1
|
Cui E, Zhang L, Pan X, Zhang Q, Zhang L, Wu F, Chen N, Lv L, Chen W, Chen H, Lin A, Wang F, Liang J, Pan R. RNA-Sequencing approach for exploring the therapeutic effect of umbilical cord mesenchymal stem/stromal cells on lipopolysaccharide-induced acute lung injury. Front Immunol 2022; 13:1021102. [PMID: 36341363 PMCID: PMC9632738 DOI: 10.3389/fimmu.2022.1021102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/03/2022] [Indexed: 11/20/2022] Open
Abstract
Acute lung injury (ALI) is significantly associated with morbidity and mortality in patients with critical diseases. In recent years, studies have identified that mesenchymal stem/stromal cells (MSCs) ameliorate ALI and pulmonary fibrosis. However, the mechanism underlying this outcome in ALI has not yet been investigated. In this study, RNA sequencing technology was used to analyze the gene expression profile of lung tissue in lipopolysaccharide (LPS)-induced ALI rats following treatment with human umbilical cord MSC (HUCMSC). Differential expression analyses, gene ontology annotation, Kyoto Encyclopedia of Genes and Genomes enrichment, protein–protein interaction network identification, and hub gene analysis were also performed. HUCMSC treatment decreased inflammatory factor production and alveolar exudates, and attenuated lung damage in LPS-induced ALI rats. The RNA-Seq data indicated that HUCMSC treatment activated the IL-17, JAK-STAT, NF-κB, and TNF-α signaling pathways, increased oxygen transport, and decreased extracellular matrix organization. HUCMSC exert beneficial effects on ALI via these signaling pathways by reducing inflammation, inhibiting pulmonary fibrosis, and improving lung ventilation. Moreover, our study further revealed the hub genes (Tbx2, Nkx2-1, and Atf5) and signaling pathways involved in HUCMSC treatment, thus providing novel perspectives for future research into the molecular mechanisms underlying cell treatment of ALI. HUCMSC can regulate multiple genes and signaling pathways, which can prevent LPS-induced lung damage in an ALI rat model.
Collapse
Affiliation(s)
- Enhai Cui
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Luwen Zhang
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Qiang Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Ling Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Feifei Wu
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Na Chen
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Lv
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyan Chen
- Department of Huzhou Central Hospital, Affiliated Huzhou Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Chen
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Feng Wang
- Department of Nephrology, Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinfeng Liang
- Department of Drug Evaluation, Zhejiang Center for Drug & Cosmetic Evaluation, Hangzhou, China
- *Correspondence: Ruolang Pan, ; Jinfeng Liang,
| | - Ruolang Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
- *Correspondence: Ruolang Pan, ; Jinfeng Liang,
| |
Collapse
|
2
|
Jablonka-Shariff A, Broberg C, Rios R, Snyder-Warwick AK. T-box transcription factor 21 is expressed in terminal Schwann cells at the neuromuscular junction. Muscle Nerve 2021; 64:109-115. [PMID: 33908666 DOI: 10.1002/mus.27257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 11/10/2022]
Abstract
INTRODUCTION/AIMS Terminal Schwann cells (tSCs) are nonmyelinating Schwann cells present at the neuromuscular junction (NMJ) with multiple integral roles throughout their lifespan. There is no known gene differentiating tSCs from myelinating Schwann cells, making their isolation and investigation challenging. In this work we investigated genes expressed within tSCs. METHODS A novel dissection technique was utilized to isolate the tSC-containing NMJ band from the sternomastoid muscles of S100-GFP mice. RNA was isolated from samples containing: (a) NMJ bands (tSCs with nerve and muscle), (b) nerve, and (c) muscle, and microarray genetic expression analysis was conducted. Data were validated by quantitative real-time polymerase chain reaction (qRT-PCR) and immunofluorescent staining. To identify genes specific to tSCs compared with other NMJ components, analysis of variance and rank-order analysis were performed using the Partek Genomic Suite. RESULTS Microarray analysis of the tSC-enriched NMJ band revealed upregulation (by 4- to 12-fold) of several genes unique to the NMJ compared with muscle or nerve parts alone (P < .05). Among these genes, Tbx21 (or T-bet) was identified, which showed a 12-fold higher expression at the NMJ compared with sciatic nerve (P < .002). qRT-PCR analysis showed Tbx21 mRNA expression was over ninefold higher (P < .05) in the NMJ relative to muscle and nerve. Tbx21 protein colocalized with tSCs and was not noted in myelinating SCs from sciatic nerve. DISCUSSION We found TBX21 to be expressed in tSCs. Additional studies will be performed to determine the functional significance of TBX21 in tSCs. These studies may enhance the investigative tools available to modulate tSCs to improve motor recovery after nerve injury.
Collapse
Affiliation(s)
- Albina Jablonka-Shariff
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Curtis Broberg
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Rachel Rios
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Alison K Snyder-Warwick
- Division of Plastic Surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
3
|
Jia R, Liu S, Xu J, Liang X. IL16 deficiency enhances Th1 and cytotoxic T lymphocyte response against influenza A virus infection. Biosci Trends 2019; 13:516-522. [PMID: 31852865 DOI: 10.5582/bst.2019.01286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ran Jia
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, Shanghai, China
| | - Shuai Liu
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jin Xu
- Department of Clinical Laboratory, Children’s Hospital of Fudan University, Shanghai, China
| | - Xiaozhen Liang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
4
|
Bertolessi M, Linta L, Seufferlein T, Kleger A, Liebau S. A Fresh Look on T-Box Factor Action in Early Embryogenesis (T-Box Factors in Early Development). Stem Cells Dev 2015; 24:1833-51. [DOI: 10.1089/scd.2015.0102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Maíra Bertolessi
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Leonhard Linta
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine 1, Ulm University Hospital, Ulm, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Woo C, Shin S, Koh S, Lim J. TBX21 participates in innate immune response by regulating Toll-like receptor 2 expression inStreptococcus pneumoniaeinfections. Mol Oral Microbiol 2014; 29:233-43. [DOI: 10.1111/omi.12061] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2014] [Indexed: 11/29/2022]
Affiliation(s)
- C.H. Woo
- Department of Pharmacology; Yeungnam University College of Medicine; Daegu Korea
| | - S.G. Shin
- Department of Microbiology; Ewha Womans University School of Medicine; Seoul Korea
| | - S.H. Koh
- Department of Microbiology; Ewha Womans University School of Medicine; Seoul Korea
| | - J.H. Lim
- Department of Microbiology; Ewha Womans University School of Medicine; Seoul Korea
- Gonda Department of Cell and Molecular Biology; House Ear Institute; Los Angeles CA USA
| |
Collapse
|
6
|
Vogelzang A, Perdomo C, Zedler U, Kuhlmann S, Hurwitz R, Gengenbacher M, Kaufmann SHE. Central memory CD4+ T cells are responsible for the recombinant Bacillus Calmette-Guérin ΔureC::hly vaccine's superior protection against tuberculosis. J Infect Dis 2014; 210:1928-37. [PMID: 24943726 PMCID: PMC4241943 DOI: 10.1093/infdis/jiu347] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacillus Calmette-Guérin (BCG) has been used for vaccination against tuberculosis for nearly a century. Here, we analyze immunity induced by a live tuberculosis vaccine candidate, recombinant BCG ΔureC::hly vaccine (rBCG), with proven preclinical and clinical safety and immunogenicity. We pursue in-depth analysis of the endogenous mycobacteria-specific CD4+ T-cell population, comparing the more efficacious rBCG with canonical BCG to determine which T-cell memory responses are prerequisites for superior protection against tuberculosis. rBCG induced higher numbers and proportions of antigen-specific memory CD4+ T cells than BCG, with a CXCR5+CCR7+ phenotype and low expression of the effector transcription factors T-bet and Bcl-6. We found that the superior protection of rBCG, compared with BCG, correlated with higher proportions and numbers of these central memory T cells and of T follicular helper cells associated with specific antibody responses. Adoptive transfer of mycobacteria-specific central memory T cells validated their critical role in protection against pulmonary tuberculosis.
Collapse
Affiliation(s)
| | | | | | | | - Robert Hurwitz
- Core Facility Protein Purification, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | |
Collapse
|
7
|
Th1/Th2 Cell’s Function in Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 841:45-65. [DOI: 10.1007/978-94-017-9487-9_3] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Increased HIV-specific CD8+ T-cell cytotoxic potential in HIV elite controllers is associated with T-bet expression. Blood 2011; 117:3799-808. [PMID: 21289310 DOI: 10.1182/blood-2010-12-322727] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent data suggest that CD8+ T-cell effector activity is an important component in the control of HIV replication in elite controllers (ECs). One critical element of CD8+ T-cell effector function and differentiation is the T-box transcription factor T-bet. In the present study, we assessed T-bet expression, together with the effector proteins perforin, granzyme A (Grz A), granzyme B (Grz B), and granulysin, in HIV-specific CD8+ T cells from ECs (n = 20), chronically infected progressors (CPs; n = 18), and highly active antiretroviral therapy (HAART)-suppressed individuals (n = 19). Compared with the other cohort groups, HIV-specific CD8+ T cells among ECs demonstrated a superior ability to express perforin and Grz B, but with no detectable difference in the levels of Grz A or granulysin. We also observed higher levels of T-bet in HIV-specific CD8+ T cells from ECs, with an ensuing positive correlation between T-bet and levels of both perforin and Grz B. Moreover, HIV-specific CD8+ T cells in ECs up-regulated T-bet to a greater extent than CPs after in vitro expansion, with concomitant up-regulation of perforin and Grz B. These results suggest that T-bet may play an important role in driving effector function, and its modulation may lead to enhanced effector activity against HIV.
Collapse
|
9
|
Yang P, Qiu G, Wang S, Su Z, Chen J, Wang S, Kong F, Lu L, Ezaki T, Xu H. The mutations of Th1 cell-specificT-boxtranscription factor may be associated with a predominant Th2 phenotype in gastric cancers. Int J Immunogenet 2010; 37:111-5. [DOI: 10.1111/j.1744-313x.2010.00899.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Mitra S, Alnabulsi A, Secombes CJ, Bird S. Identification and characterization of the transcription factors involved in T-cell development, t-bet, stat6 and foxp3, within the zebrafish, Danio rerio. FEBS J 2009; 277:128-47. [PMID: 19961539 DOI: 10.1111/j.1742-4658.2009.07460.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The discovery of cytokines expressed by T-helper 1 (Th1), Th2, Th17 and T-regulatory (T(reg)) cells has prompted speculation that these types of responses may exist in fish, arising early in vertebrate evolution. In this investigation, we cloned three zebrafish transcription factors, T-box expressed in T cells (t-bet), signal transducer and activator of transcription 6 (stat6) and fork-head box p3 (foxp3), in which two transcripts are present, that are important in the development of a number of these cell types. They were found within the zebrafish genome, using a synteny approach in the case of t-bet and foxp3. Multiple alignments of zebrafish t-bet, stat6 and foxp3 amino acids with known vertebrate homologues revealed regions of high conservation, subsequently identified to be protein domains important in the functioning of these transcription factors. The gene organizations of zebrafish t-bet and foxp3 were identical to those of the human genes, with the second foxp3 transcript lacking exons 5, 6, 7 and 8. Zebrafish stat6 (21 exons and 20 introns) was slightly different from the human gene, which contained 22 exons and 21 introns. Immunostimulation of zebrafish head kidney and spleen cells with phytohaemagglutinin, lipopolysaccharide or Poly I:C, showed a correlation between the expression of t-bet, stat6 and foxp3 with other genes involved in Th and T(reg) responses using quantitative PCR. These transcription factors, together with many of the cytokines that are expressed by different T-cell subtypes, will aid future investigations into the Th and T(reg) cell types that exist in teleosts.
Collapse
Affiliation(s)
- Suman Mitra
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | |
Collapse
|
11
|
Yang M, Wang S, Wang S, Ma J, Xu X, Mao C, Ma B, Tong J, Qiu G, Shao Q, Ding Q, Xu H. Tat-mediated intracellular delivery of T-bet protein into THP-1 cells can induce Th1-type response. Immunol Invest 2008; 37:97-111. [PMID: 18300036 DOI: 10.1080/08820130701690725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
T-bet, a Th1-specific transcription factor, can promote the production of IFN-gamma. IFN-gamma is the principal Th1 effector cytokine and it has a crucial role in Th1 differentiation, which can drive the differentiation of naïve CD4+T cells into T-helper 1 (Th1) cells. In our study, a human T-bet gene was fused with a gene fragment encoding HIV-1 protein transduction domain in a bacterial expression vector to produce a Tat/T-bet fusion protein. The expressed and purified Tat/T-bet proteins were transduced efficiently into THP-1 cells in a time- and dose-dependent manner; when Tat/T-bet pretreated THP-1 cells were co-cultured with CD4+T cells, the IFN-gamma level increased higher to about 7 pg/ml, 10-folds as compared with the normal level when tested at 48 hours. The results demonstrated that the Tat/T-bet fusion protein can be efficiently transduced into antigen-presenting cells (APCs) like THP-1 cells and then regulated Th1/Th2 balance, which may act as a potential tool for gene therapy.
Collapse
Affiliation(s)
- Min Yang
- Department of Immunology, School of Medical Technology, Jiangsu University, Zhenjiang, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Yang Y, Ochando JC, Bromberg JS, Ding Y. Identification of a distant T-bet enhancer responsive to IL-12/Stat4 and IFNgamma/Stat1 signals. Blood 2007; 110:2494-500. [PMID: 17575072 PMCID: PMC1988915 DOI: 10.1182/blood-2006-11-058271] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-bet plays a critical role in controlling IFNgamma expression, Th1 polarization, and CD8 cytolytic development. Its regulation has been demonstrated to be mostly IFNgamma/Stat1 dependent while IL-12/Stat4 independent. Here we show that IL-12/Stat4 binds to a distant highly conserved STAT-responsive T-bet enhancer, and induces IFNgamma/Stat1-independent T-bet expression in CD8 T cells. Luciferase reporter assay showed that both Stat4 and Stat1 activate reporter gene expression from constructs containing a wild-type but not mutated T-bet enhancer. Studies in virus-infected mice demonstrated that the IL-12/Stat4/T-bet cascade operates in vivo and regulates IFNgamma in CD8 T cells. Together, we provide a novel mechanism for T-bet regulation, and suggest that IL-12/Stat4/T-bet play an important role in CD8 effector responses.
Collapse
Affiliation(s)
- Yu Yang
- Departments of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
13
|
Ariga H, Shimohakamada Y, Nakada M, Tokunaga T, Kikuchi T, Kariyone A, Tamura T, Takatsu K. Instruction of naive CD4+ T-cell fate to T-bet expression and T helper 1 development: roles of T-cell receptor-mediated signals. Immunology 2007; 122:210-21. [PMID: 17490433 PMCID: PMC2266005 DOI: 10.1111/j.1365-2567.2007.02630.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Using T-cell receptor (TCR) transgenic mice, we demonstrate that TCR stimulation of naive CD4(+) T cells induces transient T-bet expression, interleukin (IL)-12 receptor beta2 up-regulation, and GATA-3 down-regulation, which leads to T helper (Th)1 differentiation even when the cells are stimulated with peptide-loaded I-A(b)-transfected Chinese hamster ovary cells in the absence of interferon-gamma (IFN-gamma) and IL-12. Sustained IFN-gamma and IL-12 stimulation augments naive T-cell differentiation into Th1 cells. Intriguingly, a significant Th1 response is observed even when T-bet(-/-) naive CD4(+) T cells are stimulated through TCR in the absence of IFN-gamma or IL-12. Stimulation of naive CD4(+) T cells in the absence of IFN-gamma or IL-12 with altered peptide ligand, whose avidity to the TCR is lower than that of original peptide, fails to up-regulate transient T-bet expression, sustains GATA-3 expression, and induces differentiation into Th2 cells. These results support the notion that direct interaction between TCR and peptide-loaded antigen-presenting cells, even in the absence of T-bet expression and costimulatory signals, primarily determine the fate of naive CD4(+) T cells to Th1 cells.
Collapse
Affiliation(s)
- Haruyuki Ariga
- Division of Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of TokyoTokyo, Japan
- First Department of Internal Medicine, Kyorin University School of MedicineTokyo, Japan
| | - Yoko Shimohakamada
- Division of Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of TokyoTokyo, Japan
| | - Makiyo Nakada
- Division of Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of TokyoTokyo, Japan
- Department of Pediatrics, Tokyo Women's Medical University Medical Center EastTokyo, Japan
| | - Takeshi Tokunaga
- Division of Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of TokyoTokyo, Japan
| | - Takeshi Kikuchi
- Division of Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of TokyoTokyo, Japan
- Department of Pediatric Surgery, Nihon University School of MedicineTokyo, Japan
| | - Ai Kariyone
- Division of Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of TokyoTokyo, Japan
| | - Toshiki Tamura
- Division of Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of TokyoTokyo, Japan
| | - Kiyoshi Takatsu
- Division of Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of TokyoTokyo, Japan
| |
Collapse
|
14
|
Atayar C, Poppema S, Blokzijl T, Harms G, Boot M, van den Berg A. Expression of the T-cell transcription factors, GATA-3 and T-bet, in the neoplastic cells of Hodgkin lymphomas. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:127-34. [PMID: 15632006 PMCID: PMC1602286 DOI: 10.1016/s0002-9440(10)62238-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Since Hodgkin and Reed-Sternberg (HRS) cells of Hodgkin lymphoma (HL) generally have immunoglobulin gene rearrangements, they are considered to be of B-cell origin. One of the characteristics of HRS cells is a prominent production of various cytokines and chemokines. Cytokine production is generally driven by expression of T-cell transcription factors (TFs). Only limited information is available on the expression of T-cell TFs in HL. Expression of four T-cell TFs and the target cytokine spectrum of these TFs were analyzed in six HL and three large B-cell lymphoma (LBCL) cell lines using quantitative PCR. ERM expression was observed in all HL and LBCL cell lines. Out of HL cell lines, T-bet was expressed in five, GATA-3 in four, and c-Maf in two cell lines. Immunohistochemistry in HL tissues revealed that in 11 of 12 (92%) of the classical HL cases HRS cells were GATA-3 and/or T-bet positive. In three of six cases of nodular lymphocyte predominance type of HL, the neoplastic cells were T-bet positive. Overall, the T-cell TF and cytokine profiles of the HL cell lines showed a considerable degree of consistency. The expression of T-cell TFs may explain the production of various cytokines by HL cell lines and HRS cells.
Collapse
Affiliation(s)
- Cigdem Atayar
- Department of Pathology and Laboratory Medicine, Groningen University Medical Center, Hanzeplein 1, P.O. Box 30.001 9700 RB Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Finotto S, Glimcher L. T cell directives for transcriptional regulation in asthma. ACTA ACUST UNITED AC 2003; 25:281-94. [PMID: 15007632 DOI: 10.1007/s00281-003-0143-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2003] [Accepted: 08/26/2003] [Indexed: 12/28/2022]
Abstract
Allergic asthma frequently starts in childhood, and environmental factors such as viruses, allergens and occupational exposure can regulate the evolution of the disease. The development of allergen-specific Th2 lymphocytes represents the triggering event for the recruitment and activation of IgE-producing B cells and fibroblasts, followed by the release of soluble factors, thus giving rise to the inflammatory reaction observed in this disease. GATA-3 was identified as a cell lineage-specific factor selectively expressed and activated in the Th2 lineage as a consequence of STAT-6 activation. However, recent literature indicates that blockade of CTLA-4-directed inhibitory signals is sufficient to induce STAT 6-independent Th2 differentiation. A new Th1-restricted transcription factor has been recently identified that transactivates the IFN-gamma gene promoter: T-bet (T-box expressed in T cells). T-bet expression during T cell activation is strongly dependent on IFN-gamma and STAT-1. Mice lacking T-bet have profound defects in the development of the Th1 subset and the production of IFN-gamma, but overproduce Th2 cytokines and, in the absence of immunological challenge, they exhibited airway hyperreactivity to methacholine associated with a peribronchial and perivascular infiltration with eosinophils and lymphocytes. Finally, a small subset of CD4 T cells called T-regulatory (T-reg) cells has been identified. These cells exhibit potent immunosuppressive properties. Although recent reports suggest that the induction of T-reg cells is under the control of the transcription factor Foxp3, the specific signals that preferentially induce development of T-reg cells instead of Th2 cells are still unclear.
Collapse
Affiliation(s)
- Susetta Finotto
- I Medical Clinic, Laboratory of Immunology, Verfügungsgebäude für Forschung und Entwicklung, University of Mainz, Germany.
| | | |
Collapse
|
16
|
Abstract
The T helper lymphocyte is responsible for orchestrating the appropriate immune response to a wide variety of pathogens. The recognition of the polarized T helper cell subsets Th1 and Th2 has led to an understanding of the role of these cells in coordinating a variety of immune responses, both in responses to pathogens and in autoimmune and allergic disease. Here, we discuss the mechanisms that control lineage commitment to the Th1 phenotype. What has recently emerged is a rich understanding of the cytokines, receptors, signal transduction pathways, and transcription factors involved in Th1 differentiation. Although the picture is still incomplete, the basic pathways leading to Th1 differentiation can now be understood in in vitro and a number of infection and disease models.
Collapse
Affiliation(s)
- Susanne J Szabo
- Department of Immunology and Infectious Diseases, Harvard School of Public Health Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
17
|
Horton AC, Gibson-Brown JJ. Evolution of developmental functions by the Eomesodermin, T-brain-1, Tbx21 subfamily of T-box genes: insights from amphioxus. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2002; 294:112-21. [PMID: 12210112 DOI: 10.1002/jez.10151] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have identified an amphioxus T-box gene that is orthologous to the Eomesodermin, T-brain-1, and Tbx21 genes of vertebrates, and we have characterized its expression pattern during embryonic and larval development. AmphiEomes/Tbr1/Tbx21 is maternally expressed in oocytes and cleavage stage embryos. After the onset of zygotic transcription at the blastula stage, it is expressed in invaginating mesendoderm cells during gastrulation, but it is downregulated in presumptive ectoderm and neurectoderm. Expression is seen in both axial and paraxial mesendoderm in neurulae and early larvae, but it is not detected in differentiated endoderm, somites, or notochord. Expression persists in mesendoderm cells of the tail bud in early larvae, but it disappears between 1 to 1.5 days post fertilization. Unlike orthologous genes in basal deuterostomes or vertebrates, no anterior neural expression domain is detected at any stage of development. Integrating phylogenetic and developmental data, we have reconstructed the evolutionary history of the Eomesodermin/Tbr1/Tbx21 subfamily of T-box genes from a single ancestral locus that originated very early in metazoan evolution, before the evolution of triploblasts from their diploblast ancestor.
Collapse
Affiliation(s)
- Amy C Horton
- Department of Biology, Washington University, St. Louis, Missouri 63130-4899, USA
| | | |
Collapse
|
18
|
Faedo A, Ficara F, Ghiani M, Aiuti A, Rubenstein JLR, Bulfone A. Developmental expression of the T-box transcription factor T-bet/Tbx21 during mouse embryogenesis. Mech Dev 2002; 116:157-60. [PMID: 12128215 DOI: 10.1016/s0925-4773(02)00114-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A novel type of DNA-binding domain, the 'T-box' domain, characterizes an increasingly large family of transcription factors (Trends Genet. 15 (1999) 154). We have identified and characterized the expression pattern of a new member of the Tbr1 subfamily of T-box genes; this gene has been recently named T-bet/Tbx21 (Genomics 70 (2000) 41; Cell 17 (2000) 655; Science 292 (2001) 1907; Science 295 (2002) 338). The sequence and expression of Tbr1 and eomesodermin/Tbr2 are closely related to T-bet/Tbx21. The expression of Tbr1 (Neuron 15 (1995) 63) and Tbr2 (Mech Dev 84 (1999) 133) have virtually identical onset, at around E10.5, and expression domains in the mouse telencephalon. While Tbr1 is expressed in postmitotic neurons, Tbr2 (which is also expressed during gastrulation is also expressed in neural progenitors. We have used in situ hybridization to determine the temporal and spatial distribution of T-bet/Tbx21 expression during mouse development. T-bet/Tbx21 expression is exclusively restricted to the olfactory bulb and the thymus. To assess the distribution of T-BET/TBX21 expression in the haematopoietic compartment we used reverse transcriptase-polymerase chain reaction and found its expression in several human blood cell lineages, including progenitors/stem cells, immature B cells and peripheral T cells.
Collapse
Affiliation(s)
- Andrea Faedo
- Stem Cell Research Institute (SCRI), Istituto Scientifico HS Raffaele, Via Olgettina, 58 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Gorelik L, Constant S, Flavell RA. Mechanism of transforming growth factor beta-induced inhibition of T helper type 1 differentiation. J Exp Med 2002; 195:1499-505. [PMID: 12045248 PMCID: PMC2193549 DOI: 10.1084/jem.20012076] [Citation(s) in RCA: 398] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulation by transforming growth factor (TGF)-beta plays an important role in immune homeostasis. TGF-beta inhibits T cell functions by blocking both proliferation and differentiation. Here we show that TGF-beta blocks Th1 differentiation by inhibiting the expression of T-bet, the apparent masterregulator of T helper (Th)1 differentiation. Restoration of T-bet expression through retroviral transduction of T-bet into developing Th1 cells abrogated the inhibitory effect of TGF-beta. In addition, we show that, contrary to prior suggestions, downregulation of interleukin 12 receptor beta2 chain is not key to the TGF-beta-mediated effect. Furthermore, we show that the direct inhibitory effect of TGF-beta on T cells is responsible, at least in part, for the inability of BALB/c mice to mount a Leishmania-specific Th1 response and to clear Leishmanial infection.
Collapse
Affiliation(s)
- Leonid Gorelik
- Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
20
|
Afkarian M, Sedy JR, Yang J, Jacobson NG, Cereb N, Yang SY, Murphy TL, Murphy KM. T-bet is a STAT1-induced regulator of IL-12R expression in naïve CD4+ T cells. Nat Immunol 2002; 3:549-57. [PMID: 12006974 DOI: 10.1038/ni794] [Citation(s) in RCA: 764] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T helper type 1 (T(H)1) cell development involves interferon-gamma (IFN-gamma) signaling through signal transducer and activator of transcription 1 (STAT1) and interleukin-12 (IL-12) signaling through STAT4 activation. We examined here T-bet regulation and evaluated the actions of T-bet in STAT1- and STAT4-dependent T(H)1 development processes. We found that T-bet expression during T cell activation was strongly dependent on IFN-gamma signaling and STAT1 activation, but was independent of STAT4. Ectopic T-bet expression strongly increased IFN-gamma production in T(H)2 cells activated by PMA-ionomycin, but weakly increased IFN-gamma production in T(H)2 cells stimulated by IL-12 IL-18 or OVA peptide antigen-presenting cell stimulation. In contrast, IL-12 IL-18 induced IFN-gamma production remained STAT4-dependent despite ectopic T-bet expression. Ectopic T-bet expression selectively induced expression of IL-12Rbeta2, but not IL-18Ralpha, in wild-type and STAT1(-/-) T(H)2 cells, but did not extinguish expression of GATA-3 and T(H)2 cytokines. Finally, ectopic T-bet did not directly induce expression of endogenous T- bet independently of IFN-gamma or STAT1. Thus, T-bet is induced by IFN-gamma and STAT1 signaling during T cell activation. In addition, T-bet mediates STAT1-dependent processes of T(H)1 development, including the induction of IL-12Rbeta2.
Collapse
Affiliation(s)
- Maryam Afkarian
- Department of Pathology and Immunology, Howard Hughes Medical Institute, Washington University School of Medicine, Box 8118, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Mullen AC, High FA, Hutchins AS, Lee HW, Villarino AV, Livingston DM, Kung AL, Cereb N, Yao TP, Yang SY, Reiner SL. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 2001; 292:1907-10. [PMID: 11397944 DOI: 10.1126/science.1059835] [Citation(s) in RCA: 640] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
How cytokines control differentiation of helper T (TH) cells is controversial. We show that T-bet, without apparent assistance from interleukin 12 (IL-12)/STAT4, specifies TH1 effector fate by targeting chromatin remodeling to individual interferon-gamma (IFN-gamma) alleles and by inducing IL-12 receptor beta2 expression. Subsequently, it appears that IL-12/STAT4 serves two essential functions in the development of TH1 cells: as growth signal, inducing survival and cell division; and as trans-activator, prolonging IFN-gamma synthesis through a genetic interaction with the coactivator, CREB-binding protein. These results suggest that a cytokine does not simply induce TH fate choice but instead may act as an essential secondary stimulus that mediates selective survival of a lineage.
Collapse
Affiliation(s)
- A C Mullen
- Abramson Family Cancer Research Institute and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The T-box gene family was uncovered less than a decade ago but has been recognized as important in controlling many and varied aspects of development in metazoans from hydra to humans. Extensive screening and database searching has revealed several subfamilies of genes with orthologs in species as diverse as Caenorhabditis elegans and humans. The defining feature of the family is a conserved sequence coding for a DNA-binding motif known as the T-box, named after the first-discovered T-box gene, T or Brachyury. Although several T-box proteins have been shown to function as transcriptional regulators, to date only a handful of downstream target genes have been discovered. Similarly, little is known about regulation of the T-box genes themselves. Although not limited to the embryo, expression of T-box genes is characteristically seen in dynamic and highly specific patterns in many tissues and organs during embryogenesis and organogenesis. The essential role of several T-box genes has been demonstrated by the developmental phenotypes of mutant animals.
Collapse
Affiliation(s)
- V E Papaioannou
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| |
Collapse
|