinopterygians (bony fish) and sarcopterygians (tetra-pods). Of interest, recent genomic studies showed that vertebrate glycoprotein hormone receptors belong to an ancient subfamily of G protein-coupled receptors (GPCRs) named as leucine-rich repeat-containing GPCRs (LGRs). These findings have prompted the hypothesis that there could be additional glycoprotein hormones in vertebrate genomes. Indeed, searches of vertebrate genomes have led to the identification of two novel glycoprotein hormone subunits, glycoprotein alpha 2 (GPA2) and glycoprotein beta 5 (GPB5), as well as their homologs in invertebrates. Subsequently, it was demonstrated that GPA2 and GPB5 form a heterodimeric hormone, thyrostimulin/OGH, capable of activating TSHR in vivoand the thyroid axis in transgenic mice. However, the exact role of this novel glycoprotein hormone and its homolog in invertebrates is not clear. To gain a better understanding of the physiological role of the novel glycoprotein hormone subunits and their evolution, it is imperative to carry out systematic studies of these genes in representative model species. In the present report, we summarize our findings based on studies of genomes of model organisms from sea anemones to humans. We found that GPA2 and GPB5 represent the ancient forms of glycoprotein hormone alpha and beta subunits, respectively, and that vertebrate and invertebrate glycoprotein hormone subunit proteins shared common ancestors that evolved during early metazoan evolution. It is important to note that glycoprotein hormone alpha and beta subunit proteins from invertebrates formed a heterodimer with structural functional characteristics similar to that of vertebrate glycoprotein hormones. Taken together, both glycoprotein hormone alpha and beta subunits evolved before the evolution of nematodes, arthropods, and vertebrates.
Collapse
Affiliation(s)
- Jae-Il Park
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, Stanford University School of Medicine, CA 94305-5317, USA
| | | | | | | |
Collapse
|
36
|
Kwok HF, So WK, Wang Y, Ge W. Zebrafish gonadotropins and their receptors: I. Cloning and characterization of zebrafish follicle-stimulating hormone and luteinizing hormone receptors--evidence for their distinct functions in follicle development. Biol Reprod 2005; 72:1370-81. [PMID: 15728795 DOI: 10.1095/biolreprod.104.038190] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In the present study, we cloned and characterized zebrafish FSH receptor (Fshr) and LH receptor (Lhr). Both fshr and lhr were abundantly expressed in the zebrafish gonads; however, they could also be detected in the kidney and liver, respectively. When overexpressed in mammalian cell lines together with a cAMP-responsive reporter gene, zebrafish Fshr responded to goldfish pituitary extract but not hCG, whereas Lhr could be activated by both. It was further demonstrated that Fshr was specific to bFSH, while Lhr could be stimulated by both bovine FSH and LH. Low level of fshr expression could be detected in the immature ovary, but the level steadily increased during vitellogenesis of the first cohort of developing follicles. In contrast, the expression of lhr could barely be detected in the immature ovary, but it became detectable at the beginning of vitellogenesis and steadily increased afterward with the peak level reached at the full-grown stage. At the follicle level, the expression of fshr was very weak in the follicles of primary growth stage but significantly increased with the follicles entering vitellogenesis. However, after reaching the maximal level in the midvitellogenic follicles, the level of fshr expression dropped slightly but significantly at the full-grown stage. In comparison, the expression of lhr obviously lagged behind that of fshr. Its expression became detectable only when the follicles started to accumulate yolk granules, but the level rose steadily afterward and reached the peak at the full-grown stage before oocyte maturation. These results suggest differential roles for Fshr and Lhr in zebrafish ovarian follicle development.
Collapse
Affiliation(s)
- Hin-Fai Kwok
- Department of Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | |
Collapse
|
37
|
Zhou H, Wang X, Ko WKW, Wong AOL. Evidence for a novel intrapituitary autocrine/paracrine feedback loop regulating growth hormone synthesis and secretion in grass carp pituitary cells by functional interactions between gonadotrophs and somatotrophs. Endocrinology 2004; 145:5548-59. [PMID: 15331572 DOI: 10.1210/en.2004-0362] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadotropin (GTH) and GH released from the pituitary are known to interact at multiple levels to modulate the functions of the gonadotrophic and somatotrophic axes. However, their interactions at the pituitary level have not been fully characterized. In this study, autocrine/paracrine regulation of GH synthesis and secretion by local interactions between gonadotrophs and somatotrophs was examined using grass carp pituitary cells as a cell model. Exogenous GTH and GH induced GH release and GH mRNA expression in carp pituitary cells. Removal of endogenous GTH and GH by immunoneutralization with GTH and GH antisera, respectively, suppressed GH release, GH production, and GH mRNA levels. GH antiserum also blocked the stimulatory effects of exogenous GTH on GH release and GH mRNA levels. In reciprocal experiments, GH release and GH mRNA expression induced by exogenous GH was significantly reduced by GTH antiserum. In addition, exogenous GH was found to be inhibitory to basal GTH release and treatment with GH antiserum elevated GTH secretion at low doses but suppressed GTH production at high doses. These results suggest that local interactions between gonadotrophs and somatotrophs may form an intrapituitary feedback loop to regulate GH release and synthesis. In this model, GTH released from gonadotrophs induces GH release and GH production in neighboring somatotrophs. GH secreted maintains somatotroph sensitivity to GTH stimulation, and at the same time, inhibits basal GTH release in gonadotrophs. This feedback loop may represent a novel mechanism regulating GH release and synthesis in lower vertebrates.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Zoology, University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | |
Collapse
|
38
|
Bluhm APC, Toledo RA, Mesquita FM, Pimenta MT, Fernandes FMC, Ribela MTCP, Lazari MFM. Molecular cloning, sequence analysis and expression of the snake follicle-stimulating hormone receptor. Gen Comp Endocrinol 2004; 137:300-11. [PMID: 15201068 DOI: 10.1016/j.ygcen.2004.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2004] [Revised: 03/23/2004] [Accepted: 03/29/2004] [Indexed: 11/16/2022]
Abstract
Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) control gonadal function in mammalian and many non-mammalian vertebrates through the interaction with their receptors, FSHR and LHR. Although the same is true for some reptilian species, in Squamata (lizards and snakes) there is no definitive evidence for the presence of either two distinct gonadotropins or two distinct gonadotropin receptors. Our aim was to characterize the gonadotropin receptor(s) of the Bothrops jararaca snake. Using a cDNA library from snake testis and amplification of the 5'-cDNA ending, we cloned a cDNA related to FSHR. Attempts to clone a cDNA more closely related to LHR were unsuccessful. Expression of FSHR mRNA was restricted to gonadal tissues. The snake FSHR is a G protein-coupled receptor with 673 amino acids, and the aminoterminal domain with 346 amino acids consists of a nine leucine-rich repeat-containing subdomain (LRR) flanked by two cysteine-rich subdomains. The beta-strands in the LRR are conserved with exception of the third, a region that may be important for FSH binding. In contrast with mammalian, avian and amphibian FSHRs, the snake FSHR presents amino acid deletions in the carboxyterminal region of the extracellular domain which are also seen in fish and lizard FSHRs. cAMP assays with the recombinant protein transiently expressed in HEK-293 cells showed that the snake FSHR is more sensitive to human FSH (hFSH) than to human chorionic gonadotropin. Phylogenetic analysis indicated that the squamate FSHRs group separately from mammalian FSHRs. Our data are consistent with the apparently unique gonadotropin-receptor system in Squamata reptilian subgroup. Knowledge about the snake FSHR structure may help identify structural determinants for receptor function.
Collapse
Affiliation(s)
- Ana P C Bluhm
- Department of Pharmacology, Butantan Institute, Sao Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
39
|
Weltzien FA, Andersson E, Andersen Ø, Shalchian-Tabrizi K, Norberg B. The brain–pituitary–gonad axis in male teleosts, with special emphasis on flatfish (Pleuronectiformes). Comp Biochem Physiol A Mol Integr Physiol 2004; 137:447-77. [PMID: 15123185 DOI: 10.1016/j.cbpb.2003.11.007] [Citation(s) in RCA: 209] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2003] [Revised: 11/05/2003] [Accepted: 11/06/2003] [Indexed: 02/03/2023]
Abstract
The key component regulating vertebrate puberty and sexual maturation is the endocrine system primarily effectuated along the brain-pituitary-gonad (BPG) axis. By far most investigations on the teleost BPG axis have been performed on salmonids, carps, catfish and eels. Accordingly, earlier reviews on the BPG axis in teleosts have focused on these species, and mainly on females (e.g. 'Fish Physiology, vol. IXA. Reproduction (1983) pp. 97'; 'Proceedings of the Fourth International Symposium on the Reproductive Physiology of Fish. FishSymp91, Sheffield, UK, 1991, pp. 2'; 'Curr. Top. Dev. Biol. 30 (1995) pp. 103'; 'Rev. Fish Biol. Fish. 7 (1997) pp. 173'; 'Proceedings of the Sixth International Symposium on the Reproductive Physiology of Fish. John Grieg A/S, Bergen, Norway, 2000, pp. 211'). However, in recent years new data have emerged on the BPG axis in flatfish, especially at the level of the brain and pituitary. The evolutionarily advanced flatfishes are important model species both from an evolutionary point of view and also because many are candidates for aquaculture. The scope of this paper is to review the present status on the male teleost BPG axis, with an emphasis on flatfish. In doing so, we will first discuss the present understanding of the individual constituents of the axis in the best studied teleost models, and thereafter discuss available data on flatfish. Of the three constituents of the BPG axis, we will focus especially on the pituitary and gonadotropins. In addition to reviewing recent information on flatfish, we present some entirely new information on the phylogeny and molecular structure of teleost gonadotropins.
Collapse
Affiliation(s)
- Finn-Arne Weltzien
- Institute of Marine Research, Austevoll Aquaculture Research Station, 5392 Storebø, Norway.
| | | | | | | | | |
Collapse
|
40
|
Steven C, Lehnen N, Kight K, Ijiri S, Klenke U, Harris WA, Zohar Y. Molecular characterization of the GnRH system in zebrafish (Danio rerio): cloning of chicken GnRH-II, adult brain expression patterns and pituitary content of salmon GnRH and chicken GnRH-II. Gen Comp Endocrinol 2003; 133:27-37. [PMID: 12899844 DOI: 10.1016/s0016-6480(03)00144-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The zebrafish has proven to be a model system with unparalleled utility in vertebrate genetic and developmental studies. Substantially less attention has been paid to the potential role that zebrafish can play in answering important questions of vertebrate reproductive endocrinology. As an initial step towards exploiting the advantages that the zebrafish model offers, we have characterized their gonadotropin-releasing hormone (GnRH) system at the molecular level. GnRHs comprise a family of highly conserved decapeptide neurohormones widely recognized to orchestrate the hormonal control of reproduction in all vertebrates. We have isolated the gene and cDNA encoding chicken GnRH-II (cGnRH-II) from zebrafish, as well as several kilobases of upstream promoter sequence for this gene. As the gene encoding salmon GnRH (sGnRH) has been previously isolated (Torgersen et al, 2002), this is the second GnRH gene isolated from zebrafish to date. We have localized expression of these two genes in the brains of reproductively mature zebrafish using in situ hybridization. sGnRH is localized to the olfactory bulb-terminal nerve region (OB-TN), the ventral telencephalon-preoptic area (VT-POA) and, as we report here for the first time in any teleost species, the hindbrain. cGnRH-II is expressed exclusively in the midbrain, as has been found in all other jawed vertebrate species examined. Finally, the levels of both GnRH peptides in pituitaries of reproductively mature zebrafish were quantified using specific ELISAs. sGnRH pituitary peptide levels were shown to be 3- to 4-fold higher than cGnRH-II pituitary peptide. The cumulative results of these experiments allow us to conclude that zebrafish express just two forms of GnRH in a site-specific manner within the brain, and that sGnRH is the hypophysiotropic GnRH form. This work lays the foundation for further research into the control of reproduction in zebrafish, such as the functional significance of multiple GnRHs in vertebrates, and the molecular mechanisms controlling tissue-specific GnRH expression.
Collapse
Affiliation(s)
- Colin Steven
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 E Pratt Street, Baltimore, MD 21202, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Spitsbergen JM, Kent ML. The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicol Pathol 2003; 31 Suppl:62-87. [PMID: 12597434 PMCID: PMC1909756 DOI: 10.1080/01926230390174959] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. The zebrafish genome will be completely sequenced within the next 1-2 years. Together with the substantial historical database regarding basic developmental biology, toxicology, and gene transfer, the rich foundation of molecular genetic and genomic data makes zebrafish a powerful model system for clarifying mechanisms in toxicity. In contrast to the highly advanced knowledge base on molecular developmental genetics in zebrafish, our database regarding infectious and noninfectious diseases and pathologic lesions in zebrafish lags far behind the information available on most other domestic mammalian and avian species, particularly rodents. Currently, minimal data are available regarding spontaneous neoplasm rates or spontaneous aging lesions in any of the commonly used wild-type or mutant lines of zebrafish. Therefore, to fully utilize the potential of zebrafish as an animal model for understanding human development, disease, and toxicology we must greatly advance our knowledge on zebrafish diseases and pathology.
Collapse
Affiliation(s)
- Jan M Spitsbergen
- Department of Environmental and Molecular Toxicology and Marine/Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, Oregon 97333, USA.
| | | |
Collapse
|